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ABSTRACT

Muscle and tendon tissues:

Constitutive modeling, numerical implementation and applications

Leonidas A. Spyrou

Adviser: Professor Nikolaos Aravas

This work is concerned with the biological functioning and mechanical behavior of muscles and

tendons. From the Mechanics viewpoint, muscles and tendons are “composite” materials that consist

of fibers, connective tissues, and biofluids surrounding the fibers. The idea of considering these ma-

terials as “continuous media” is used and a “homogenization” process that accounts for the presence

of the fibers and the other material “phases” is developed.

Thus, the main objective of this work is to propose a general and realistic constitutive model

for the mechanical behavior of skeletal muscle and tendon when the materials are subjected to finite

strains. The model accounts for all the essential information about the microstructure of the materials.

Also, it is constructed in such a way that different material properties of different muscles can be

altered easily when the behavior of a whole group of muscles is to be studied in the same time.

Furthermore, a methodology to handle numerically the resulting non-linear and anisotropic con-

stitutive equations in the context of finite element method is developed. The constitutive model is,

then, implemented in a general-purpose finite element program.

Finally, the developed model is used to study the behavior of several muscle-tendon complex cases.

Firstly, the extension of a squid tentacle during the strike to catch prey is simulated in order to validate

the proposed model with previous experimental and computational results. Next, the behavior of

simplified parallel fibred and pennated muscles is studied. Also, the human semitendinosus muscle

is simulated. The constitutive model is further applied to the muscles and tendons of the human leg

and the plantar flexion of the ankle is achieved.
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Chapter 1

Introduction and Literature review

The undying attempts to understand nature and biological functioning date back to ancient

cultures. Over the centuries the exploration of the mechanics of living systems continued to

attract people with intellectual pursuits followed though by the limitations of each era. In our

days biomechanics is an increasingly developed science, mostly due to technological growth

and the well-developed knowledge in many scientific disciplines such as physics, chemistry,

mathematics, physiology and anatomy.

The development of biomechanics has improved our understanding of many aspects in

different fields. In general, biomechanical research studies the:

• Movement of different body segments and factors that influence movement such as

body alignment, weight distribution, equipment.

• Deformation of biological structures and factors that influence their deformity.

• Biological effects of locally acting forces on living tissue; effects such as growth and

development or overload and injuries.

• Biological factors that influence the biological materials’ behavior and the overall per-

formance; factors such as age, gender, exercise, immobility, nutrition and illness.

A wide variety of professions including orthopaedic surgery, rehabilitation engineering,

therapy, kinesiology, prosthetics, orthotics, automotive safety, sports equipment designers,

athletic coaches, can benefit from the biomechanical research to the improvement of human’s

performance and the reduction or treatment of injuries.

Biomechanics is most useful in improving performance in sports or activities where tech-

nique prevails to physical structure or physiological capacity. Although technique is always

relevant to human movement, in some activities the psychological, anatomical or physiolog-

ical factors are more strongly related to success. However, the improvement in the design of

sports equipment not only could affect the athlete’s technique but also enhance the whole

human performance. Biomechanical studies, also, confirm potential injury mechanisms and

help the prevention of injuries by providing information on the mechanical properties of
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2 Introduction and Literature review

tissues, mechanical loadings during movement and preventative or rehabilitative therapies.

Research in biomechanics to prevent injuries started from sports and recently is applied in

medicine (preventive medicine) and automotive safety field where human models are used

for computer crash simulations. Despite the efforts to prevent injuries, many injury cases

appear day by day and are confronted with great difficulties. Biomechanical research in this

field is also very important as it helps to improve the design of orthotics, prosthetics or other

medical devices, to gain better understanding of the loadings on the body tissues, to improve

the surgery procedures and as a result to minimize the patient’s suffering and improve the

quality of life.

Research activities in biomechanics can be divided into experimental studies and model

analysis. Experimental techniques are fundamental to the study of soft tissues. This kind

of studies are done to determine the mechanical properties of biological materials, including

the bone, cartilage, muscle, tendon, ligament and other soft tissues of the body structure.

All the studies presenting experimental results are based on tissues of animal subjects or

human cadavers. The experimental procedure is highly demanding and may be considered

as a challenge as it is sensitive to many parameters and it is necessary to reproduce the in

vivo conditions of the tissue in the laboratory. Model analysis that is based on experimental

findings can be used to predict the effect of environmental and operational factors with-

out resorting to laboratory experiments. Computational modeling plays a significant role

in biomechanics since, in most cases, it is inevitable to apply experimentally different case

studies on human beings. Also, the various biological materials exist and function together

in the joints, which allow relative movement between segments, the transfer of forces from

one segment to the next and facilitate biochemical and physiological interaction between the

neighboring biological materials. It is very difficult to achieve accurate findings by experi-

mental studies for the biological materials’ behavior and the complex loadings under these

circumstances. Computer models could be used in an efficient way so as to overcome the

barriers of numerous experiments. Of course, computational modeling of biological struc-

tures is not an easy task. It demands interdisciplinary knowledge of anatomy, physiology,

mechanics and materials. It is worth mentioning that all the biomechanical models presented

in the literature are based on several assumptions and present several limitations. The goal

of the research in scientific fields by using computational techniques is to develop realistic

models with limited assumptions. In order to achieve this goal in the field of computational

biomechanics, a model of a biological system should include at least:

• Accurate representation of the geometry

• Realistic material properties of the biological materials

• Realistic internal or external loading conditions
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Introduction and Literature review 3

1.1 Background and related work

1.1.1 Muscle modeling

The anatomical components of the human body can be divided into active and passive

structures. Active structures produce force whereas passive structures do not.

The only active structure in the human body is muscle and its capability of active contrac-

tion makes it distinct from other soft biological tissues. Because of its contractile properties,

muscle is less easily associated with strictly mechanical properties than are bones or liga-

ments, for which force-elongation or stress-strain relations can be well-defined. So, dealing

with the mechanics of muscle, the physiological and biochemical properties must always be

kept in mind.

It is believed that the development of realistic constitutive models for the mechanical

behavior of the muscle tissue can enhance the understanding of the complex muscle function.

Additionally, it is the basis for realistic simulation of the human musculoskeletal system. It is

well-proved that the presence of active muscle contraction to numerical models of biological

structures provides a better insight to the whole structure loadings during movement and

more accurate predictions of their behavior.

There are three ways one could use to model the mechanical behavior of a muscle:

• the cross-bridge model (A. F. Huxley, 1957),

• the Hill-type three-component model (Hill, 1938),

• the continuum model.

The cross-bridge model is based on the cross-bridge theory formulated by A. F. Huxley

(1957). In Chapter 2 and section 2.1.1 the cross-bridge theory is presented in detail. Briefly,

the theory states that the points where the force is generated are the cross-bridges which are

placed on the myosin filament of a sarcomere. A sarcomere is the basic unit of a muscle’s

cross-striated myofibril and myofibril is found in skeletal muscle’s lowest structural level.

The cross-bridge model combines the biochemical and physiological characteristics of the

muscle. It attempts to determine muscle force based on rates of attachment and detachment

of muscle cross-bridges.

Although the cross-bridge model is an excellent predictor of steady-state muscle force

and energetics, it has several limitations that should be pointed out. Structural nonuni-

formities on all levels of the muscle (sarcomere, fiber, fiber bundles) are not accounted for.

Also, the cross-bridge is assumed to behave in a perfectly linear elastic way. The experimen-

tally observed decrease in energy consumption for eccentric compared to the corresponding

concentric contractions can not be described and the history-dependent features of muscular

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234
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force production can not be modeled. In addition, it is generally computationally prohibitive

to model a whole muscle in this manner.

Another way to model the mechanics of muscle contraction is to use the Hill-type three-

component model (Fig. 1.1). Hill model describes a muscle as an active contractile component

with series and parallel passive elastic elements. To be more specific, there are:

• two elements arranged in series: one elastic element (C) to account for the muscle elas-

ticity in isometric conditions, and one contractile element (B), which is freely extensible

at rest, but capable of shortening when activated.

• one elastic element (A) placed in parallel with the two others to account for elasticity

of the muscle at rest. A variation of the model could take into account viscous effects

and consider (A) as a viscous element instead.

Figure 1.1: Hill-type three component model; (A). parallel elastic element (B). contractile element

(C). series elastic element

While it has been recognized that the parallel element stands for the action of the in-

tramuscular connective tissues surrounding the fibers, the series elastic element has mainly

been attributed to the intrinsic elasticity of the cross-bridges.

Hill’s model has been used extensively in the literature. It is attractive because of its

computational simplicity and close relation to commonly measured experimental variables.

It represents the global mechanical behavior of skeletal muscles in one dimension (the longi-

tudinal direction). However, the Hill model has certain limitations likewise the cross-bridge

model. The muscle is simply represented as a zero-mass line connecting two nodes along the

line-of-action of the muscle. Its main weakness is its one dimensional formulation where the

muscle mass, the geometrical characteristics of the muscle and the change in shape during

muscle activation are not accounted for. Also, microstructure characteristics such as muscle

fibers and their directions to form the muscle architecture can not be included in a Hill’s

model. From a strict computational modeling perspective the representation of different

muscle-lines by springs and dashpots in a finite element model cause unrealistically high

stress concentrations at the bone insertion points which may cause unrealistic fractures.

The third way to simulate the muscular contraction is to use a continuum three dimen-

sional constitutive model. Almost all biological soft tissues are anisotropic, viscoelastic,
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inhomogeneous, nearly incompressible and undergo large deformations in vivo, both under

normal physiological conditions and during injury. Many of these tissues, including skeletal

muscles, are reinforced by fibers, usually consisting of collagen and/or elastin. The considera-

tion of muscle as a continuum is also a phenomenological model, like the Hill’s model, but at a

different architectural level. Attempts to develop this kind of models are made in the few past

years, mostly because of their three dimensional formulation, the opportunity to account for

microstructure characteristics of muscle, such as the muscle fibers and their orientation, and

the ability of their implementation in the context of a finite element scheme. Finite element

programs, such as ABAQUS which is used for our simulations, provide a general interface so

that a particular constitutive model can be introduced via a “user subroutine”. A powerful

tool, which is widely used nowadays to derive information regarding the functionality and the

architecture of muscles, is the finite element method. Finite element methods can, in theory,

account for the geometric irregularities, complex boundary conditions, large deformations,

solid-fluid interactions, material heterogeneities and nonlinear anisotropic material behavior

inherent to the muscle.

In addition to numerous Hill-based models, several more models are proposed in the

literature for the modeling of muscle and are described in the following paragraphs. Most

of them use a general form of a strain energy function to simulate the nearly incompress-

ible behavior of the muscle tissue behavior of a hyperelastic material. The most common

formulation of the strain energy function is a sum of a fiber term and a term related to the

embedding matrix or a separation of the dilatational and deviatoric responses of the tissue

where the deviatoric part represents the non-linear and anisotropic material properties of

the muscle tissue while the dilatational part accounts for the constancy of muscle volume.

In this category of models is assumed that the muscle is in a “preconditioned state” in which

the material behavior may be represented as hyperelastic although the behavior of muscle

tissue is time- and rate-dependent. Other attempts to model muscle tissue avoid using a

hyperelastic material behavior. They are oriented to alternative finite element formulations

by which the rate dependence is taken into account.

In particular, the year 1981 Hatze gave an analysis based on Hill’s model incorporating

muscle architecture and the serial and parallel arrangement of muscle fibers elements. The

parameters of the elements determined the properties of the whole muscle. In the sense of

a discrete model, that was the first step toward a finite element model. In 1984, Spencer

studied the continuum mechanics of fiber-reinforced composites. He developed a constitutive

hyperelastic model in which the strain energy function depends on a vector representing the

material preferred direction (a0). Given the vector field defining the preferred direction a0

and C, the right Cauchy-Green deformation tensor, Spencer presented relations for the strain

energy at a material point in terms of five invariants derived from the tensor and vector fields.

In 1987, Humphrey and Yin used Spencer’s theory to define a pseudostrain energy function
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and proposed a constitutive relation for the passive behavior of cardiac muscle neglecting

its active behaviour. In the same year, Otten (1987) proposed a dynamic model of the jaw

system of the rat, relating muscle force with muscle length, contraction velocity and stim-

ulation rate, based on force-length relations, calcium dynamics and velocity-force relations.

Later in 1989, Zajac proposed a 1-D model of the passive and active behavior of skeletal

muscles. Huyghe et al. (1991) introduced a model for the passive behavior of the heart

muscle with a quasi-linear viscoelastic formulation. The same year, Van Leeuwen described

the stress in muscle as the sum of an active and a passive stress. In 1995, Otten and Hulliger

proposed a model with a discrete arrangement of elements for the study of functional archi-

tecture in skeletal muscle. In 1996, Weiss et al. described a three-dimensional constitutive

model for biological soft tissues and developed Spencer’s theory to implement incompressible

hyperelasticity that could accommodate transversely isotropic material symmetry. In their

work a particular form of the strain energy for biological soft tissues was motivated and

a finite element implementation of this model based on a three-field variational principle

(deformation, pressure and dilatation) was presented. Another formulation of a discrete fi-

nite element code similar to that of Otten and Hulliger was given by van Leeuwen and Kier

(1997), who proposed a 2-D model for the tentacle of a squid. They solved the problem of

conservation of volume by reducing the 2-D to a 1-D problem and introducing the pressure

as a free variable. This approach is only suitable for some symmetrical geometries. In 1998,

Vankan et al. developed a finite element model of blood-perfused biological tissue, which

contains a transversely isotropic, non-linearly elastic description of deforming muscle tissue.

In the same year, van der Linden developed a muscle element and built a 2-D muscle fi-

nite element model. Also in 1998, Martins et al. adopted a constitutive relation which was

a generalization of the model proposed by Humphrey and Yin for the passive behavior of

cardiac muscle. This generalization was done in such a way as to make Humphrey’s model

compatible with Zajac’s 1-D model of the passive and active behavior of skeletal muscles.

In 2000, Gielen et al. described a geometrically and physically nonlinear continuum model

to study the mechanical behavior of passive and active skeletal muscle. The contraction

is described with a Huxley type model and a “Distributed Moments” approach is used to

convert the Huxley partial differential equation in a set of ordinary differential equations. In

the same year, Johansson et al. (2000) presented a finite element model based on nonlinear

continuum mechanics. Stress in the muscle is assumed to result from the superposition of

a passive and an active part. The passive properties are described by a hyperelastic consti-

tutive material law whereas the active part depends on the fiber length, shortening velocity

and an activation function. In 2001, Li et al. adapted the general theory of linear elasticity

for transversely isotropic bodies and introduced nonlinearity by means of strain dependent

elastic moduli. They used this approach to model porcine aortic heart valves. In 2002, Jenkin

et al. modeled unipennate muscle as a two-dimensional material continuum that is incom-
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pressible and nonlinearly anisotropic. In the same year, Yucesoy et al. (2002) proposed a

model in which skeletal muscle is considered in two domains: a) the intracellural domain and

b) extracellural matrix domain. The two domains were represented by two separate meshes

that are linked elastically. By this way of modeling an assessment of force transmission and

interaction between these domains is allowed. A model similar to that of Gielen et al. (2002)

was proposed from Oomens et al. in 2003. In 2004, Tsui et al. developed an active finite

element model to predict the mechanical behavior of skeletal muscle-tendon complex during

isometric, shortening and lengthening contraction. The active finite element is controlled

by a motor element that is activated by a mathematical function, neglecting the existence

of muscle fibers, whereas the nonlinear passive behavior was defined by a viscoelastic ele-

ment. Also in 2004, Lemos et al. developed a detailed continuum mechanics formulation

to predict the deformation of skeletal muscle at different structural levels. Their model was

used to investigate force production and structural changes during isometric and dynamic

contractions of the cat medial gastrocnemius. In 2005, Blemker et al. modeled muscle as

a fiber-reinforced composite with transversely isotropic material symmetry, similar to the

approach previously used to represent ligament by Weiss et al. (1996). The model used an

uncoupled form of the strain energy to simulate the nearly incompressible behavior of muscle

tissue. This uncoupled form additively separated the dilatational and deviatoric responses

of the tissue. The strain energy function used separated the material’s responses to stretch

in the fibers, shearing along fibers and shearing transverse to the fibers. To represent the

intramuscular connective tissue’s resistance to along-fiber and cross-fiber shear, Blemker et

al. used two new strain invariants as described by Criscione et al. (2001). In addition,

they created a fiber map, based on fascicle arrangement measurements from ultrasound im-

ages, so as to determine an exact fiber direction for each element in the mesh. Yekutieli et

al. (2005) developed a two-dimensional, coarse grained, matrix based, structural dynamics

model with incompressibility, lumped masses and discrete muscles, with some success at

simulating bending and reaching of an octopus arm. In 2006, Liang et al. developed an

explicit finite element scheme for biological hydrostats such as squid tentacles, octopus arms

and elephant trunks. This approach builds upon previous effort of Van Leeuwen and Kier

(1997). The scheme is implemented by embedding muscle fibers in finite elements. In any

given element, the fiber orientation can be assigned arbitrarily and multiple muscle direc-

tions can be simulated. The mechanical stress in each muscle fiber is the sum of an active

and a passive part. The active stress is taken to be a function of activation state, muscle

fiber velocity and fiber strain, while the passive stress depends only on the strain. The fi-

nite element is treated as a continuum with muscle fibers aligned in a given direction. This

general explicit finite element formulation for the simulation of the movements of muscular

hydrostats can be viewed as a generalization and formalization of the work of Yekutieli et

al. (2005).

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234
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1.1.2 Human lower extremity modeling

The lower extremity is of special interest because it is the primary physical interaction

between the body and the ground during locomotion. It has been pointed out by many

researchers that biomechanical factors play an important role on the etiology, prevention

and treatment of many lower extremity disorders. Increasingly, musculoskeletal models of

the lower extremity are used as powerful tools to study various effects on biological struc-

tures behavior such as illness and injuries. However, these models frequently have limited

functionality and lack of details necessary to provide meaningful insights into biomechanical

behavior.

One basic issue for successful modeling of human body parts and tissues is the accu-

rate representation of their geometrical characteristics. The significant progress in medical

imaging techniques led to a revolution in that direction. The geometry of skeleton, mus-

cles and any other body structure is obtained from 3D reconstruction of CT (Computed

Tomography) or/and MRI (Magnetic Resonance Imaging) images of human subjects. In

Chapter 6 section 6.4 a detailed description of the procedure that can be followed to obtain

accurate volume finite element meshes of human body parts from medical images is pre-

sented. Consequently, modeling attempts of human structures dated prior to the medical

imaging revolution have limited scientific value in our days.

Once accurate representation of geometry is achieved the next important issue in mus-

culoskeletal modeling is the realistic representation of the mechanical behavior of biological

materials. Although the mechanical properties of skeletal components can be well-defined

through experiments, the same does not stand for the muscular parts due to their complex

active and passive behavior. This is the reason why the particular mechanical behavior of

muscles is missing from the majority of human models presented in the literature. However,

it is scientifically stated that by including the actual biomechanical behavior of muscle tissue

in a computational model of a biological structure provides a better understanding to the

whole body internal loadings.

In particular, Gefen et al. (2000) were the first to use a three dimensional numerical

model of the foot incorporating realistic geometric and material properties of both skeletal

and soft tissue components of the foot except muscles. This model was used to study

biomechanical loadings of the foot structure during gait and specific clinical cases, such as

surgical plantar aponeurosis (fascia) release and plantar soft tissue loadings in the standing

diabetic foot. Chen et al. (2001) also used a geometrically accurate model of the foot to

quantify stress distribution of the foot during mid-stance to push-off in barefoot gait. The

next year, Camacho et al. (2002) developed a three dimensional anatomically detailed foot

model for finite element simulation and quantification of foot-bone positions. Cheung et

al. (2004, 2005, 2006) developed a three dimensional finite element model of the foot to
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study the material sensitivity of the soft tissue in the standing foot, the effect of Achilles

tendon loading on plantar fascia tension in the standing foot, and the effects of plantar fascia

stiffness on the biomechanical responses of the foot-ankle complex. Spyrou et al. (2006) also

developed a geometrically accurate three dimensional finite element model of the foot during

the mid-stance phase of gait for a stress-strain analysis on the whole foot structure. Finally,

Wu (2007) developed a model of the foot including some tendons and muscles as independent

parts, but muscles were modeled only as passive structures.

1.2 Thesis overview

In this thesis, special emphasis is given to muscle tissue and its properties. Chapter 2 includes

anatomical, physiological, and material characteristics of the skeletal muscle. Muscle has

the ability to produce force and that makes it distinct from other biological materials. The

mechanism that results in muscle force production is described. The amount of the produced

muscle force depends on several parameters such as the muscle fiber length, the muscle fiber

velocity of contraction, the activation level, the muscle architecture (fiber direction with

regard to tendon’s long axis), the fiber type (slow or fast), and the fiber’s cross sectional

area. The dependence of muscle force on all these parameters is described.

In Chapter 3 anatomical and material characteristics of the rest biological materials

excluding muscle are described. A thorough examination of materials such as bone, ligament,

cartilage, and tendon is included. These materials do not produce force like muscle does.

Knowledge of their structure and thus of their mechanical behavior is of great importance

in studies of biological systems.

Chapters 4 and 5 are the core chapters in the thesis. In Chapter 4 a continuum three

dimensional constitutive model for the muscle tissue is developed. The model takes into ac-

count all the parameters that affect the production of muscle force. The model is extended

so that it can describe the behavior of tendon tissues as well. In Chapter 5 the numerical

implementation of the proposed constitutive model is described. The implementation of the

model in a finite element code (ABAQUS) involves the integration of the constitutive equa-

tions at the Gauss integration points of the elements and the calculation of the corresponding

“linearization moduli” that are needed for the global equilibrium “Newton loop”.

In Chapter 6 the developed constitutive model is used to study the biomechanical behav-

ior of several muscle-tendon structures. The extension of a squid tentacle during the strike

to catch prey is simulated, and the behavior of a parallel fibered and a pennated muscle is

studied. Also, the model is used to study the behavior of the human semitendinosus muscle.

In addition, a methodology for developing geometrically accurate three dimensional models

of biological structures is described. That methodology is used to develop a model of the

human lower-extremity. The constitutive model of muscle and tendon tissues is applied to

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234
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the muscles and tendons of the human leg.

Finally, Chapter 7 provides a brief summary of the contribution of this work together

with some prospects for future work.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



11

Chapter 2

Muscle Anatomy and Material

Characteristics

This chapter deals with the thorough examination of the anatomical and material character-

istics of muscle tissue. The purpose of this chapter is to provide insight into the mechanical

aspects of construction and function of muscle.

There are three muscle types that can be found in the human muscular system: the

cardiac muscle, which composes the heart; the smooth muscle, which lines the hollow

internal organs such as blood vessels, the gastrointestinal tract, the bladder, or the uterus;

and the skeletal muscle, which attaches to the skeleton via the tendons. The focus of this

chapter is the anatomy and function of skeletal muscle.

The basic property of muscle is its ability to produce force; its capability of active con-

traction makes it distinct from other soft biological tissues. Therefore, muscles perform both

dynamic and static work. Dynamic work permits locomotion and the positioning of the body

segments in space whereas static work maintains body posture or position.

2.1 Anatomy

The structural unit of skeletal muscle is the muscle fiber. Each skeletal muscle fiber is a

single cylindrical muscle cell. Muscle fibers range in thickness from 10 to 100 µm and in

length from 1 to 30 cm. An individual skeletal muscle may be made up of hundreds or even

thousands of muscle fibers bundled together and wrapped in a connective tissue covering.

Each muscle is surrounded by a connective tissue sheath called the epimysium. Fascia,

connective tissue outside the epimysium, surrounds and separates the muscles. Portions of

the epimysium project inward to divide the muscle into compartments. Each compartment

contains a bundle of muscle fibers. Each bundle of muscle fibers is called a fascicle and is

surrounded by a layer of connective tissue called the perimysium. Within the fascicle, each

individual muscle cell, called a muscle fiber, is surrounded by connective tissue called the

endomysium (Figs 2.1 and 2.2).
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Figure 2.1: Structural hierarchy of skeletal muscle from muscle to muscle fiber.

Muscle fibers are composed of parallel bundles of myofibrils (Fig. 2.2).

Figure 2.2: Structural hierarchy of skeletal muscle from muscle to myofilaments. (From Van Loocke

et al., 2004)

The myofibrils are invested by a delicate plasma membrane called the sarcolemma. The

systematic arrangement of the myofibrils gives skeletal muscle its typical striated pattern.

The repeat unit in this pattern is called sarcomere and it is the basic contractile unit of a

muscle. Sarcomeres are bordered by the Z-lines and contain thin filaments composed of the

protein actin, thick filaments composed of the protein myosin, and filaments composed of

the two exceptionally large proteins titin and nebulin which have implications in the passive
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elasticity of the muscle (Fig. 2.3).

Two additional proteins, troponin and tropomyosin, are important constituents of actin

because they appear to regulate the making and breaking of contacts between the actin

and myosin filaments during contraction (Fig. 2.3). Finally, the heads on the myosin body

(bridges) attach to the thin filament to form a cross-bridge. The mechanism of cross-bridge

attachment and cross-bridge movement that is believed to cause relative movements of the

myofilaments is presented in detail in the section 2.1.1.

Figure 2.3: Microstructure of a sarcomere. (From http://www.bms.ed.ac.uk)

In humans, thin filament diameters and lengths appear to be about 5 nm and 1.27 µm

respectively. The corresponding values for thick filament are about 15 nm and 1.6 µm, which

are nearly constant among many animal species (Walker and Schrodt (1973), Kimball).

2.1.1 Cross-bridge theory

Despite centuries of research on muscle and its contractile behavior, some aspects of muscular

force production have still not been resolved. For example, the precise mechanism of cross-

bridge attachment and cross-bridge movement that are believed to cause relative movements

of the myofilaments, and so produce force, are not clearly understood.

Some scientists (Iwazumi, 1978; Pollack, 1990) propose mechanisms of force production

that do not agree with the most popular paradigm of muscular force production, the cross-

bridge theory (Huxley, 1957; Huxley and Simmons, 1971). Before 1954, most theories of

muscular contraction were based on the idea that shortening and force production were

the result of some kind of folding or coiling of the myofilaments (particularly the thick

filaments) at specialized sites. In 1954 H.E. Huxley and Hanson (1954) as well as A.F.

Huxley and Niedergerke (1954) demonstrated that muscle shortening was not associated with
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14 Muscle Anatomy and Material Characteristics

an appreciable amount of myofilament shortening, and, therefore, postulated that muscle

shortening is probably caused by a sliding of the thin past the thick myofilaments, named

the sliding filament theory. The mechanism whereby this myofilament sliding is produced was

proposed by A.F. Huxley (1957), and is referred to as the cross-bridge theory. The original

theory of A.F. Huxley (1957) and the theories that have followed are variations on the

development or modulation of the numbers of cross-bridges attached. More recent theories

(Lymn and Taylor, 1971; A.F. Huxley, 1973, 1974; Eisenberg et al., 1980; Eisenberg and Hill,

1985) include multiple binding states with kinetic schemes that govern the transition rates

between these states.

The sliding filament theory is a hypothesis used to explain the mechanism of contraction

of striated muscle which proposes that the parallel, interdigitated, thick myosin and thin

actin filaments slide past one another to varying degrees causing the cell as a whole to

shorten and the muscle to contract. This is brought about through the sequential formation

of cross-bridges between the actin and myosin molecules such that the filaments move past

one another in a ratchet-like manner. The energy for these processes is provided by the

hydrolysis of ATP.

The mechanism that describes how the myofilament sliding is produced, is a sequence of

stages called myosin cross-bridge cycle. The cycle is presented in the following figure.

Figure 2.4: The cross-bridge cycle. (From http://www.bms.ed.ac.uk)

A. There is ATP binding at the back of the head of a cross-bridge on the myosin filament

causing a conformation which cannot bind actin.

B. As the ATP is hydrolyzed, the head swings back about 5 nm to the “cocked” position

where ADP and Pi (inorganic phosphate) remain bound.
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C. When Pi leaves the myosin, the head binds the actin. The actin binding sites are

uncovered by the release of Calcium (Ca+2).

D. The head rotates, causing the sliding of the actin filament against the myosin filament.

ADP is released to continue the cycle.

In 1957 A.F. Huxley suggested and in 1966 A.M. Gordon et al. showed with measure-

ments that the existing sliding filament theory should include the further proposition that

the points where the force is generated are the bridges (cross-bridge theory).

2.2 Physical properties

The force developed by a muscle during contraction varies with its length and its velocity.

These properties are the force-length and the force-velocity relations of muscle which are

repeatedly used in biomechanical experiments involving muscles or the musculoskeletal sys-

tem. Force-length and force-velocity relations of skeletal muscular tissues are interrelated to

the activation level of the muscle, the fiber arrangement in the muscle and the fiber type.

The purpose of the following sections is to provide insight to the factors that affect the force

a muscle can exert.

2.2.1 Force-Length relation

The force-length relation is defined as the relation that exists between the maximal force of

a muscle (or fiber or sarcomere) and its length. Force-length relations are obtained under

isometric conditions (the muscle length is kept constant) and for maximal activation of the

muscle. Experimentally, isometric contractions are performed at different lengths and peak

isometric force is measured at each length. These forces are then plotted against length

and a relationship such as that shown in Fig. 2.5 is obtained. It has been demonstrated

that at very long and very short lengths, muscle generate low force while at intermediate or

“optimal” lengths, muscle generate higher force.

Blix (1894) described over a century ago that the force a muscle can exert depends

on its length. Although a general description of this relationship was presented in the late

1800’s, the precise structural basis for the force-length relationship in skeletal muscle was not

elucidated until the sophisticated mechanical experiments of the early 1960’s were performed.

In 1966, Gordon et al. published the results of a classical study in which they showed the

dependence of force production in isolated fibers of frog skeletal muscle on sarcomere length.

Their results were in close agreement with theoretical predictions that were based on the

cross-bridge theory; results that helped to establish the cross-bridge theory as the primary

mechanism to describe muscular force production.
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16 Muscle Anatomy and Material Characteristics

Figure 2.5: Typical force-length relation for muscle or fiber or sarcomere. At “optimal” lengths,

maximum force is generated. (From http://biology.kenyon.edu)

According to the cross-bridge theory, cross-bridges extend from thick to thin filaments

and cause sliding of the myofilaments past one another. Each cross-bridge is assumed to

generate, on average, the same amount of force and work independently of the remaining

cross-bridges. Since the cross-bridges are believed to be arranged at equal distances along the

thick filament, overlap between thick and thin filaments determines the number of possible

cross-bridge formations and thus the total force that may be exerted.

In its basic form, the force-length relationship illustrates that force generation in skeletal

muscle is a direct function of the magnitude of overlap between the actin and myosin fila-

ments. For frog skeletal muscle the force-length relationship is shown in Fig. 2.6 as presented

by Gordon et al. (1966). The thick and thin filament lengths are reported to be about 1.6

µm and 0.95 µm respectively, the width of the Z-disc is about 0.1 µm and the H-zone (cross-

bridge free zone in the middle of the thick filament) is 0.2 µm. At long sarcomere lengths,

thick and thin filaments cease to overlap and no cross-bridges can be formed. The corre-

sponding force must be zero. For frog skeletal muscle, zero force is reached at a sarcomere

length of about 3.6 µm (thick filament length (1.6 µm) plus twice the thin filament length

(1.9 µm) plus the width of the Z-disc (0.1 µm)) (Fig. 2.7).

Shortening of the sarcomeres increases the number of potential cross-bridge formations

in a linear manner with sarcomere length or correspondingly, thick and thin filament over-

lap, until a maximal number of cross-bridge formations are possible. This optimal overlap

corresponds to a sarcomere length of 2.2 µm in frog muscle (Fig. 2.7). Further sarcomere

shortening to 2.0 µm increases the area of overlap between thick and thin myofilaments

but does not increase the number of possible cross-bridge formations, since the middle part

of the thick filament does not contain cross-bridges. Therefore, the force remains constant

between 2.0 and 2.2 µm. Sarcomere shortening below 2.0 µm has been associated with a
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Figure 2.6: Force-length relation for frog skeletal muscle as presented by Gordon et al. (1966).

decrease in force caused by interference of thin myofilaments as they start to overlap. Below

1.7 µm the rate of decrease in force becomes higher than that of the region between 1.7

and 2.0 µm. This steeper decline in force for a given amount of sarcomere shortening has

traditionally been associated with the force required to deform the thick filament. For frog

skeletal muscle, zero force is reached at a sarcomere length of 1.27 µm.

Figure 2.7: Sarcomere’s thin and thick filament overlap. (a) Thin filaments start to overlap causing

decrease in force generation. (b) Optimal overlap of thick and thin filaments causing the maximum

force generation. (c) No overlap between thick and thin filaments causing zero force generation

Probably the most important result in support of the cross-bridge theory was the linear

relation between force and length for sarcomere lengths between 2.2 and 3.6 µm. However,

the strict linearity of this relation was questioned by several investigators who showed non-

linear force-length behavior (e.g. ter Keurs et al. (1978)) (Fig. 2.8).
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18 Muscle Anatomy and Material Characteristics

Figure 2.8: Tension-sarcomere length relation. (A) Results as presented by ter Keurs et al. (1978).

(B) Results as presented by Gordon et al. (1966). (From ter Keurs et al. (1978))

The difference between studies showing linear and non-linear force-length behavior was in

the length control of the sarcomeres. The studies showing a linear relation kept sarcomeres at

a constant (controlled) length, whereas those showing a non-linear relation kept fiber length

constant but allowed for non-uniform changes in sarcomere length. This latter situation

appears to approach actual physiologic conditions more appropriately and thus may be more

relevant in studying intact skeletal muscles.

In addition to the active force-length properties of the muscle, passive force-length prop-

erties play a role as well. Passive force is developed if a muscle is stretched to various lengths

without stimulation. Near the optimal length passive force is almost zero. However, as the

muscle is stretched to longer lengths, passive force increases dramatically (Fig. 2.9). These

relatively long lengths can be attained physiologically and, therefore, passive tension can

play a role in providing resistive force even in the absence of muscle activation. The struc-

tures responsible for passive tension are obviously outside of the cross-bridges since muscle

activation is not required. The large protein titin which connects the thick myosin filaments

end to end has been identified as the source of this passive tension (Horowits (1992), Linke

et al. (1996), Granzier et al. (2000)).

The muscle force-length is also coupled to the level of activation. As cited in Buchanan

et al. (2004), Huijing (1996) has shown that optimal fiber lengths increase as activation

decreases (Fig. 2.10), which has also been reported by Guimaraes et al. (1994).
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Figure 2.9: Active, passive and total normalized force-length relation.

Figure 2.10: Normalized force-length relationship for muscle. Thick dark lines indicate maximum

activation, whereas the light thin lines are lower levels of activation. The optimal fiber length is

longer as the activation decreases. (From Buchanan et al., 2004)
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2.2.2 Force-Velocity relation

In contrast to the sarcomere force-length relationship, the force-velocity relationship does not

have a precise, anatomically identifiable basis. Force-velocity relations illustrate the strong

relation between the maximal force a muscle (or fiber) can exert and its instantaneous rate of

change in length. Force-velocity properties are determined for maximal activation conditions

of the muscle and are obtained at optimal length of the sarcomeres.

Fenn and Marsh (1935) were the first to perform experiments and report results on force-

velocity properties of muscles. Their work was followed by the classic study of Hill (1938)

who determined the effect of load on speed of shortening on isolated frog skeletal muscle.

This relation is the basis of the “viscoelasticity” of skeletal muscle.

The force-velocity relationship, like the force-length relationship, is a curve that repre-

sents the results of many experiments plotted on the same graph. Experimentally, a muscle

is stimulated maximally and allowed to shorten (or lengthen) against a constant load. The

muscle velocity during shortening (or lengthening) is measured and then plotted against the

resistive force. A general form of this relationship is shown in Fig. 2.11.

Figure 2.11: Normalized force-shortening velocity and force-lengthening velocity of muscle.

When a muscle is maximally activated and required to lift a load which is less than its

maximum force capacity, the muscle begins to shorten. Contractions that permit the muscle

to shorten are called concentric contractions. In concentric contractions the force generated

by the muscle is always less than the muscle’s maximum. As the load, the muscle is required

to lift, decreases, contraction velocity increases. This occurs until the muscle finally reaches

its maximum contraction velocity, at which force generation is zero.

As the load imposed on the muscle increases, it reaches a point where the external

load is greater than the load which the muscle itself can generate. Thus the muscle is
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activated, but it is forced to lengthen due to the high external load. Contractions that force

the muscle to lengthen are called eccentric contractions. All the movement patterns where

muscles function as brakes to decelerate a limb have to do with eccentric actions. There is

interest in studying eccentric actions of muscle because much of a muscle’s normal activity

occurs while it is actively lengthening; muscle injury and pain are, in many cases, associated

with eccentric contraction; and muscle strengthening is greatest using exercises that involve

eccentric contractions.

The mathematical form of the force-shortening velocity relationship as proposed by Hill

is:

(F + a) v = b (F0 − F ) (2.1)

or

F =
b F0 − a v

b + v
, (2.2)

where F is the instantaneous force, F0 is the maximal force at zero velocity and optimal

sarcomere length, v is the shortening velocity, and a, b are constants with units of force and

velocity respectively. For v = vmax the force is zero (F = 0). Therefore, from equation (2.2)

the result is:

vmax =
b F0

a
. (2.3)

If we divide both parts of the fraction on the right hand side of equation (2.2) with vmax,

then the normalized equation of Hill is derived:

F

F0
=

1− v
vmax

1 + 1
k

v
vmax

, (2.4)

where k is proved to vary with species and fiber type (fast or slow).

Force-velocity properties are typically obtained at optimal sarcomere lengths. However,

it has been suggested that Hill’s equation may still be applied at sarcomere lengths other

than those corresponding to optimal length. The first approach was to consider the maximal

isometric force as a function of sarcomere length `. Therefore, instead of equation (2.2), the

following equation (2.5) arises:

F =
b F0 (`)− a v

b + v
. (2.5)

If we solve equation (2.5) for v = vmax the result is:

vmax =
b F0 (`)

a
, (2.6)

which implies that maximal muscle fiber velocity depends on muscle’s length `. However,

according to Edman (1979), maximal muscle fiber velocity is constant for most of a muscle’s
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operating range. For this reason, a better approach is the entire right hand side of equation

(2.2) to be multiplied by a factor c:

F =
(

b F0 − a v

b + v

)
c, (2.7)

where c(`) takes a value between 0 and 1, representing the normalized force of a muscle as

a function of sarcomere length. For optimal sarcomere length (c = 1) equation (2.7) takes

the form of equation (2.2). Also the maximal muscle fiber velocity remains constant for all

values of c. Equation (2.7) appears to approximate experimental observations better than

the one suggested by equation (2.2).

The mathematical form of the force-lengthening velocity relationship is:

F = 1.8− 0.8
vmax + v

vmax − 7.56 v
(2.8)

as formulated by Otten (1987) based on stretch experiments of vertebrate muscles by Aubert

(1956).

The normalized formulation is:

F

F0
= 1.8− 0.8

1 + v
vmax

1− 7.56 v
k vmax

, (2.9)

where k varies with species and fiber type (fast or slow). The parameter k was calculated

from the measurements of Close (1964) for fast and slow fiber types where k = 0.25 for fast

fibers and k = 0.17 for slow fibers.

If equation (2.8) is applied at sarcomere lengths other than those corresponding to optimal

length then equation (2.10) arises:

F =
(

1.8− 0.8
vmax + v

vmax − 7.56 v

)
c, (2.10)

where c(`) takes a value between 0 and 1, representing the normalized force of a muscle as

a function of sarcomere length. For optimal sarcomere length (c = 1) equation (2.10) takes

the form of equation (2.8).

A typical force-velocity relation for different initial lengths (`) is shown in Fig. 2.12.

In addition, Epstein and Herzog (1998) state that the preferred combined equations

should be

F =
(

b F0 − a v

b + v

)
f (`) , (2.11)

and

F =
(

1.8− 0.8
vmax + v

vmax − 7.56 v

)
f (`) , (2.12)

where f (`) is the normalized force-length relationship.
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Figure 2.12: Force-velocity relation for different initial lengths `. Solid line corresponds to optimal

fiber length (c = 1). The dashed lines result for different values of the parameter c < 1.

2.2.3 Force-Activation relation

Another important mechanical characteristic of muscle is related to its activation profile

during a movement and the dependence of force generated to the level of activation. A

typical relation between force and time is shown in Fig. 2.13 in which the force exerted by

the muscle is greater when the contraction time is longer.

Figure 2.13: Typical force-activation relationship of muscle. (From Viitasalo and Komi, 1978)

However, the role of activation level in not only to adjust the magnitude of force. Its role

is rather complex, as shown in Fig. 2.10, and this is something that must be always kept in
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mind.

2.2.4 Muscle Architecture and Fiber Types

Except for the relationship of muscle force to its length, velocity, and activation there are

other factors influencing force and/or rate of contraction as well, such as the fiber type and

the fiber organization in a muscle structure.

As described in section 2.1.1, ATP has the primal role in the myosin cross-bridge cycle.

The fiber types are distinguished mainly by the metabolic pathways by which they can

generate ATP and the rate at which its energy is made available to the contractile system of

the sarcomere, which determines the speed of contraction. There are three types of muscle

fibers found in the human body:

• type I, slow-twitch (ST) oxidative (SO) fibers,

• type IIA, fast-twitch (FT) oxidative-glycolytic (FOG) fibers,

• type IIB, fast-twitch (FT) glycolytic (FG) fibers.

Type I (SO) fibers are characterized by a low activity of myosin ATPase and, therefore, a

relatively slow contraction time (low vmax). SO fibers contain many mitochondria and get

most of their ATP from oxidative phosphorylation. This source supplies ATP rapidly, and

thus the SO fibers are able to sustain contractions longer without fatiguing. Also SO fibers

receive and use more oxygen than FG fibers. Therefore, the SO fibers are well suited for low-

intensity activities where fast acceleration is not the point of interest. Muscles with higher

percentages of SO fibers have a clear advantage in long-duration, endurance related events.

On the other hand, type IIB (FG) fibers are characterized by a high activity of myosin

ATPase and, therefore, a relatively fast contraction time (high vmax). FG fibers contain few

mitochondria and get most of their ATP from glycolysis, the breakdown of glycogen into

lactic acid. This source of ATP is not as efficient as oxidative phosphorylation, and therefore

FG fibers fatigue more rapidly than SO fibers. These deficiencies of FG fibers may not

be a big problem because they tend to be active for only short periods in normal behavior.

Thus, muscles with higher percentages of FG fibers have a clear advantage in short-duration,

sprint-like activities. Type IIA (FOG) fibers are considered intermediate between type I and

type IIB because their fast contraction time is combined with a well-developed capacity for

both aerobic (oxidative) and anaerobic (glycolytic) activity. Although a motor unit (a group

of muscle fibers activated in the same time by one single motor nerve fiber) consists of only

one kind of muscle fibers, most muscles are mixtures of FG, SO and FOG fibers.

Fig. 2.14 shows the differences in the rise and decay of tension between fiber types.

Although maximal force is identical for equal cross-sectional areas, the action which produces

this force is much more rapid in FG fibers than in SO fibers.
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Figure 2.14: Force-activation relationship for slow SO and fast FG muscle fibers.

Fig. 2.15 shows how the potential speed of contraction is affected between slow-twitch

SO fibers and fast-twitch FOG and FG fibers. For a given rate of shortening, high vmax

muscles including FOG and FG fibers produce more force than muscles with low vmax.

Figure 2.15: Force-shortening velocity relation for slow (low vmax) and fast (high vmax) muscle fibers.

Another important factor influencing force and/or rate of contraction is the muscle ar-

chitecture. Muscle architecture involves fiber arrangement in a muscle and this arrangement

is not the same in all muscles. Some of muscle architectures are the parallel, unipennate and

bipennate which can be shown in Fig. 2.16.

A muscle is called parallel when the longitudinal direction of muscle fibers; direction in

which the force is developed, is in parallel with the line of action of the whole muscle-tendon

complex. In contrast, a muscle is called pennate when the longitudinal direction of muscle

fibers lies at an angle (pennation angle) to the line of action of the whole muscle-tendon

complex (Fig. 2.16). Therefore, the force transmission in a parallel muscle to tendon is 100%
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Figure 2.16: Muscle architectures and corresponding cross-sectional areas. (A) parallel muscle. (B)

unipennate muscle. (C) bipennate muscle

efficient whereas in a pennate muscle the force transmission efficiency is reduced according to

the corresponding angle of pennation (force multiplied by the cosine of the angle). However,

the pennate muscle allows for a large number of fibers to be packed side-by-side to each

other. In Fig. 2.16 is depicted that for a muscle with the same volume

• fibers in a parallel muscle are longer than those of a pennate,

• the number of fibers in a parallel muscle is smaller that that of a pennate,

• the cross-sectional area of a parallel muscle is smaller than that of a pennate.

The maximum force a muscle can generate depends on its physiological cross-section area

(PCSA). In fact the maximum force can be calculated by multiplying the PCSA by a constant

(approximately 20 to 100 N
/
cm2). Therefore, a pennate muscle, due to its bigger PCSA,

is stronger than a parallel-fibered muscle (Fig. 2.17). However, a parallel muscle can exert

forces over a larger range of absolute muscle length than the pennate muscle (Fig. 2.17).

Pennation is a non-ideal mechanism. The most efficient option is to have the line of action

parallel to the muscle fibers - any angular difference means that energy is wasted producing

tension in directions where it cannot be used. However the physical layout of the skeleton

is such that we often need high absolute forces rather than contraction distance or/and

high maximal contraction velocity and pennation is a mechanism that allows this (Fig. 2.17,

Fig. 2.18).

In addition, Fig. 2.18 shows the differences in force-length and force-velocity relationships

to muscles with different PCSA but same fiber length. In Fig. 2.19 the differences in force-
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Figure 2.17: Force-length relationship of two muscles with different cross-sectional areas and fiber

length, but equal volume. (From Nigg and Herzog, 1999)

length and force-velocity relationships to muscles with different both PCSA and fiber length

are depicted.

Figure 2.18: Force-length and force-velocity relationships for two muscles with different PCSA but

the same fiber length. (From Nordin and Frankel, 2001)
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Figure 2.19: Force-length and force-velocity relationships for two muscles with different both PCSA

and fiber length. (From Nordin and Frankel, 2001)
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Chapter 3

Anatomy and material characteristics of

biological structures

This chapter deals with the thorough examination of the anatomical and material charac-

teristics of biological materials other than muscle tissue, such as bone, articular cartilage,

ligament and tendon. Although they are passive structures (no active production of force

like muscles), their presence in the human body and functionality is of great importance for

the body reactions to various actions. All the human tissues, including active and passive,

are interrelated when the body moves. Due to the synergetic relationship of the biological

tissues during a movement, an injury that occurs to one of the tissues affects not only the

function of this tissue but also the functionality of the whole body structures. The purpose

of this chapter is to provide insight into the mechanical aspects of construction and function

of the bone, articular cartilage, ligament, and tendon.

3.1 Bone

Bone is the hard part of the connective tissue and constitutes the majority of the skeleton

of most vertebrates. It consists of an organic component (the cells and the matrix) and

an inorganic or mineral component. The inorganic component of bone makes it hard and

relatively rigid, whereas its organic component provides flexibility and resilience. The pur-

pose of the skeletal system is to provide support for the body against external forces (e.g.

gravity), provide rigid kinematic links and muscle-tendon attachment sites so as to transfer

forces (e.g. muscular forces) and supply protection for internal organs (e.g. the brain). In

addition, bone has physiological functions such as to form blood cells (hematopoiesis) and

to store calcium (mineral homeostasis). Apart from the 99% of total body calcium, other

minerals (phosphorus, sodium, potassium, zinc, magnesium), which are critical for a number

of vital metabolic processes, are also stored in the skeleton. Bone has unique structural and

mechanical properties that allow it to carry out these functions. It is one of the most dynamic

and metabolically active tissues in the body and remains active throughout life. It has an
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excellent capacity for self repair and can alter its shape, mechanical behavior and mechanical

properties in response to changes in mechanical demand. In the following sections, emphasis

is given to the anatomy, structure, and mechanical properties of bone.

3.1.1 Anatomy and structure

The composition of bone depends on a large number of factors: species, age, sex, type of

bone, type of bone tissue (e.g. woven, cancellous, cortical), and the presence of a bone

disease. In normal human bone, the mineral or inorganic portion of bone consists primarily

of calcium and phosphate, mainly in the form of hydroxyapatite crystals with the composition

Ca10 (PO4)6 (OH)2. These minerals account for 60 to 70% of its weight, water accounts for

5 to 8% and organic components including collagen makes up the remainder of the tissue.

At the smallest unit of structure we have the tropocollagen molecule and the associated

apatite crystallites (Ap). Tropocollagen is the basic structural unit of all forms of collagen;

it is a helical structure of three polypeptide chains (alpha chains) wound around each other

(Fig. 3.1).

Figure 3.1: A tropocollagen molecule. (From http://resources.schoolscience.co.uk/Unilever/16-

18/proteins/Protch5pg1.html)

Ap crystallites have been found to be hydroxyapatite crystals. At the next structural

level, collagen and Ap are intimately associated and assembled into a microfibrilar composite,

several of which are then assembled into fibers from approximately 3 to 5 µm thick. The

next level is associated with the arrangement of the fibers formed previously. These fibers

are either randomly arranged (woven bone) or organized into concentric lamellar groups

(osteons) or linear lamellar groups (plexiform bone). Finally, we have the whole bone itself

constructed of osteons (Fig. 3.2) and portions of older, partially destroyed osteons in the

case of humans or of osteons and/or plexiform bone in the case of mammals.

In Fig. 3.3 the anatomy of a long bone is depicted. The epiphysis is found at the ends

of long bones. The epiphysis articulates with other bones and is protected by a layer of

hyaline cartilage referred to as articular cartilage. Between the two parts of epiphysis is

the shaft of the long bone, the diaphysis. The diaphysis is a hollow structure, surrounding

the medullary cavity. The medullary cavity is used as a marrow storage site and is lined

by a thin, largely cellural connective tissue membrane, the endosteum. Surrounding and
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Figure 3.2: Structure of an osteon. (From Marieb and Hoehn, 2007)

attached to the diaphysis is a tough, fibrous tissue called the periosteum. The outer layer of

the periosteum is well supplied with blood vessels and nerves, some of which enter the bone.

The inner layer is bonded to the bone by collagenous bundles called Sharpey’s fibers, which

penetrate the bone.

Figure 3.3: Anatomy of a long bone. (From Marieb and Hoehn, 2007)

At the gross level all bones in the adult skeleton have two basic structural components:

the cortical (or compact) bone and the cancellous (or spongy) bone. Cortical bone is the

solid, dense material comprising the walls of diaphysis and external surfaces of bones. This

type of bone is strong and resistant to bending. Cancellous bone is formed by a thin bone
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structure, called trabeculae. These trabeculae have been observed to orient themselves in

the direction of the forces applied to the bone (Wolff’s law).

In Fig. 3.4 the microscopic anatomy of a cortical bone is depicted. Compact bone is

composed of structures called osteons (Harvesian systems). Osteon is a group of concentric

tubes that in cross-section appear as rings (Fig. 3.2). They are made up of lamella. Circular

lamella is called concentric and parallel lamella is called interstitial lamella. Within the

lamella is a network of osteocytes embedded in lacunae and connected by canaliculi (little

canals). These cells are maintained alive by nutrients and oxygen provided by blood ves-

sels passing through the center of the osteon called the central or harvasian canal and the

volkman’s canal (transverse to diaphysis). Circumferential lamellae follow the circumference

of the bone. The trabeculae of spongy bone is also made of lamella and osteocytes but not

osteons because the trabeculae are so small.

Figure 3.4: Microscopic anatomy of a cortical bone. (From Marieb and Hoehn, 2007)

3.1.2 Physical properties

Bone is a complex structural material. The complexity of bone’s properties arises from the

complexity in its structure. Thus, the mechanical response of bone can be observed by

subjecting it to tension, compression, bending, torsion, and combined loading. Especially

combined loading of bone should attract much attention since living bone is seldom loaded in

one mode only. All these experiments are essential in order to provide better understanding

in factors that cause bone fractures during various body movements.

Bone is a non-homogeneous and anisotropic material. Its mechanical properties change

as a function of the specific location in the bone and the direction in which force is applied

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



Anatomy and material characteristics of biological structures 33

(Fig. 3.5).

Figure 3.5: Mechanical properties of bone verify its anisotropy.

Stiffness with respect to tension is maximal for axial forces and minimal for transverse

forces. Stiffness for axial forces is about twice the magnitude of stiffness for transverse forces

(Fig. 3.6). Also, the ultimate strain for bone loaded in the axial direction is about twice

the ultimate strain for bone loaded in transverse direction (Fig. 3.6). In addition, bone

possesses viscoelastic (time-dependent) material properties, i.e., the mechanical response of

bone depends on the rate at which the loads are applied. Bone can resist rapidly applied

loads much better than slowly applied loads. Therefore, bone is stiffer and stronger at higher

strain rates (Fig. 3.6).

Figure 3.6: Mechanical behavior of bone showing its anisotropy (left). Mechanical behavior of bone

showing its viscoelasticity (right). (From Nordin and Frankel, 2001)

In the beginning of section 3.1.1 it was stated that the composition of bone depends on a
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large number of factors, such as the species, age, sex, type of bone, type of bone tissue, and

the presence of a bone disease. It is obvious that these changes cause relative differences in

the mechanical properties of the bone. The main difference in mechanical properties of bone

tissue is observed between cortical and cancellous bone. Although the chemical composition

of both types is similar, their structure is totally different. Cortical bone is the solid, dense

material, whereas cancellous bone is distinguished for its porosity. Typical values for the

elastic modulus E are:

• 1 GPa for cancellous (spongy) bone,

• 20 GPa for cortical (compact) bone,

• 100 GPa for metals.

3.2 Articular Cartilage

Articular cartilage is a thin layer of fibrous connective tissue on the articular surfaces of

bones in synovial joints (Fig. 3.7).

Figure 3.7: Articular cartilage on the surfaces of bone in synovial joints.

Articular cartilage consists of cells (∼ 5%) and an intercellular matrix (∼ 95%), which

is substantially water (∼ 65 − 80%). The solid-fluid composition of cartilage makes it a

viscoelastic material, which provides an extremely low coefficient of friction (∼ 0.0025) to

joints. The major functions of articular cartilage include transferring forces between articu-

lating bones, distributing forces in joints, and allowing relative movement between articular

surfaces with minimal friction. During daily activities, the articular cartilage is subjected to

tensile and shear stresses as well as compressive stresses. Shear stresses are due to the fric-

tional forces between the relative movement of articulating surfaces. However, the coefficient

of friction is so low that friction has an insignificant effect on the stress resultants acting
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on the cartilage. In the following sections, emphasis is given to the anatomy, structure, and

mechanical properties of articular cartilage.

3.2.1 Anatomy and structure

At the smallest unit of structure, articular cartilage consists mostly of matrix and a sparse

population of cells. The cells of articular cartilage account for less than 10% of the tissue’s

volume and are called chondrocytes (Fig. 3.8).

Figure 3.8: Matrix and cells (chondrocytes) compose the microstructure of articular cartilage.

Chondrocytes vary in size, shape, and density according to their location. Despite their

sparse distribution, they are highly metabolically active and thus are responsible for the

synthesis and degradation of the matrix. They are similar to osteocytes of bone in that

they both play an active metabolic role. In articular cartilage, chondrocytes specialize in

producing Type II collagen and proteoglycan. The intercellular matrix consists of structural

macromolecules and tissue fluid. Tissue fluid comprises ∼ 65 − 80% of the wet weight

of cartilage, while the structural macromolecules comprise ∼ 20 − 35%. The structural

macromolecules consist of collagen, proteoglycan, and other proteins. The basic biological

unit of collagen is tropocollagen (Fig. 3.1). Although collagen in articular cartilage is the

same fibrous protein found in bone, it appears in a slightly different form. Bone collagen is

called type I and articular cartilage collagen is called type II. Differences in collagen types

lie on differences in tropocollagen alpha chains in various body tissues. Articular cartilage

collagen contains three identical alpha chains, where bone collagen has two identical and one

different. On the other hand, proteoglycans are a group of glycoproteins formed of subunits

of disaccharides linked together and joined to a protein core. Proteoglycans are found in

relatively large portions in articular cartilage (∼ 10%). Tissue fluid, the main constituent of

articular cartilage, contains mostly water and is found in the form of a viscous gel along with

the structural macromolecules. The vast majority of the tissue fluid is free to move both
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inside and outside of the cartilage body. It is, therefore, closely associated with the synovial

fluid of the joint and with joint lubrication. Also, it is closely associated with proteoglycans

which attempt to restrain its movement. The combination of the proteoglycans and the

collagen framework makes cartilage sponge-like. The pores of cartilage, from which the

water can escape, are small (2.5 to 6.5 nm).

Articular cartilage is structural inhomogeneous. It changes with depth from the joint

surface. The inhomogeneous composition and structural framework of articular cartilage

result in a highly anisotropic material. The constitutive changes are continuous but may be

divided into four zones (Fig. 3.9):

• superficial zone,

• transitional zone,

• deep zone,

• calcified zone.

Figure 3.9: The structural changes of articular cartilage related to the depth from the joint surface.

(From Nigg and Herzog, 1999)

The superficial zone is the thinnest, most superficial region of articular cartilage. It has a

surface layer and a deeper layer. The surface layer is approximately 2 µm thick and consists of

random flat bundles of collagen fibrils. The deeper layer consists of dense collagen fibers lying

parallel to the plane of the joint surface. It also contains elongated chondrocytes, whose long

axes lie parallel to the joint surface. Of all the zones of articular cartilage, the superficial zone

has the highest concentration of water, approximately 80%. Water concentration decreases

in a nearly linear manner with increasing depth until it reaches 65% in the deep zone.

The transitional zone consists of collagen fibrils with larger diameter than those in the

superficial zone. These fibrils mostly lie parallel to the plane of joint motion, but they are
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less parallel than those in the superficial zone. The chondrocytes in this region are spherical.

Also it is found that the cells in the transitional zone play a great role in matrix synthesis.

The deep zone contains large numbers of big collagen bundles directed perpendicular to

the plane of joint motion. Water content is relatively low in this zone. The chondrocytes are

round and stacked on the top of each other in a column perpendicular to the joint surface.

Also it is found that much protein synthesis occurs in the deep zone.

The calcified zone marks the transition from soft articular cartilage to stiffer subchondral

bone. It is separated from the deep zone by the “tidemark”, an undulating line 2-5 µm thick.

The collagen fibers from the deep zone tie the cartilage to the bone by fixing themselves into

the subchondral bone.

3.2.2 Physical properties

In cartilage, collagen and proteoglycan are dispersed in the fluid. These substances, which are

produced by the chondrocytes, interact to produce the fluid and solid mechanical behavior

associated with articular cartilage. The specific characteristics of the physical, chemical,

and mechanical interactions, between collagen and proteoglycan have not yet been fully

determined. Nevertheless, it is known that these structural macromolecules interact to form

a porous-permeable fiber-reinforced composite matrix possessing all the essential mechanical

characteristics of a solid that is swollen with water and that is able to resist the high stresses

and strains of joint articulation.

Collagen accounts for much of the structural framework of cartilage and gives much of

its tensile stiffness and strength. The tensile strength of individual collagen fibers is not yet

known, but tendon, of which collagen comprises the 80% of the dry weight, has a tensile

strength of about 70 MPa. Its tensile strength is comparable to that of nylon (80 MPa)

and pure aluminium (70 MPa). However, collagen fibers, due to their large ratio of length

to thickness, appear to buckle easily in compressive loads and thus offer little resistance to

compression or shear. A typical tensile stress-strain curve for articular cartilage is shown in

Figure 3.10. The configuration of the collagen fibers changes at various stages of loading.

Initially, fibers are partially relaxed and wavy in appearance. In the toe region, collagen

fibers straighten and become aligned in the direction of the tensile load. In the linear region,

the aligned collagen fibers are stretched until failure occurs. At physiological strain levels

(up to 15%), Young’s modulus of articular cartilage ranges between 1 and 10 MPa.

On a molecular level, cross-links between collagen fibrils exist. These cross-links may

further increase tensile strength, stiffness, and integrity. So, collagen fibers and fibrils in ar-

ticular cartilage are not only strong individually but, being bonded with their own molecules

and other structural macromolecules, also contribute to a rise of stiffness. Like bone, artic-

ular cartilage is anisotropic: its material properties differ with the direction of loading. It
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Figure 3.10: A typical stress-strain curve for articular cartilage accompanied by the configuration

of the collagen fibers in each stage of loading.

is thought that this anisotropy is related to the varying collagen fiber arrangements within

the planes parallel to the articular surface. It is also thought that variations in collagen

fiber density, as well as variations in collagen-proteoglycan interactions within the matrix,

also contribute to articular cartilage tensile anisotropy. The tensile modulus decreases with

increasing depth from the cartilage surface because the orientation of the collagen fibers of

the deeper layers is rather random compared to the parallel uniformity at the surface and

also because the collagen density decreases with depth from the articular surface (Fig. 3.11).

Figure 3.11: Variations in tensile stress behavior with depth in articular cartilage. (From Kempson

et al., 1968)

In addition, cartilage shows differences in tensile strength when tested parallel to the
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collagen fiber direction and perpendicular to it (Fig. 3.12). The collagen-proteoglycan inter-

actions within the matrix are, also, responsible for the shear properties of articular cartilage.

The magnitude of frictional shear stress due to motion of one bone relative to another is

usually ignored because the coefficient of friction is small. However, the shear stress is not

negligible. The intersurface frictional shear is initially carried in the superficial zone as a

tensile stress. This stress may be transmitted down to the subchondral bone as shear through

the matrix or/and through tensing the angled collagen fibers in the middle and deeper zones

of the cartilage layer.

Figure 3.12: Variations in tensile strength of articular cartilage when tested in different collagen

fiber directions. (From Kempson et al., 1968)

On the other hand, proteoglycans, because of their molecular structure, are ideally suited

to resisting compressive forces, which is why more proteoglycans are found in articular car-

tilage than in the other soft tissues. Compressive properties vary with the zone tested and

are related to proteoglycan concentration. When proteoglycan content increases so does the

tissue’s compressive stiffness.

Cartilage is a microporous material with low permeability. Permeability represents the

frictional resistance of a porous material to fluid flow in such a way that, the more per-

meable the material, the less the resistance to flow. In the case of articular cartilage, its

low permeability inhibits any rapid escape of fluid when the cartilage is compressed, as it is

during joint movement. The permeability of healthy articular cartilage is relatively low (very

much lower than that of a sponge) and decreases as the cartilage is compressed. Thus, it is
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harder to remove fluid from the matrix when compression increases. This is important for

nutrition of the cartilage and for its resistance to wear. If the cartilage becomes damaged,

the permeability of the cartilage becomes greater, perhaps because the collagen fibers are

broken, allowing the proteoglycan molecules to be washed out of the matrix, resulting in

further deterioration of the cartilage.

Cartilage is a viscoelastic material. Viscoelasticity may be revealed through creep or

stress relaxation. The viscoelastic properties of articular cartilage are mainly associated

with the movement of water in the tissue. Because of the low permeability of cartilage, its

mechanical behavior depends on the rate at which a load is applied or removed. When the

tissue is loaded slowly or a constant load is maintained (as in standing), the cartilage will

continue to deform as fluid is squeezed out until equilibrium is reached. However, when the

tissue is loaded very rapidly (as in jumping), there is no time for fluid to be squeezed out,

and the cartilage behaves like an elastic solid.

Under normal conditions, cartilage wears at a very low rate, suggesting that lubrication

is efficient, and the surfaces are normally held apart by a fluid film and do not contact

one another. Once surface damage occurs, even in a localized region, the whole surface

becomes less stiff and more permeable, proteoglycans are lost, and the fluid film leaks away

more easily. All these factors will result in more stress on the cartilage and on the bone

underneath, resulting in further damage. Once stresses at the joint become high (perhaps

due to fracture) or the cartilage is damaged, further deterioration results, leading to the

condition known as osteoarthritis (articulating bones in contact). Unfortunately, cartilage,

in contrast to bone, has a very limited ability to remodel itself when damaged.

3.3 Ligament

Ligament is a short band of tough fibrous dense regular connective tissue composed of elastin

and collagen fibers (Fig. 3.13).

Although ligaments are passive structures (they do not actively produce motion as the

muscles do), they play an essential role in joint motion. The major functions of ligaments

are: to attach articulating bones to one another across a joint, to guide joint movement, to

maintain the stability of the joint, and to prevent excessive motion. Ligament injuries and

derangements are common in everyday human activity. Proper management of these disor-

ders requires an understanding of the mechanical properties and function of ligaments. In the

following sections, emphasis is given to the anatomy, structure, and mechanical properties

of ligaments.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



Anatomy and material characteristics of biological structures 41

Figure 3.13: Ligaments of the human foot. (From Primal Pictures: “Interactive Foot and Ankle”)

3.3.1 Anatomy and structure

Ligaments consist of relatively few cells (fibroblasts) and an abundant extracellular matrix.

In general, the cellular material occupies approximately 20% of the total tissue volume,

whereas the extracellular matrix accounts for the remaining 80%. Approximately 70% of

the matrix consists of water and approximately 30% of solids. These solids are collagen,

proteoglycans, fibronectin, elastin, actin, and a few other glycoproteins. The collagen content

is generally over 75% of the dry weight of ligament.

Fibroblasts are not homogeneous in ligament tissue and vary in size, shape, orientation,

and number. They are generally oriented longitudinally along the length of the ligament

body. Fibroblasts are responsible for synthesizing and degrading the ligament matrix in

response to various stimuli. It is believed that they prevent or repair ongoing microscopic

damage. Therefore, fibroblasts are crucial to maintaining the integrity of ligaments.

On the other hand, water makes up approximately 70% of the matrix. Water can be

associated with other ligament components in a variety of ways. The function of water in

ligaments appears to be crucial for at least three main reasons. First, its interaction with

the ground substance and particularly the proteoglycans influences the tissue’s viscoelastic

behavior. Second, it seems to provide lubrication and facilitate inter-fascicular sliding. Third,

it carries nutrients to the fibroblasts and takes waste substances away.

Also, matrix consists of approximately 30% of solids. Collagen is the main protein present

in ligaments. It is found mainly in fibrillar form, oriented between insertion points on the

bones such that it will resist tensile forces. Collagen fibers within ligaments vary in size

(diameter) from 10-1500 nm, a range that appears to depend on age, type of ligament, and

species. Fiber size may affect the strength of the material. Ligaments with larger collagen

distributions tend to be stronger and able to sustain higher stresses. Collagen is enormously

strong due to a combination of biochemical bonds known as molecular cross-links.
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The hierarchical structure of the collagen in the ligament includes fibers, fibrils, subfibrils,

microfibrils, and tropocollagen (Fig. 3.14). Tropocollagen molecules, approximately 1.5 nm

in diameter, aggregate into groups of five, becoming microfibrils of approximately 3.5 nm

in diameter. The microfibrils group into subfibrils, which, in turn, aggregate to form fibrils.

Fibrils are approximately 50-500 nm in diameter with a periodicity of 64 nm. Fibers are an

aggregation of fibrils and are 50-300 µm in diameter. They appear with crimps.

Figure 3.14: Structural hierarchy of collagen in the ligament. (From Nigg and Herzog, 1999)

In addition, elastin is an elastic substance that is found in very small amounts in most

skeletal ligaments (approximately 1.5%) in fibrillar form. Its fibrillar form probably is respon-

sible for a part of the tensile resistance in ligament tissue and some of its elastic recoverability.

The role of elastin is probably related to recovering ligament length after stress is removed.

Elastin probably protects collagen, at least at low strains.

3.3.2 Physical properties

Ligaments are pliant and flexible allowing natural movements of the bones to which they

attach, but also they are strong and inextensible so as to offer suitable resistance to applied

forces.

A typical force-deformation curve for ligaments is shown in Figure 3.15. The stiffness of

ligaments varies non-linearly with force. This non-linear behavior allows ligaments to permit

initial joint deformations with minimal resistance. At higher forces, ligaments become stiffer,

providing more resistance to increasing deformations, and, as a result, protection to the joint.

The first region of the load-deformation curve is called the “toe” region. The deformation

reflected in this region is believed to be the result of two reasons: a change in the wavy pattern

of the relaxed collagen fibers and the existence of some fibers crossing between parallel fibers

in the ligament substance, some running perpendicular to the long axis and some running

at every angle to the long axis. In the first region, the tissue stretches easily, without much

force, and the collagen fibers become straight and lose their wavy appearance as the loading
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Figure 3.15: A typical force-deformation curve for ligaments accompanied by the configuration of

the collagen fibers in each stage of loading. (From Nigg and Herzog, 1999)

progresses. As loading continues, the stiffness of the tissue increases and a progressively

greater force is required to produce equivalent amounts of deformation. If deformation is

increased (deformation values 2-6 mm) and the collagen fibers take up force, a linear region

will follow the toe region. This region corresponds to the second region in the curve of

Figure 3.15. Following the linear region, at large deformations the curve can end abruptly or

change shape as a result of irreversible changes (failure). When the linear region is surpassed,

major failure of fiber bundles occurs in an unpredictable manner till the attainment of the

maximum load, where complete failure occurs rapidly.

Ligaments, also, exhibit viscoelastic behavior under loading; their mechanical properties

change with different rates of loading. With higher strain rates, ligaments in isolation store

more energy, require more force to rupture, and undergo greater elongation. Water is known

to contribute to the nonlinear viscoelastic behavior of the ligament in a significant way.

Viscoelasticity is mainly revealed through creep (Fig. 3.16) (increase in deformation over

time under a constant load) or stress relaxation (Fig. 3.17) (decrease in force over time

under a constant deformation).

The mechanical properties of ligaments are affected considerably by factors such as,

species, type of ligament, gender, age, activity, drugs, and diet. Values in the range of 10 to

300 MPa have been reported in the literature for the Young’s modulus of different ligaments.
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Figure 3.16: A typical creep behavior in ligaments. (From Nigg and Herzog, 1999)

Figure 3.17: A typical stress relaxation behavior in ligaments. (From Nigg and Herzog, 1999)

3.4 Tendon

Tendon is a dense fibrous tissue that connects muscle to bone. It is present in a wide

variety of shapes and sizes, depending on the morphological, physiological and mechanical

characteristics of both the muscle and bone to which it is attached.

Usually, tendon consists of an external tendon which is typically referred to as tendon,

and an internal tendon, which is typically referred to as aponeurosis (Fig. 3.18). The

external tendon connects the muscle to bone and the aponeurosis provides the attachment

area for the muscle fibers.

Like ligament, tendon injuries and derangements are common in everyday human activity.

In order to deal with these situations, an understanding of the mechanical properties and

function of tendons is required. In the following sections, emphasis is given to the anatomy,

structure, and mechanical properties of tendons.
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Figure 3.18: Relation among muscle fibers and tendon in a pennated muscle. (From Nigg and

Herzog, 1999)

3.4.1 Anatomy and structure

The structure and chemical composition of tendons and ligaments are identical. The main

difference between tendon and ligament is that the collagen content is somewhat greater in

tendons than in ligaments. Collagen is the main protein present in tendons.

The hierarchical structure of the collagen in the tendon is shown in Figure 3.19.

Figure 3.19: Structural hierarchy of tendon, from the tropocollagen molecule to the entire tendon.

(From Nigg and Herzog, 1999)

The basic unit of collagen is tropocollagen. Tropocollagen molecules aggregate into

groups of five becoming microfibrils. Microfibrils aggregate to form subfibrils, which ag-

gregate further to form fibrils. Fibrils aggregate to form fibers and fiber bundles in which

crimping or longitudinal waviness of the collagen fibers may first be apparent. Fiber bun-

dles aggregate to form fascicles. Fascicles are surrounded by endotenon, a connective tissue

sheath composed of a well-ordered criss-cross pattern of collagen fibrils, proteoglycans and

elastin. The endotenon contains the blood and lymphatic vessels as well as the nerves for the

tendon. Fascicles aggregate into fascicle bundles and are surrounded by epitenon. Finally,
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several fascicular bundles are surrounded by paratenon, the outermost tendon sheath.

3.4.2 Physical properties

The primary role of tendon is to transmit the force of its associated muscle to bone. As

such, tendon needs to be relatively stiff and strong in tension. A typical stress-strain curve

for tendon is shown in Figure 3.20. The curve illustrates the response for a tendon specimen

subjected to a uniaxial tension test. There are three distinct regions of the curve: toe, linear,

and yield regions.

Figure 3.20: A typical stress-strain curve for a tendon specimen subjected to a uniaxial tension test.

(From Nigg and Herzog, 1999)

The toe region typically lies below 3% strain. In this region, elongation is accompanied

by very low stress. This low initial stiffness of tendon in the toe region is thought to be

caused by the straightening of the collagen crimp or by shearing action between the collagen

fibrils and the ground substance of the tendon.

The linear region is beyond approximately 2 to 3% tensile strain and it extends to about

4 to 5%. The slope of this linear portion of the curve has been used to define the Young’s

modulus of the tendon. It is found to take values in the range 1-1.5 GPa.

Beyond the linear region permanent deformation occurs. The ultimate or failure strain

of tendon is about 8 to 10%. In the yield region the deformation of tendon is accompanied

by very little increase in stress. Tendon failure eventually results from the fracture of the

collagen fibers. A mean value of the ultimate stress in tendon is 100 MPa. The high tensile

stiffness and strength of tendon is attributed to its relatively high collagen content and to

its hierarchical organization into linear bundles.

Like ligaments, tendons also exhibit viscoelastic behavior. Viscoelasticity is mainly re-

vealed through creep or stress relaxation. However, it is proved that about 89 to 94% of

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



Anatomy and material characteristics of biological structures 47

the energy associated with longitudinal deformation or stretch of a tendon is recovered when

the load on the tendon is removed. Thus, for a biological material, tendon shows marked

elastic behavior, at least within the likely range of physiologically relevant frequencies of

deformation.
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Chapter 4

Continuum constitutive modeling of

muscle and tendon

In this chapter a continuum constitutive model that describes the biomechanical behavior of

muscle and tendon is presented. The model is based on an idea put forth recently by Liang

et al. (2006) for the mechanical behavior of muscular hydrostats.

Muscle and tendon are both reinforced with fibers. The most basic characteristic of

muscle is its ability to produce force; its capability of active contraction makes it distinct

from other soft biological tissues. On the other hand, tendon is a passive material; its primary

role is to transmit the force of its associated muscle to bone.

In the following, all materials are considered as “continuous media” and the modeling

follows the general principles of “Continuum Mechanics”. From the Mechanics viewpoint, the

muscle is a “composite” material that consists of the fibers, the connective tissues, and the

biofluids surrounding the muscle fibers. The constitutive model developed in the following is

essentially a “homogenization” process that accounts for the presence of the fibers and the

other material “phases”.

4.1 Constitutive model

4.1.1 Basic structure of the constitutive model

As discussed in section 2.1, the structural unit of skeletal muscle is the muscle fiber. The

muscle fiber is composed of parallel bundles of myofibrils. Each myofibril is in turn divided

longitudinally by the Z-discs into sarcomeres, which are the basic contractile units of a

muscle. Sarcomeres, also, are responsible for the passive properties of the muscle. Thus, the

active and passive behavior of the muscle is produced within the muscle fiber. Additionally,

in section 3.4.1 of chapter 3 is described in detail that the structural unit of tendon is the

collagen fiber.

In the present model, muscle and tendon are considered as non-linear and anisotropic

due to the existence of fibers in their mass. The tissue (muscle, tendon) is “homogenized”
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and the anisotropy is defined locally in terms of the local fiber direction as described in the

following.

At every material point in the tissue, we define the local direction of the deformed fiber

by the corresponding unit vector m (Fig. 4.1).

Figure 4.1: Muscle fiber in the deformed configuration with its direction defined locally by unit

vector m. Also shown the fiber stress σm acting on an infinitesimal fiber segment of length ds.

Let F be the value of the deformation gradient at a material point. Then m can be

determined from

m =
1

|F ·m0|F ·m0, (4.1)

where m0 is the unit vector that defines the orientation of the fiber in the undeformed

configuration.

We consider the Eulerian logarithmic strain tensor:

ε = ln V , (4.2)

where V =
√

F · FT. Part of the strain is associated locally with the volume preserving axial

local deformation in the direction m of the fiber εf . The change of length of an infinitesimal

fiber segment of original length ds0 can be determined in terms of the corresponding stretch

ratio λm:

λm =
ds

ds0
=

√
m0 · F T · F ·m0, (4.3)

where ds is the length of the infinitesimal fiber segment after the deformation. The associated

axial logarithmic strain in the fiber direction is εm:

εm = ln λm. (4.4)
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The corresponding volume preserving logarithmic fiber strain tensor can be written as1

εf =
3
2

εm

(
mm− 1

3
δ

)
, (4.5)

where δ the second-order identity tensor.

It can be shown that the rate of change of εm can be determined as

ε̇m =
λ̇m

λm
= m ·D ·m = (mm) : D, (4.6)

where D is the deformation rate tensor defined as the symmetric part of the spatial velocity

gradient in the deformed configuration2.

The difference between the total strain ε and the fiber strain εf is associated with the

connective tissue and the biofluids surrounding the muscle fibers:

εct = ε− εf . (4.7)

In particular, εct represents the extent to which the total strain is locally not axisymmetric

with respect to the fiber and is not volume preserving, i.e., it represents any area change

transverse to the muscle fiber due to a local volume change in the “composite” material and

any local transverse and axial shear relative to the fiber.

If (4.5) were the only strain in the muscle, then the corresponding true stress tensor

would be of the form (Fig. 4.1)

σf = σm mm, (4.8)

where σm is the true stress in the fiber direction and depends on the fiber strain and strain

rate as described in the following. In the general case, additional stresses σct develop due to

the deformation εct of the connective tissues and the biofluids.

As a first approximation, we assume that the total true stress σ in the tissue can be

written as the sum of σf and σct:

σ = σf + σct, (4.9)

where σf and σct depend on the deformation of the muscle as described in the following.

1 Let e1 and e2 be unit vectors such that (e1, e2, m) form a right-handed orthonormal basis. Then

e1 e1 + e2 e2 + m m = δ, and the logarithmic strain tensor that describes the volume preserving axial

deformation in the direction m can be written as

εf = εm m m− εm

2
(e1 e1 + e2 e2) = εm m m− εm

2
(δ −m m) =

3

2
εm(m m− 1

3
δ).

2 This leads to the more involved formula for the evaluation of εm, which is used sometimes incrementally

in computational mechanics: dεm = m ·D ·m dt or εm(t) =
t∫
0

m(τ) ·D(τ) ·m(τ) dτ, where t denotes time.
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4.1.2 Constitutive description of σm

The nominal strain in the fiber is defined as

εm
0 =

ds− ds0

ds0
= λm − 1 = exp(εm)− 1 or εm = ln(1 + εm

0 ). (4.10)

The nominal axial stress σm
0 in the fiber is defined in terms of the true fiber stress σm as

follows:

σm
0 = σm A

A0
= σm ds0

ds
=

σm

λm
=

σm

1 + εm
0

, (4.11)

where A and A0 denote the current and reference cross-sectional area of the fiber respectively.

4.1.3 The fiber part of muscle

The total nominal longitudinal stress in a muscle fiber is, in general, a function of time t,

nominal longitudinal strain, and nominal longitudinal strain rate:

σm
0 = f (εm

0 , ε̇m
0 , t) . (4.12)

The force exerted by a muscle fiber has “active” and “passive” characteristics. The

“active” part of the force depends on the activation level, fiber length, and velocity of

contraction of the muscle fiber, whereas the “passive” part depends only on the length

of muscle fiber. In the present approach the relation used for the nominal longitudinal stress

in a muscle fiber is written as the sum of an active and a passive part:

σm
0 = σ

m(act)
0 + σ

m(pas)
0 , (4.13)

where σ
m(act)
0 and σ

m(pas)
0 denote the “active” and “passive” part of the nominal longitudinal

stress respectively.

For the active stress it is known that

• the level of activation affects the magnitude of the generated force (Fig. 2.13),

• the force-length relationship is coupled to the level of activation (Fig. 2.10),

• the force-velocity relationship could also be used for lengths other than those corre-

sponding to optimal fiber length (Fig. 2.12).

The coupling between fiber activation and nominal strain in the force-length relationship

is incorporated into the model in the form of equation (4.14) below, which is due to Buchanan

et al., 2004, and accounts for the coupling between activation and optimal fiber length:

`m
0a (fa) = `m

0 {k [1− fa (t)] + 1} , (4.14)
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where `m
0 is the optimal fiber length, fa (t) is the activation, and k is the percentage change

in optimal fiber length. From equation (4.14) we extract the relationship between activation

and stretch ratio:

λm
0a (fa) = λm

0 {k [1− fa (t)] + 1} , (4.15)

where λm
0 is the optimal fiber stretch ratio. Finally, from equation (4.15) we determine the

relationship between activation and nominal strain used in the current muscle model:

εm
0a (fa) = (εm

0 + 1) {k [1− fa (t)] + 1} − 1. (4.16)

Following Van Leeuwen and Kier (1997), we write

σ
m(act)
0 = fa(t) fe(εm

0a (fa)) fr(ε̇m
0 ) and σm

pas = σm
pas(ε

m
0a (fa)), (4.17)

where fa is the activation state which describes the pattern of the activation signal as a func-

tion of time t, fe describes the dependence of the active stress on the activation-dependent

nominal longitudinal strain εm
0a, and fr is the function that relates the active muscle stress

to the nominal longitudinal strain rate ε̇m
0 .

It is noted that in the original model of Van Leeuwen and Kier (1997) the active stress-

strain function fe is independent on the activation state, whereas in our approach the same

function depends explicitly on activation state as well, based on experimental findings shown

in Fig. 2.10.

It is convenient to normalize the above equations and write

σm
0 = σmax

[
σ

m(act)
0 + σ

m(pas)
0

]
(4.18)

or

σm
0 = σmax

[
fa(t) fe(εm

0a (fa)) fr(ε̇m
0 ) + σm

pas(ε
m
0a (fa))

]
, (4.19)

where σmax is the maximum isometric stress at optimum fiber length and fa, fe, fr, and

σm
pas are now dimensionless functions. The functions fa, fe, fr, and σm

pas in (4.19) are defined

based on the structural characteristics of the muscle fiber under consideration, i.e., the

aforementioned functions have a different form for different species and muscle types. Specific

functional forms for these functions are given in chapter 6.

4.1.4 The fiber part of tendon

In section 3.4 it was mentioned that the primary role of tendon is to transmit the force of its

associated muscle to bone. Therefore, tendon develops only “passive” stresses. The “passive”

force depends only on the length of tendon fiber, and the total nominal longitudinal stress

in a tendon fiber can be written as a function of nominal longitudinal strain:

σm
0 = σmax σm

pas(ε
m
0 ), (4.20)
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where σmax is the tendon stress when its force equals the peak isometric muscle force (Zajac,

1989) and σm
pas a dimensionless function. The tendon strain is defined by the amount of

tendon stretch relative to its resting, or slack length, where the slack length is the length on

elongation at which tendon just begins to develop force.

4.1.5 Constitutive description of σct

In the present model, isotropic linear hyperelasticity is assumed for the non-fiber part and

the constitutive equation for the stress tensor is written as

σct =
1
J
LLLe : εct, (4.21)

where J = detF and LLLe is the elasticity tensor, which can be written as

LLLe = 2 µK + 3 κJ, (4.22)

with µ and κ being the elastic shear and bulk moduli of the material. In the last equation J

and K are the standard fourth-order deviatoric and spherical projection tensors defined by

J =
1
3

δ δ, K = I− J, (4.23)

where I is the standard fourth-order symmetric identity tensor with Cartesian components

Iijkl =
1
2
(δik δjl + δil δjk). (4.24)

4.1.6 Summary of constitutive equations

Muscle tissue

ε = lnV , ε = εf + εct, σ = σf + σct (4.25)

Fiber part:

εf =
3
2

εm

(
mm− 1

3
δ

)
, m =

1
|F ·m0| F ·m0, (4.26)

λm =
√

m0 · F T · F ·m0, εm
0 = λm − 1, εm = ln λm, (4.27)

σf = σm m m, σm = (1 + εm
0 ) σm

0 , (4.28)

εm
0a (fa) = (εm

0 + 1) {k [1− fa (t)] + 1} − 1, (4.29)

σm
0 = σmax

[
fa(t) fe(εm

0a (fa)) fr(ε̇m
0 ) + σm

pas(ε
m
0a (fa))

]
. (4.30)

Connective tissue and biofluids:

σct =
1
J
LLLe : εct. (4.31)
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Tendon tissue

ε = ln V , ε = εf + εct, σ = σf + σct (4.32)

Fiber part:

εf =
3
2

εm

(
mm− 1

3
δ

)
, m =

1
|F ·m0| F ·m0, (4.33)

λm =
√

m0 · F T · F ·m0, εm
0 = λm − 1, εm = ln λm, (4.34)

σf = σm mm, σm = (1 + εm
0 ) σm

0 , (4.35)

σm
0 = σmax σm

pas (εm
0 ). (4.36)

Connective tissue and biofluids:

σct =
1
J
LLLe : εct. (4.37)

We conclude this section by mentioning that the case of more than one group of muscle

fibers with different orientation and properties is handled by superposition. In the case of

N families of fibers, equations (4.26)-(4.30) are replaced by

εf =
3
2

N∑

i=1

ε(i)
m

(
m(i) m(i) − 1

3
δ

)
, m(i) =

1∣∣∣F ·m(i)
0

∣∣∣
F ·m(i)

0 , (4.38)

λ(i)
m =

√
m

(i)
0 · F T · F ·m(i)

0 , ε
m(i)
0 = λ(i)

m − 1, ε(i)
m = lnλ(i)

m , (4.39)

σf =
N∑

i=1

σm(i) m(i) m(i), σm(i) =
(
1 + ε

m(i)
0

)
σ

m(i)
0 , (4.40)

ε
m(i)
0a (fa) =

(
ε
m(i)
0 + 1

)
{k [1− fa (t)] + 1} − 1, (4.41)

σ
m(i)
0 = σ(i)

max

[
f (i)

a (t) f (i)
e (εm(i)

0a ) f (i)
r (ε̇m(i)

0 ) + σm(i)
pas (εm(i)

0a )
]
. (4.42)

Similar modifications are introduced to equations (4.33)-(4.36) for the tendon.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



56 Continuum constitutive modeling of muscle and tendon

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



57

Chapter 5

Implementation of the constitutive model

in finite element program

In this chapter, a methodology for the numerical implementation of the developed non-

linear and anisotropic constitutive equations for muscle and tendon in the context of the

finite element method is presented.

5.1 Integral formulation of the problem

We consider the spatial configuration of a general deformable body of initial volume V0 at

time t = 0. At time t the body is deformed to a volume V surrounded by a surface S as

shown in Figure 5.1. The body is loaded by body forces b per unit mass and traction forces

T per unit area on the part Sσ of S, and imposed displacements û on the remainder part

Su of S. The equations of equilibrium are

Figure 5.1: Undeformed and deformed configurations of the continuum.
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∂σij

∂xj
+ ρ bi = 0, (5.1)

where σij is the Cauchy stress tensor, and ρ is the mass density.

We consider that the displacement vector u is prescribed on part of the boundary Su:

u = û ≡ known on Su. (5.2)

On the remaining boundary Sσ the tractions are prescribed:

n · σ = T ≡ known on Sσ. (5.3)

The problem can be formulated in an integral form as follows: Find a displacement field

u (x) such that u = û on Su and

∫

V

[
∂σij (u)

∂xj
+ ρ bi

]
v∗i dV +

∫

Sσ

[Ti − nj σij (u)] v∗i dS = 0 (5.4)

for all continuous and differentiable fields v∗ (x) that satisfy the condition v∗ = 0 on Su.

The stress field σ (u) is determined for given u via the constitutive equations.

Using Green’s theorem in equation (5.4) we reach the alternative formulation: Find a

displacement field u (x) such that u = û on Su and

G (u (x)) ≡
∫

V

σ (u (x)) : D∗dV −
∫

V

ρ b · v∗dV−
∫

S

T · v∗dS = 0 (5.5)

for all continuous and differentiable fields v∗ (x) that satisfy the condition v∗ = 0 on Su.

Note that D∗ in equation (5.5) is given by

D∗
ij =

1
2

(
∂v∗i
∂xj

+
∂v∗j
∂xi

)
. (5.6)

The vanishing of the non-linear functional G (u) for all “virtual” velocity fields v∗ (x) defines

the “weak” solution u (x) of the problem.

The integral statement (5.5) provides the basis for the finite element formulation as

described in the following section.

We conclude this section mentioning that, in view of the symmetry of σ, equation (5.5)

can be written as

G (u (x)) ≡
∫

V

σ (u (x)) : L∗dV −
∫

V

ρb · v∗dV−
∫

S

T · v∗dS = 0, (5.7)

where

L∗ij =
∂v∗i
∂xj

. (5.8)
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5.2 Finite element formulation

In a finite element setting, a non-linear problem is solved incrementally and the primary

unknown is the displacement increment ∆u (x) that defines the position of the body at the

end of the increment:

un+1 (x) = un (x) + ∆u (x) , xn+1 (x) = xn (x) + ∆u (x) = X + un+1 (x) . (5.9)

Figure 5.2: Discretization of a structure in a finite element setting.

Next, we introduce the finite element interpolation, which, at the element level, can be

written as

{∆u (x)} = [N (x)]
{
∆uN

e

}
, (5.10)

where [N (x)] is the interpolation matrix, and
{
∆uN

e

}
the vector of nodal unknowns of the

element. In the above equation and for the rest of this chapter, the following notation is

used:

{ } denotes a column, b c denotes a row, [ ] denotes a matrix.

We also define ∆L ≡ ∂ (∆u)/∂xn+1, which is written in matrix form as

{∆L (x)} = [BL (x)]
{
∆uN

e

}
. (5.11)

Similarly, the virtual velocity vector v∗ and the corresponding velocity gradient L∗ =

∂v∗/∂xn+1 are written in matrix form as

{v∗ (x)} = [N (x)]
{
v∗Ne

}
, (5.12)
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and

{L∗ (x)} = [BL (x)]
{
v∗Ne

}
. (5.13)

Substituting the above fields in equation (5.7) we find

G =
⌊
v∗N

⌋
A

e




∫

V e
n+1

[BL]Tn+1 {σ}n+1 dV −
∫

V e
n+1

[N ]Tn+1 ρ {b}n+1 dV −
∫

Se
σ|n+1

[N ]Tn+1 {T}n+1 dS


 = 0,

(5.14)

where
⌊
v∗N

⌋
is the global row of nodal virtual velocities, and A

e
is the “assembly operator”.

Since equation (5.14) must hold for arbitrary values of
⌊
v∗N

⌋
, we have that

A
e

∫

V e
n+1

[BL]Tn+1 {σ}n+1 dV = {F}n+1 , (5.15)

where {F}n+1 is the global vector of applied loads

{F}n+1 = A
e




∫

V e
n+1

[N ]Tn+1 ρ {b}n+1 dV +
∫

Se
σ |n+1

[N ]Tn+1 {T}n+1 dS


 . (5.16)

The quantity {σ}n+1 in equation (5.15) is a non-linear function of the unknown nodal dis-

placement increments
{
∆uN

}
. Equation (5.15) provides the set of non-linear equations that

determine
{
∆uN

}
. In fact, (5.15) can be written as

{
R

(
∆uN

)}
n+1

≡A
e

∫

V e
n+1

[BL]Tn+1

{
σ

(
∆uN

)}
n+1

dV − {F}n+1 = {0} , (5.17)

where
{
R

(
∆uN

)}
n+1

is the global “residual” force vector, i.e., the difference between the

forces required to maintain {σ}n+1 in the body and the applied forces {F}n+1.

The non-linear system of equations (5.17) is solved for
{
∆uN

}
by using the Newton’s

method. The corresponding Jacobian matrix, which plays the role of the “stiffness matrix”

now, is determined by writing equation (5.14) in the form

G =
⌊
v∗N

⌋ {R}n+1 = 0 (5.18)

and calculating

dG =
⌊
v∗N

⌋ ∂
{
R

(
∆uN

)}
n+1

∂ {∆uN} d
{
∆uN

}
=

⌊
v∗N

⌋
[K] d

{
∆uN

}
, (5.19)

where [K] is the required Jacobian matrix.
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5.3 Linearization of equations — Calculation of Jacobian

The easiest way to calculate the Jacobian [K] is to start with the continuum form of G, cal-

culate the differential dG, and then introduce the finite element discretization; the resulting

equation compared to equation (5.19) identifies [K]. The procedure is as follows.

We write G (∆u) in the form

G (∆u) =
∫

V

tr
(

σ · ∂v∗

∂x

)
dV −

∫

V0

ρ0 b · v∗dV0−
∫

S0
σ

T 0 · v∗dS0, (5.20)

where T 0 is the nominal traction vector and ρ0 the initial density. In equation (5.20) and

for the rest of this section all quantities are evaluated at the end of the increment, unless

indicated otherwise. We also note that

dx = dxn+1 = d (xn + ∆u) = d (∆u) . (5.21)

Next, we note that
∫

V

tr
(

σ · ∂v∗

∂x

)
dV =

∫

V0

tr
(

σ · ∂v∗

∂X
· ∂X

∂x

)
J dV0 =

∫

V0

tr
(

σ · ∂v∗

∂X
· F−1

)
J dV0, (5.22)

so that equation (5.20) can be written as

G (∆u) =
∫

V0

tr
(

∂v∗

∂X
· F−1 · σ

)
J dV0 −

∫

V0

ρ0 b · v∗dV0−
∫

S0
σ

T 0 · v∗dS0. (5.23)

We assume now that the applied loads are independent of the motion of the body, i.e., we

exclude “follower forces”. Then

dG =
∫

V0

tr
{

∂v∗

∂X
·
[
d

(
F−1

) · σ + F−1 · dσ + F−1 · σ dJ

J

]}
J dV0, (5.24)

where J = det (F ). Also
∂v∗

∂X
=

∂v∗

∂x
· ∂x

∂X
= L∗ · F , (5.25)

so that equation (5.24) becomes

dG =
∫

V

tr
{

L∗ ·
[
F · d (

F−1
) · σ + dσ +

dJ

J
σ

]}
dV. (5.26)

Next, we evaluate the quantities F · d (
F−1

)
, dσ, and dJ/J .

Evaluation of F · d (
F−1

)

F ·F−1 = δ ⇒ dF ·F−1 + F · d (
F−1

)
= 0 ⇒ F · d (

F−1
)

= −dF · F−1 . (5.27)
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Also,

F =
∂x

∂X
⇒ dF =

∂ (dx)
∂X

or dF =
∂ [d (∆u)]

∂X
. (5.28)

Therefore,

(5.27)−−−−→
(5.28)

F · d (
F−1

)
= −∂ [d (∆u)]

∂X
· ∂X

∂x
= −∂ [d (∆u)]

∂x
⇒ F · d (

F−1
)

= −dL ,

(5.29)

where

dL ≡ ∂[d(∆u)]
∂x

. (5.30)

Evaluation of dJ/J

We recall that ∂J/∂Fκi = J
(
F−1

)
iκ

, which implies that

dJ = J
(
F−1

)
iκ

dFκi = J
(
F−1 · dF

)
ii

= J tr
(
F−1 · dF

)
=

= J tr
[
∂X

∂x
· ∂ (d∆u)

∂X

]
= J tr

[
∂ (d∆u)

∂x

]
= J tr (dL) , (5.31)

or
dJ

J
= dLκκ . (5.32)

Evaluation of dσ

We note that dσ denotes the variation of σ with respect to the displacement increment ∆u.

In general, dσ depends on the constitutive model and the algorithm used for the numerical

implementation of the constitutive equations. The exact evaluation of dσ in finite strain

problems is always very involved. In order to simplify the calculation, we use the following

approximate technique.

We assume that the numerical implementation of the constitutive model defines somehow

a relationship of the form
O
σ = C : D = C : L, (5.33)

where
O
σ is a fourth-order tensor, C is a fourth order tensor, L = ∂v/∂x, and D = (1/2)(L+

LT ). Then

σ̇ =
O
σ − σ ·W + W · σ = C : L− 1

2
σ · (L−LT

)
+

1
2

(
L−LT

) · σ. (5.34)

Based on equation (5.34), we introduce the approximation that

dσ ∼= C : dL− 1
2
σ · (dL− dLT

)
+

1
2

(
dL− dLT

) · σ (5.35)

Now, we return to equation (5.26) where we substitute the quantities F · d (
F−1

)
, dσ, and
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dJ/J from equations (5.30), (5.32), and (5.35) respectively. So we find that

dG =
∫

V

L∗ :
[
C : dL− 1

2
σ · (dL + dLT

)
+

1
2

(
dL− dLT

) · σ + dLkk σ

]
dV, (5.36)

where we took into account that tr (A ·B) = Aik Bki = A : BT .

Note that, in view of (5.33) and (5.35), C essentially relates the variation of the true

stress σ, as seen by an observer spinning with the continuum, to the symmetric part of dL,

which, in turn, is determined in terms of the variation of the nodal displacement increments

∆u by equation 5.30.

Alternatively, we can write equation (5.36) as

dG =
∫

V

L∗ : (C + ΣΣΣ + σ δ) : dL dV , (5.37)

where

Σijkl =
1
2

(δik σjl − δil σjk − σik δjl + σil δjk) . (5.38)

Next, we introduce the finite element discretization

{L∗} = [BL]{v∗Ne } and {dL} = [BL] d{uN
e } (5.39)

in equation (5.37) to find

dG = bv∗Nc

A

e

∫

V e

[BL]T ([C] + [Σ] + {σ}bδc)[BL] dV


 d{∆uN}, (5.40)

where {σ} and {δ} are the vector representation of the stress tensor and the second order

identity tensor, and [C] and [Σ] are the matrix form of the fourth-order tensors C and ΣΣΣ

(e.g., see Papatriantafyllou, 2005). Referring now to equation (5.19), we conclude that

[K] = A
e

[ke], (5.41)

where [ke] is the “element stiffness matrix” defined as

[ke] =
∫

V e

[BL]T ([C] + [Σ] + {σ}bδc) [BL] dV. (5.42)

It should be noted that, because of the approximation involved in equation (5.35), the

expression for the Jacobian given in equation (5.42) is approximate as well. However, this

approximation influences only the rate of convergence of the overall equilibrium iterations

for the solution of equation (5.17) and not the accuracy of the solution, which depends on

the “tolerance” used in (5.17). The exact Jacobian is more involved and is discussed in detail

in Ramaswamy and Aravas (1998).
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It should be noted also that [Σ] is a symmetric matrix, whereas the product {σ}bδc results

in a non-symmetric matrix (Papatriantafyllou, 2005). In our model [C] is non-symmetric

as well. Therefore, the corresponding [ke] is non-symmetric. ABAQUS is based on the

formulation outlined above and uses equation (5.42) for the calculation of the Jacobian; the

[Σ] matrix is included automatically in finite-strain analysis and the user has to provide

the sum [C] + {σ}bδc via the subroutine UMAT. Our experience indicates that, when [ke]

in equation (5.42) is replaced by its symmetric part, the required solution time decreases

whereas the overall rate of convergence is not affected substantially.

5.4 Implementation in ABAQUS

From a numerical viewpoint, the implementation of a constitutive model in a finite element

code involves the evaluation of the constitutive equations at the Gauss integration points

of the elements and the calculation of the corresponding “linearization moduli” that are

needed for the global equilibrium “Newton loop”. The constitutive model is implemented

in the ABAQUS general purpose finite element code; this program provides a general in-

terface so that a particular constitutive model can be introduced as a “user subroutine”

(UMAT). The subroutine UMAT passes in all the information at the start of the incre-

ment, i.e., (F n, σn, εm|n, mn, σct|n), as well as F n+1 at time tn+1 = tn + ∆t, and the user

has to calculate the values of the corresponding quantities at the end of the increment, i.e.,

(σn+1, εm|n+1, mn+1, σ
ct|n+1). The model is then used for the analysis of static and dynamic

problems using the “standard-implicit” version of the code.

The finite element formulation is based on the “weak” form of the momentum balance,

the solution is developed incrementally, and the discretized non-linear equations are solved by

using the Newton’s method, which requires the aforementioned linearization moduli ∂σ/∂ε,

where σ and ε are the stress and strain tensors respectively.
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5.5 Numerical implementation of the model

The constitutive calculations are carried out in UMAT in the following order:

V n+1 =
√

F n+1 · F T
n+1 =

3∑

i=1

λi ni ni, (5.43)

εn+1 = ln V n+1 =
3∑

i=1

ln λi ni ni, (5.44)

λm|n+1 =
√

m0 · F T
n+1 · F n+1 ·m0, (5.45)

εm
0 |n+1 = λm|n+1 − 1, εm|n+1 = ln λm|n+1, (5.46)

mn+1 =
1

|F n+1 ·m0|F n+1 ·m0, (5.47)

εf |n+1 =
3
2

εm|n+1(mn+1 mn+1 − 1
3

δ), (5.48)

εct
n+1 = εn+1 − εf

n+1, (5.49)

ε̇m
0 =

εm
0 |n+1 − εm

0 |n
∆t

, (5.50)

εm
0a|n+1 = (εm

0 |n+1 + 1) {k [1− fa (tn+1)] + 1} − 1, (5.51)

σm
0 |n+1 = σmax

[
fa(tn+1) fe(εm

0a|n+1) fr(ε̇m
0 ) + σm

pas(ε
m
0a|n+1)

]
, (5.52)

σm
n+1 = (1 + εm

0 |n+1) σm
0 |n+1, (5.53)

σf
n+1 = σm

n+1 mn+1 mn+1, (5.54)

σct
n+1 =

1
det F n+1

LLLe : εct
n+1, (5.55)

and

σn+1 = σf
n+1 + σct

n+1, (5.56)

where λ2
i and ni are the eigenvalues and eigenvectors respectively of the left Cauchy-Green

tensor Bn+1 = F n+1 · F T
n+1.

5.5.1 The linearization moduli

As discussed in section 5.3, we use the numerical implementation of the constitutive model

to derive an equation of the form
O
σ = C : D. (5.57)

The fourth order tensor C in the above equation is used to evaluate approximately the

“linearization moduli” (see equation (5.36) and the comment that follows it). In the follow-

ing, we derive equation (5.57) for the constitutive model under consideration, based on the

numerical implementation scheme described in the previous section 5.5.

The total stress tensor is written in the form σn+1 = σf
n+1 + σct

n+1, which implies that

O
σ =

O
σf +

O
σct, (5.58)
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where for simplicity we drop the subscripts n + 1.

Calculation of
O
σf

The fiber part of the stress tensor is written in the form

σf = σm mm. (5.59)

By taking the derivative of equation (5.59) we find

O
σf = σ̇m mm + σm

( O
mm + m

O
m

)
. (5.60)

Calculation of σ̇m

The true (Cauchy) stress in a fiber is determined from

σm = (1 + εm
0 ) σm

0 = exp(εm) σm
0 . (5.61)

We calculate σ̇m by taking the derivative of equation (5.61), where the quantities σ̇m
0 and

ε̇m are to be calculated.

To calculate ε̇m we use the following relation for the true longitudinal strain in a fiber:

ε̇m = m ·D ·m = (mm) : D. (5.62)

Also, for later use, we calculate the quantity ε̇m
0 :

εm
0 = exp(εm)− 1 ⇒ ε̇m

0 = exp(εm) ε̇m
(5.62)−−−−→

ε̇m
0 = (1 + εm

0 )(mm) : D. (5.63)

To calculate σ̇m
0 we use the following relation for the nominal stress in a fiber:

σm
0 |n+1 = f

(
εm
0 |n+1,

εm
0 |n+1 − εm

0 |n
∆t

, tn+1

)
. (5.64)

By derivation of equation (5.64) we have

σ̇m
0 =

∂f

∂εm
0

ε̇m
0 +

1
∆t

∂f

∂ε̇m
0

ε̇m
0 =

(
∂f

∂εm
0

+
1

∆t

∂f

∂ε̇m
0

)
ε̇m
0

(5.63)−−−−→

σ̇m
0 = G(mm) : D, (5.65)

where

G = (1 + εm
0 )

(
∂f

∂εm
0

+
1

∆t

∂f

∂ε̇m
0

)
. (5.66)
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Now we return to equation (5.61) and by derivation we have

σ̇m = exp(εm) (ε̇m σm
0 + σ̇m

0 )
(5.62), (5.65)−−−−−−−−−→

σ̇m = exp(εm) [σm
0 (mm) : D + G(mm) : D] ⇒

σ̇m = (1 + εm
0 )(σm

0 + G)(mm) : D. (5.67)

Calculation of
O
mm + m

O
m

To calculate
O
m we use the following relation

ṁ = (W + D ·mm−m m ·D) ·m ⇒ O
m = (D ·mm−mm ·D) ·m (5.68)

or
O
m = D ·m−m(mm) : D. (5.69)

Therefore

O
mm + m

O
m = [D ·m−m (mm) : D] m + m [D ·m−m (mm) : D] =

=
O
mm + m

O
m = D ·mm + mD ·m− 2mm(m m) : D, (5.70)

which implies that
O
mm + m

O
m = B : D, (5.71)

where

Bijkl =
1
2

[(δik mj + δjk mi) ml + (δil mj + δjl mi) mk]− 2mi mj mk ml. (5.72)

Substituting σ̇m and
O
m m + m

O
m from (5.67) and (5.71) into (5.60), we find

O
σf = (1 + εm

0 )(σm
0 + G)(mm) : D m m + σm B : D, (5.73)

or
O
σf = Cf : D , Cf = (1 + εm

0 )(σm
0 + G) mmm m + σm B . (5.74)

Note that the fourth-order tensor Cf has both the “minor” and “major” symmetries, i.e.,

Cf
ijkl = Cf

jikl = Cf
ijlk = Cf

klij . (5.75)
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Calculation of
O
σct

The non-fiber part of the stress tensor is written in the form

σct =
1
J
LLLe : εct, (5.76)

so that
O
σct =

1
J
LLLe :

O
εct − J̇

J2
LLLe : εct ∼= 1

J
LLLe : Dct − σct δ : D, (5.77)

where we took into account that
O
ε ∼= D (Hill, 1978; Mehrabadi and Nemat-Nasser, 1987)

and J̇ = J Dkk = J δ : D.

Calculation of Dct

By taking the derivative of equation εf = 3
2 εm

(
mm− 1

3 δ
)

we find

Df ∼= O
εf =

3
2

ε̇m

(
mm− 1

3
δ

)
+

3
2

εm(
O
mm + m

O
m)

(5.62), (5.71)−−−−−−−−−→

Df =
3
2
(mm) : D

(
mm− 1

3
δ

)
+

3
2
εm B : D ⇒

Df =
3
2

[(
mm− 1

3
δ

)
mm + εm B

]
: D. (5.78)

Then, by taking the Jaumann derivative of equation εct = ε− εf we find

O
εct =

O
ε− O

εf ⇒ Dct ∼= D −Df (5.78)−−−−→

Dct =
{
I− 3

2

[(
mm− 1

3
δ

)
mm + εm B

]}
: D, (5.79)

where I is the fourth-order symmetric identity tensor with Cartesian components

Iijkl =
1
2

(δik δjl + δil δjk) . (5.80)

Substituting (5.79) into (5.77), we conclude that
O
σct can be written in the form

O
σct = Cct : D , Cct =

1
J
LLLe :

{
I− 3

2

[(
mm− 1

3
δ

)
mm + εm B

]}
− σct δ . (5.81)

Note that Cct has only the minor but not the major symmetries, i.e.,

Cct
ijkl = Cct

jikl = Cct
ijlk 6= Cct

klij . (5.82)
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Finally, substituting eqauations (5.74) and (5.81) for
O
σf and

O
σct respectively into (5.58),

we find an approximation C for the “linearization moduli”, i.e.,

O
σ ∼= C : D with C = Cf + Cct . (5.83)

We mention once again that the approximations used for the evaluation of the Jacobian ma-

trix influence only the rate of convergence of the overall equilibrium iteration and they do

not affect the accuracy of the solution, which depends on the “equilibrium tolerance”

used to terminate the iterations. Our experience shows that the approximation of the Jaco-

bian matrix C defined by equation (5.83) maintains the asymptotic quadratic convergence

rate of the Newton scheme.
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Chapter 6

Applications

In this chapter, we use the constitutive model developed for the muscle and tendon to study

computationally the behavior of several muscle-tendon complex cases. Firstly, the extension

of a squid tentacle during the strike to catch prey is simulated. Although the tentacle of a

squid is a non-skeletal muscle, the problem of its extension during the strike to catch prey

is studied in order to validate the developed code. Then, applications that involve skeletal

muscles are considered. The behavior of a parallel fibered and a pennated muscle is studied.

The model is used also to study the behavior of the human semitendinosus muscle. Finally,

the constitutive model of muscle and tendon tissues is applied to the muscles and tendons

of the human leg.

6.1 Extension of a squid tentacle

An attempt is made to reproduce the extension of a squid tentacle during the strike to catch

prey. This problem has been studied experimentally and described in detail by Van Leeuwen

and Kier, 1997. A computational solution to this problem has been given recently by Liang

et al., 2006. In order to validate our constitutive model and the computer code we use a

formulation similar to that used by Liang et al. A schematic representation of the squid and

its structure is given in Fig. 6.1.

The stalk is modeled as deformable with the properties described in chapter 4. The exact

constitutive relation used for the fibers of the stalk is

σm
0 = σmaxfa (t) fe (εm

0 ) fr (ε̇m
0 ) + σm

pas (εm
0 ) , (6.1)

as described in section 4.1.2. The shear modulus G for the connective tissues is assumed to be

5 kPa, while the bulk modulus K is taken as 50 · 103 kPa, or, equivalently E = 9 G K
G+3 K

∼= 15

kPa and ν = 3 K−2 G
2(G+3 K)

∼= 0.49995, where E and ν are the elastic Young’s modulus and

Poisson’s ratio respectively.

The club is modeled as passive, homogeneous and elastic, with high shear and bulk

moduli. The outermost thin layer of the stalk represents an annulus of longitudinal muscle
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(LM) with fibers in the axial direction. It occupies about 15% of the cross-sectional area

of the stalk. The inner elements in the stalk contain two orthogonal transverse muscle

(TM) groups. The mechanical properties of other muscle groups, such as helical HM and

circumferential CM, are neglected due to their low volume fraction and inactivity during the

strike (Fig. 6.2).

Figure 6.1: (Upper picture) Diagram of a squid. (Bottom picture) Diagram of the morphology of

the tentacular stalk, pointing out its muscle groups (Van Leeuwen and Kier, 1997).
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Figure 6.2: Left: Finite element mesh of the squid tentacle with distinct parts of stalk and club.

Due to symmetry only a quarter is shown. The tentacle base remains fixed throughout the analysis,

while all other parts are free to deform with no additional constraints imposed. Right: Cross-section

of the stalk showing the muscle groups used to perform the strike (Liang et al., 2006).
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The functions involved in equation (6.1) are defined below. The activation function fa

takes the following form:

Figure 6.3: Profile of the activation function and its mathematical form for the tentacle muscle.

where td is the delay of a signal, ta is the time between the start and the full activation,

and the exponent q is a parameter that regulates the time profile.

The length function fe is written as:

Figure 6.4: Profile of the length function and its mathematical form for the tentacle muscle.

All parameters in fe are related to the characteristics of the muscle fibers, depending on

the sarcomere microstructure. The exact form of these parameters is:

ε1 =
`myo − 0.5 `bz

`0sarc
, ε2 =

0.5 `bz

`0sarc
, ε3 =

−0.5 `bz

`0sarc
,

ε4 =
`myo − `act − 0.5 `bz

`0sarc
, ε5 =

`min − `0sarc

`0sarc
,

and

f4 = 1−Dact
`act − `myo

`myo − `bz
, f5 = 1−Dact

`act + `z − `min

`myo − `bz
− (Dmyo + Cmyo)

`myo + `z − `min

`myo − `bz
,

where `act is the summed length of two opposing actin filaments in one sarcomere, `myo is

the length of myosin filament, `bz is the length of the bare zone on the myosin filament, `z
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is the width of the Z-disc, `0sarc = `act + `z + 0.5 `bz is the initial length of the sarcomere.

Furthermore, Dact and Dmyo are parameters to account for cross-bridge losses owing to

actin overlap and interaction between myosin filament and the Z-disc. Cmyo is introduced

to account for resistive forces as a result of the collision of the myosin filaments with the

Z-disc of the sarcomere. The amounts `act, `myo, σmax and ε̇min vary linearly along the stalk

(Table 6.1), whereas all other parameters are kept constant everywhere (Table 6.2).

The velocity function fr is written as:

Figure 6.5: Profile of the velocity function and its mathematical form for the tentacle muscle.

where k is a constant and ε̇∗m = ε̇0
m/ε̇min, with ε̇min the minimum (unloaded) strain rate.

The first equation, which causes extension to muscle fibers, is based on stretch experiments

of vertebrate muscles (Van Leeuwen and Kier, 1997) and the second equation, which causes

contraction to muscle fibers, represents the well known Hill-equation (Hill, 1938).

The passive part of stress (no activation) is dependent on the strain in the material and

is formulated as:

Figure 6.6: Profile of the passive stress and its mathematical form for the tentacle muscle.

where c1 − c4 are constants and εc is a critical strain above which the relationship is

linear.
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Table 6.1: Values of parameters

Parameter stalk base stalk end

`act (µm) 1.21 0.73

`myo (µm) 0.97 0.5

σmax (kPa) -30 -55

ε̇min (s−1) 161 70

Table 6.2: Values of parameters

Parameter value Parameter value

ε5 -0.4 c1 (kPa) 0.887

`bz (µm) 0.14 c2 2.26

`z (µm) 0.06 c3 (kPa) -55

Dact 0.68 c4 (kPa) -625

Dmyo 1.90 εc 0.773

Cmyo 0.44 q 15

ta (ms) 40 td (ms) 0

k 0.25 ρ (Kg
/
m3) 1050

6.1.1 Results

The results show a realistic behavior of the squid tentacle during the strike to catch prey. As

the two orthogonal transverse muscle groups (TM) of the stalk contract, the incompressibility

of the connective tissue in the finite elements causes the extension of the tentacle in the axial

direction (Fig. 6.7).

(a) (b)

Figure 6.7: (a) Undeformed configuration of the squid’s finite element mesh. (b) Deformed configu-

ration of the squid’s finite element mesh.

Figures 6.8 and 6.9 show the evolution of the tentacle length and the history of the velocity

at the tentacle tip during a strike. As the activation signal fa increases, the transverse muscles
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contract causing the movement of the tentacle to the axial direction. After some time, the

tentacle length is so great that the passive behavior exhibited by the longitudinal muscles

(LM) causes a deceleration of the strike and finally its termination.

The problem of the extension of the squid tentacle during the strike to catch prey was first

studied experimentally and computationally by Van Leeuwen and Kier, 1997. Johansson et

al., 2000 and Liang et al., 2006 developed their own models and studied the same problem.

The curve profiles presented in Figs 6.8 and 6.9 agree qualitatively and quantitatively with

those of previous works.

Figure 6.8: Evolution of the tentacle length.

Figure 6.9: History of the velocity at the tentacle tip.
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6.2 Parallel-fibered and pennated muscle

A muscle is called parallel-fibered when its fibers are oriented in the direction of the

tendon. Examples of parallel fibered muscles in human body are the soleus located in the

back part of the lower leg and the biceps brachii located on the upper arm (Fig. 6.10).

(a) (b)

Figure 6.10: Parallel fibered muscles: (a) Soleus muscle. (b) Biceps brachii muscle.

A muscle is called pennated when its fibers are oriented at a positive angle relative to

the tendon. Examples of pennated muscles in human body are the rectus femoris which is

one of the four quadriceps muscles on the top of the leg and the deltoid which is the muscle

forming the rounded contour of the shoulder (Fig. 6.11).

(a) (b)

Figure 6.11: Pennated muscles: (a) Rectus femoris muscle. (b) Deltoid muscle.

An attempt is made to simulate the behavior of a parallel-fibered and a pennated muscle.

A simplified geometry of a muscle-tendon complex is used for both cases. The corresponding

finite element meshes used in the calculations are showed in Figs 6.12 and 6.13.
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Figure 6.12: Finite element discretization of parallel-fibered muscle.

Figure 6.13: Finite element discretization of pennated muscle.

In the case of the pennated muscle the fibers are oriented at an angle 45◦ relative to the

tendon. The fiber orientation of the parallel-fibered muscle is interpolated between the two

ends of the muscle tissue as described in Appendix ??.

The muscle tissue is modeled as deformable with the properties described in chapter 4.

The constitutive relation used for the fibers of the muscle is

σm
0 = σmax

[
fa(t) fe(εm

0a (fa)) fr(ε̇m
0 ) + σm

pas(ε
m
0a (fa))

]
, (6.2)

as described in section 4.1.2. A value of σmax = 300 kPa is assumed for the maximum

isometric stress at optimum fiber length. The value of σmax is a mean value of lower-extremity

muscles maximum isometric stress. The maximum contraction strain rate is assumed 10 s−1

(Delp, 1990). The Young’s modulus E for the connective tissues is assumed to be 15 kPa

(Yucesoy et al., 2002) and the Poisson ratio ν is taken as 0.4999 (nearly incompressible

material).

The tendons are assumed homogeneous, isotropic, and linearly elastic with Young’s mod-

ulus E = 1200 MPa and Poisson’s ratio ν = 0.4999 (nearly incompressible material).

In equation (6.2), a dependence on strain, strain rate and activation state of the muscle

force is described. In the following applications experimental data from Delp, 1990, are used.
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The dependence of the active muscle force on activation-dependent strain fe, based on

experimental data for human lower-extremity muscles, has the form shown in Fig. 6.14.

Figure 6.14: Active muscle fiber force-strain relationship. Black curve stands for 100% activation,

red curve for 50% activation, and blue curve for 0% activation. It is assumed that at zero activation

level the maximum muscle force is achieved at nominal strain of 0.15.
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The dependence of the muscle force on strain rate, i.e., the function fr(ε̇m
0 ), is based on

experimental data for human lower-extremity muscles and has the form shown in Fig. 6.15

below.

Figure 6.15: Normalised force-velocity relationship.

The activation function fa is assumed to increase linearly up to each maximum value

through the first 20 ms and then remains constant as shown in Fig. 6.16 below.

Figure 6.16: Activation function.

The dependence of the passive muscle stress on activation-dependent strain σm
pas has the

form shown in Fig. 6.17 below.
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Figure 6.17: Passive muscle fiber stress-strain relationship.

6.2.1 Results

In both cases (parallel-fibered and pennated muscle) the activation shown in Fig. 6.16 is

applied for 60 ms and contraction of the muscle tissue is observed. In both cases, one tendon

end is kept fixed throughout the analysis (Fig. 6.18).

(a) (b)

Figure 6.18: Boundary conditions (fixed ends) shown in orange: (a) Parallel-fibered muscle (b)

Pennated muscle.
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Figure 6.19 shows the evolution of the parallel-fibered muscle.

t = 0 ms t = 10 ms

t = 20 ms t = 30 ms

t = 40 ms t = 60 ms

Figure 6.19: Deformed mesh of the parallel-fibered muscle.
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Figure 6.20 shows the evolution of the pennated muscle.

t = 0 ms t = 10 ms

t = 20 ms t = 30 ms

t = 40 ms t = 60 ms

Figure 6.20: Deformed mesh of the pennated muscle.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



Applications 85

6.3 Semitendinosus muscle

In humans, the thigh is the area between the pelvis and the knee. The semitendinosus

muscle is situated at the posterior and medial aspect of the thigh. It arises from the lower

and medial impression on the tuberosity of the ischium and ends a little below the middle

of the thigh in a long round tendon which lies along the medial side of the popliteal fossa;

it then curves around the medial condyle of the tibia and passes over the tibial collateral

ligament of the knee-joint, from which it is separated by a bursa, and is inserted into the

upper part of the medial surface of the body of the tibia, nearly as far forward as its anterior

crest. The semitendinosus muscle helps to extend (straighten) the hip joint and flex (bend)

the knee joint. It also helps to medially rotate the knee.

Figure 6.21: Semitendinosus muscle.

An attempt is made to simulate the behavior of the semitendinosus muscle during a

contraction. Data from MRI scans are used to describe accurately the geometry of the

muscle. The finite element mesh created from the MRI data is shown in Fig. 6.22. The

material properties of the semitendinosus muscle tissue are the same as those used in the

previous analysis of parallel-fibered and pennated muscle. The orientation of the fibers in the

interior of the semitendinosus muscle is interpolated based on the surface data as described

in Appendix 6.6.
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Figure 6.22: Finite element mesh of the semitendinosus muscle.

6.3.1 Results

The activation function shown in Fig. 6.16 is applied for 50 ms and contraction of the

semitendinosus muscle is observed. The upper part of the muscle is kept fixed throughout

the analysis as shown in Fig. 6.23.

Figure 6.23: Boundary conditions in the semitendinosus muscle (fixed end) shown in orange.
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Fig. 6.24 shows the various stages of the deformed semitendinosus muscle.

t = 0 ms t = 10 ms t = 20 ms

t = 30 ms t = 40 ms t = 50 ms

Figure 6.24: Evolution of the semitendinosus muscle.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



88 Applications

6.4 Human leg and foot

The process of developing biomechanical finite element models (Fig. 6.25) begins with the

acquisition of data that will be used to define the three-dimensional geometry of the biological

tissues. These data can come from several imaging techniques, including CT (Computed

Tomography) and MRI (Magnetic Resonance Imaging). Three-dimensional data sets are

acquired and segmented, i.e., each tissue type of interest is labeled within the data set. The

segmented data are reconstructed and three-dimensional surfaces are calculated. From the

surfaces, fully volumetric meshes are generated. In the finite element analysis, the tissue

types described by the finite element models are assigned specific material characteristics.

The formulation is completed by prescribing the boundary conditions of the problem. Each

of these steps is described in more detail below.

(a) (b) (c) (d)

Figure 6.25: (a) Visualization of the foot and leg structure. Finite element meshes: (b) whole

structure, (c) skeleton, (d) skeleton and muscles.

6.4.1 Mesh preparation

Data scans

A basic issue for successful modeling of biological tissues is the accurate representation of

their geometrical characteristics. Tissues, especially near the articular surfaces, should be

defined with a high degree of spatial resolution.

In the present study, CT images with intervals of 1 mm were chosen to represent the

geometry of the right foot and leg of a normal female individual of age 28 in the neutral foot

position. Two characteristic CT scans of the foot and the leg are shown in Fig. 6.26
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(a) (b)

Figure 6.26: (a) CT scan of the foot structure. (b) CT scan of the leg.

Segmentation

Segmentation of the images is the process of identifying tissues and their boundaries. When

large data sets are used, this process is quite time consuming. However, in most cases, an

automatic segmentation techniques can be used in conjunction with manual segmentation in

order to minimize the time required. In the segmentation process, regardless of the technique

used, it is always important to maintain a high level of accuracy of the represented geometry.

In the present study, the CT images were segmented using the AMIRA v4.1 software

in order to describe the boundaries of skeleton, muscles, tendons and skin surface. Two

characteristic segmented CT scans of the foot and the leg are showed in Fig. 6.27.

Surface generation and volumetric meshing

Three-dimensional surfaces are generated directly from reconstruction of the segmented im-

ages. Each surface is described by a set of triangles in a three-dimensional space. The

desirable volumetric mesh results from converting the triangular to a tetrahedral mesh. A

hexahedral mesh can be obtained as well from the resulted tetrahedral mesh. The volumetric

mesh is created by using AMIRA v4.1. The finite element mesh used in the computations is

shown in Fig. 6.25.
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(a) (b)

Figure 6.27: (a) Segmented CT scan of the foot structure. (b) Segmented CT scan of the leg.
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6.4.2 Material assignment

The next step for the development of a finite element model is to assign the appropriate

material properties to the various biological tissues. The present model contains bones,

ligaments, muscles, tendons, articular cartilage, and the rest soft tissues (mainly fat).

The bony structures (Fig. 6.28) are modeled as homogeneous, isotropic and linearly

elastic, with Young’s modulus E = 7300 MPa and Poisson’s ratio ν = 0.3 (Cheung et al.,

2005).

Figure 6.28: Foot bones.

The articular cartilage is taken into account by assigning appropriate material properties

to the finite elements positioned at the joints. In the present model the articular cartilage

(Fig. 6.29) is modeled by using the same material properties as the rest soft tissue (Fig. 6.32).

Figure 6.29: Foot cartilage between articulating surfaces shown in red.

The ligaments and plantar fascia are taken into account in the finite element model

by using “tension-only” truss elements. In the present model ligaments and plantar fascia
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(Fig. 6.30) are modeled as elastic truss members with Young’s modulus E = 260 MPa and

cross-sectional area A = 18.4 mm2, and E = 350 MPa with A = 58.6 mm2 respectively

(Cheung et al., 2005).

Figure 6.30: Foot ligaments and plantar fascia shown in red.

Muscle tissues and tendons are modeled as active and passive materials respectively. The

material properties of the muscles are the same as those used in the previous applications,

whereas for tendons data from Zajac, 1989 are used. In particular, the passive tendon fiber

stress-strain relationship has the form shown in Fig. 6.31.

Figure 6.31: Tendon fiber stress-strain relationship.

The material data for the heel pad provided by Lemmon et al., 1997 and shown in Fig. 6.32

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



Applications 93

are used to represent the rest soft tissue stiffness in the finite element model. The non-linear

Figure 6.32: Material data for the rest soft tissues in the human leg-model.

and nearly incompressible nature of the soft tissue is represented by using a hyperelastic

material model with a second-order polynomial strain energy function of the form

Ū =
2∑

i+j=1

Cij (Ī1 − 3)i (Ī2 − 3)j +
2∑

i=1

1
Di

(J − 1)2 i, (6.3)

where Ū is the elastic strain energy per unit undeformed volume, Cij and Di are material

parameters, J = detF,

Ī1 = λ̄2
1 + λ̄2

2 + λ̄2
3, Ī2 =

1
λ̄2

1

+
1
λ̄2

2

+
1
λ̄2

3

, (6.4)

λi are the principal stretches, and λ̄i = λi/J1/3. The coefficients of the hyperelastic material

model Cij and Di (Table 6.3) are calculated by ABAQUS based on the uniaxial stress-strain

data of Fig. 6.32.

Table 6.3: Values of parameters Cij

(
N/mm2

)
and Di

(
mm2/N

)

Parameter C10 C01 C20 C11 C02 D1 D2

Value 0.08556 − 0.05841 0.039 − 0.02319 0.00851 3.68324 0.0

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 15:21:13 EEST - 18.117.107.234



94 Applications

6.4.3 Finite element analysis

The purpose of the current analysis is to produce plantar flexion of the ankle by implementing

and activating the muscle material model presented in Chapter 4 in the corresponding plantar

flexor muscles of the developed finite element model of the foot and leg (Fig. 6.25). Plantar

flexion is the motion the ankle joint makes when the toes point downward and dorsi flexion

is the motion the ankle joint makes when the foot points upward. (Fig. 6.33).

Figure 6.33: Ankle joint movement. Plantar flexion and dorsi flexion.

In the current analysis the activation function shown in Fig. 6.16 is applied to the plantar

flexor muscles for 90 ms. Initially, muscle and tendon fiber directions are assumed to be

parallel with the long-axis of the tibia bone (vertical with regard to the plantar surface of

the foot). The upper bound of the leg is kept fixed throughout the analysis, as shown in

Fig. 6.34.

Figure 6.35 shows the deformation of the leg and foot area as predicted by the finite

element solution.
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Figure 6.34: Boundary conditions applied in the present case shown in orange (fixed upper bound

of the leg).
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t = 0 ms t = 20 ms

t = 40 ms t = 60 ms

t = 90 ms

Figure 6.35: Deformation of the leg and foot area as predicted by the finite element solution.
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The finite element solution provides a realistic representation of the foot movement during

the plantar flexion of the ankle. The contraction of the plantar flexor muscles causes the

motion of the ankle joint and the toes to point downward. To our knowledge, it is the

first time in bibliography to simulate a movement of the foot based entirely on the idea of

considering the muscles as “active” materials and not by applying external forces on tissues.

We examine next in some detail the stress and deformation state at the muscle region

where the maximum contraction is observed (see Fig. 6.36). We define the hydrostatic stress

Figure 6.36: The region of the maximum muscle contraction.

p, the stress deviator s, and the von Mises equivalent stress:

p =
1
3

σkk, s = σ − p δ, σeq =

√
3
2

s : s. (6.5)

The corresponding quantities are defined also for the stress tensor in the connective tissue

σct. A summary of the stress state in the region of maximum contraction is shown in

Table 6.4. We also determine the volumetric strain εv, the strain deviator e, and the von

Mises equivalent strain:

εv = εkk, e = ε− 1
3

εv δ, εeq =

√
2
3

e : e. (6.6)

The corresponding quantities are defined also for the strain tensor in the connective tissue εct.

A summary of the strain state in the region of maximum contraction is shown in Table 6.5.

As regards to tendons, the stress placed on tendons as a result of voluntary muscle

contraction has been estimated to be 30% of the maximum tensile strength (Stone and
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Table 6.4: Stresses in the region of maximum contraction

Quantity Value

p 46 kPa

σeq 40 kPa

σm 38 kPa

pct 34 kPa

σct
eq 4.7 kPa

Table 6.5: Strains in the region of maximum contraction

Quantity Value

εv 0.00135

εeq 0.677

εm −0.56

εct
v 0.00135

εct
eq 0.51

Karatzaferi, 2003). A mean value of the ultimate stress in tendon is 100 MPa (Zajac, 1989).

The model prediction of the maximum principal stress in achilles tendon as a result of muscle

contraction is 32 MPa (Fig. 6.37) and agrees very well with the findings in the literature.

Figure 6.37: The maximum principal stress in achilles tendon as a result of muscle contraction.
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6.5 Appendix I: Fiber orientation of the parallel-fibered mus-

cle

We consider the axisymmetric model shown in Fig. 6.38 for the muscle tissue. Let x be the

axis of symmetry. The muscle occupies the region x1 ≤ x ≤ x2. The distance r from the

axis of symmetry is defined as r =
√

y2 + z2, (y, z) being the other two spatial coordinates.

Figure 6.38: Simplified geometry of the parallel-fibered muscle.

We define the dimensionless variable

ξ(x) =
2(x− x1)
x2 − x1

− 1, (6.7)

and note that ξ = −1 at x = x1, and ξ = +1 at x = x2.

The radius R of the muscle is then defined as

R(x) =
3∑

i=1

Ni(ξ(x))Ri, (6.8)

where

N1(ξ) =
1
2
ξ(ξ − 1), N2(ξ) =

1
2
ξ(ξ + 1), N3(ξ) = 1− ξ2, (6.9)

and (R1, R2, R3) are know values of R at x = x1, x = x2 and x = (x1 + x2)/2 respectively.

The slope θx(x) = dR/dx is computed from

θx(x) =
dR

dx
=

3∑

i=1

∂Ni

∂ξ

∂ξ

∂x
Ri =

2
L

3∑

i=1

∂Ni

∂ξ
Ri. (6.10)
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We consider a generic material point located at (x, y, z) as shown in Fig. 6.38. We

assume that the muscle fiber at that point makes an angle θ with the x−axes defined by

θ(x, r) =
r

R(x)
θx(x) or θ(x, y, z) =

√
y2 + z2

R(x)
θx(x), (6.11)

so that θ = 0 for r = 0, and θ = θx for r = R.

Let (ex, ey, ez) be unit vectors along the coordinate axis. Then, the unit vector n in the

r−direction is given by

n =
y

r
ey +

z

r
ez. (6.12)

Finally, the fiber direction m is determined from

m = cos θ ex + sin θ n or m = cos θ ex + sin θ
y

r
ey + sin θ

z

r
ez. (6.13)
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6.6 Appendix II: Fiber orientation of the semitendinosus mus-

cle

We consider a plane that includes the vertical z−axis and cuts through the semitendinosus

muscle. Of all such vertical planes, we choose the one on which the muscle has the maximum

“width”, i.e., the one on which the functions f1(z) and f2(z) that define the boundaries of

the muscle on that plane are the farthest apart (see Fig. 6.39). On that plane, we define the

fiber orientation at every material point as described in the following, and assume that the

picture repeats itself in the direction perpendicular to the plane.

Figure 6.39: Simplified geometry of a vertical section of the semitendinosus muscle.

Let (ex, ey, ez) be unit vectors along the global coordinate axis (x, y, z). On the afore-

mentioned vertical plane, we consider an axis x′ perpendicular to the z−axis, as shown in

Fig. 6.39. Let φ be the angle the x′− axis makes with global x−axis. Then the unit vector

e′x along the x′−axis is given by

e′x = cosφ ex + sin φ ey. (6.14)

Let (x, y, z) be the coordinates of a material point relative to the global coordinate system.

For that point, we calculate the corresponding x′ coordinate:

x′(x, y) = x cosφ + y sinφ, (6.15)
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and, using its z−coordinate, identify the two “extreme” points on the muscle boundary at

x′1(z) = f1(z) and x′2(z) = f2(z), (6.16)

as shown in Fig. 6.39. The slope of the muscle boundary at these points is determined from

tan θ1(z) =
df1(z)

dz
and tan θ2(z) =

df2(z)
dz

. (6.17)

We introduce next the dimensionless variable

ξ(x′, z) =
x′ − x′2(z)

x′1(z)− x′2(z)
, (6.18)

and note that ξ = 0 at x′ = x′2, and ξ = 1 at x′ = x′1.

Then, we assume that the slope tan θ of the unit vector m that defines the fiber direction

at the point under consideration is defined by means of a linear interpolation between the

corresponding values tan θ1 and tan θ2:

tan θ(x′, z) = ξ(x′, z) tan θ1(z) +
[
1− ξ(x′, z)

]
tan θ2(z). (6.19)

Finally, the fiber direction m is

m = sin θ e′x + cos θ ez or m(x′, z) = sin θ cosφ ex + sin θ sinφ ey + cos θ ez, (6.20)

where

sin θ =
tan θ√

1 + tan2 θ
and cos θ =

1√
1 + tan2 θ

. (6.21)
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Chapter 7

Closure

In this thesis, a three dimensional constitutive model based on continuum mechanics has

been developed for muscle and tendon tissues in the context of finite strains. The model

accounts for all the essential information needed to describe accurately the microstructure

of the biological materials. In addition, the constitutive model has been implemented in a

finite element code (ABAQUS). Incorporating this kind of models in a finite element code

allows us to account for the exact three dimensional geometrical characteristics of muscle

and tendon structures, predict the deformed shape and the internal loadings of the tissues,

as well as simulate complex biological systems in a realistic and more sophisticated manner.

The proposed constitutive model was based on the idea of a “composite” material that

consists of fibers, connective tissues, and biofluids surrounding the fibers. Considering all

materials as “continuous media”, the constitutive model developed is a “homogenization”

process that accounts for the presence of the fibers and the other material “phases”. The

muscle fibers, apart from their “passive” behavior, are responsible for the force production in

the muscle whereas the connective tissues support the fibers and reinforce the elastic nature

of the muscle tissue. The dependence of force production in the muscle on fiber’s length,

velocity, and activation state as well as the fiber orientation was taken into account in the

developed model. On the other hand, connective tissue “follows” the fiber’s contraction and

thus is subjected to large deformations during a human movement. A hyperelastic material

was used for the connective tissues in the current model. As regards to tendon, the behavior

of the tendon fibers is only passive, so the “active” term in the constitutive model was

omitted. The proposed constitutive model was described in detail in Chapter 4.

A methodology for the numerical implementation of the developed non-linear and anisotropic

constitutive equations for muscle and tendon in the context of the finite element method was

also developed. The implementation of a constitutive model in a finite element code in-

volves the evaluation of the constitutive equations at the Gauss integration points of the

elements and the calculation of the corresponding “linearization moduli” that are needed

for the global equilibrium “Newton loop”. The constitutive model was implemented in the

ABAQUS general purpose finite element code; this program provides a general interface so
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that a particular constitutive model can be introduced as a “user subroutine” (UMAT). The

model was then used for the analysis of static and dynamic problems using the “standard-

implicit” version of the code. The numerical implementation of the proposed constitutive

model was described in detail in Chapter 5.

In Chapter 6 the constitutive model for muscle and tendon was applied to various cases

of biological structures. Firstly, a problem that was studied experimentally and computa-

tionally in the past was chosen in order to validate our constitutive model and the computer

code. That problem was the extension of a squid tentacle during the strike to catch prey.

The results of our model agree qualitatively with those of previous works.

In addition, an attempt was made to simulate the behavior of a parallel-fibered and

a pennated muscle. In both cases, simplified geometry of a muscle-tendon complex was

used. We then proceeded to the simulation of a more realistic case, as that of the human

semitendinosus muscle. In all of the above cases, the results of the finite element analysis

showed a realistic representation of the muscle movement during its activity.

Finally, in Chapter 6, a methodology for obtaining geometrical accurate finite element

models of biological structures was described in detail. That methodology was used to de-

velop a finite element model of the human leg and foot including bone, cartilage, ligament,

muscle, and tendon tissues. The lower-extremity model in conjunction with the constitutive

model for muscle and tendon was used to simulate the plantar flexion of the ankle. The finite

element solution provides a realistic representation of the foot movement during the plantar

flexion of the ankle. To our knowledge, it is the first time in bibliography to simulate a move-

ment of the foot based entirely on the idea of considering the muscles as “active” materials

and not by applying external forces on tissues. The lower-extremity model developed in this

thesis can be used for many studies including surgical applications, gait analysis, normal and

abnormal behavior of certain biological structures, tendon and ligament ruptures, internal

loadings of foot structures in various conditions, and many others.

At this point, it is important to address some directions for improvement of the proposed

constitutive model. First of all, the dependence of muscle force production on fiber length

and fiber velocity is based on experimental data for lower-extremity muscles published in the

literature. An experimental method could be developed to obtain subject-specific measure-

ments of these microstructural properties at cases where the prediction of a muscle or tendon

internal loadings for a specific subject is to be accomplished. Also, a simplified activation

function was used in our applications. Electromyography (EMG) could be used to evaluate

and record the exact activation signal of each muscle during a specific movement.

Finally, a hyperelastic material was used to model the connective tissues. By using that

material model we assume that the material properties are not affected by the time or the

rate of loading. A viscoelastic material model can be used instead for the connective tissues.

As regards to the lower-extremity model we assumed all the fibers of the leg muscles
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to be in the same direction. A more detailed modeling approach would expect to account

for the exact fiber map of its muscle tissue. Also, it is assumed that all the fibers are of

the same type e.g fast or slow, resulting in the same material properties for each fiber. An

experimental method could be developed to evaluate the proportions of fast and slow fibers

to the whole population of fibers in each muscle and in each subject.
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