UNIVERSITY OF THESSALY

Exploiting Reconfigurable Heterogenous Parallel Architectures in a Multitasking Context:
A Systems Approach

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Computer Science
by
Dimitris Syrivelis
April 2009

Dissertation Committee:
Dr. Spyros Lalis, Chairperson
Dr. Georgios Stamoulis
Dr. Catherine Houstis

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Copyright by
Dimitris Syrivelis
2009

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

The Dissertation of Dimitris Syrivelis is approved by:

Committee Chairperson

University of Thessaly

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

ACKNOWLEDGMENTS

| would like to express my gratitude to all those who made this dissertation possible.

\Y
Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

To all

\Y

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

ABSTRACT OF THE DISSERTATION

Exploiting Reconfigurable Heterogenous Parallel Architectures in a Multitasking Context:
A Systems Approach

by
Dimitris Syrivelis

Doctor of Philosophy, Graduate Program in Computer Engineering
University of Thessaly, April 2009
Dr. Spyros Lalis, Chairperson

In the recent years, the continuous performance increase of the sequential execution on si
CPU systems is facing an upper bound because it primarily relied on the respective circuit op
ating frequency improvement, which has already reached its limits. This low-level performan:
bottleneck caused a chain reaction to the above abstraction layers and practically changed the
computing systems are being built. Nowadays, realizing parallelism at all the design levels o
computing platform is the main goal of the respective domain research efforts. Application dev:
opers need to improve their skills and take into account architecture-level platform details to dec
the optimal application partitioning, while respective re-targetable toolchains have been develoj
to automate tasks and abstract complexity to the extent possible. On the other hand, traditic
general-purpose operating system support and related concepts have not been particularly reco
ered in the emerging broader context of parallel applications, tools and architectures but prima
focus on the efficient task scheduling on shared memory homogeneous and symmetric multic
systems of limited scalability. In this dissertation, we introduce new concepts at the operati
system-level to take advantage of the runtime reconfiguration of hardware to exploit its bene
under a general purpose context. Regarding application development, we demonstrate the e
tiveness of two different application development framework approaches that are tightly integrat
with novel operating system support for optimal execution on many-element arrays. We outli
how these contributions allow the operating system to efficiently distribute any type of platfor
resources, deal with performance asymmetry and load balance, at runtime, parallel applicati
that execute concurrently on the emerging parallel reconfigurable platforms. We have implemer
prototypes of every proposed concept and we report the results of real life experiments.

Vi

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Contents

1 Introduction 1
1.1 ApplicationDomain. e 4
1.2 Programming Framework Considerations for Multitasking on RP Platforms
1.2.1 Task Migration and Load Balancing Support 8
1.2.2 Distributed OS Client Approach 9
1.2.3 Integrated Task ExecutionControl 9
1.3 Prototype Frameworks for PR CPU Array Platforms 12
1.4 Runtime Hardware Reconfiguration 13
1.5 Outline ofthisDissertation 14
2 Application and System-level Support for Runtime Hardware Reconfiguration 15
2.1 Introduction 15
2.2 Approachoverview e 17
221 TheConcept e 17
2.2.2 Device Address Assignment e 19
2.2.3 Device AccessS TransparenCy v v v v v v i 1¢
2.3 Implementation of system-level support 20
2.3.1 Platform 20
2.3.2 The Peripheral Device LocationTable 21
2.3.3 Triggering Reconfiguration 22
2.3.4 Device Driver Notification, 23
2.3.5 Reconfiguration-TransparentDrivers. 24
2.4 Application-level support 25
2.4.1 APlandbackground processingo 26
242 Example e 27
2.4.3 Application-level transparency L Lo 29
2.4.4 Remote bitstreamfetch L o 30
2.5 Performance considerations 3(
2.6 Evaluation of the Reconfiguration Coordination 31
Vi

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

2.6.1 ExperimentalSetup 13

2.6.2 SystemSimulator 32
2.6.3 Runtime reconfiguration vs static configuration 33
2.6.4 Impact of the reconfigurationpolicy 35
2.7 Support for off-chip peripherals L L. 41
2.7.1 Thehotplugdetector 41
2.7.2 Unified reconfigurationhandling 43
2.7.3 Example 43
2.8 Demonstration. e e 45
2.8.1 The mandelbrot application 46
2.8.2 The sensor monitor application. 47
2.8.3 Configurationscenarios 48
29 RelatedWork 48
2.10 SumMmMary e e e e e 51
2.11 Availability e e 51
3 An OpenMP-based Programming Framework for PR Processor Arrays 52
3.1 Introduction L e e 53
3.2 OVEIVIEW . . . o 55
3.3 Annotations and code transformation Lo 57
3.3.1 Annotation primitives L. 57
3.3.2 Codetransformation 58
3.3.3 Codingrestrictions 59
3.3.4 Data passing and synchronization 6(
3.4 Taskrestructuring e e 62
3.4.1 Configurationoptions 62
3.4.2 Preprocessor support e 64
3.4.3 Monitoring and notification service 66
3.5 FPGA-based Prototype Platforms 6€
3.5.1 Basic setup on the homogenous platform 6¢
3.5.2 Basic setup on the heterogenous platform 6
3.53 CPUinterconnect 70
3.5.4 Preprocessor support e 71
3.5.5 Hardware reconfiguration and application loading 72
3.5.6 System service and load balancingissues 7
3.6 Proof-of-conceptapplications. 74
3.6.1 Profiling and partitioningdfremor 75
3.6.2 Profiling and partitioning oASCll-artrenderer. 76
viii

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

3.6.3 Experiments on the homogeneous Platform 76

3.6.4 Loadingand TransitionDelay 81
3.6.5 Measurements on the heterogeneous Platform €
3.7 RelatedWork 86
3.8 Summary e e 90
4 Pipelt Framework for RPPAs 92
4.1 Introduction e 92
4.2 Application Domain and Target Platforms 94
4.3 ThePipeltFramework 95
4.3.1 Componentand communicationmodel 97
4.3.2 Runtimeclasses. 99
4.3.3 Configurationlanguage e 100
4.3.4 Dynamic load balancingsupport L. 102
4.3.5 Application developmentandtools. 107
4.4 Proof of Concept Prototype and Applications 10¢€
4.41 Theplatform 108
4.4.2 Applications 109
4.4.3 Experimentalresults 112
45 RelatedWork 115
4.6 SUMMAIY o ot e e e e e 118
5 Conclusion and outlook 120
Bibliography 122
IX

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Chapter 1

Introduction

Reaching the silicon frequency barrier has resulted in a bloom of radically different parallel cor
puting platform designs that are now becoming the mainstream approach to achieve better pel
mance. Recently proposed parallel platform configurations are very diverse, and their only comn
characteristic is the synergistic use of many tightly-coupled processing elements like traditional
struction set processors, graphics processors, application specific circuits and reconfigurable h
ware. While the previous platform designs allowed a rather clean separation of concerns and n
imal interaction between hardware designers, operating system and application developers, nc
days, efficient execution and flexible resource utilization requires a good understanding of varic
cross-layer details.

Obviously, boosting application development and execution performance on parallel platforr
is now the main concern of many research efforts. To that end, most recently proposed framewc
support the development of applications based on the assumptioallthla¢ required target re-
sources will bededicatedo the developed program throughout its execution. This seems a reaso
able choice to make mainly because the traditional time-sharing technique that was used to ach
multitasking on single- or limited multi-CPU systems (shared memory, up to 16 cores) cannot
used efficiently on the emerging massively parallel platforms. Typical examples are parallel pi
cessor arrays, reconfigurable hardware systems-on-chip and multi-general purpose GPU platfo
that have a few hundreds of processing elements (not necessarily ISA processors). Interconnec

between the processing elements are dedicated direct links and each one has private local me

1

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

to achieve independent execution. Indeed, for the time b&iegperating system support on such
platforms usually runs on a master CPU and is used to deploy highly optimized applications whi
have been developed to occupfix@damount of resources. If another resource demanding appli
cation arrives at the system, and it cannot be given the required amount of resources, it will hav
wait for the previous one to finish.

Emerging fine-grained reconfigurable hardware technology introduces additional challenge:
the parallel platform development tools and runtime support. It is now possible for the same ha
ware platform to form different hardware resource configurations, even at runtime, that can acce
ably perform the execution of radically different applications. Levels of reconfigurability may var
from fully reconfigurable “soft” FPGA-based architectures, that can be reconfigured to form di
ferent accelerator circuits, to Instruction-Set Processor (ISP) Processor Array designs that fea
reconfigurable dedicated interconnections. As the technology and the respective tools matu
commercial systems appeared that employed hardware reconfigurability to primarily support
so-called “softcore” platform updates, exactly as it happens with software updates. Nowadays,
configurable platforms can be further customized independently before each application execut
This process takes place in a static manner, before application loading, and can be repeated fo
next application after the current one finishes execution. Note that with the term “Reconfigural
Parallel” we are referring to all platforms that support a form of h/w supported parallelism ar
h/w reconfigurability at any level, and do not explicitly imply the Field Programmable Gate Arra
(FPGA) platforms. For example many core platforms with reconfigurable interconnections knov
as Massively Parallel Processor Arrays (MPPAS), are also considered as Reconfigurable Par
Processor Array (RPPA) platforms.

Building general purpose multitasking systems that can take full advantage of parallel recc
figurable hybrid platform capabilities will allow the end-user to effectively run different and no
necessarily a priori known tasks on the same device for concurrent execution. Execution per
mance will not be compromised if the hardware reconfigurability can be exploited at runtime al
the platform can be optimally adapted to carry out a given workload. To that end, in case of resou

shortage, one could consider tthgnamic distributiorof available resources between concurrently

2

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

executing applications. In other words, if a new applicatioives, currently deployed applica-
tions could be re-configured to free some resources that can be exploited by it. Similarly, when
application finishes, the released resources can be reassigned to speedup the rest of the workl

We envision a more radical exploitation of hardware reconfigurability. Current approaches
all design levels of Reconfigurable Parallel (RP) systems assume that the target platform is me
for dedicated execution and will never be used in a multitasking context. Even in the cases
dedicated systems where two or more applications are to be executed concurrently, the resource
statically assigned to the participating applications during design time. Accordingly, in a respecti
usage scenario, if only one of the aforementioned predefined applications needs to be execute
won't be able to use more resources than the statically assigned amount, despite the fact tha
rest are not occupied. Ideally, on a system that features hardware support to exploit paralleli
the applications should be able to take advantage of the available resources to improve execu
whenever possible. With this feature, RP systems would be capable to efficiently accelerate typ
general purpose workload.

In the context of this work, we attempted the integration of the runtime hardware reconfigurab
ity of platforms that are currently considered for dedicated execution with the concept of dynan
resource distribution and the mainstream multitask computing. More specifically, we introduce ¢
propriate software concepts to all abstraction levels of a general purpose multitasking system so
it can be realized on hybrid Reconfigurable Parallel platforms (RP) that are currently being used i
dedicated context. More specifically we propose: i) a device driver model and low-level interacti
with hardware, ii) respective kernel-level mechanisms, iii) user-level reconfiguration control infra
tructures, and iv) a programming framework for Reconfigurable Parallel Processor Arrays (RPP:
that includes two different approaches and models to address the new challenges. We have
prototyped several multi-element hybrid softcore architectures using the Xilinx Platform Stud
suite, which include custom hardware modifications that improve the Hw/Sw components syner
Finally, we developed prototypes of every proposed concept and tools and we deployed them
two different FPGA-based platforms with 5 customized implementations of different well-know

applications that were executed according to a variety of workload scenarios.

3

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

As it happens with any other computing platform, RP systemsairsuitable for the accelera-
tion of all types of applications. As a rule of thumb, an application can be accelerated via paral
execution only if the respective computation type inherently contains parallelism. In the sectio
that follow we present the application domain that is suitable for RP systems and we discuss
considerations that are introduced by multitasking at the programming framework level, the op

ating system services and kernel support and the respective hardware platform issues.

1.1 Application Domain

All the application computations that contain parallelism can take advantage of RP systems. M
specifically, there are two basic categories of parallelism: spatial and temporal.

In the first case that is depicted in figure 1.1A belong all applications where the same col
putation or different computations can be applied on different blocks of data independently, tt
type is also known as data parallelism. Taking advantage of the physical presence of more t
one instances of the same or different resource types, target platform can process larger chucl
data at the same time and the respective execution is accelerated compared to the single res
operation.

In the second case that is depicted in figure 1.1B, the application can be divided to stage:
execution that are assigned to different resource instances. Each stage can perform proce:
independently as soon as data are received from the previous one. In these configurations,
stage delivers processed data only to the next one and therefore the computation forms a so-c.
pipeline. Since data are delivered to the next stage after the current stage finishes proces:
acceleration is realized after initial network loading is completed and every stage has data tow
on concurrently. This acceleration can be realized in streaming applications.

Finally there are application computations which can take advantage of a combination of t
aforementioned parallelism categories. In this case depicted in figure 1.1C the interconnected st:
of application execution form a graph that is similar to the Kahn process network [1]. The targ
platform dedicated interconnections between the available processing elements can be reconfig

to satisfy the computation parallelization needs.

4

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

A)

TR

Figure 1.1: In case A) the application is divided in 4 tasks efsame type that perform the same
computation to different but equal portions of data. In case B) the application is divided in stag
of execution which are interconnected and form a pipeline. Case C) is a combination of A) and
and forms a graph.

Even if spatial and temporal parallelism are not possible, RP platforms with fine granulari
processing elements like FPGAs can be reconfigured to form application specific accelerators
the case of applications that only use dedicated accelerators, parallelism can be realized only a
multitasking workload level were the available resources can be distributed among the running
plications. Note, that fine-grained hardware processing elements like FPGA Lookup Tables (LU
cannot be dynamically shared between hardware accelerators and have to be statically assignec
ing design time. On the other hand, it is possible for these softcore accelerator cases to suppor
dynamic re-routing of these elements to accommodate more than one accelerators concurrentl
case they are sufficient LUT resources). For the time being, placement and routing on the FPC
is static and arbitrary accelerators may not be concurrently accommodated unless they have |
designed to coexist and the hardware has been appropriately configured to include them. Chal
are not possible at runtime.

Since they are very versatile, RP platforms are suitable for a wide range of applications. Ty

ically I/0O bound applications may not be optimally served, but even in these cases a part of

5

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

computation may still be appropriate for acceleration. Tloeesthe best candidates are computa-

tions that perform CPU-intensive data transformations and operate on data block streams. Indice
examples are block cipher algorithms for encryption or authentication, data (de)compression al
rithms that are widely used in data storage, and encoding algorithms for video or audio. Note t
combinations of these application types comprise typical multitasking workload of an everyd:

general purpose system.

1.2 Programming Framework Considerations for Multitasking
on RP Platforms

Achieving parallelism is more easily said than done. Several programming frameworks [2] ha
been proposed to abstract the design complexity of an application partitioning into independ
entities that can be executed in parallel. Partitioning decisions are based on the computation
pendencies and require extensive experience in order to be manually carried out by a program
Most frameworks observe the load distribution of a sequential execution of the computation a
automatically decide partitioning and static load balancing.

There are two basic approaches to application partitioning: Coarse-grained and fine-grain
The former is usually applied to an algorithmic-level where a computation is divided in small tasl|
that can execute independently and is realized in most cases with code source-level restructul
This approach is appropriate for PR platforms with powerful processing elements (CPUs or GPL
also known as Massively Parallel Processor Arrays(MPPAs). Because of source level changes
code can be further augmented during the restructuring process to cooperate with the platform |
time and enable execution coordination during multitasking. On the other hand, the fine-grain
approach takes place after code analysis and during compilation, where small, usually loop fr
ments are scheduled to execute independently. In these cases the target platform features a
number of appropriately customized simple execution units, which are not typical CPU cores, tt
can be optimally exploited for fine-grained partitioning. An example is the Garp Array [3] ant

the respective toolchain [4]. Obviously the fine-grained approach significantly reduces possible

6

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

pendencies between independent execution entities, siesghie partitioning decisions and has the
potential to impressively boost performance. A drawback is that the computation to communicati
ratio decreases with the processing load of each independent entity and, therefore, the partitio
granularity benefit is bounded. In some examples this limit can be very low, e.g, in decompress
computations.

One of the major concerns that affects partitioning decisions is static load balancing. This
because parts with larger loads become the speedup bottleneck. In addition, uneven load distribt
results in suboptimal resource utilization especially in cases of temporal parallelism where the n
stage has to wait for the previous one to finish. Obviously coarse-grained partitioning performar
is more vulnerable to radically diverse subcomputation loads which in the case of pipelines r
result to extremely poor performance.

Automatic partitioning and static load balancing are the most important of the runtime pe
formance challenges that the proposed frameworks for PR platforms deal with. The main focu:
typically on the programming concepts and the abstractions that support rapid development, req
less programming effort and enable source reuse. Other than that, the development of applicat
is based on the assumption tladit the required target resources will dedicatedto the program
throughout its execution. Moreover, for the time being, the operating system support on PR pl
forms usually runs on a master CPU and is used to deploy highly optimized applications which ¢
expected to have been developed to occufixed amount of resources. If another resource de-
manding application arrives at the system, and it cannot be given the required amount of resour
it will have to wait for the previous one to finish.

As a different approach, in case of resource shortage, one could considgntmaic distribu-
tion of available resources between concurrently executing applications. In other words, if a ni
application arrives, currently deployed applications could be reconfigured to free some resour
that can be exploited by it. Similarly, when an application finishes, the released resources car
reassigned to speedup the rest of the workload.

Since general purpose computing and radical multitasking environment may only be realiz

on instruction-set architecture (ISA) processors, dynamic resource redistribution cannot be reali

7

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

on tiled architecture platforms [5] that primarily featureglhly customized, application specific
processing elements. The latter platforms may only support a primitive form of multitasking k
allowing the immediate loading of applications that utilize resource combinations which can |
hosted concurrently, regardless of their arrival at the system. This approach requires only opera
system support and it will be discussed in the next section.

Moreover, General Purpose GPU (GPGPU) platforms like Nvidia CUDA [6] organize the GPL
into groups that are connected to local group-level shared memory and may also access gl
memory if needed. Unfortunately, hardware-level support is used to control in a simple roun
robin manner the concurrent execution of programmer defined lightweight threads that belong
the same computation. While we believe that next generations of multi-GPGPU platforms will
more versatile in this respect, we do not consider them in the implementation prototypes since
coordination of execution is not software controlled.

On the other hand, parallel ISA processor arrays that feature dedicated interconnections
be efficiently used for multitasking. Commercial examples are Ambric processor which featur
360 32-bit processors [7], picoChip with 300 32-bit processors [8] and Intellasys SEAforth with 4
32-bit cores [9]. Academic examples are the 36-core Asap processor [10] which is very similar
Ambric and PARO [11] which is used to build processor arrays on reconfigurable hardware. All

these architectures come with respective programming tools.

1.2.1 Task Migration and Load Balancing Support

While we believe that each PR platform processing core should be used in dedicated mode, we
believe that it is a good idea for programming frameworks to produce application executable entit
which are flexible enough to operate with a varying number of assigned cores that is determine:
load time and can be changed during execution. Each application to be deployed on the PR sh
request resources from the underlying OS and execute on the provided number of cores. In 0
for this approach to be feasible, application executables should be produced in a way that allc
more than one (predefined) tasks to execute on the same core, in a transparent fashion. Belov

discuss two different approaches that could be used to achieve this.

8

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

1.2.2 Distributed OS Client Approach

Onre solution is for each MPP core to feature a thin runtime layer which provides tasks with &
the necessary abstractions that decouple their code from specific bus addresses and core ids
to employ a (simple) mechanism that takes care of task migration and execution on a single c«
The local runtime instances would be controlled by a full-fledged OS support that runs on a Mas
CPU. In this case, the programming framework would only have to produce application task e
cutables that would be properly linked against this thin runtime layer. This approach is depicted
figure 1.2A.

Several performance issues have to be considered in this case. Firstly, task migration invol
transfer of actual executable code and a coordinated suspend/resume scheme, which is not ec
achieve in case of runtime rearrangements and can cause serious performance degradation give
RP array core runtime instances must communicate with a central service on the Master CPU ¢
a multi-hop interconnection infrastructure. Put in other words, each time an application adapts
execution, in practice, it needs to be reloaded. Moreover, to balance the application load betw
cores, each node should be capable of determining the load of each task running on it in or
to report it to the central service, introducing additional overhead and complexity. Last but n
least, code migration implies that all PR cores are of the same architecture. While current
platforms usually feature the same CPU architectures, processor arrays on reconfigurable harad
could be used to employ different architectures, customized to certain types of computations. Si
hardware reconfiguration has the potential to introduce heterogeneous PR platforms, it would
nice for the aforementioned support to work on heterogeneous PR systems as well. As a spe
case of heterogeneity, the Master CPU itself could be used to execute some of the applicatic

tasks as well.

1.2.3 Integrated Task Execution Control

This approach requires each core to be fitted with a very small Basic Input Output System (BIC
that mainly helps with initial application loading. Contrary to the other frameworks, code migratio
is avoidedby building, for each core architecture and local runtime environmesiigeimage

9

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

A) Application 1 MPPA CPUs

~

MasterCPU | . -

“wTask TaskaTask
L e—p» 23 p

Task Y
network
load/unload
control

L]

N

~

Abpli’cation 2

Application 1
B) Master CPU@ NN MPPA CPUs

S

T~

~ =c
~ N

~Jask 3+

Task 3y

Task 2

Applicatioh 2

Figure 1.2: Approaches for the application deployment on RB Bfays to support dynamic task
reassignment.

10

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

that containgll the tasks of the application. Cores that are of the same architecture and execute
same runtime are loaded with a copy of the same executable. In this case, simple execution cot
is statically included in the application image to coordinate local task execution (the BIOS is ign
rant of this functionality). Global coordination decisions are taken on the Master CPU, queryit
the operating system for resource availability. The Master CPU can also be exploited to perfo
computation iterations (sequentially) in an efficient profiling mode to gather data that can help
make better partitioning decisions. Note that the OS merely provides information about the av:
able resources but partitioning decisions are taken by application-level logic (that is automatice
generated by the toolchain). An indicative setup of this kind is depicted in Figure 1.2B

Application data flows between cores primarily transfer data blocks for processing, but they m
also carry control commands downstream. Distinguishing between the two data types is suppo
in hardware by all the dedicated interconnection architectures. Control commands can be u
to set appropriate control information indicating which tasks should be executed locally by ea
core. With this approach the execution flow cardigaamicallyredirectednsidethe PR CPU array
without requiring the Master CPU to communicate with each core individually. Also, if new re-
sources are to be occupied that do not feature the application executable, the closest processotr
the same architecture and BIOS combination can provide the new member with the copy neec
However, while the previous approach enables a transparent dynamic task migration and load
ancing without the involvement of the programming framework, in this case this functionality i
achieved through a combined interaction between development and runtime environment.

It must be noted that in some cases the application image size may exceed the local RP C
memory capacity. In this case the toolchain can build an appropriate number of different ima
types each one containing a partial number of the application tasks. This introduces a lower bo
for the number of cores that will be needed for application execution, but this is a hardware cc
straint.

A good example of a programming framework that produces modularized flows of executic
that are controlled by an integrated runtime environment i€tlek modular router [12]. This soft-

ware is used to create packet processor engine configurations that can be used to quickly impler

11

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

novel OSI layer 3 protocols, which may also execute as a paltediriux kernel network stack in

real life setups. The programmer has to develop C++ objects using the provided underlying runti
extensions as well as a high-level language for defining the interconnections between them to fc
processing configuration files. Taking advantage of this architedliek supports the so called

hotconfig feature. The runtime instantiates as many modules (called elements) as the prograrn
defines at development time which are not necessarily used in all defined configurations. A n
configuration file can be loaded at runtime and with minor overhead€libk running instance

can switch between configurations which is very desirable feature for this class of network apy
cations. WhileClick has been developed for a totally different purpose, we found many propose
concepts appropriate for a PR CPU array programming framework that can support task migrat

and dynamic load balancing.

1.3 Prototype Frameworks for PR CPU Array Platforms

These considerations inspired us to design and implement an PR platform development framew
core with two different programming models. The first model is based on the OpenMP paradic
and introduces source annotations that can be regarded as OpenMP extensions for distributed r
ory PR CPU array targets. The basic idea behind this practical approach was the extractior
coarse-grained, mostly temporal, parallelism out of existing sequential applications. The obvic
benefit is the extensive reuse of existing codebase, which is a major motivation for rapid syst
development. We were patrticularly interested to investigate, for PR CPU arrays, the potential
an incremental approach that still uses a form of the traditional sequential programming and &
as a first step of realizing pipelined parallel programming into the computing mainstream. This
the heart of the OpenMP concept as well. In Chapter 3 we present this approach and respec
framework design to achieve multitasking by using the concepts that we discussed in 1.2.3.
Taking advantage of the experience of our first programming model and after revisiting initi
concepts for multitasking throughout the first framework design, we deveRipedt, a prototype
programming framework with a different programming model that additionally supports task m

gration to achieve load balancing and enables multitasking on PR CPU platforms. Following t

12

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

approach described in Section 1.P®eltfeatures a simple form of runtime execution control, in-
tegrated into the application executable, making it possible to seamlessly execute the programr
defined tasks (called components)amy number of cores. Notablgipelt explicitly focuses on
supportingpipelinedcomputations.

We have developed working prototype implementations of both programming models toolchal
with respective runtime support for a custom PR CPU array platforiicofoblazesoft processors
deployed on a Xilinx FPGA target. The Master CPU is also a Microblaze thatu@hisuxand is

interfaced to all other platform peripherals like network and storage.

1.4 Runtime Hardware Reconfiguration

Reconfigurable hardware is no longer used only for prototyping purposes. End-user applications
nowadays deployed on reconfigurable platforms and take advantage of the reconfiguration abi
Since this type of applications require specific, per-application platform changes to execute,
basic perquisite for multitasking is the ability to optimally (re)distribute resources on demand al
at runtime.

This could have been an easy task for the Operating System if the hardware runtime rec
figuration was entirely handled in hardware and therefore seamless to software. While there
significant research efforts to support this with the so-called Dynamic Partial hardware Reconfic
ration (DPR) in FPGA's and other reconfigurable systems like the aforementioned parallel proc
sor arrays with reconfigurable interconnections, the few runtime reconfiguration scenarios that
currently supported by this approach are not adequate for typical multitasking. More specifical
in DPR, the reconfigurable resources are statically grouped in hardwired areas that can be ir
pendently reconfigured and the development toolchain has to be aware of partial reconfiguras
scenarios during design time in order to appropriately place logic into these predefined areas. F
a multitasking perspective this is not optimal.

In our approach we abstract runtime hardware reconfiguration entirely in software and we ot
rely on a basic full scale reconfiguration mechanism. We achieve this transparency at the opera

system level with proper kernel support and we distribute available RP resources with a correspc

13

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

ing system service that performs the respective housekeapohgontrols the reconfiguration pro-
cess. We have implemented a prototype that deals with the most radical reconfiguration scene
Entirely soft System-on-Chip (SoC) platform with several soft-cpu(s) on FPGA chip, running

full-fledged Linux.

1.5 Outline of this Dissertation

The rest of this dissertation is organized as follows.

In Chapter 2 we present in detail the proposed system-level support design that enables run
reconfiguration of the underlying Parallel Reconfigurable platform. A prototype uClinux imple
mentation (with both kernel- and application-level support) that runs on an FPGA soft platform
also described along with experimental results for the case of a well known application. In additic
hardware extensions that improve Hw/Sw synergy are also proposed.

In Chapter 3 we present a programming model and a framework that enables the code sou
level restructuring of existing C language codebase by extending the annotations concept of Ope
[13]. With this approach, coarse-grained parallelism is extracted out of existing sequential apj
cations, and along with a simple dynamic load balancing scheme, regular well known applicatic
are accelerated on Parallel Reconfigurable Processor Array (PRPA) targets and in a multitasl
context.

In Chapter 4 we preseRtipelt, a programming model for PRPAs that is based on the evolving
concept of wired components[14][12][2]. WhiRpelthas a reasonably steeper learning curve than
our first OpenMP-based approach, we consider it a cleaner design, that better supports dyne
load balancing and can optimally suit any PRPA resource organization. Morégvelt has been
augmented to inherently support multitasking by building applications that are flexible with th

required amount of resources which can be (re)configured at will and at runtime.

14

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Chapter 2

Application and System-level Support for

Runtime Hardware Reconfiguration

This chapter discusses the design and implementation of a system-level mechanism and cc
sponding application-level support that enables programs running on a PR SoC to modify the |
derlying platform at runtime. Applications may request the addition and/or removal of processil
elements, that are referred to as “devices”, or the modification of their interconnections at any pc
in time. In the presented prototype implementation we used an FPGA-based platform and requ
are handled in a coordinated way via a separate user-level process that fetches the approf
FPGA configuration bistream from an exernal server. System reconfiguration is implemented vi
fast suspend-resume mechanism with support for dynamic softcore device address manageme
achieve flexible device placement on the reconfigurable fabric. Even though our approach does
rely on advanced (and expensive) FPGA hardware that supports dynamic partial reconfigurat

the obtained functionality is sufficient for a wide range of application scenarios.

2.1 Introduction

The technology of RP Systems has the potential to change the way computing systems are b
built. While RPs, especially FPGA-based, are not as fast or energy saving as corresponding AS
[15] they have the considerable advantage of flexibility: it becomes possible to reconfigure a syst

15

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

not only in terms of software but also in terms of underlyingdwaare support. In order to exploit
this potential one faces challenging issues, such as codesigning hardware and software compor
and seamlessly deploying hardware logic on platforms.

In this context it is of particular importance to support a flexible yet robust runtime recon
figuration, allowing for the dynamic downloading and installation of new softcore component
This opens the way for a wide range of possible application scenarios regarding automated sys
upgrades and customized platform (re)configuration. For example, one may introduce several h
ware/software codesigned components that employ customized hardware codecs, accelerator
customized CPUs to offload the main CPU, boost performance and lower power consumption. -
system could also decide which modules fit concurrently on the reconfigurable fabric and sel
the most appropriate combination, based on the current state and explicitly provided specificatic
Even more radical adaptation can be realized on systems with a softcore main CPU, in which ¢
it becomes possible to add mechanisms that track CPU usage and create application execution
files. This information can in turn be exploited to fine-tune specific CPU components as well
to select the most beneficial combination of application-level hardware accelerators. Notably, |
efficient online profiling for softcore CPU platforms investigated in [16] could provide the basis fo
such work.

Runtime reconfiguration in essence translatesansparencyi.e. the ability to maintain sys-
tem and application state so that execution may proceed after (or even during) system reconf
ration without the need for a restart/recovery procedure. Compared to platforms where the FP
is merely a peripheral of the CPU, this is harder to achieve in a system-on-chip (SoC) because
entire system and application runtime state resides within the reprogrammable fabric itself. Spe
ically, in order for the runtime state to be kept intact, the FPGA hardware must: (i) support parti
reconfiguration; (ii) retain the main softcore logic active while it is being reconfigured; (iii) offer
the means for self-controlling the reconfiguration process [17]. For the time being, FPGA vendc
provide these features only in expensive product families, and even these devices have constr;
in terms of the dynamic partial reconfiguration (DPR) that can be achieved in practice. For tf

reason approaches that rely on advanced FPGA hardware are not suitable for cheap commc

16

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

platforms, or systems with considerable reconfigurationirements that cannot be implemented
given the current limitations of DPR.

In this chapter we present work on achieving runtime reconfiguration for SoC platforms featt
ing a softcore CPU, without relying on advanced FPGA features. Our goal is to let applications a
and remove softcore devices dynamically. The main contributions of this work are: (1) the introdt
tion of a system-level mechanism and application-level support for reconfiguring a SoC platfor
at runtime, (2) an implementation that runs on an off-the-shelf embedded device, and (3) a prc
of-concept demo system. We underline that our approach is entirely implemented in software, tl
does not achieve the same functionality that is (theoretically) possible via DPR. It nevertheless [

vides considerable runtime flexibility that is sufficient for most conventional application systems

2.2 Approach overview

The goal of our work is to support runtime reconfiguration for SoC platforms that feature a sofca
CPU. Specifically, we wish to let applications dynamically add and remove softcore devices tf
can be accessed via a fast bus or memory mapped I/O. For example, special hardware acceler:
bus drivers and controllers for external hardware, or extra CPU softcore units, could be installed
demand, according to the requirements of the applications running on the system. Again, we st
that this functionality is to be achieved without relying on DPR capable hardware, correspondi
partial bitstream generation tools support or any other hardware-level runtime reconfiguration te
nology. This way we can take advantage of simpler RP platforms that support only the basic f
reconfiguration as well and end up with a very portable design which is not even specific to t
FPGA technology. The next subsections give an overview of our approach, motivating the varic

decisions taken.

2.2.1 The Concept

Our approach is based on a suspend-resume technique, as follows. In a first step, before the a

reconfiguration process begins, the FPGA bitstream corresponding to the new hardware layou

17

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

/ USER MODE OLD CONFIG \ /KERNEL MODE NEW CONFIG\

New Platform Bitstream iy
download & install to o Save system state
agreed location

} FPGA programming }
(I’;AOO%DEER-KERNEL NEW CONFIG\ / USER MODE ‘ NEW CONFIG\
Rest tate & notif | Continue with execution
; estore state & hotity ™ New peripheral(s) is/are
ME) now installed

R

Figure 2.1: The main phases of the reconfiguration scheme

the entire SoC is stored in external memory (we do not address the computation of the bitstre
per se). Then, the system saves its current runtime state and initiates FPGA programming. W
this completes, the system restarts and control goes to the first stage loader. This checks whetl
reconfiguration took place, in which case it overrides the default boot sequence, restores the s:
system state and adjusts basic system device information. Finally, prior to resuming normal e
cution, the device drivers are notified in order to handle the side-effects of FPGA reconfiguratic
most notably to initialize / restore the state of the devices. A schematic illustration of this proce
is given in figure 2.1.

Despite the fact that the entire FPGA is programmed from scratch in a conventional fashic
the reconfiguration flexibility provided to the application level is comparable to what would hav
been possible using techniques that rely on DPR. We note that, in principle, the same scheme c
also be used to enable a radical modification of the softcore CPU itself (changing the softce
CPU characteristics according to application workload has been shown to boost performance [1
However, our approach cannot be applied if part of the FPGA logic is required to remain acti

during reconfiguration, e.g. for hard real-time applications.

18

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

2.2.2 Device Address Assignment

Given that peripheral devices can be added and removed dynamically, the management of de
addresses (more specifically, channel ids for devices that are accessed via a fast bus or spe
addresses in the case of memory mapped I/O) becomes a central design issue.

The “obvious” approach of a priori assigning each softcore device a fixed address is not attr.
tive. In the case of fast bus access this would considerably limit the number of devices that ¢
be supported because only a few different channel ids are typically supported in such architectu
This holds to a far lesser extent for memory mapped I/O, but then again the corresponding add|
range (though large) is not infinite. Thus an artificial upper bound for the number of peripher
devices that can be considered is introduced in this case too. What'’s probably worse, to avoid c
flicts, some central authority or service would be required to assign channel ids and address rar
to each softcore device being (ever) developed.

It is possible to eliminate these drawbacks by assigning addresses dynamically, when a devic
first installed in the system. Still, in this case, each time the system reconfigures, the new platfc
memory layout would have to be computed based on the current configuration and so as to en:
that the addresses of all devices that continue to be a part of the new configuration remain valid. 1
implies that the new system image must be produced in an online fashion, taking such constra
as input.

To maximize flexibility, we do not require device ids and addresses to remain fixed acro
system reconfiguration(s). This decouples the process of computing the new system image from
dynamic constraints, other than the type and number of softcore devices that need to be place
the FPGA. Furthermore, rather than having to compute bitstreams on demand, it becomes pos:
to exploit databases of pre-fabricated perhaps even highly optimized hardware layouts that cc

be maintained by device manufacturers.

2.2.3 Device Access Transparency

Since device addresses are not a priori known and may change in the midst of program execult
additional support is required so that applications are able to access softcore devices in a reli

19

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

fashion.

The desired access transparency and safety at the application level could be achieved v
device address translation and checking mechanism, in the spirit of a virtual memory managen
unit. This would have required a non-trivial modification of the softcore architecture, which i
beyond the scope of our current work.

For this reason we adopt a more restricted but yet comparably functional solution, by requiri
applications to access peripheral devices via corresponding drivers. Device drivers are a natural
for introducing new hardware functionality in a structured fashion. This also guarantees that apj
cations access softcore devices in an explicit fashion and under system control. Last but not le
device access transparency can still be achieved provided that drivers offer geitabligguration-

transparenfprimitives to the application.

2.3 Implementation of system-level support

This section presents the implementation details of our reconfiguration scheme, for the case
a concrete embedded device, softcore architecture and runtime system. We also discuss is

concerning the development of device drivers in order to deal with the dynamics of reconfiguratic

2.3.1 Platform

System-level support for our reconfiguration scheme has been integrated into the Microbla
uClinux kernel port [19] that runs on top of the corresponding MMU-less softcore architectur
Microblaze utilizes Harvard-style separate instruction and data busses which conform to IBIv
CoreConnect On-Chip Peripheral Bus standard. Bus arbiters can be automatically instantia
permitting the instruction and data busses to be tied together in order to create conventional
Neumman-style system architectures.

The host Platform is an Atmark Techno Suzaku [20] (Figure 2.2) featuring a Xilinx Spartar
3 (XS3C1000) FPGA along with off-chip 16MB SDRAM, 8MB flash, a MAC/PHY core and a

configuration controller. The main on-chip softcore modules are the Microblaze core with loc

20

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Figure 2.2: Atmark Techno Suzaku

memory, Onboard Peripheral Bus, Local Memory Bus, Fast Simplex Links Bus, system time
interrupt controller, SDRAM controller and an external memory controller.

FPGA configuration is initiated and controlled via Select Map by the external controller an
the bitstream is stored in an external flash memory. The reconfiguration procedure can be initic
both by hardware (during power up) and software (write Ox1 to a special register) means. Notal
the power supply is not cut-off during reconfiguration and that the SDRAM datactrrupted

because the chip supports self-refresh.

2.3.2 The Peripheral Device Location Table

As discussed in the previous section, devices may change their addresses after each reconfigur
(with the exception of the execution and data memory controller which are mapped at a spec
location because code and data are statically linked to fixed addresses). This means that dri
must be given a mechanism for retrieving the device addresses that are valid at any point in tim

For this purpose the kernel is augmented with the so-called Peripheral Device Location Ta
(PDLT), an array that contains the addresses of the devices that are available in the current
figuration. Each device is assigned a globally agreed offset in the PDLT that is known to progre
developers. For convenience, we define these offsets based on the well-known major and m
numbers combination of device drivers in the Linux kernel. A PDLT of a few Kilobytes is suffi-
cient to accommodate a large number (thousands) of different devices; of course, the nhumbe

devices that can actually co-exist in a system configuration (FPGA image) is limited.

21

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Drivers must be programmed to retrieve the current device &ddiesses from the correspond-
ing PDLT locations. A zero value implies that the device is not available in the current confi
uration. The PDLT contents are also exported in user space throudprtiodilesystem so that
applications can check the current platform configuration for a particular device.

When a reconfiguration takes place, the contents of the PDLT are updated by the first st:
loader during system resume. The loader is programmed into softcore processor local memory
is stored in the configuration bitstream, together with the PDLT entries of the current system layc
Updating the PDLT in kernel space therefore requires a simple copy operation. Since the locat
of the PDLT depends on the kernel configuration, its start address is stored into a well defir
non-volatile memory location so the bootloader can access it.

The bootloader is build using the Board Support Package tool of the Xilinx EDK (Ver 6.3) envi
ronment, which generates C #define preprocessor directives with BaseAddresses, thereby me
the process of generating the PDLT and storing its contents in the configuration bitstream qu
simple. It would also be possible to enrich the Xilinx development environment with scripts th:

automate this task; though we have not done this.

2.3.3 Triggering Reconfiguration

Reconfiguration is triggered via a special system call that executes as follows. First, interrupts
masked and the old interrupt mask is stored in a local variable. Then all pending interrupt bott
halves are executed by waking up the linux kerkebftirqd daemon. The timer bottom half is

excluded from this process because it may result in a context switch. Susequently the Interr
Vector Table and relevant machine registers are stored in a designated area in the kernel imag
DRAM (instead of saving the current value of the Instruction Pointer, the address of the resul
function is stored). At this point the external controller is triggered to initiate FPGA programming
When this completes, control goes to the bootloader which retrieves the state saved via the sys
call, calculates the PDLT address in kernel memory, copies its contents from the image, and rest
the Interrupt Vector Table and registers. Finally, control returns to the system call context, and 1

device drivers are notified (see next section) before restoring the interrupt mask and proceeding \

22

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

the execution of the process that invoked the call. The entoegaure takes less than a second to
complete on our platform.

A drawback of letting the system state reside on DRAM is that after a power reset the syst:
reverts to its “original” state and configuration. For this reason, we have implemented a so-cal
hibernation option. In this case, the system image is copied from DRAM to non-volatile stora
(flash) before initiating FPGA programming. The reconfiguration mode (normal vs hibernation)
specified as a parameter of the system call and is stored along with the rest of the runtime st
This information is retrieved upon restart by the bootloader, and if reconfiguration was perform
in hibernation mode, the system image is restored into DRAM prior to continuing with the defat
resume action sequence.

While the hibernation option enhances robustness, it also introduces a significant delay. T
total time needed to dump the DRAM image on flash is well above 30 seconds for our platfort
Our backup scheme is simple (e.g. the flash is written in polling read mode since all interrupts
disabled) and lacks advanced features, such as checkpointing. Faster non-volatile media and
elaborate 1/0 operations could reduce this delay, but this could also lead to inconsistencies v
respect to the state being saved, in which case more sophisticated hibernation mechanisms
may have to be employed.

Notably, our approach is not directly applicable on systems that are interfaced to complex ha
ware. In this case, a system-wide quiescing of user space processes and kernel thread activity w
be required, both prior and after the system suspend sequence so that the state of peripherals c

properly saved and restored, respectively.

2.3.4 Device Driver Notification

When the system reconfigures, all devices are destroyed, and then re-installed, possibly in a
ferent area within the FPGA fabric; and in a state that most likely requires further initializatio
before the device becomes operational. As a consequence, even though the device addresse
properly stored in the PDLT, additional device driver specific repair actions may be needed in or

to preserve the continuity of device usage at the application level.

23

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

For this purpose device drivers may register a so-catblednfiguration handlerwhich is in-
voked by the kernel after reconfiguration, before returning control to the application. This rounti
can be used to perform various housekeeping tasks, such as to initialize the device to a def
operating mode, perhaps even restoring it to a previous state, and abort pending operations w
execution may have been compromised due to the FPGA reconfiguration. Device drivers that do
require any initialization/restoration actions need not provide a handler. A simple priority scher
is used to enable the execution of handlers in a certain order.

In our current system prototype we have successfully implemented reconfiguration handlers
the UART, Ethernet, flash, GPIO, interrupt controller and system timer drivers. Since our platfor
has a softcore timer, each reconfiguration introduces a real-time clock lag (noticeable from an
ternal observer). This error could be corrected by measuring the (fixed) amount of time requir
for the system to reconfigure, and letting the timer driver increment the system time by this val

after each reconfiguration.

2.3.5 Reconfiguration-Transparent Drivers

Application programs should access devices without caring about reconfigurations that may t
place during their execution. Put in other words, device drivers should @femfiguration-
transparentoperations. Although the specifics of how to achieve satisfactory functionality ar
highly device-dependent, we have found the following guidelines to be of use for most cases.

Upon startup the device driver initializes its internal state as well as the device, as usual. Wt
the reconfiguration handler is called, the device is initialized so that it can be properly accessed
the driver operations. Moreover, all processes that have been suspended inside a driver oper:
are resumed. This implies that the reconfiguration handler must be able to access all driver spe
wait queues used by blocking operations, which can be typically achieved via a global wait que
list.

Each driver operation retrieves the device address from the PDLT and uses it to access
device. Notably, the PDLT entry may contain a zero value, indicating that the device is not install

in the current configuration, in which case the driver operation returns an error (e.g. ENODE\

24

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Moreover, configuration parameters and/or additional iratestate are recorded so that the device
can be properly initialized via the reconfiguration handler. Blocking operations also maintain glok
state that is used to determine, when they eventually resume, whether a reconfiguration took p
in the meantime. If this is not the case, the operation proceeds as usual. Else, the device addre
retrieved from the PDLT and the operation can be re-tried.

For the sake of completeness we note that some devices magyhehronousin which case
the effects of driver operations do not necessarily take place within the context of the respect
invocations. Moreover, it may be impractical or even impossible for the driver to maintain th
device’s internal state so that it can be restored. In this case, reconfiguration could lead to state |
violating transparency. This could be avoided by introducing a locking scheme that allows a dri\
to block (a requested) reconfiguration until all such operations are acknowledged by the softc

device. We plan to address this issue in a future version of our implementation.

2.4 Application-level support

The described system-level support enables applications to trigger reconfiguration at any poin
time according to their needs. However, it is undesirable to give applications such direct cont
over the system’s resources. One problem is that some applications use devices merely as a pe
mance enhancement option, whereas others may be unable to operate without the requested de
being available. If there are not enough hardware resources to accommodate all devices, precec
should be given to the ones that are vital to application execution. This also implies the remo
of devices that are currently installed but not of vital importance to the applications using thel
Another issue is that concurrently running applications will trigger multiple consecutive reconfigt
rations, even though in some cases the same result could be achieved more efficiently, via a si
reconfiguration.

This functionality cannot be achieved if each application is allowed to reconfigure the syste
while being oblivious to the needs of others. With this motivation we do not allow the reconfigt
ration call to be invoked from within user processes, and instead introduce a separate mechar

through which reconfiguration is triggered in a coordinated way that ensures maximum over

25

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

performance.

24.1 APl and background processing

To control reconfiguration according to system-wide policies, applications send device addition &
removal requests to a system process with root privileges, called the reconfiguration daemon.
corresponding API (shown below) is implemented as a shared library and communicates with

daemon via unix domain sockets.

#define DEV.RMV 0
#define DEV_ADD 1
#define DEV.MND 2

struct dev.req {
char dev.name[64];
int actionflags;

I

int devicerequest(@truct xdev_req, int nofreqs);

Applications may use thdevice requestcall to issue one or more device addition and/or re-
moval requests. Each request contains the device name (the file name of the corresponding ke
driver) and the action to be performed (the DEBYWD and DEV_.RMV flag is used to specify device
addition and removal, respectively). An addition can be specified as mandatory (via theVIDND/
flag) indicating that the device is needed for the application to perform properly.

Requests are processed asynchronously and notification occurs via a SIGRECONF signal. -
signal is sent to processes that issued an optional addition request which was satisfied. It is
sent afteeachreconfiguration to processes that requested a mandatory addition, even if this was
satisfied; allowing them to take corrective action or abort. Applications may catch the SIGRECOR
signal in a conventional manner, by registering a handler which can determine the presence of
requested device via thprocfile system.

The reconfiguration daemon maintains a list of requests issued by applications, each carry
the id of the sender process and status information (pending or applied). When a new reqt
arrives, the daemon inserts it in the list and waits for more requests to arrive.

26

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

If no new request arrives within a given time threshold, theclsitents are combined to produce
the new platform configuration. In case it is not possible (due to resource constraints) to satisfy
addition requests, these are considered in a first-come-first-serve order, and priority is given to
mandatory requests. When a feasible configuration has been determined, the daemon write:
corresponding FPGA bitstream to the designated memory area and triggers reconfiguration via
system call. It then updates the status of the requests to reflect the current configuration and not
application processes via a SIGRECONF signal. As a trivial optimization, removal requests do 1
lead to a reconfiguration unless the list contains at least one pending (and feasible) device addi
request.

A process that has issued an addition request may terminate without issuing a corresponc
removal request. For this reason the daemon periodically checks (througbrabdilesystem)
the liveness of all processes that issued addition requests. If a process terminates and its adc
request has not yet been applied, it is removed, else a corresponding removal request is added
list to ensure that the device that has been added by this process will be removed. Moreover, at
point it is also convenient for the daemon to remove the kernel drivers, that were used by proces

that are no longer alive, since they will no longer be useful in the new configuration.

2.4.2 Example

This functionality is illustrated in Figure 2.3 for an indicative scenario. The application processe
softcore devices and request list maintained by the reconfiguration daemon are shown for e
step. The eclipses on the top left area denote running processes that issue reconfiguration reqt
The installed softcore devices are represented by rectangles in the top right area. The req
list is depicted in the bottom part, showing for each entry its process id (upper left), device nar
(lower left), action type (lower right) and status (upper right, where white and black color stands f
pending and applied, respectively). For simplicity, we assume that all addition requests are flag
optional.

We briefly discuss each illustrated step in the following. Initially (a) there are three processe

P1, P2 and P3. At some point in time P1 issues a request to the reconfiguration daemon for

27

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

add(D1)

/ add(D3)

reconfig

([P P3

emon

L D1 [ADD| [D3 [ADD

(b) P

D1

D3

daemon

[P1]
[D3 |]ADD

D1

D3

P2 [P |
daemon D3 [ADD| | D2 |ADD| | D1 [RMV]

(d)

|
|
|
P D | D3
|

@)

add(D4)

|

|
R

|

|
.

|

D2

D3

\
)

®

rmv(D2

|

|

|

|

|
—memopemen

|

D2

D3

=
daemon D3 [ADD| | D4 [ADD] | D2 [RMV|

|
(9) !
| o

reconfig
daemon

[P4]

e =)

D4

reconfig
gaemon

Figure 2.3: A reconfiguration scenario

[P4]]
[D4 RMV]

28

Institutional Repository - Library & Information Centre - University of Thessaly

12/05/2024 05:02:55 EEST - 3.145.62.240

addition of device D1, and P3 issues a request for device D3unAisgy that both devices can be

accomodated using the available hardware resources, these are installed via a single reconfigur
(b). Later on (c) P1 terminates (a remove request for D1 is added on its behalf) and P2 iss
a request for device D2, leading to a new configuration where D2 is added and D1 is remo\
(d). Then P4 requests the addition of device D4 (e), but assuming there are not enough hardv
resources no reconfiguration takes place. Eventually (f) P2 requests the removal of D2, mak
it possible to install a new configuration with D4 (g). Finally (h) P4 terminates and, as a result,
remove request is added on its behalf, but no reconfiguration occurs (yet) since there are no pen

addition requests to be satisfied.

2.4.3 Application-level transparency

Applications that rely on basic platform features (e.g CPU, RAM, Ethernet) run safely on our sy
tem. They can be executed without any modification, and remain unaffected despite the (repea
system reconfigurations that may take place at runtime.

If however a program wishes to use a custom softcore device, it must be implemented accc
ingly. To begin with, it must explicitly issue a device addition request and register a reconfiguratic
handler that will result in the desired adaptive behavior, e.g. start exploiting the device as soor
it becomes available. Once a device is added to the current configuration, transparency is achie
if (a) the device is mandatory and (b) it is accessed via a reconfiguration-transparent device dri
Else, a program may fail to access the device due to its relocation or removal from the FPGA,; ¢
should be prepared to deal with this case in a robust way.

We note that the addition of a device must be explicitly requested, even if it already exists in t
current platform configuration. This is to let the reconfiguration daemon keep a correct referer
count for each device. Also, given that device references are kept in user space, these are
inherited from parent to child processes and kernel-level threads. Thus separate device add
requests must be issued on behalf of each execution context, independently of whether this

already been done by the parent.

29

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

2.4.4 Remote hitstream fetch

To achieve a clean separation of concerns the FPGA bistream of the desired platform configura
is provided by a separate process, called the bistream server. The communication between th
configuration daemon and the bistream server is over TCP/IP, hence the server can be convenit
placed on a remote host; which is particularly useful in the case of resource constrained platforr

When the daemon wishes to reconfigure the system, it sends to the bitstream server the lis
optional and mandatory devices that may need to remain or become available, respectively. Be
on this input, the server replies with the configuration that can be implemented given the amoun
hardware resources available (perhaps depending on other limitations as well) and a correspon
bitstream url. The daemon then downloads the bitstream from the server using the netflash ut
[22].

The underlying working assumption is that the bitstream server knows the host platform dete
and has access to a database of pre-fabricated configuration bitstreams. For example, it coul
a platform vendor service responsible for providing fully tested and highly optimized configurz
tions. In principle, it would also be possible to integrate the bitstream server functionality wit
the hardware development toolchain so as to be able to synthesize new platform configuration:s
demand. Given that this task is quite time consuming (10 minutes approx. on a PC), this is nc

very attractive solution for the time being.

2.5 Performance considerations

Since applications exploit softcore devices via kernel device drivers, each access operation co
at the cost of a system call. Each driver operation must also retrieve the base address of the de
via the PDLT. This amounts to one extra instruction compared to the code that would have be
generated using a fixed address scheme. A second instruction is needed for each different
relative address used within a driver operation. We believe that this overhead is reasonable g
that our approach is implemented in software, without requiring a modification of the softcore CF

architecture.

30

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

In our current implementation platform and setup, switchong hew configuration takes about
12 seconds to complete from the moment a process issues a device addition request (assu
the reconfiguration daemon does not wait for other requests to arrive). This delay is decompo
as follows. The communication with the bistream server including the download of the FPG
bitstream takes about 1.5 seconds (over a 10 Mbit Ethernet). Writing the bitstream on flash ta
about 9 seconds. Finally, performing the reconfiguration system call (saving state, programm
the FPGA, restarting and notifying drivers) takes less than 1 second. It is important to note tt
application processes continue their (concurrent) execution during this amount of time, except
the last step, i.e. the execution of the reconfiguration system call.

These figures are obviously specific to our implementation platform. The FPGA programmit
delay, for example, could grow for larger platforms; though these also tend to support higher p:
gramming speeds. What is more important, if it were possible to program the FPGA directly fro
DRAM (rather than requiring the bistream to be copied on flash), the total reconfiguration del

(including the bitstream download from the network) could shrink to about 2-3 seconds.

2.6 Evaluation of the Reconfiguration Coordination

The presented reconfiguration framework allows applications to add and exploit custom H/w ¢
celerators at runtime, without caring about various coordination and optimization issues. The id
case would be for the system to have abundant hardware resources so that all requested acc
tors could be promptly installed. However, most real systems are likely to accomodate only a fi
accelerator devices, making it impossible to satisfy all device addition requests if several applit
tion tasks execute concurrently. In this section we discuss indicative experiments that have b

conducted to investigate the performance of the system under load stress.

2.6.1 Experimental Setup

For experimenting with our prototype system, we developed a codesigned application that u

DES-56 cipher to repeatedly encode and decode a 64-bit block of local memory data with a key.

31

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

application uses a software version for DES computation oeaiapH/w accelerator, if available.
When the applications starts, it issues an addition request for the accelerator and then begins
computation in software mode. It switches to hardware mode as soon as the accelerator is insta
When the computation finishes, the application issues a removal request for the accelerator
terminates.

The DES accelerator is integrated as a memory mapped peripheral of the Microblaze platfc
and can be accessed via the On-chip Peripheral Bus (OPB). It has two 32-bit registers for in
data, two for the key, two for the output data, and one register which acts as a control register. O
the input is loaded, the results are produced after eight bus cycles. This is fast enough to avoid
use of interrupt logic for result delivery.

Performing the computation in software, requires 75 seconds at 1.080 watts. Only 2 seco
at 1.082 watts are needed when the H/w accelerator is used. This corresponds to a 37.5 spe¢
In our prototype, each reconfiguration requires about 22 seconds at an average of 1.091 watts
times more than doing the computation in H/w). Most of the time is spent to download the bitstree
over the network (3 seconds) and to write it to the external flash in polling read mode (18 seconc
The actual FPGA reprogramming and the entire suspend-resume cycle needs less than 1 seca
complete. Application execution is suspended during reconfiguration.

In our experiments, the system workload is formed out of tasks that are identical instances of
above application. To reproduce the effects due to contention for hardware resources, we artifici
differentiate between different tasks classes, each requiring a different accelerator; in reality,
application code and accelerators are identical, but this information is not made available to-
reconfiguration daemon. A simple workload generator program is used to submit new tasks to

system. The generator stops after having created a certain number of tasks.

2.6.2 System Simulator

Although our prototype system can be used to test different application workloads, the experime
that can be performed using it are limited. This is mainly due to the small size of the reconfi

urable hardware, the time it takes for applications to complete their execution, and the consider:

32

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

overhead of reconfiguration.

In order to investigate different scenarios and system parameters in a straightforward way,
have also built a discrete event simulator of the reconfiguration framework. The simulator can
parameterized in terms of the size of the reconfigurable hardware (in abstract H/w units) and
reconfiguration policy used by the daemon. The system workload is specified as a mix of ta:
belonging to application classes with different S/w and H/w execution times (in abstract time unit
and accelerator sizes (in abstract H/w units). To keep it simple, the simulator does not account
the delay due to the CPU time spent by the reconfiguration daemon, which is not negligible on ¢
platform. As a consequence, the simulated results are expected to be better than the results obt

via the system prototype.

2.6.3 Runtime reconfiguration vs static configuration

In a first set of experiments we investigate the importance of the ability to dynamically insta
hardware accelerators, according to the application workload. As a reference we use a static sy:
configuration where accelerators are pre-installed and cannot be changed at runtime.

We employ 4 different application classes with the performance characteristics (software a
hardware execution time, and accelerator size) of the DES application discussed above. The w
load comprises a total of 12 application tasks, 3 for each application class. All tasks are submit
to the system at once. The reconfiguration daemon satisfies the corresponding addition reques
soon as possible. It also satisfies several requests via a single reconfiguration, provided that t
are sufficient H/w resources to accomodate the corresponding accelerators.

Four different cases are considered in terms of H/w capacity: (i) no hardware accelerators
supported, thus all tasks execute entirely in software; (ii) the hardware can accomodate one ac
erator; (iii) the hardware can accomodate two accelerators; (iv) the hardware can accomodate t
accelerators.

Figure 2.4 shows the average application task completion times on our prototype and simula
for a reconfigurable system versus a static system that comes with pre-installed accelerators. !

can be seen, the benefit of runtime reconfiguration increases as H/w resources decrease. Espe

33

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

1200

1001
1000 -

0O Without RTR|
800

600 552

E m With RTR

400 +
268

200 - 145
95 o2
57
o | | [

Softw are Only 1 Accelerator 2 Accelerators 3 Accelerators

Suzaku

Reconf Delay 22
1200

294
1000 A

800 -

E 600 547

400 -
266

200 4 143
92 90 55
o ‘ ‘ L [w |

Software Only 1 Accelerator 2 Accelerators 3 Accelerators Simu|ated

Figure 2.4: Real and simulated average task completion time

noteworthy is the difference for the case where the hardware can accomodate only 1 acceler:
The comparably moderate performance for the case where 3 accelerators fit on the hardwal
due to the fact that 9/12 tasks will get a chance of executing in hardware even in the static ct
figuration. Nevertheless, the reconfigurable system performs significantly better in absolute tet
(almost twice as fast) due to its ability to provide H/w resources to the rest of the 3 tasks and 1
fact that the reconfiguration overhead (though very large compared to the H/w execution time)
small relatively to the time for doing the computation in software.

These figures are expected to get even better as the cost of reconfiguration drops. This is «
firmed by additional simulated experiments for a system with 1/2 and 1/4 the reconfiguration ow:
head of our prototype. The results are shown in Figure 2.5. Even though, as noted, the simul
results give an optimistic lower bound, they are a solid indication of the performance to be expec
in a real implementation. This can be confirmed by comparing relative difference between the r

34

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

1200
994
1000 -
O Without RTR
8907 @ With RTR
5 600 - 547
400 -
266
200 -
78 90
42 30
o i i i |_|—
Softw are Only 1 Accelerator 2 Accelerators 3 Accelerators Reconf Delay = 10
1200
294
1000 1
800 -
E 600 - 547
400 -
266
200 - 90
45 24 17
o] ; ‘ T
Software Only 1 Accelerator 2 Accelerators 3 Accelerators Reconf Delay = 5.5

Figure 2.5: Simulated average task completion time

vs simulated results in Figure 2.4.

2.6.4 Impact of the reconfiguration policy

In a second set of experiments, we investigate the impact of the policy adopted by the daemol
defer reconfiguration. This is done in the hope that new addition requests will arrive which can
satisfied, together with the ones that are already pending, via a single reconfiguration.

We employ 5 different application classes with different performance characteristics, listed
table 2.1. The system workload comprises a total of 1000 application tasks, 250 for each applicat
class. Tasks are submitted to the system following a Poisson distribution. The available hardw
resources are 110 units, making it impossible to host the accelerators of all applications clas

at the same time. Note that the average software execution time of application tasks is 1500 t

35

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

App Class| 1 2 3 4 5
S/W Time| 500 1000 1500 2000 2500
H/W Time| 100 100 100 100 100Q
Speedup| 5 10 15 20 25
H/W Size| 25 35 40 40 25

Table 2.1: Characteristics of application classes

units, whereas the hardware execution time is 100 time units for all tasks.

Three policies are considered. The first policy is to reconfigure as soon as possible. T
corresponds to the lack of any policy and is used as a baseline. The second policy is to de
reconfiguration for a constant amount of time that is twice the mean task interarrival time. Tk
corresponds to our initial implementation, where the idea is to give a fair chance for new additit
requests to arrive before performing a reconfiguration. The third policy is as follows. If the re
maining hardware resources are not enough to accomodate an accelerator of average size (k
on the size of accelerators that have been installed so far), then reconfigure (taking into accc
all pending requests). Else, if the reconfiguration timesiatively smallcompared to the average
interarrival time, then reconfigure. Else, if the time during which a request has remained pend
is relatively largecompared to the hardware execution time of an application task yet at the sar
timerelatively smallcompared to its software execution time divided by the number of concurrentl
executing tasks, then reconfigure. Else, wait some more time hoping that a new addition reqt
will arrive which can be satisfied together with all pending requests, as long as the total waiti
time isrelatively smallcompared to the interrarival time. The factors used to compare times hay
been chosen based on numerous experiments which are not shown here for brevity.

Figures 2.6, 2.7, 2.8 and 2.9 show the number of reconfigurations performed and the aver
task completion time (the latter in logarithmic scale) as a function of the interarrival time, for
system reconfiguration cost of 25, 100, 200 and 400 time units, respectively. Based on these res
it is quite obvious that the reconfiguration policy used becomes relevant only in the cases where
reconfiguration time is (a) significantly larger compared to the H/w task execution time, but al:

(b) larger than half of the average task interarrival time. Else, both the fixed time and dynan

36

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

1200

g 1000 4 57/<K 3% 3) -
E, g0 1 - - - - - —¢— Fero Timeout
GO0 —a— 2 x Interarrival
E 400 4 —— Dyramic
200
o]
20 A0 50 =18 100 120 140

—¢— Fero Timeout 03 1000 [1000 1000 | 1000 1000 | 1000
—a— 2 ¥ Interarrival | 907 858 S08 =sl= 05 S04 07

—e— Dyrmmic g50 247 TO00 | 1000 | 1000 | 1000 | 1000
Interarrival Time Reconf De|ay = 25
jleialsls]
|=
b
—— Faro Timaout
1000 —a— 2 ¥ Intararrival
g —e— Diynatnic
pals]
20 40 50 [=e) 100 120 140
—— Faro Tirmaout FI06 174 150 149 135 125 125
—— 2 x Interarrival | 78192 154 183 171 175 175 185
—e— Dyhammic F200 164 150 142 135 125 125

Interarrival Tine

Figure 2.6: Timeout policies with reconfiguration cost 25

37

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

1200
1000 - - = = =

800 7 = = - e - —s»«— Zero Timeout

600 —— 2 X Interarrival
—e— Dynamic

400 -+

200 -+
0]

20 40 60 80 100 120 140
—<— Zero Timeout 903 1000 | 1000 | 1000 | 1000 | 1000 | 1000
—— 2 X Interarrival | 907 868 806 809 806 804 807
—e— Dynamic 600 665 288 1000 | 1000 | 1000 | 1000
Interarrival Time

Reconf Delay = 100

E 100000
E
10000 1 —<— Zero Timeout
—a— 2 X Interarrival
g 1000 - —— Dynamic
100
20 40 60 80 100 120 140
—«— Zero Timeout |[16761| 398 301 299 242 202 200
—— 2 x Interarrival (17376 399 281 289 284 273 277
—o— Dynamic 12807| 291 268 259 225 195 200

Interarrival Time

Figure 2.7: Timeout policies with reconfiguration cost 100

38

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

1200

g 1000 - o e —— =
; 800 - = = = = = —«— Zero Timeout
600 - —— 2 X Interarrival
400 A —— Dynamic
200 -
0
20 40 60 80 100 120 140
—«— Zero Timeout 903 1000 | 1000 | 1000 | 1000 | 1000 | 1000
—a— 2 X Interarrival | 907 868 806 809 806 804 807
—e— Dynamic 657 516 | 1000 | 1000 926 998 | 1000
Interarrival Time Reconf De|ay =200
E 100000
§
b 10000 - —«— Zero Timeout
—— 2 X Interarrival
g 1000 - —— Dynamic
g 100
20 40 60 80 100 120 140

—<— Zero Timeout |[29368| 696 502 498 385 304 300

—a— 2 X Interarrival | 30385| 639 438 446 429 400 399

—o— Dynamic 22476| 639 504 501 379 335 335
Interarrival Time

Figure 2.8: Timeout policies with reconfiguration cost 200

39

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

1200

: a0 | T

b = = l = —<— Zero Timeout
600 - —a— 2 x Interarrival

400 - —— Dynamic

200
0

20 40 60 80 100 120 140
—»— Zero Timeout | 903 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000
—a— 2 X Interarrival | 907 868 806 809 806 804 807

—— Dynamic 708 518 603 796 880 | 1000 | 1000
Interarrival Time Reconf De|ay =400
g 100000
=
10000 + —«— Zero Timeout
—— 2 X Interarrival
E‘ 1000 - —o— Dynamic
g 100
20 40 60 80 100 120 140
—<«— Zero Timeout |[54582| 1292 | 905 896 671 508 500
—a— 2 X Interarrival | 56404 | 1158 | 752 761 719 654 644
—— Dynamic 46289(15125| 850 743 679 491 491

Interarrival Time

Figure 2.9: Timeout policies with reconfiguration cost 400

40

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

policy result in a performance that is close, sometimes mallgimvorse, than the one obtained
when reconfiguring as soon as possible.

We note that saving as many reconfigurations as possible does not per se improve comple
time. This is because some tasks are excessively delayed, waiting for a reconfiguration to oc
and spend most of their time to perform their computation in S/w (which is on average significant
slower than H/w). It is by putting the cost of reconfiguration in perspective of both the task ir
terarrival time and hardware vs software execution time that achieves the best results. Indeed,
dynamic policy, designed according to this rationale, achieves the best overall results for a v
wide range of task interarrival and reconfiguration time values; even though it does not alwa

result in the fewer number of reconfigurations.

2.7 Support for off-chip peripherals

Functional units requested by applications may require not only a softcore module but also ac
tional off-chip peripherals, e.g. a sensor. In this particular case it makes no sense to add the sof
module unless the peripheral is also physically connected to the system. Wishing to unify t
softcore and physical aspect of peripherals, we extended the reconfiguration mechanism to ha

application requests and the asynchronous event of a peripheral plug-in in an integrated fashior

2.7.1 The hotplug detector

To accomplish this we introduce a special softcore device, the so-called hotplug detector. Its rol:
to capture the fact that external hardware has been connected to or disconnected from the sys
respectively. In our prototype we allow up to 4 peripherals to be simultaneously plugged on t
Suzaku board.

The corresponding module amounts to 1% of our FPGA resources. It is hooked on the Micrc
laze On-Chip Peripheral bus and is accessed through 4 memory mapped registers. Eight of the
significant bits of each register are connected to external I/O FPGA pins while the rest are grounc

We assume that an off-chip peripheral will be attached to the pins of a register, and will redire

41

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Device id and Device id and
interrupt line interrupt line
input pins #1 input pins #3

Module 1 - o Module 3

8 8

interrupt line — Register 1 interrupt line|

Register 2 |—

—1 Register 3

Device id and Register 4 —— Deviceid and
interrupt line interrupt line
input_pins #2 18 Interrupt input pins #4

[8

Module 2 — Interrupt — Module 4
logic

interrupt line interrupt line

Figure 2.10: The hotplug detector high-level schematic

Vcce and Gnd to form a code that uniquely identifies it (in our implementation we require this to k
the major number of the corresponding kernel driver). We also expect Vcc to be redirected to 1
peripheral interrupt line which is connected to an external I/O pin as well. An illustrative schemat
is shown in Figure 2.10.

Access to the hotplug detector is provided via a character device driver, which supports 1
standard file operations interface as well assttlectandpoll system calls. The driver also registers
an interrupt handler that is invoked when an off-chip peripheral is connected to and disconnec
from the interface pins. The read operation is blocking and waits for an interrupt to occur.

The memory mapped registers have the value of zero when no peripheral is hooked and
driver remembers previous register states so it can determine whether a peripheral is conne
or disconnected. When an interrupt occurs the Interrupt Service Routine scans all registers
determine which one has changed value, reads its contents and unblocks any waiting proce:
Subsequent read operations then return the device id, the register number of the pin region, a
value (zero or one) indicating whether the device is connected to or disconnected from the syst
To discover peripherals that have been hooked on the platform before starting the reconfigura
daemon (or powering up the system), the hotplug registers are examined via the ioctl system
when the daemon starts.

In our implementation we tried to avoid a complex hardware design that consumes a significi

42

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

amount of resources. This is because we want to keep the halptegtor as a basic platform

feature that will be included in every configuration. By keeping state information in the devic
driver, rather than the hardware logic, we are also able to achieve reconfiguration transpare
for the hotplug driver. Admittedly, using a 8 pin interface for device identification is a waste a
external 1/0 resources. In principle one may use just 1 pin but this requires a more sophistica

communication protocol; see[23] for a similar DPR-based implementation.

2.7.2 Unified reconfiguration handling

The hotplug detector is accessed by the reconfiguration daemon to receive information about
addition and respectively removal of an off-chip peripheral. This information is then sent to tf
bitstream server, along with the contents of the request list.

It is the responsibility of the bitstream server to determine the possible layouts that may
installed on the FPGA, also taking into account the dependencies between softcore devices anc
chip peripherals. More specifically, a pending addition request for a softcore device that requi
an off-chip peripheral is considered only if the peripheral is connected to the system. This decis
naturally belongs to the bitstream server (rather than the reconfiguration daemon) since in our mc
it is the former that has access to platform-specific implementation data.

Once a mandatory softcore device that relies on a peripheral is installed, it is not automatice
removed even if the required peripheral is disconnected from the system. In this case, the af
cation will simply receive an error from the corresponding device driver. It may then explicitly
request the removal of the device or terminate. On the other hand, the application may wish to k
the softcore device installed, expecting the peripheral to be re-connected to the system; this r
involve out-of-the-loop information (e.g. the user’s intention) which is not available to the low-leve

system mechanisms such as the reconfiguration handler.

2.7.3 Example

Figure 2.11 gives a scenario illustrating this additional functionality (employing the same visu
metaphors as in the previous example). Note that the hotplug detector module is considered t

43

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

|
(a) o ‘ Hotplug
| Detector,
! S
d(D1) |
|
daemon L D1 | ADD

|
! Hotplug
P1 D1
I Detector|
! S
|
|

(b)

daemon

(c)

e

|
Detector,|
@ ‘ =
|
add(D2) |
C m > Gl jzaEm
daemon ADD

|
|
S Hotplug
| A= S
ffffff N
|

reconfig “ }’W'; § HOT
daemon IEREDIRER

|
|
Hotplug
| ><’
|

(s)

X
daemon N

|

|
OSSP S D1 Hotplug
I Detector|

|

|

>

2=
daemon m

Figure 2.11: A reconfiguration scenario with hotplug event

D2

(f)

D2

already installed as a mandatory device.
Initially (a) process P1 requests the addition of device D1. At the same time, the user plugs
sensor S (that can be used only via device D2). The hotplug detector informs the reconfigurat

daemon, which in turn adds a corresponding presence entry. The system then reconfigures and |

44

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

PC SUZAKU FPGA platform

Mandelbrot Monitor Server Server

GUI GUI
i y 7 i
\ libreconf !

Monitor Mandelbrot

reconfd

Linux kernel uClinux
y Mandelbrot

Parallel port
TCPE TCP/IP e accelerator

driver
A
Ethernet Sensor
board

Figure 2.12: Demo Setup

installed (b). After awhile (c) a new process P2 starts, and requests the addition of device D2 (wh
requires the S). Given that S is already connected to the system, the system will reconfigure
D2 will be installed (d). Later on (e) S is disconnected from the system, leading to a correspondi
update of the reconfiguration daemon, but D2 remains installed. Finally (f) P2 receives an er
from D2 (which tries to access S without success) and terminates (a removal request for Dz

added on its behalf).

2.8 Demonstration

To demonstrate our implementation we have developed a simple environment that comprises
different applications: a mandelbrot calculation and an audio signal monitor. Both applications ¢
structured in the form of a client-server pair. The servers run on the Suzaku board as convetic
application processes. The clients run on a PC providing a graphical user interface for controlli
the servers. Client-server communication is over TCP/IP and a LAN to which the Suzaku is cc
nected via its Ethernet adapter. A schematic of the various components is given in Figure 2.12

picture of the Suzaku board setup is shown in Figure 2.13.

45

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Figure 2.13: Suzaku board setup

2.8.1 The mandelbrot application

The mandelbrot client is used to send the computation parameters to the server and display
results produced. Moreover, it can be used to request the addition or removal of an acceler:
module that is exploited by the server to perform the computation faster.

The server waits for incoming requests, performs the computation and sends the results bac
the client. Itis initially in a default state, performing the computation without relying on the accel
erator module. When it receives a client command to add the accelerator, it issues a correspon
request, and enters an optimized mode of computation as soon as the softcore module is add
the system. Similarly, the server issues a removal request when it receives a corresponding cl
command. It continues however to opportunistically exploit the accelerator until the driver returl
an error; indicating that the module has been actually removed.

As expected, hardware acceleration boosts performance both in terms of time and power ¢
sumption. Notably, our softcore CPU does not have a floating-point unit, hence the software vers
of mandelbrot uses the integer-based floating point operations of the gcc library. Figure 2.14
picts the average energy needed to perform a certain computation for the software-only versus
hardware accelerated version. The average power consumption of the system in idle mode is (

as a reference. Specifically, the hardware-based version requires about 7,6% of the energy the

46

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

1.140

— Sw Version - - +Hw Version —Idle

1.130 -

N
-
N
o

r _(Watts

Powe|

M@ (4) ®)

Figure 2.14: Suzaku power consumption diagram

ware version needs and is 7,33 times faster (labels 2 and 4 vs 1 and 5). The former version inclu
the extra delay and power consumption for downloading the bistream and reconfiguring the syst
beforeinitiating the computation (labels 2 and 3). The hardware-based version requires about 5,
of the power that the software version consumed and is 10 times faster in case the acceleratt

already installed (labels 3 and 4).

2.8.2 The sensor monitor application

The monitor client is used to start / stop the sensing activity of the server and to display the valt
received. The server starts in an idle state. When it receives a start command, it launches a c
process that requests the addition of a sensor specific softcore module. If the request is not sati
the process terminates and the server sends back a failure message. Else, the child process
reading sensor values and forwards them to the client. The child process can be terminated at
point in time via a corresponding client command.

The softcore device requested by the child process cannot function properly without a cor
sponding sensor being attached to the Suzaku board. For this reason the addition request i
considered unless the appropriate sensor is connected (by hand) to the board. When the sen:

disconnected from the board, the child process receives a driver error and terminates, makin

a7

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

possible for the corresponding softcore module to be removed.

2.8.3 Configuration scenarios

We have configured the bitstream server to deliver four bitstream files that have been pre-b
for this particular setup: (1) the base system configuration, (2) the base configuration plus
mandelbrot accelerator module, (3) the base configuration plus the sensor access module, an
the base configuration plus the mandelbrot accelerator and the sensor access modules.

The system is started with the first configuration. From that point onwards, any other configu
tion can be dynamically installed, depending on the sequence of requests issued by the mande
and monitor applications (via their respective clients) as well as the physical presence of the sen
Given that reconfiguration does not take place solely for the purpose of device removal, the sys
will stop reconfiguring once configuration (4) has been installed, because in this case all (futu

requests issued by these applications are trivially satisfied.

2.9 Related Work

Reconfiguring the hardware at runtime is a very important attribute for hardware-software coc
signed applications. Significant codesign efforts have already been conducted on exploiting
potential of reconfigurable hardware platforms. Researchers try to build a unified and transpat
programming model as well as a standard interface for the integration of hardware acceleral
independently of the underlying platform details. A methodology for codesigning applicatior
along with corresponding development tool support is presented in [24]. It proposes a binary le
hw/sw partitioner that takes as input a software binary, decompiles it to recover high-level inform
tion, determines the regions that should be implemented in hardware (using appropriate profil
information) and generates modified binaries that have the critical code fragments replaced by
structions that access the hardware versions. In [25] a high-level programming model is propo
based on a virtualization layer through which softcore devices can be accessed in a transparent

Both approaches assume that the underlying platform provides appropriate dynamic reconfigura

48

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

support, allowing for arbitrary modules to be added at runtifrtas is far from straightforward to
achieve in reconfigurable SoC platforms where the CPU itself occupies an area of the reconfigur:
fabric.

Moreover a lot of research has been conducted on FPGA-based architectures and develop!
tools for dynamic reconfiguration support. The first step has been to enable partial reconfigurat
through corresponding partial bitstream generation tool capabilities [26][27][28], then to chan
FPGA architecture design so that it can retain the rest of the logic active while it is being partial
reconfigured[29][30][31][17]. It must be stressed that dynamic partial reconfiguration (DPR) is st
an active field of research. For the time being there are several problems [17] which make it harc
even practically impossible to apply DPR, especially for large and complicated designs such as $
platforms that feature a softcore CPU: the patrtially reconfigurable FPGA area placement and s
the external IOB routing constraints that enforce the whole FPGA board layout to be designed w
DPR scenarios in mind; and —last but not least— the limited humber of Tristate Buffers (TBUF
that must be used to interconnect dynamically loaded modules with the rest of the logic [17].

Considerable work has been done to support the runtime reconfiguration on SoCs or platfol
featuring a separate CPU. This typically concerns mission-specific platforms, or is integrated witl
a proper (embedded) operating system context. We briefly discuss indicative systems represer
a variety of different approaches.

A typical framework for achieving dynamic reconfiguration of a dedicated SoC based on DF
is presented in [32]. Part of the FPGA is used for a fixed softcore control subsystem which co
municates with a remote host. The rest of the FPGA is used to place custom logic. Reconfigurat
can be triggered by the remote host, at any point in time, which sends the corresponding bistre
to the control unit. The bitstream can also be encrypted for security purposes. This approacl
suitable for single-application systems.

In [33] runtime DPR support is provided for a SoC featuring a softcore CPU and an embedd
operating system. A dedicated kernel-level driver is introduced which provides raw access to FP!
configuration data, allowing it to be modified in an online fashion. This interface can be use

by applications or shell scripts to change part of the FPGA at runtime. However, only simp

49

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

reconfiguration scenarios can be implemented given the lionisof DPR.

A different approach is employed in [34] where the FPGA is pre-partitioned into a fixed numbe
of custom softcore units, and an extra layer is used to provide the abstraction of unit allocatic
The program loader distinguishes between software and softcore tasks and dynamically links
former with a free softcore unit. This approach has been implemented in a system with a sepa
(hardware) CPU. It can be used to eliminate some DPR constraints for a specific platform, |
reduces flexibility. This is because it partitions the FPGA to an a priori defined number of nod
that communicate with each other via a fixed interconnection architecture. It is thus impossible
dynamically install arbitrary hardware components that are customized for different applications

Task-based reconfiguration using a suspend-resume model, at the application-level, for a mi
node architecture is presented in [35]. When a node needs to reconfigure, its tasks are suspende
restarted on another node. During this migration, hardware functions may be mapped to softw
versions thereof, depending on the resources available on the destination node. When reconfic
tion completes the original node can be re-assigned its old tasks and proceed with their execut
This approach enables a full reconfiguration of a SoC node, but requires at least two nodes. It
also been implemented using customized hardware and a separate softcore CPU.

Our proposed reconfiguration scheme is geared towards SoC platforms with a softcore C
and an embedded operating system but does not rely on DPR (merely an off-chip reconfigurat
circuitis required). As we have demonstrated, it constitutes a practical option for achieving runtir
reconfiguration on top of cheap FPGA systems, without DPR functionality nor any special supp
from the softcore development toolchain. Our suspend-resume model is kernel-level and is app
on the entire SoC and the node can autonomously perform the entire reconfiguration without
quiring a second node that must act as its slave. The proposed approach maintains application
operating system state during reconfiguration and lets drivers initialize or even re-establish the s
of softcore devices after reconfiguration completes.

Given that we targeted primarily resource constrained platforms, the hardware configurati
bistreams have to be retrieved from a remote server over the Internet. This is similar to the X

inx Online (Internet Reconfigurable Logic) framework [36], which introduces a remote hardwar:

50

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

update capable facility on top of an operating system. Theriffce is that in our case it is the user

applications that trigger a reconfiguration, not the remote server. It is in fact possible for any pt
cess to request a platform reconfiguration at any point in time yet in a controlled way that ensu
graceful degradation in case of resource shortage. Moreover, our approach transparently maint

system and application state across reconfigurations.

2.10 Summary

In this chapter we have presented the design and implementation of system-level mechanisms
application-level support for the dynamic addition and removal of softcore devices on a recc
figurable SoC featuring a softcore CPU and embedded operating system. This functionality
achieved without relying on DPR. Although the entire FPGA is re-programmed from scratch whe
a reconfiguration takes place, system, application and relevant device state can be maintained
large degree, thereby achieving satisfactory transparency.

Application programming support comes in the form of a library for issuing device addition/re
moval requests that are asynhcronously acknowledged via signals. Reconfiguration is triggerec
a user-level process that collects and handles application requests in a bundled fashion. The
figuration bistream is downloaded from a remote server over the network, making it possible
support resource constrained systems with communication capability. In case of resource scar
priority is given to critical devices. Once the bitsream is saved in the designated memory area
programming the FPGA, reconfiguration (during which application processes remain frozen) tal
less than a second to complete in our current platform.

Finally, we have considered softcore devices that rely on off-chip peripherals, and have exten
our implementation to take such device addition requests into account only if the required periphe

is physically connected to the system.

211 Availability

More information about this work and uClinux patches are all availalfigtat/www.syrivelis.net/vss

51

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Chapter 3

An OpenMP-based Programming

Framework for PR Processor Arrays

We present development and runtime support for building application specific data process
pipelines out of sequential code, and for executing them on a general purpose platform that feat:
a Reconfigurable Parallel Processor Array (RPPA). Our approach is to let the programmer an
tate the source of the application to indicate the desired pipeline stages and associated data
with little code restructuring. A pre-processor is then used to transform the annotated progr:
into different code segments according to the indicated pipeline structure, generate the corresp
ing executable code, and produce a bundled application package containing all executables
deployment information for the target platform. There are special mechanisms for setting up t
application-specific pipeline structure on the RPPA and achieving integrated execution in the ct
text of a general-purpose operating system, enabling the pipelined application to access the u
system peripherals and run concurrently with other conventional programs. Moreover, we hg
extended the framework support to enable seamless task restructuring and load balancing of
produced pipelined application at runtime, making it possible to dynamically pick the stages tt
will be executed as separate tasks on distinct RPPA CPUs depending on the currently available
sources and the execution context. This support has been implemented on top of two prototype
RPPA FPGA-based platforms, and has been integrated into a Linux OS environment. Two pro

of-concept applications and indicative performance measurements for a variety of use scenario

52

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

the prototype platforms are also discussed.

3.1 Introduction

The advent of embedded distributed memory RPPA platform solutions like Ambric [7] introduce
new workload acceleration possibilities. Application logic can be now implemented as a progre
that executes on a CPU-based subsystem, which in turn plays the role of an application-spet
co-processor for the platform main CPU. However, developing applications that can exploit t
potential of such a system is far from trivial. One encounters most of the challenges faced wt
trying to write parallel programs for conventional multi-processor systems; above all, to structu
the code in a way that enables its efficient parallel execution on top of the underlying hardwa
Moreover, the RPPA CPUs may not have enough resources to run a complex runtime with supj
for multi-threaded execution, thread placement and thread migration. It is also important to ret
the existing (sequential) codebase of applications instead of developing them from scratch for 1
particular type of system.

As far as multitasking is concerned, traditional operating systems for shared memory multip
cessors achieve parallel execution by distributing tasks among processors using information s
as processor idleness, task priority and the remaining quanta of tasks. At the level of the appli
tion, several models together with corresponding toolchains and/or libraries have been introdu
to let the programmer define the multi-tasking structure most appropriate for the computation to
performed. Currently available support typically covers three basic types of parallel computatiol
(Dindependent execution; (ii) data parallelism; and (iii) pipelined execution.

In the general case, task/data partitioning is non-trivial as it depends on the nature of the com
tation, and usually requires considerable programming experience in order to be effective. As a|
of thumb, a fine-grained task partitioning provides more potential for parallelism. Still, htnang
many tasks may degrade performance because of the increased communication and coordin,
overhead. When the number of CPUs is less than the number of tasks, more overhead is introdt
due to context switching. An aggressively multi-tasked application may also get more time quat

than applications that employ a smaller number of tasks, having a negative impact on their in

53

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

vidual response times. ldeally, besides the load balanciogjged by the operating system at the
task level, it would be desirable to adjust the task structure at the application level, at runtime,
a function of the current system state, i.e., task workload and available processing and commt
cation resources. This is more or less straightforward to do for data parallel computations, wh
it suffices to adjust the number of (identical) tasks that process different chunks of data. On
contrary, it is quite hard to achieve in the case of pipelined execution.

Supporting parallel computing becomes even more challenging in the context of RPPA systel
Contrary to fixed multi-core hardware, such platforms have the advantage of flexible customizatis
namely each processor core can be fine-tuned for a certain application task, and the links betw
the cores can be arranged to suit the application-specific communication pattern between tasks
latter is particularly relevant for computations with a priori known communication structures, suc
as custom pipelines. Moreover, reconfigurable hardware makes it possible to change the soft
architecture and interconnect dynamically, according to the current application workload.

In this chapter, we present work on the dynamic re-structuring and balancing of pipelined col
putations on reconfigurable RPPA systems, using a combination of application-level and syste
level support that integrates transparently with the existing general-purpose operating system m
anisms. Our approach is to let the programmer annotate the source code of the application tc
dicate the desirable full-fledged pipelined execution structure, and then employ special tools
transform the source code into different segments that are compiled for execution on the target r
form. Once the application is deployed, the specified pipeline stages are dynamically separate
merged, to execute on a different or the same task/CPU, respectively, as a function of their re
tive processing weight and overall workload. The current implementation is geared towards spe:
pipeline-oriented softcore CPU networks and runs on a prototype system implemented on Par:
Reconfigurable soft-processor arrays that have been deployed on a Suzaku Xilinx Spartan-3
a Memec Xilinx Virtex-1l Pro FPGA boards. However, our approach is quite generic and the re
spective tools largely platform-independent so that they could be used (with the proper extensic
to support the dynamic balancing of computations with a pipeline structure on other multi-co

platforms, including conventional SMPs.

54

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

The rest of the chapter is structured as follows. We start bingian overview of our ap-
proach and the corresponding application development cycle. Next, we present key element
our programming framework and system-level support designed to achieve the desired dyna
task restructuring and load balancing. We also discuss the parallelization and performance ¢

proof-of-concept application. Finally, we compare with related work.

3.2 Overview

Our high-level objective is to support the pipelining of applications on top of reconfigurable hart
ware in a straightforward and efficient way, exploiting the ability to setup customized softcol
CPUs and interconnection networks that best fit the characteristics of the computation. In ac
tion, we wish to achieve this in the context of a conventional multitasking operating system that
used to run other (conventional, non-pipelined) applications as well, concurrently to the pipelin
applications.

Towards this end, we adopt a heterogeneous architecture that compmsés @PUwhich is
used to run a conventional operating system, and a network of dedma@#lJsfor running the
stages of the application pipeline. The CPUs have strictly private memories which can be acces
efficiently without any contention. This architecture is implemented on a homogeneous proces
architecture on the Suzaku Xilinx Spartan FPGA board (Xilinx Microblaze Architecture) and o
a heterogeneous processor architecture on a Xilinx Virtex-1l Pro FPGA board. In the latter ca:
a hardware PowerPC plays the role of the main CPU. The execution of the application-spec
pipeline is done in both cases via a set of Xilinx Microblaze softcores which are appropriate
linked to each other and the main CPU. The network of softcores can be installed on the FPG/
runtime using the support we described in chapter 3.

In terms of programming methodology, we introduce annotations for instrumenting the seque
tial source code to specify the desirable pipelined execution structure and data flow between the
ious stages. These primitives are introduced as extensions of OpenMP [13]. Even though Oper
is targeted at shared memory architectures, we believe it is quite appropriate for our purpose as \

Most notably, it allows one to reuse existing (sequential) code with moderate code re-structuril

55

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

This is quite important because the partitioning of an appboamay have to be adjusted several
times during the development process.

A preprocessor is employed to transform the annotated code and partition it into separate con
lation units, called segments, one for each pipeline stage. Subsequently, the preprocessor gene
the executable code of each segment and produces an application package for the target sy:
This package includes a transformed sequential version of the original program that invokes
system-level support and contains code for dynamically changing the application-level task str
ture. We currently support two (radically) different platform types: (i) a process-based executi
environment for a conventional Linux system, which is merely used as an emulator to guide/refi
the partitioning of the computation; (ii) our FPGA-based prototypes, which are used as the “ul
mate” target platforms where the application shall run. The preprocessor can be extended to sug
more target platforms, e.g., in principle it is possible to add “backends” for different multi-core sy:
tems (hard or soft, shared or distributed memory).

The typical development cycle is as follows: (1) the source code of the application is annotat
to indicate the desired pipeline structure; (2) the preprocessor is used to generate an executabl
the emulation platform; (3) the application is run on the emulation platform and profiling infor
mation is generated; (4) based on these results, one may wish to reconsider the partitioning of
application, going back to the first step; (5) the preprocessor is used to generate the final dep
ment package for the ultimate target platform; (6) the application is deployed and executed on
ultimate target platform.

Note that application partitioning in terms of identifying the separate pipeline stagestiis
and is decided by the programmer, e.g., based on the performance results on top of the emule
platform. It is typically designed assuming anloadedsystem with enougkdle CPUs to run the
full-fledged pipeline. Task restructuring in terms of the pipeline stages that will actually execute
separate tasks, and ideally on different CPUsglyisami¢ based on the current system load and the

speedup expected to be achieved vs the current task structure.

56

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

3.3 Annotations and code transformation

To harness the potential of setting up a customized data processing pipeline, the programmer
plicitly indicates the desired pipeline structure and data flow, by annotating the source code of
application. The annotated code is then transformed into different segments that can be separ:
compiled for execution on different CPUs, each possibly having a different architecture or confi
uration that is most suitable for that code segment. The most essential aspects are discussed |

following.

3.3.1 Annotation primitives

The annotations for marking the stages of the application pipeline and the data exchange betw
them are introduced as extension©gfenMP[13]. They comprise two region definition directives,
one declarative directive and two library calls, as follows.

The region directivéipragma omp stage<stage no-, <path na>, <function name-) defines
a pipeline stage. It takes as arguments the stage nurli@r the root andV + 1 for the sink of
the pipeline, whereV is the total number of the pipeline stages), the path number and the ent
function name. The function name can be left blank if the directive is used inside a function boc
in which case its location indicates the boundary between two stages.

The region directivétpragma omp path &path ng>), taking as an optional argument a path
number, is used to define a data flow path.

The declarative directivépragma omp threadprivatevariable name-) already exists in the
OpenMPspecification. In our case, it is used to identify the variables shared among the root a
sink segments, for which different “copies” need to be managed properly (as will be discussed
the next subsection).

Finally, the library templategpragma omp push(stage>, <path na>, <data pointer-, <size>)
and its counterpartpragma omp pulére used to transfer data between two pipeline stages. Th
location of these annotations in the source code is of key importance, because they implicitly de
a boundary between two or more stages (also the forks and joins of paths in the pipeline). Al

when apull is used in isolation, without an accompanystggeor pathdirective, it indicates the

57

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

end of the pipeline, i.e., the boundary with the sink segment.

(A) initial annotated code (B) extracted processor network (C) restructured code

void process_data (char * data)

. void stagel_O(void)
int i; Main CPU {
#pragma omp stage (1,0) ———ee . N cha!— data[250];
#pragma omp pull(0,0,data,250); " oot \\ " ol | :_ — while(1) { .
for(i=0; i <250;i++) | thread | Ithread | |..___ . - bus_read(0,data,250);
{ filter_data(datalil); } ! : i i ceenee e
#pragma omp_push(2,1,data,250); 1 _ P S, 7 bus_write(1,data,250);

}
void stagel_1(void)

#pragma omp pull(0,1,data,250); ¢

for(i=0; i < 250; i++)
{ invert_data(data[250+ i -250]);} :
omp_push(2,1,data+250,250); A\ A

#pragma omp stage (2,1) coCPU
#pragma omp pull(1,0,data,250); PO:St: 1
#pragma omp pull(1,1,data+250,250); QTR
for(i=0; i < 500; i++) stagel 0(); - —
{ convert_data(datali]); }
|
|
|

i
1
#pragma omp stage (1,1) I
i
1
1

char data[250];
while(1) {
bus_read(0,data,250);

Path 0

bus_write(1,data,250);

}
void stage2_1(void)
{

|
|
|
|
|
|
|

| char data[500];

#pragma omp push(0,2,data,500); H while(1) {
|
|
|
|
|
|
|

return; bus_read(0,data,250);

bus_read(1,data+250,250);

¥
bus_write(2,data,500);

int main (void) v '
_cha_r da_ta[500]; coCPU void * root_thread (void * ptr)
:/';Eillgi,)ld{; P1:Stage 1 while(1) {
?ZLZZ’&?’;”..?L” i;j:ttran(?g)ta); stagel_1(); ;?;Ei;;i;isqf:::;fxzn;giﬁ,sizeof(int)

#pragma omp push(1,0,data,250);
#pragma omp path (1)

#pragma omp push(1,1,data+250,250);
process_data(data); '

i
1
1
i
1
1
i
[
1
1
1
1
write(fd2,data+250,250);
1
1

}
void * sink_thread(void * ptr);

#pragma omp pull(2,1,data,500); COCPU { while(1) {
prll?t‘([;jata).ij] pull_context(&myid,sizeof(int *));
) ack_id(myid); P1:Stage 2 — read(fd3,data,500);
return; stage2_1(); o —
}

Figure 3.1: Code annotation example

As a simple example, part (A) of Figure 3.1 shows the annotated code of a sample progre
defining a pipeline with three stages (there are no branches, hence only one path is declar
Ideally, in a full-fledged configuration, the root, the sink and each stage of the pipeline execute
a separate program/task on a different CPU. For reasons discussed in Section 3.5, in our cul
FPGA-based platform, the root and sink execute on the main CPU, as depicted in part (B). F
(C) shows the most relevant parts of the code generated for each segment, after going througt

transformation explained in the sequel.

3.3.2 Code transformation

Based on the location of the annotations in the source code, the program text is split into differ
parts, one for each pipeline stage defined. Notably, it is possible to split a function of the origir
program into many parts as well as to have a single part that includes the code of several diffel
functions. The code and local variables of each part is packaged as an autonomous unit, ce
segment, that can be compiled separately; also for a different processor (softcore) architectur

58

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

desired.

The integration of the pipeline with the rest of the application program is done based on tl
“entry” and "exit” point(s) of the pipeline. Each of the functions called until the beginning of the
first stage is reached, is split in two parts: fre-subroutineand post-subroutinevhich contains
code to be executed before pushing data into the pipeline and after pulling data out of the pipel
respectively. Special root and sink code parts are then produced by grouping together the |
processing and respectively post-processing subroutines in a suitably arranged call tree. The
may include additional functions down the call chain, if the programmer decides to end the Iz
pipeline stage inside a function body. Note that the root and sink segments are artifacts of the c
transformation, rather than (real) pipeline stages. They are responsible for performing the neces
pre- and post-processing and feeding data into and retrieving data out of the pipeline, respectiv
In our implementation, the preprocessor arranges for this code to be executed via two differ
threads that share memory (see respective body functions in part (C) of Figure 3.1).

Figure 3.2 illustrates the concept of function splitting. In this case, a call chain that compris
of seven nested function calls is annotated as to let the code of f4 and f5 be executed using |
pipeline stages (without branches). Function f5 calls f6 but the pipeline end is defined before t
call. As a result of this annotation, six different code segments are produced: the root segm
containing the pre-subroutines of f1, f2 and f3; a segment for each indicated pipeline stage; and

sink segment containing f6 and f7 as well as the post-subroutines of 5, f3, f2 and f1.

3.3.3 Coding restrictions

Besides using annotations in the expected way, the application code must conform to a few
ditional restrictions. Firstly, function invocation should beplicit so that the preprocessor can
properly resolve the respective call tree at source level. Any function pointers in the code mi
be replaced by hand. Secondly, system calls may be issnigdrom code that will execute on
the main CPU, i.e., the root and sink segments. This is because, according to our architec
model, coCPUs are not connected to system peripherals and do not feature a full-fledged runt

environment.

59

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

One of the consequences of the latter restriction is that dipgpgegment is not allowed to in-
voke the standard dynamic memory allocation primitives. This is not as crucial as it seems thou
for applications that are typically attractive to pipelining. In most cases, such programs simply all
cate a fixed amount of memory in the beginning of the computation, hence the maximum requil
memory can be figured out by reading the source code. Else, a memory usage trace @ like
grind [37] can be used to determine the memory requirements for typical inputs; but of course tt
does not guarantee error-free operation for all inputs. To make execution robust against merr
overflows, one could introduce a dynamic memory management library especially crafted for t
coCPU runtime, and let the preprocessor substitute the original invocations with calls to this Al
So far we have managed to do without placing such support on the coCPUs, but this could be e¢

done, if needed.

3.3.4 Data passing and synchronization

To enable a pipelined execution of the application code, each local and global variable referen
in a function of the original program under the regime of sequential execution must be duplicat
and updated in all segments, in a properly staged fashion. The programmer must explicitly forw:
the respective values downstream, via fushand pull primitives. These are replaced by the
preprocessor with invocations to the actual data passing routines for the target platform (note
Figure 3.1 how the@ushandpull primitives in part (A) are replaced by platform-specific 1/0 calls
in part (C), also depending on whether a segment will execute the mainCPU or a coCPU).

In platforms such as ours where CPUs do not share memory, it is obviously meaningless
transfer “raw” pointer values between two segments, instead the respective data objects mus
transferred. To handle this problem, the preprocessor groups all pointers together with the rest of
variables to be transferred in a struct (pointers are placed at the beginning of the struct). This st
is then passed to the data transfer primitives, along with a spsaiaier transfer structurevhich
contains the number of pointers to be found in the struct and an array with the size of the respec
data objects, making it possible for the data transfer code to read/write data in an automated \

(in essence, performing a scatter-gather 1/0O operation). If the preprocessor is unable to deterr

60

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

initial call tree transformed call tree

‘ Function 1 ‘ ‘ Function 2 ‘
\/ . /// e e \\\
. ‘ Function 1a ‘ ‘ Function 2a ‘ ! ‘ Function 1b ‘ ‘ Function 2b |
___|.__ __Function3 |
- #define path

#define stage 1

i \
|
I i
I
I I
} I
| Function 3a !
I I
I
i I
I
I j

/ \
I
i
i i
i i
| i
I i I
: i : 1
| [| i
i I Function4 . __ U ! |
! s CT T T T T T T TN ! "
! ! #define stage 2 ! i ! Functijon 5b !
i ; ! i
o P o : :
. R — | Function 6 :
TTTTTTTTemppull T Tt T T[T . ! N\ |
Function 5 ' | i
H I
} stagel ‘ stage2 ‘ I : Function 7 !
I i I
1 o | o | : L1 i
I I
W c
ST \\ sink thread B

Figure 3.2: Function splitting

the size of pointed data at the source-level, the programmer is notified and he/she must add sir
functionality that creates a propgointer transfer structurenstance.

For variables accessealy between the root and the sink segments, a separate context manag
ment mechanism is employed for keeping track of the values that correspond to different pipelir
instances of the computation. When starting a new instance, before pushing data into the pipel
the root adds a context entry with the proper values, and, conversely, the sink removes the next ¢
text entry before attempting to retrieve (and process) data from the pipeline (see respective b
functions in part (C) of Figure 3.1).

The context management mechanism is accessed as an abstract data type via a library w
hides its internals from the preprocessor. In our current implementation, where the root and s
execute on the same CPU via two different threads, we use a properly synchronized FIFO que
This is similar in concept with the so-called versioned memory introduced for shared mema
multiprocessors [38]. Obviously, a different implementation would be needed if the root and sit

were to execute on different CPUs with separate memories.

61

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

3.4 Task restructuring

The developer specifies the pipeline based on the assumption that there are enough CPUs to hc
the stages of the pipeline. Also, the partitioning is chosen as to evenly distribute the processing I
among all stages, since it is the slowest stage that will ultimately set the throughput of the ent
pipeline. However, the situation encountered at runtime may differ, i.e., there may not be as m:
CPUs available or some CPUs may be more loaded than others. As a consequence, keepin
full-fledged pipeline, as this was defined by the programmer, may not be efficient despite the Ic
balancing performed by the operating system. This problem becomes even more relevant whe
is not possible to rely on multitasking and task migration across all CPUs, as this is the case in
prototype platform (see Section 3.5).

As one possible solution to this problem, we decided to support dynamic task restructuring,

the application level, assisted via a separate service designed for this purpose.

3.4.1 Configuration options

To keep our implementation simple and easily applicable in our prototype FPGA-based platfor
we restrict ourselves to the case where only consecutive stages execute as separate tasks (on
ent CPUs). More formally, assuming a pipeline structure wistages-oot— > S1— > S2— >

..— > Sn— > sink, we support task structures with the following property: if the leftmost
and rightmost stage that is executed as a separate tagkand Sk + z, respectively, then every
stageSk + i, 0 < ¢ < z, also executes as a separate task. In this case, the root task execu
root— > ...— > Sk — 1 and the sink task executé% + = + 1— > ...— > sink.

This specification includes the strictly sequential execution where the entire computation
performed by a single task (the root and sink tasks coincide), as well as the full-fledged pipelir
execution where all stages execute as separate tasks (the root and sink tasks execute only the
and sink segments, respectively). As an example, Figure 3.3 shows all such task structures f

3-stage pipeline.

62

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

(A) Transformed Sequential

(B) Deploying Stage 1

CPU
Stage 1
stagel_0();

(C) Deploying Stage 2

CPU
Stage 2

stage2_0();

(D) Deploying Stage 3

CPU
Stage 3
stage3_0();

(E) Deploying Stage 1,2

CPU
Stage 1
stagel _0();
CPU
Stage 2

stage2_0();
(F) Deploying Stage 2,3

CPU
Stage 2
stagel_0();
CPU
Stage 3

stage3_0();

(G) Deploying Stage 1,2,3

CPU
Stage 1

stagel_0();

)

CPU
Stage 2

stage2_0();

CPU
Stage 3

stage3_0();

Figure 3.3: Possible execution configurations

63

Institutional Repository - Library & Information Centre - University of Thessaly

12/05/2024 05:02:55 EEST - 3.145.62.240

3.4.2 Preprocessor support

The transformation of the annotated source code and the generation of executable code for ¢
application segment is performed using a 2-pass preprocessor. In the first pass, the preproce
builds the function call tree, determines the number of pipeline paths and stages, and marks
functions associated with the corresponding entry/exit points. It also performs basic sanity che
to verify that the annotations are placed in a logically correct order, contain proper arguments ¢
that the data exchanges between the stages are consistent. If errors are found, a report is gene
and the tool exits. In the second pass, the preprocessor makes the changes to the source
i.e., splits functions as needed, adds calls to properly manage the context information between
root and sink segment, and arranges for their execution via two sefp8€X threads. Also,
the abstract data transfer directives found in the various code segments are substituted with
appropriate code (library calls) for performing the necessary communication between the CPUs
the target platform.

A separate source file that can be compiled independently is generated for each segment.
makes it possible to employ a customized CPU architecture and different runtime environme
for each pipeline stage, subject to the capabilities and flexibility of the target platform. In ar
case, the preprocessor produces the executable for each stage by compiling and linking agains
corresponding runtime. Finally, all executables along with corresponding platform configuratic
information are bundled in a single deployment unit.

The processing of annotations and most of the code transformation is orthogonal to the par
ular characteristics of the target platform. The main platform-specific part is the code that nee
to be injected for sending and receiving data between segments, and the compiler that needs 1
invoked for generating the executable for each segment. This allows the preprocessor to be
plemented in a structured way so that it can be extended to support more targets, e.g., by ad
“backends” for different multi-core systems (hard or soft, shared or distributed memory). In fac
support for the emulation and prototype FPGA-based platforms, discussed in

Another challenge for the preprocessor is to enable the transparent switching between diffet

task structures at runtime. To achieve this, it generates a special sequential version of the applice

64

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

code, where each stage is self-contained in a separate fundtiese functions are arranged in a
proper call chain, so that the function for stage invokes the function for stagén + 1, and

is itself invoked from within the function for stagen — 1. In addition, the code of each stage
includes indirect calls tpushand pull function templates, via pointers stored in an array-based
structure. This makes it possible to dynamically switch the data transfer functionality of a sta
just by changing the value of the corresponding index variable. There are three I/O options:
send/receive data to/from a different task/CPU by invoking the corresponding platform-speci
primitives; (ii) perform a dummy call when the previous/next segment executes within the sar
task context; (iii) invoke the profiling service (fpushonly). The data transfer mappings of each
stage need to be properly set each time the task structure changes. The code for this is gene
by the preprocessor. As a conventipashcalls must return a code indicating whether the calling
stage should proceed with the default sequential execution flow, i.e., invoke the function of t
next stage, or return immediately. The latter is necessary if the next stage executes in a seps
task/CPU, and the respective code is returned only when using the platform-specific primitives
inter-task/CPU communication.

The code for each stage under sequential execution is produced essentially by reusing the «
produced anyway for autonomous execution via separate tasks/CPUs. However, to make the c
munication between stages that execute within the same task more efficient, their code is char
to operate on the same (shared) memory locations (rather than sending/receiving data via bu
via appropriate versions of thmushandpull primitives). This is achieved by placing shared data in
a globally allocated structure and letting the individual members thereof be accessed via a poir
Two different versions of this structure, i.e., two separate copies of the data, are used for the stz
that execute in the context of the root and sink task, respectively. These are arranged in a 2-
array, and each stage accesses the right element via an index variable, which is properly set in
of restructuring to point to the first or second element of that structure, as needed. If the applicat
executes in strictly sequential mode (the root and sink tasks coincide), the first element is usec

all stages.

65

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

3.4.3 Monitoring and notification service

Task restructing is only meaningful when it is expected to boost performance. The applicatit
program must be informed about this in order to adjust the data transfer and memory mapping
well as to adjust the dynamic behaviour of each stage accordingly.

For this purpose, we introduce a service that keeps track of the current task structure, comp
the time spent at each pipeline stage during sequential execution, determines whether a diffe
task structure is expected to be more efficient than the one currently employed, and informs the
plication program about this new task structure. This is abstracted using an APl with two primitive
an implementation for thpushfunction template, and ainctl function. Their role is described in
more detail in the following.

Thepushfunction is invoked (via the transfer mapping mechanism) under sequential executic
to perform profiling. Its role is to record the time when the call is made. Given thaiusiecalls
are done at stage boundaries, this enables the service to profile the application pipeline at runtirn
determine the processing load for each segment. The root and sink segments are indirectly pro
together by measuring the application usage time that elapses between the very first pnasiting
and theioctl of the next iteration and subtracting the sum of all the pipeline stages recored usa
time. This way the driver can figure out the maximum application workload percentage that can
offloaded to the pipeline. In turn, all the above information can be used to estimate the performal
of the application under different task structures, and to decide whether a new structure shoulc
employed. The profiling version is used only when the entire pipeline runs in sequential mode.

Theioctl function is invoked from within the root code, before calling faeshfunction towards
the first pipeline stage. It checks the current system load, decides whether a new task struc
could be more beneficial and returns a corresponding code and mappings. If the return code c
not suggest a restructuring, the root continues with the default flow of execution. Else, it switches
the new structure as follows. First, the current task structure is checked against the newly propc
structure to determine whether the stages executed within the sink task remain the same. If th
not the case, the sink task is notified via a flag (we remind that in our implementation the root a

sink tasks execute as threads on the same CPU), and the root waits for the sink to exit. The

66

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

A) Mapping
oRE
Sets s .

root stagel |stage2| |stage3| | sink

Sequential System Service D Dummy push/pu||

Execution Main CPU B loctl config

B) Sets /D - .\ Mapping

root|] |stagel stage3| | sink
I ove *s , </ Stage2 I Dummy push/pull
Stage 2 > ys er.n ervice age B Actual pu.sh/pull
Deployed Main CPU coCPU | M loctl config

Mapping

C) >
Sets » 1 n
root stagei’ stage2

by /o
. > System Service PrOﬂ.“n.g. (pUSh onIy)
Sequential : primitives
Profiling Mode Main CPU [loctl config

Figure 3.4: An illustration of task restructuring support iiferent modes of execution

task checks this flag each time the context queue (discussed in Section 3.3.4) is found empty, be
blocking on the queue. If set, the sink exits; this is safe, since the entire pipeline is guaranteec
be idle at this point. When the root resumes, based on the information returnedibgttizall, it
adjusts the data transfer and memory mappings of the stages which shall execute in the new ¢
and launches a new task that invokes the function of the leftmost stage that shall execute in the <
After dealing with the (new) sink, the root adjusts the data transfer and memory mappings of t
stages that shall execute in its own context, invokes (once agaimdthéunction to confirm the
transition to the new task structure, and proceeds with the default flow of the execution.

Figure 3.4 shows three indicative execution configurations for a 3-stage pipeline applicatic
together with the corresponding data transfer mappings. In first case (A) all stages execute seq

tially within the root task on the main CPU, with the default (dummy) data transfer behaviour. |

67

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

the second case (B) the second stage is set for execution (parategtask) on a different coCPU,

and the output mapping of the first stage as well as the input mapping of the third stage are se
invoked the appropriate communication primitives to send/receive data between the main CPU
the coCPU). (C) is identical to (A), but in this case the data transfer mappings are set to perfa

application profiling, i.e., record the time spent in each stage.

3.5 FPGA-based Prototype Platforms

The presented design is quite generic so that it can, in principle, be supported on top of differ:
multi-core platforms. This requires introducing appropriate “backend” extensions to the preproc
sor as well as providing a suitable implementation of the system-level service functionality. V/
have developed support for 2 radically different platform types and 2 variants of the second tyj
a process-based execution environment for a conventional Linux system which is mainly usec
an emulation and debugging tool, a prototype entirely FPGA-based SoC and a prototype FPC
based platform that also has a typical high performance hardware CPU which are both used a
ultimate target system. In the sequel, we discuss the most important aspects of the FPGA platf

imlementations.

3.5.1 Basic setup on the homogenous platform

The first prototype platform is entirely softcore, prototyped on an FPGA and is used to install mt
tiple identical softcore CPUs as well as arrange the interconnections between them. This platfc
is the Atmark Techno Suzaku [20], featuring a Xilinx Spartan 3 FPGA along with off-chip 16 ME
RAM, 8MB flash, a MAC core and a configuration controller. For the softcore main CPU an
coCPUs we choose the Xilinx Microblaze, operated(ax\/ /z.

The main CPU is interfaced to all platform peripherals and runs a customized version of uClint
The coCPUs have access only to their local memory and are connected to each other and the |
CPU using FSL links (which will be described in the sequel), reflecting the topology that is spec

fied by the application developer. The runtime for coCPUs is a small basic input/output system

68

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

have developed that must be statically linked to the apptinatode to be loaded on the coCPU
(the coCPUs do not feature a proper runtime nor any kind of support for multi-programming, mul
threaded execution, thread migration, etc). The BIOS is about 512 bytes long, keeping the menr
requirements of coCPUs low; of course, the amount of memory each coCPU will ultimately |
equipped with depends on the complexity of the pipeline stage that will run on it.

As already mentioned, the main CPU serves both as the root and sink of all pipelines. It mi
also run all other (conventional) applications. Given this bottleneck situation, it is crucial to avo!
any busywaiting on the main CPU while waiting for the pipeline to get ready to accept data and,
deliver data. For this reason, we developed an B&lve Interrupt GeneratqiSIG) peripheral that
is interfaced to thdirst andlast coCPU of each pipeline and the Interrupt Controller of the main
CPU. The interrupts are generated by the coCPUs using standard FSL instructions, when they
ready to accept data from and respectively deliver data to the main CPU. On the uClinux side,
developed d&lowControldriver that handles the respective IRQs. Applications register with this
driver in order to get notified via a SIGUSRL1 signal as soon as it becomes possible to push/pull 0

into/from their pipeline.

3.5.2 Basic setup on the heterogenous platform

Our second prototype hardware platform is implemented on a Memec Design 2VP7 Evaluati
Board with a Xilinx Virtex-1l Pro FPGA and off-chip 32MB RAM, 16MB flash, a configuration
controller and several other peripherals. The FPGA includes a hardware PowerPC 32-bit big-enc
core that operates a&00M hz, which we use as the main CPU of the system. For the sofcore
coCPUs we choose the aforementioned Xilinx Microblaze architecture.

The main CPU runs the full-fledged Linux kernel ver 2.4.30. The userland includes custo
support for performing a full runtime reconfiguration of the FPGA in order to setup the coCPUs at
pipeline interconnect for a given application. The coCPUs run a simple basic I/0O system, which
developed for our own purposes. Notably, the coCPUs neither enjoy proper runtime support nor
able to access various system peripherals as with the first prototype. As a consequence, in this

also the parts of the application that need to access special devices must execute on the main ¢

69

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

This goes also for both the root and sink, which are responfbleading/unloading the pipeline

and interacting with the rest of the system, e.g., perform some I/O with devices. For this reas
they are executed via two separ®®SIXthreads on the main CPU. Last but not least, a pipeline
stage, which will potentially execute on a coCPU, may not rely on special runtime functionalit

and/or peripherals as with the first platform.

3.5.3 CPU interconnect

The Microblaze coCPUs communicate with each other on both platforms using an already st
ported fast bus architecture, called FSL (Fast Simplex Links). This is a dedicated 32-bit wi
unidirectional point-to-point communication channel, which does not need arbitration, provid
hardware support to distinguish between data and control communication, and has a 64-byte F
depth for asynchronous access. The CPU transfers data directly from the FSL to the register
and vice versa, using dedicated instructions. The current Microblaze implementation supports u
8 read and 8 write FSL interfaces, making it possible to support rather complex pipeline topologi

Unfortunately, in our second platform the main PowerPC CPU does not support FSL. For tl
reason the data transfer between the main CPU and the first-stage and last-stage coB6&UJs, or
der coCPUs, is implemented using dual port Block RAMs (BRAMSs), a special FPGA resourc
dedicated to implement RAM. One port is connected to the PowerPC PLB bus (and is mapy
accordingly) while the other is connected to the Microblaze data memory bus. This allows tl
PowerPC to write/read directly to/from the Microblaze data memory. The PLB BRAM interfac
supports burst transfers for consecutive memory addresses and can achieve a throughput of |
95M B/ sec, matching the speed of the FSL bus.

Therefore in the second platform the synchronization between the main CPU and the bor
coCPUs is achieved as follows. On the side of the Microblaze, a spinlock is located at a predefir
memory address, which is polled to detect the readiness of data. The lock is released by the r
CPU when data transfer finishes, i.e., when the root and sink threads are done writing and re
ing, respectively. To avoid polling on the main CPU, we have developed arSkSie Interrupt

Generatorperipheral which is interfaced to the border coCPUs and exports interrupt lines that a

70

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

connected to the interrupt controller of the main CPU. Theriatgs are generated by the border
coCPUs using standard FSL instructions when they are ready to accept/deliver data from/to
main CPU. On the Linux side, we have developed a driver that registers service routines for
respective IRQs. The platform-specifioshandpull implementation blocks on this signal before
performing the data respective transfer. This version is invoked from within the right code segme
at the rightmost stage that executes within the root and the lefmost stage that executes within

sink, based on the current data transfer mapping.

3.5.4 Preprocessor support

Based on the pipeline structure defined by the programmer, the preprocessor generates the i
connection topology for the main CPU and coCPUs, along with the corresponding fast bus chan
numbers and data transfer directions. Also, the high-lpushand pull annotations are replaced
with suitable calls for accessing the FSL in the context of independent stages (for the commLt
cation between coCPUs) and/or accessing the proper data memory addresses subject to the ¢
mentioned synchronization scheme (for the communication between the main CPU and the bol
coCPUSs).

The binaries for the different code segments are generated for the respective CPUs and run
environments. More specifically, the binary for the sequential stage execution within the root and
sink threads is generated for the main CPU and is linked to the proper Linux system image &
libraries, including our system-level service. The binaries for the autonomous pipeline segme
are generated for the Microblaze coCPUs and are linked with reference to their local address sy
and basic 1/0 system.

We have also developed a special platform mapper tool, which uses the initial platform descr
tion report to build a single deployment file, akin to the elf format, containing all the binaries a
well as the description for the coCPU configuration and respective stage load. The tool determi
the required local memory size for each coCPU and transforms the initial platform description fi
to a Microblaze Hardware Specification (MHS) file. This is then used by the Xilinx Platform Studit

toolchain to build all the possible platform combinations and produce respective bitstreams.

71

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

3.5.5 Hardware reconfiguration and application loading

Application loading on both platforms is done using a custom program. The loader reads the Ml
stored in the deployment file and passes respective information to the system service that is .
responsible for managing the hardware reconfiguration. If the required coCPU network is not
ready installed, the system reconfigures and resumes with the requested configuration deploye
the FPGA, properly connected to the main CPU. The FPGA runtime reconfiguration approach &
corresponding subsystem is based on existing support that we have built for the Microblaze uClir
[40] which we have ported to the PowerPC Linux environment (described in chapter 2).

When the loader is informed that the CPU network has been successfully installed, it ree
from the deployment file the binary for each pipeline stage and copies it to the system serv
address space. The latter uses the binary images to load the respective coCPUs according t
desired configuration. This is done using a simple protocol supported by a first-stage loader
have developed, which is pre-installed on the coCPUs. Once loading of the coCPUs comple
the binary for the main CPU is loaded using the standard OS procedure, and the execution of

application commences or continues.

3.5.6 System service and load balancing issues

The required service functionality, as discussed in Section 3.4.3, is implemented as a system-I
driver. The application loader is the first that connects to this driver in order register the applicati
by passing the binary format header information along with the target coCPU binary images of e
pipeline stage. Within the driver context, each application instance is associated to its configurat
data (state and measurements) via the root thread id (note that the root thread remains the s
even when changing between different task stuctures).

By default, the application is initially deployed to execute in strictly sequential mode, witl
the profiling version of thgushenabled. This uses the linux kerriakkt cpu load to record the
processing load of each pipeline stage. When profiling completes (currently this is done just fo
single iteration), the driver automatically changes the data transfer mapping of the application
use the dummyushversion. Note that the application code may ship with information about its

72

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

expected stage load (our deployment file format allows for snfciimation to be included and for
the driver to be informed accordingly). However, this may be inaccurate for several reasons, e
derived from emulation and/or different input scenarios, so that ability of the driver to profile th
application during the actual execution remains crucial.

Each time the application calisctl function, the driver accesses the linux kerkelatdata to
determine the current main CPU usage. Together with the performance profile of each applicat
pipeline, this information is used to decide about possible task restructurings to improve ovelt
workload performance. Since this function is invoked in each iteration, it cannot afford to emplc
a complex algorithm. A platform-specific heuristic is used, taking into account the possible perfc
mance heterogeneity of all the platform CPUs. The main goal of this algorithm is to offload tt
main CPU as much as possible while keeping the pipeline coCPUs loaded and synched. To ach
the latter, for a given workload, the pipeline computations that are well balanced and usually reqt
less coCPUs are fully deployed in order to maximize the respective coCPU utilization. Of cours
this approach results in uneven distribution of resources and unfair response for some applicati
but from the multitasking workload perspective the overall response is as good as it can get. N
that in cases where there are not sufficient resources, if we choose to execute the arriving pipeli
applications sequentially one after the other rather than concurrently, the overall response of
workload can be better than any other mixed execution combination because the coCPUs will
optimally exploited under the consequtive well balanced executions rather than when coCPU lo
are assigned to the main CPU. This is because when the latter is overloaded it will be unable to f
the rest of the pipeline coCPUs with data on time, which will result in respective stalls. On the oth
hand, from a user perspective and in terms of multitasking usage scenarios, the sequential exec
of arriving applications is highly unlikely to be acceptable, exactly as it happens with time-shart
general purpose systems. Itis all a matter of tradeoffs and different resource distribution algorith
can be designed depending on the platform target use.

On the other hand, when the main CPU is faster than the coCPUs other performance conce
arise as well. More specifically, in our second platform the main CPU runs at a 3 times fasi

clock rate than the coCPUs, has a more powerful instruction set and uses a separate 16KB datz

73

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

instruction cache (it was not possible to use caches in thedldiaze softcores due to shortage of
BRAM resources). As a rough conversion factor in terms of CPU performance, we use the Lin
BogoMips [41] algorithm for both CPUs on the same platform, according to which the PowerP
is 3, 71z faster than the Microblaze. Also, pipelined execution comes with additional memor
allocation and data transfer overheads. Assuming an balanced load distribution, this means the
to 3 stages will run faster on the main CPU in the sequential configuration rather than on a coC
pipeline. Of course, this situation changes as the main CPU gets loaded with additional tasks
which case it might be beneficial to deploy (some of) the application pipeline stages on coCPUs
To improve coCPU syncing and utilization, in the case where a full-fledged pipeline executic
is chosen, as an optimization, the driver gives high-priority to both the root and sink threads, «
sentially treating them as user-level interrupt routines. This is done to avoid pipeline stalls, bas
on the assumption that the bulk of processing is performed by the pipeline stages whereas the
and sink are merely perform 1/0O with system peripherals. On the contrary, if even a single pipeli
stage executes in the context of the root or sink, the driver resets the priorities to the default. It m
be noted, however, that this special treatment of full-fledged pipelines may lead dtatiiation
of the rest of the application processes, if the pipeline matches the execution speed of the root

sink on the main CPU.

3.6 Proof-of-concept applications

We have used our framework to develop and test two applications: i) a pipelined ver3iemufr,

a fixed-point version of th€®©gg Vorbisdecoder [42] targetted at integer cores and ii) a custom
ASCIll-art rendering algorithm that operates onVa N character frame and changes character
values. Both programs are written in C and already run on Linux. Next, we describe how v
partitioned the code to produce the different pipeline stages, and we separately discuss indice

measurements which were conducted on both our prototype FPGA-based platforms.

74

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

3.6.1 Profiling and partitioning of Tremor

As far asTremoris concerned first step was to compile it with profiling extensions for a norma
Linux environment and run it to decode a sample f&&U prof was used to analyze the generated
information, revealing that0% of the CPU cycles are spent on the inverse discrete cosine transfori
(DCT) related functions. The rest of the CPU cycles are spent on file processing and soundc
interaction, but on our target platform coCPUs cannot be used to reduce the execution time of te
that access system services and devices. The DCT-related processing comprises two main f
the butterflies calculations and the bit reverse calculations, which can be naturally processed
two different pipeline stages. To better balance the workload, the first calculation can be furtt
separated in two parts, giving a total of three stages. The lines of code added and the size of
transformed source is reported in table 3.1

Next, we changed th&emorsource code by removing function pointers (which are not prop-
erly handled by the preprocessor) and annotating the code to define the desired pipeline struc
The preprocessor was then used to generate executables for the emulation platform. The prof
information we got when running this code with a variety of input sample files indicated that the ro
and sink segments consum2@l; of the total workload. The three pipeline segments accountec
for 28%, 25.4% and26, 6%, respectively. Moreover, these exchanged almo%t less amount of
data with each other than with the root and sink segments, because of data (de)compression.
reported communication to computation ratid i8 = 10~2 for the root and sink program segments,
1 % 1072 for the first and third pipeline stage, ab@® * 10~2 for the second pipeline stage.

Given this profile, the pipelined version of Tremor would be expected to achieg7a
speedup on a homogeneous 4-processor system implemented on the first platform. On the ¢
hand, taking the second platform CPU heterogeneity into account, if all 3 pipeline stages are
ployed on coCPUs the expected speedup will be actually zero and equal tdote that, if for
example the second pipeline stage is deployed on a coCPU and the rest run on the main CPL
expected speedup will He062 which means that dynamic load balancing has the potential to mak
a difference. To further investigate the heterogeneous platform we have executed tremor along \

dummy workload.

75

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Application Code Changes

Tremor | ASCII-Art renderer
Total lines of code 8244 1232
lines of added annotations 15 19
lines of additional generated codle 135 147

Table 3.1: Code transformation details iaemorandASCII-Art renderer
3.6.2 Profiling and partitioning of ASClI-art renderer

In order to explore the dynamic load balancing effects on the homogeneous processor platform,
have also used the proposed framework to transform a C sequential version of aA8Qplert
rendering algorithm and execute it concurrently witemor. This algorithm operates in a loop on
an 100-character frame that resides in ram and the main computation can be easily divided to |
equally loaded parts. The lines of source changes are reported in 3.1. The root and sink segm
in this case comprise th®% of the total workload. On our emulation platform the communication
to computation ratio was = 10~2 for the root and sink segments aéié 10~2 for the rest of the
stages. Therefore, on a 5-processor system (master cpu and 4 coCPUSs) the profiler indicated
the expected speedup would be aro@ri compared to a highly optimized sequential application
with the master CPU being practically unloaded. Note that, sifée of the computation has to
precede and cannot be accelerated, the theoretical upper acceleration bound with 4 equally lo:
processors working concurrently3ssz compared to the optimized sequential version. The main
reasons for the profiler deviation from the theoretical value are the computation communicati
ratio, which is not negligible and at least 6 times higher thartrégmor partitioning case, and the
fact that the stage load is slightly imbalanced. During the deployment on the target platform \

expect the actual speedup to be slightly less than the profiler reported value.

3.6.3 Experiments on the homogeneous Platform

In the first experiment we measure the time for executing the sequential versions of the pipelir
applications that were produced using the preprocessor and compare it to the original Tremor
ASCll-artprograms. The transformed version in the case of tremor introduces an overt2e@d of

compared to the original sequential version while in the case of the renderérd¥is The main

76

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

40 T T T T T

A: CPU Intensive Task
357 |B: I/O Intensive Task

15F
101
7.15 7.07
i (W (ﬂ {w)
0 le 2xB

Isolatlon 1xA 2xA 3xA

DPlpellne Tremor
-Sequentlal Tremor| |

26. 49

Seconds
5

[$2)

1L

3xB

Figure 3.5: Performance of pipelined vs sequerramorfor isolated & mixed executions

overhead is introduced by the context queue mechanism operation which in the case of tremc
more intrusive.

We have measured the performance of the original sequential version vs the pipelined vers
of Tremorfor decoding an indicative input file holding2500 data samples (the file resides on the
flash). Firstly, we want to outline the performance impact of concurrent workload only on the ma
CPU and we use two types of dummy tasks: type A that performs CPU intensive computations, ¢
type B that performs periodic 1/0O access to the flash (reads-writeg)fag, every100ms). Note
that flash 1/0 is CPU driven, using polling, thus it also occupies the CPU. The execution time
each such task is set §secs, approximately matching the execution time of the pipelifiesimor
version. Figure 3.5 shows the times for executing Tremor in isolation as well as concurrently wi
one, two and three instances of each task type. The recorded utilization of the coCPUs (for
pipelined version) during these executions is shown in Figure 3.6.

When executing in an unloaded system, the pipelined versitnds faster than the sequential
version, which is close to th&.57x speedup that was estimated using the profiling data of the
emulation environment. The performance of the pipelined version drops when loading the m:
CPU with extra (dummy) work, with CPU intensive tasks having a more negative effect than I/
intensive tasks. This degradation is confirmed by the respective idleness of the pipeline stage:

the main CPU gets increasingly loaded, the number of pipeline stalls (failure to push data into

77

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

A: CPU Intensive Task ‘ I Jused CPU Cycles
B: 1/O Intensive Task | | X/Stage CPU No. [l Idle CPU Cycles

il .l.illli IIIIII 7
got]

% CPU Cycles
[o)]
o

12|30 2l2|[3l2] 2l3l2l2][3]1]2] 31l 2] [3l][2][3
Isolated 1xA 2XA 3xA 1xB 2xB 3xB

Figure 3.6: CPU utilization of the pipelinéidemorfor isolated and mixed executions

pull out of the pipeline) grows as well, leading to more idle cycles in the coCPUs. Notably, the ext
load on the main CPU also affects the performace of the sequential version, but (in our experime
this impact is less noticeable than for the pipelined version because dummy tasks finish before
completion of the sequential version, which can fully exploit the main CPU thereafter. Overall, tt
pipelined version outperforms the sequential version as expected, but it is also sensitive to of
tasks executing on the main CPU.

Taking a second look at the results of the pipelined version in the case of isolated executi
it can be seen that the idleness of the coCPUs closely follows the load distribution recorded us
the emulation environment for an unloaded system. However, contrary to the profiling data whi
indicate that the first stage is the bottleneck of the computation, i.e., works at full speed, in real
the first stage coCPU remains idle fa6% of the execution time. Further investigating into this
matter, we confirmed that thieot thread is burdended with extra overheads such as time consumir
memory allocation on our MMU-less platform and access to the flash (concurrently sinthe
thread), which are not captured in the emulation environment. As a consequence, the main C
becomes the actual bottleneck and cannot feed the pipeline fast enough, leading to the idlene:
the first stage coCPU. This also explains the difference between the estimated vs actual spee
Of course, this situation deteriorates as the load on the main CPU increases.

The actual performance of t#SCll-artrenderer when executed in isolation, on the 5-core plat-

78

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Pipeline Application Stage$/{ of the Total Workload) Total
Configs Trml Trm2 Trm3 Artl Art2 Art3 Artd Main Id
(14%) (12.7%) (13.3%) (11.2%) (11.2%) (11.2%) (11.2%) (X%)

Cfgl coCPU coCPU coCPU coCPU Main Main Main 48.6%
Cfg2 coCPU coCPU Main coCPU coCPU Main Main 50.1%
Cfg 3 Main Main Main coCPU coCPU coCPU coCPU 55%
Cfg 4 Main coCPU coCPU coCPU coCPU Main Main 51.4%

Table 3.2: Possible coCPU assignment configurations thateesrsdered for the concurrent exe-
cution oftremorandASCll-artrenderer.

form, verifies the previously discussed observations weémor. Originally the highly optimized
sequential version can processframes per second while the accelerated version managed to pre
ces265 frames per second. The actual speedplisz compared to the highly optimized version.
In this case, the main CPU execul@$: of the computation load at the beginning of execution and
then it remains practically unloaded.

In the context of a simple ASCII-based game, we want to exaeneorandASCll-artrenderer
concurrently. We started both pipeline versions with itietl call enabled during each iteration.
The Suzaku Xilinx Spartan FPGA, unfortunately cannot host more than 5-cores due tocBloakce
RAM resources. Therefore, the dynamic load balancing system support tries to offload the m
CPU following the previously discussed simple resource distribution algorithm. In table 3.2 w
present all the configurations that were considered by our simple algorithm. Note that the Ic
percentages for each pipeline stage and the main cpu in this table are calculated with the t
workload as a reference. The choice was configuration 1 winemeor stages are fully deployed
and the remaining coCPUs are assigned to the rest of the system. In order to have have a com
metric reference, we configured the iteratié&ClI-artexecution to last exactly the same time as
thetremorsample file sequential processing.

Figure 3.7 shows the execution times on a 5-core RPPA for all the configurations given in T
ble 3.2. The execution times of the isolated sequential and pipelined executions and concur
sequential executions of both programs are given as an additional reference. Figure 3.8 depict:
utilization of the coCPUs for all configurations given in Table 3.2 as well as the isolated pipeline
executions on an idle system. Note that the recording of the utilization for each coCPU in this figL

takes place until the completion time of the application that is using it in each configuration. As

79

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

N
o

37 37.1 [ITremor
I ASCII-Art

w
a1
T

w
o
T

26.6 27.6 27 27.6

N
al
T

I

18.518.5 18] 7

Seconds
N
=

'_\
a1
T

I

9.5 i

=
o
T

5358 7.2

a1
T
I

Isolated Mixed Isolated Mixed Mixed Mixed Mixed
SequentialSequentialPipelined Cfg1 Cfg2 Cfg3 Cfg4

Figure 3.7: Performance dremorandASCII-Artrenderer in isolated and mixed execution scenar-
ios for first three configurations of table 3.2

[JUsed CPU Cycles
100 [lidle CPU Cycles

REEERRERRREARREAIAE

§ 8o} .
I g f . .
N] i q d

> 60 : z 2 : ’
) . i])
o " 0 1 0
N] i d d
O 1 il d i

1231234 12341234 1234 12 3 4
Isolated Isolated Cfg 1 Cfg 2 Cfg 3 Cfg 4
Tremor Renderer

Figure 3.8: CPU utilization of Tremor and ASCII-Art

can be seen, the first configuration (chosen by our monitoring service) performs better for the giv
workload. It is interesting to note that the performance of the second and fourth configuratic
where the coCPUs are evenly distributed between the two computations, results in a poor per
mance which is actually quite close to the mixed sequential execution scenario (without using ¢
coCPUs at all). This is because the main CPU cannot service any of the two pipelines fast enot

so the coCPUs are underutilized resulting into a degraded performance.

80

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

3.6.4 Loading and Transition Delay

To get a feeling of the overhead caused by our explicit loading process (vs having the applicat
code pre-installed on the coCPUs as a part of the FPGA configuration bitstream), we measurec
time it took for the application loader to deploy the pipelined verdimmmoron the first prototype
platform, once the FPGA is appropriately configured. The delay recorded for tremor loading w
1190usecs while for ASCII-art renderer it was close &10usecs. As a rule of thumb, on Xil-

inx Microblaze100M hz platform the observed mean overhead was arduadsecs per KB per
coCPU for up to five coCPUs. Transition delay to a new coCPU assignment configuration in
cases depended on the amount of KBytes that had to be (re)loaded on the coCPU network and r
exceeded 2 msecs which is negligible.

It is also possible to give a lower bound for coCPU network loading, as follows. The loadin
of each word needs 1 instruction to increment the memory pointer, 1 to store data, 1 to increm
the received word counter, and one to check if more data is expected. This adds up to a total
instructions which can be executed in 5 cycles on the Microblaze (taking advantage of the datay
pipeline). A word can be transferred between two CPUs in a single cyclgyse 1) cycles are
needed for a word to reach tiéth coCPU down the pipeline. Assuming that the binary for the
ith coCPU isBi words long, the total CPU cycles required to load the entire application can b
calculated using the formula:

N
Cycles = 2(5 +1) * B;

=1

For the case ofremorand 3 CPUs, this adds up 1000 usecs Notably, this is considerably
less than the value reported by the runtime loader. We assume this deviation is due to opera
system activity during the loading process as well as the system calls used to get the timesta
and calculate the time difference, which may introduce a significant overhead when measur
small time intervals.

At this point we should clarify that we pre-configure our platform with the maximum numbe
of coCPUs needed in each platform case, with all possible interconnections, and we let the dri

ignore the FPGA reconfiguration parameter in the load balancing algorithm. Thus, the measu

81

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

times include the runtime binary loading to the coCPU netwbtk, not the time needed to re-
configure the FPGA. Despite that the latter can also be done at runtime, this involves writing t
bitstream to an external flash which is unacceptably slow and would have distorted the results

the experiments presented here.

3.6.5 Measurements on the heterogeneous Platform

To capture the various aspects of selectively deploying pipeline stages at runtime we have condu
experiments for different scenarios on a heterogeneous platform onlydomor. In all cases, the
Tremor application is supplied with the same input file that we used for the previous platfor
holding 102500 data samples. Time is measured again using the standard géitimneofdayor
response times. Power consumption is measured using a computer controlled digital multimete

In a first experiment we measure the time for executing the sequential version of the pipelin
application that is produced using the preprocessor and compare it to the original Tremor progr:
The original needed37msecs while the transformed sequential version complete@itmsecs,
denoting an overhead 6f9%. Note that the latter also performs @gtl call in each iteration.

In a second experiment we measure the execution time of the pipelined Tremor for all possi
configurations (in an idle system) and compare it with the strictly sequential stage execution. Fig!
3.9 shows the results along with the theoretically derived values. Note that the theoretical estim
fail to capture the memory allocation and data transfer overheads of the pipelined version, wh
turn out to be quite significant in practice.

In a third experiment, the pipeline Tremor is executed on an idle system, under the configurat
control of our driver. The driver profiles the application pipeline under sequential execution, at
decides to keep this configuration. This is indeed the best choice, as it can be inferred from
previous results.

In a fourth experiment, the performance of Tremor is compared in the presence of anott
(dummy) application which performs a certain number of floating point operations that requi
200msec on an idle system. The dummy application is started when Tremor has performed half

its iterations (has processed the half input). Figure 3.10 depicts the results, in terms of the respc

82

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

1.03x 1.06x
i 1x 0.99x 0.96x 0.99x
0.835 0.85x 070 0.87X |y 535y
L 79X
0.8 3 cocPU
R []2 coCcPU
go 6- l:ll coCPU
[0 heoretical
[oot
0.4f
0.2+

0 Stage 1-3 Stage 1-2 Stage 2-3 Stage 1 Stage 2 Stage 3

Figure 3.9: Performance of different configurations

900 861 B Tremor
800k 71 792 |_IDummy Task
7000
[0
(2]
£600
(4]
€ 500
—= 412
g 400(
§ 300} 280 280
[J]
® 200
1001
0 Original Tremor Runtime Restructured Fixed Pipelined
Figure 3.10: Load balancing performance
900, ERuntime Restructured Tremor
[IFixed Pipelined Tremor
800" 782 787 91 775 192
717 s
7700 088
o
g 600[
£ 500/
E
9 400+
c
o
2 300+
9]
[J]
@ 200r
100~
1 Task 2 3 4
Tasks Tasks Tasks

Figure 3.11: Load balancing performance for different nundfe€onsecutive task arrivals

83

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

14001

1290 1310
M Tremor 1

1200r [ITremor 2
A
A 1000 903 830
£ 79y 838
o 800r
£
'_
@ 600+
c
o
73
o 400f
4

200+

0 Original Original Stage 1-3 Original Stage 1-2 Stage 3

Figure 3.12: Concurrent execution of 2 Tremor instances
3500 3411

3126
30001 2842
2558
5007 I
0

Main CPU Main + 1 coCPU Main + 2 coCPU Main + 3 coCPU

Average Power (mWatts)
= [N N
o ul o ul
o o o o
o o 9 o

Figure 3.13: Average Power Consumption

84

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

times, for the original and pipelined Tremor version. Theelaig shown with task restructuring and
load balancing enabled as well as for a fixed full-fledged pipeline configuration. In the former ca:
Tremor starts to execute in sequential mode to take advantage of the main CPU, switches to a
fledged pipeline mode when the dummy application is introduced, and back again to the sequer
execution when the dummy application terminates. As it can be seen, the pipelined versions re
in better individual and overall execution times. Moreover, the dynamic version performs bett
than the fixed pipeline version, even if only marginally in this case, despite the overhead for switc
ing between different task structures and pipeline configurations. To further outline the potent
and the benefits of dynamic load balancing, we have developed a shorter version of floating pc
tasks that needg)msec to complete on an idle system. In the respective execution scenario, one
more of these tasks arrive consequtively during the Tremor execution. The next task always arri
after the previous one has finished its execution and at 1€astsec have elapsed since then. In
figure 3.11 we present the performance results for runtime restructured and fixed pipelined Trer
that execute concurrently with 1,2,3 and 4 tasks arriving consequtively within its execution. D
spite the switching overhead, dynamic load balancing optimally exploits the faster system resoul
which is the main CPU in our platform, to improve the overall workload completion.

In the last experiment, two pipelined Tremor versions are executed concurrently. The driv
following the heuristic described in Section 3.5.6, chooses the full-fledged pipeline execution wi
3 stages executing on coCPUs for one instance and the fully sequential execution of the other.
performance achieved is shown in Figure 3.12, compared to a different deployment scenario wt
the first two stages of one instance and the third stage of the other are executed on coCPUs.
performance of the concurrent execution of two instances of the original Tremor program is al
shown as a reference.

Power consumption is directly related to the number of the deployed coCPUs, as shown
Figure 3.13. Obviously, the ability to deploy coCPUs on demand, only if these can be used to bo

application and/or overall system performance, can save a significant amount of power.

85

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

3.7 Related Work

An ideal target for our framework would be the Ambric RPPA architecture [7] integrated with
master CPU that can run a full-fledged OS. Currently Ambric uses a structural object programm
model. The programmer separates the application into high-level processing objects which car
developed independently and can execute asynchronously with each other, at their own speec
their own dedicated processor core. Then the programmer defines how the objects should be i
connected to form a computational model close to a Kahn Process Network [1]. The developm
toolchain provides an emulation environment for debugging and performance estimation, as wel
tools to compile objects, configure and load the PPA network at runtime. Our framework extrac
programmer identified pipeline flows out of existing sequential applications and each independ
stage could be mapped to an Ambric object with proper backend changes. This way our appro
could be used to quickly transform existing codebase for the Ambric architecture rather than cod
everything from scratch. Moreover, the authors consider Ambric an application specific proces:
and compare it to DSPs and FPGA accelerator designs. Since Ambric building blocks are proc
sor cores, we believe that the integration of PPA functionality in an OS context is also importal
Cell processor [43] could have been another possible target for our framework. But in this ca
given that all cores, apart from private local memories, share the main system memory, the c
transformation approach can be explored in the context of more appropriate programming moc
[44] instead of distributed memory pipelines.

Another key issue when designing a multi-core platform is the selection of the application te
get group; it has been shown that applications perform poorly when executed on platforms c
tomized to speedup a different type of computations [45]. This decision is particularly importa
for non-uniform memory designs that also use distributed memory, where the processor interc
nections can be customized to achieve higher data transfer rates. Note that the problem of “o
specialization” is the main reason why the processor pipelines/arrays proposed in the 70s and
have not been considered for a wider range of computations. Reconfigurable hardware creates
opportunities to that end, namely, by deploying on demand application-specific accelerators at r

time [40]. Customized multi-core configurations, in the form of a coprocessor graph, have be

86

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

already used in digital image processing [46], software r§diid and network applications [48].
However, in all these cases, both the platform design and the program development were don
hand and were tuned to work in conjunction with each other.

Writing parallel applications for a multi-core target platform is a difficult task. There is sub:
stantial work on compilers that support imperative programming languages such as C, trying
exploit instruction-level parallelism and/or to identify independent threads of an execution at
higher level, without application-level support [49, 50]. In general, however, little parallelism ma
be achieved this way. Programming models and languages for capturing and exploiting parallel
at the application level have also been proposed. For instance, Streamlt [51] introduces a high-Ii
model which enables the compiler to automate tasks such as partitioning, load balancing, lay
and memory management. This is currently being used to program the RAW architecture [52]. !
the other hand, message-passing [53] has become widely accepted as a portable style of pa
programming, but inherits costly semantics related to message queuing and selection options w
are often not required. POSIX threads [54] can also be used to explicitly capture parallelism at
level of the application, but lack support for data parallelism and require programming at a low
abstraction level than most developers would prefer. Despite their drawbacks, these approac
have been used on both shared memory and distributed memory architectures [55, 56].

Taking a different approact®penMP[13] is a specification for a set of compiler directives,
library routines, and environment variables which can be used to specify the desired level of p
allelism. AlthoughOpenMPis typically used in shared memory systems, some extensions hay
been proposed for distributed memory systems as well [57]. Inserting annotations to build para
versions of a sequential program has the advantage of code reuse and simplicity; in many c:
the desired transformation requires minimal changes to the source code. The same annotation:
library calls can be substituted by tidpenMPpreprocessor with radically different versions or
codeblocks aimed for different platforms. Moreover, the programmer can specify and experime
e.g., via profiling, with different partitions in a straightforward way. The main drawback is tha
the programmer may have to take low-level parallelization decisions, which can be quite awkwe

and/or may hinder portability.

87

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

In [58] code annotations are proposed to achieve coarse drpipelined parallelism. A dy-
namic analysis tool is used to help the programmer balance pipeline stage workload, and the un
lying runtime support is used to fork the pipeline stages as different private memory processes
communicate vidJnix pipes. Pipeline parallelism is also exploited in [38] using the techniques o
Decoupled Software Pipelining [59], also employing thread-level speculation to opportunistical
execute multiple loop iterations in parallel and extract this way parallelism from previously ur
parallelizable loops. A special annotation is used to indicate commutative functions/actions an
hardware-based mechanism called versioned memory, similar to our software context-manager
gueue, is used to enable shared memory thread-based execution support instead of processes
approaches, assume an isolated environment that runs on a shared memory homogeneous
processor system where all the resources serve one pipelined application at a time so they are
considering any dynamic load balancing attributes and mechanisms.

On the other hand, application-level dynamic load balancing approaches have been propose
improve execution of parallel applications on heterogeneous large scale SMP clusters. In [l
OpenMP extensions are proposed that introduce dynamic load balancing attributes. These
tensions are appropriately placed inside loops that have been partitioned to exploit data pa
lelism. Each computation iteration that is assigned to a different thread is profiled by appropri
application-level support that is added by the compiler. This way every next iteration, the de
load is distributed according to the previous profiling feedback. Apart from the fact that this a
proach can be only used on applications that exploit data parallelism and requires the program
to explicitly place load balancing annotations, it also does not use a central authority to decide
plication partitioning. As we have demonstrated in the fourth experiment of the section 3.6, this
of particular importance when two or more transformed applications are executed concurrently.

In the same spirit several dynamic task partitioning methods have been proposed [61, 62] t
deal with the partitioning of unstructured mesh problems like Computational Fluid Dynamics. |
[61] the sub tasks of a computation are developed using an appropriate programming model al
software framework called Data Movement and Control Substrate(DCMS)[63], which features

extension called Mobile Object Layer(MOL)[64] that enables transparent task migration betwe

88

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

processors at runtime. The authors have extended the MOL pbard have added appropriate
load balancing routines that communicate with respective runtime support. The system feature
plugin interface so the programmers may define their load balancing algorithms depending on tt
target cluster platform. While the main principles of this design are close to ours, tasks are |
migrated and not restructured and, moreover, explicit load balance related calls must be added
invoked respectively at the application level.

Task dynamic partitioning support that enables load balancing at runtime has been prover
achieve good performance on Multiple Instruction Multiple Data (MIMD) targets. In [65] the au:
thors have implemented in the Mul-T[66] runtime system support that enables parallel tasks
execute either independently or in the context of a few system tasks based on the resource a
ability. As in our approach, the programmer is expected to identify and expose parallelism withc
worrying about the granularity while the system limits parallelism to meet platform capabilities
Their implementation futures Lisp constructs that must be used to define independent execu
entities and is tightly integrated with Mul-T runtime design and their target platforms ALEWIFE
and Encore Multimax. This approach is primarily targetted at parallel algorithms that are natura
expressed at a fine level of granularity which is typical workload for MIMD architectures and doe
not consider pipeline applications. Moreover, the partitioning decisions are application driven a
they no central coordination authority is employed to deal with the case of applications that exec
concurrently.

In [67] a different approach is proposed to improve load balance performance. The authe
identify as a basic parallel application performance problem the assumption that all platform pi
cessors are fully available to perform a given computation. To solve this, they present a user-le
task scheduler that schedules tasks onto a fixed collection of processes which the operating sy:
kernel further schedules onto a fixed collection of processors. The proposed scheduler implem:
the work stealing algorithm[68] where each process is assigned a pool of independent tasks to «
cute one-by-one. When a certain task pool is depleted, the process steals threads from the neigf
pool.

Programming models and languages for capturing and exploiting parallelism at the applicat

89

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

level have also been proposed. For instance, Streamlt [Sbpimtes a high-level model which en-
ables the compiler to automate tasks such as partitioning, static load balancing, layout and men
management. This is currently being used to program the RAW architecture [52]. In this case,
our knowledge, dynamic load balancing has not yet been considered.

With the advent of softcore instruction-set processors that can be deployed on reconfigura
hardware new multicore processing opportunities arise by enabling the building on demand as v
as the runtime deployment of application-specific cpu types and platform configurations[40]. Su
customized multi-core configurations, in the form of a coprocessor graph, have been already u
in digital image processing [46], software radio [47] and network applications [48]. However, in a

these cases, both the platform design and the program development were done by hand.

3.8 Summary

We have presented load balancing support as part of a framework we have developed to transt
sequential applications for pipelined execution. Our primary motivation for this work is to ex
plore the potential of parallel processing on RPPA configurations that can be used in the cont
of multitasking. To that end, we preferred pipelined parallelism because all computations can
transformed, to a certain extend, for pipelined execution and moreover, for obvious reasons, it
more suitable concept for the use of heterogeneous cores on-chip.

Embedded systems require flexibility at all design levels, and therefore reconfigurable ha
ware designs combined with a general purpose runtime are good candidates even for comme
solutions[20]. Our vision is to have such a system where all userland applications have the ability
deploy stages of execution to dedicated and appropriately customized processor cores and, ta
end, support for dynamic load balancing and corresponding selective stage scheduling is of mi
importance because it enables effective resource usage.

Our approach is in line with the principle of letting the programmer specify the maximun
parallelism at the application-level, while making system responsible for deploying the code
the best possible manner, depending on the underlying platform characteristics and the cur

execution context. To that end, we have strived for a generic design that can be ported/applie

90

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

radically different platforms using appropriate backendsvéitheless, the dynamic load balancing

support that we have presented here can only be realized via offloading of stages onto the n
CPU. Groups of sequential independent stages cannot be assigned to the same coCPU (only c
allowed) and cannot be migrated in this manner at runtime. This inefficiency is because the soul
level restructuring is very complex cannot be efficiently extended to support more radical dynan
load balancing scenarios. In the next chapter we present a new model that has been design

inherently support dynamic load balancing.

91

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Chapter 4

Pipelt Framework for RPPASs

This chapter presents tRépeltframework for developing pipelined applications targeted at tightly-
coupled PR processor arrays on-chip. Contrary to our previous openMP-style appgPgaaih,
programming model design is targeted at the development of highly optimized applications f
RP processor arrays and as a result has a steeper learning curve for developers with experi
on the sequential programming style. The framework includes a component programming &
wiring model, a runtime environment, and a corresponding toolchain. It enables the programme
develop applications in a high-level manner, structuring the code at the finest possible/meaning
level of granularity, without caring about how this will actually be deployed and executed. Th
runtime environment dynamic loading mechanisms can take advantage of the a\Ripehistub

to evenly distribute the pipeline stages among available resources and dynamically change
arrangement on demand when anotRgrelt application needs to be executed concurrently. As
a proof of concept, we discuss the development of a fine-grained pipeline for the computation
Secure Hash Algorithm (SHAL), its integration wiflnyptolibrary, and execution combinations of

this code on a Suzaku-based RPPA platform in the multi-tasking context of a uClinux environme

4.1 Introduction

The promising performance gains combined with less physical limitations and better financial sc

ability, have motivated researchers to improve all aspects of multicore computing. While high-e

92

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

computing remains the most obvious area of application, ourkts are rapidly becoming main-
stream in conventional user desktops as well, even in embedded system solutions [7].

There is a variety of approaches at the architecture level, ranging from loosely-coupled pi
cessors interconnected via ethernet on different nodes, on the same board or even the same
to tightly-coupled processors on a chip that are typically assigned with dedicated tasks of a lar
computation and are connected together via a bus or high end dedicated links without any arbi
tion [7]. Platform differences in conjunction with the wide polymorphism in terms of applications
that seek for parallelization opportunities also lead to a variety of partitioning and communicatic
schemes. In turn, these can be supported by different tools. Of course, the type of computa
at hand may naturally favor a certain scheme, making it more appropriate for extracting the m
amount of parallelism. Hybrid system configurations, for example a cluster of Cell Blades [4-
where each node features several Cell processors which in turn feature several cores on chip, il
duce additional challenges. The effective partitioning and deployment of an application on suc|
target platform requires the synergistic use of more than one programming approaches.

Another important aspect is whether a multicore system is used in a dedicated fashion, ol
the context of an open computing environment. In the former case, the optimal partitioning of t
computation that will lead to the best possible performance (given the available system resourc
can be decided at the design phase. On the contrary, in the latter case, new tasks may appear ¢
point in time during execution and the available resources must be used opportunistically to bo
overall performance, necessitating their redistribution each time a new task arrives.

In this Chapter we present th&pelt framework which provides support for building and de-
ploying application-specific pipelines on tightly-coupled distributed memory PR processor arrays
in the context of a general-purpose computing environmeétipelt includes a component and
wiring model, a runtime backend that is appropriately customized for and integrated with the e»
cution environment, the platform processors, and a corresponding front-end compiler that gener.
the ultimate source code and build scripts, so that a regular toolchain can then be used to proc
proper executables. Finally, a custom loader that is aware of the target platform available resoul

is used to deployipelt application stages at runtime. This initial arrangement can be changed

93

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

any point in time.Pipeltis designed for open, best-effort computing systems, where the workloa
is not a priori known.

The main additional contributions of this programming model are: i) the modular applicatio
design approach that enables the reuse of basic/common pipeline structures; ii) support for sean
pipeline execution, while the underlying runtime may use a provided stub to dynamically reassi
stages to available cores on demand and thus rearrange the dataflow inside the PPA according
current execution context with minor overhead; iii) the ability to invoke a pipelined computatio
via a simple library call from within a conventional application; iv) a prototype implementatior
of all the development tools together with an emulation environment for debugging and access
expected performance of the pipelined computation; and v) a proof-of-concept implementation

a well-known application on an FPGA-based PPA prototype.

4.2 Application Domain and Target Platforms

With Pipelt we wish to support the development of pipelined computations that perform CPLU
intensive data transformations and operate on data block streams. Indicative cases are block ci
algorithms for encryption or authentication, data (de)compression algorithms that are widely us
in data storage, and encoding algorithms for video or audio.

The target platform is distributed memory, tightly-coupled RPPA systems on-chip [7] aimed ft
general purpose everyday use, such as desktops or embedded devices. These platforms typ
feature reconfigurable, ultra fast and dedicated interconnections that introduce a small overh
for data block transfer. However, the local memories of processing elements can host only a 1
Mbytes of data. This configuration does not allow the PPA cores to be used in the typical tim
shared manner like most shared memory multicore platforms. Therefore, PPAs are currently u
as dedicated coprocessors that may carry out one large computation at a time that is typically divi
in an a priori known number of tasks which are statically assigned to an array processor. We beli
that RPPAs with appropriate support may also be used as a main processing element in a dyn:
environment to carry out general purpose workload.

We assume that either an external processor or a special processor on the RPPA plays the rc

94

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

the platformmaster. This distinct processor is interfaced to all platform peripherals, runs a prope
OS/runtime, and configures the (rest of the) arrays to setup application pipelines as desired. It r
also be responsible for pushing data into and pulling data out of the pipeline during execution,
case this cannot be done by any ordinary array processor, e.g., if array processors have no acce
the main memory and I/O peripherals.

In the general case, several pipelined applications may execute concurrently to each ot
Pipelined applications may also execute concurrently to other conventional (sequential) appli
tions, which run on the master processor. Notably, some sequential applications may contain p
that are implemented as pipelined computations and which can execute on the processor a

subject to resource availability.

4.3 ThePipelt Framework

To enable structured development of pipelined applicati®gelt adopts a component model.
Each component represents a pipeline stage that ideally should be executed using a separate
cessor. Components have a fixed number of input and output ports. They can be wired togethe
the form of a directed graph, linking together output ports with input ports in a point-to-point fast
ion according to the desired data flow. The wiring of components is practically orthogonal to the
implementation, and it is specified in a separate so-called configuration file. Basic checking is dc
to make sure that interconnected ports provide/expect data objects of the same size (in princip
is possible to add higher-level type checking too, but we have not done this).

During execution, each component blocks until data is available at its input, processes data,
writes data to its output, in an endless loop. The only component that has no input ports, i.e., d
not wait for data to arrive from another component, is the pipeline entry point, caldédlheroot
component typically reads data from an external source, such a file, special memory location ¢
special device. Similarly, the only component that has no output ports, i.e., does not send dat
another component, is the pipeline exit point, caetk which typically writes data to an external
destination. The root and sink both run on the master processor (using two different threac

enabling the seamless integration of the pipelined computation with the rest of the application &

95

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Configuration
Arguments

Component
Class S2(2,4)»—

Root() »

Sink() ¢L suy)”

Pipelt >

Output Port

T S3() »—
Pipe/i‘/t
Runtime Input Port

Classes

Figure 4.1: An indicativd’ipelt configuration

system.

Figure 4.1 illustrates a sam@kepeltpipeline. Notably, itis possible to have branches in order to
introduce data parallelism inside the pipeline or to support different, mutually exclusive, processi
paths.

The performance of a pipelined computation is obviously dominated by its slowestBtpgk.
provides an emulation environment for executing pipelined computations to get feedback about
amount of communication and processing performed by each component. This information can
used to restructure the pipeline (components and wiring) in order to achieve a better balance.
developer is free to introdu@s manyomponents are needed to strike a good compromise betwee
the desired level of granularity and an attractive computation-to-communication ratio. Obvious
the bigger the pipeline length, the greater the potential for accelerating the computation (provic
that all components perform a comparable amount of processing).

At design time, one naturally assumes an unloaded system. In fact, it is not even necessary tt
spect the resource limitations of the target platform, even if these are known; still, having too ma

components compared to what the system can actually support is non optimal because it introdt

96

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

some extra communication overhead. Of course, at the timesgixion, there may not be as many
processors available, either because the system does not have them in the first place or bec
some processors are already being used for other applications (note that the latter is impossib
know in advance). To deal with this probleRipelt provides support so that the pipeline can be
dynamically balanced, arranging for some components to be executed in a co-located fashion or
same processors, trying to evenly distribute load among the available PPA cores. When resou
are freed, the reverse restructuring may occur, i.e., co-located components can be distributec
execution on separate processors, again, provided this will result in a performance boost. Ol
ously, the dynamic load balancing policies that can be used may vary according to usage scena
Pipeltprovides support to the underlying runtime so that the PPA cores may be redistributed amc
pipeline stages and therefore makes seemless pipeline runtime load balancing possible. Explc
dynamic load balancing policies is beyond the scope of this dissertation.
The following subsections discuss the most important aspects &fipledt framework in more

detail.

4.3.1 Component and communication model

A Pipeltcomponent is coded as a C++ object, in a separate file with the same name. Each con
nent class must be defined as a subclasswfitime typeclass, which features two virtual functions,
configandexeg that must be overloaded.

The configfunction is called only once, before the actual execution commences, and must
used to declare the ports of the component and initialize its internal state. Different configurati
strings can be passed to each component, making it possible to implement very flexible initializat
schemes, and allowing for component classes to be easily reused in the same or drffezént
applications.

The execfunction must contain the component’s data transfer and stage processing code. |
invoked repeatedly during execution from within tBgelt runtime, in an endless loop.

Data transfer is performed using thgut and outputfunctions. These are inherited from the

base runtime type class, and are transparently mapped to the communication primitives of the

97

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

spective processor runtime environment. Ports are addresseg a simple numbering scheme
which is mapped by th@ipelt framework to the target-specific addresses. In a nutshell, compo
nents receive and send data using the absBigpelt primitives and port ids without caring about
the underlying implementation or the physical location of neighbor components.

Memory allocation of data buffers must be done usinggdipelt mallocfunction provided by
the runtime. This is necessary becat$gelt needs to control data access and transfers in ordel
to perform component migration safely during pipeline restructuring. For the same reason, stz
declarations of data transfer blocks are not allowed.

As an example, we give the code of a simplpelt component that receives an integer from its

(single) input port, increments it, and forwards it to its (single) output port:

int « data;

class Inclnt : public PipeltOs

{
public :

Incint() {:;}

/I« overloaded functions followsx/
void config(int argc, char xargv[]) {
data = pipeitmalloc (sizeof(int));
pipeit_add_input (0, sizeof(int));
pipeit_add_output (0, sizeof(int));
}

void xexec(void *d, int size) {
pipeit_.input (0, &data, sizeof(int));
xdata = xdata + 1;
pipeit_output (0, &data, sizeof(int));
}

I

Data is passed from one component to another by writing it mggtoper output port and read-
ing it from the proper input port, respectively. However, some variables may need to be acces
only between the root and sink components, hence need not travel through the entire pipeline
separate mechanism, called tentext queueis employed to keep track of these values in synch

98

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

with the pipeline. Before writing data into its output, the radds a context entry with the proper

values, and, conversely, the sink removes the next context entry before attempting to read data f
its input. In our current implementation, where the root and sink both execute on the master p
cessor via two different threads, we use a shared FIFO queue. This is similar in concept with
so-called versioned memory introduced for shared memory multiprocessors [38]. Obviously, a ¢
ferent implementation would be needed if the root and sink were to execute on different process

with separate memories.

4.3.2 Runtime classes

Pipelt introduces runtime support mainly for two reasons: i) to confine the programmer durir
the development of a component to the execution context and available resources of the ta
environment; and ii) to be able to perform dynamic pipeline restructuring at runtime in a seamle
way.

There are two radically different execution environments, the master processor which run:
proper operating system, and ordinary RPPA processors running a small basic I/O system (BI(
that is a custom implementation. In both caBgselt adds a thin layer providing a set of generic
data transfer primitives, optimized for the respective environment. This allows components to
implemented in an abstract fashion without really caring about their mode of execution.

Similarly, there are 3 differemtintime typeclasses, iPipeltOSii) PipeltBIOSand iii) PipeltOSLib
which can be used to develop components. Each reflects a different flavor of the ¢apeltioun-
time support, discussed in more detail in the sequel.

The PipeltOS class is used for components that will execute on the master processor, ha
access to the full functionality of a proper OS. This runtime class is used for the root and sil
components, which may contain system calls and access peripherals. The code generated ir
case has the form of an autonomous executable for the master processor linked against the
runtime, using a separa®OSIXthread for running each component.

The PipeltBIOS class is aimed at components that should run on ordinary array cores on toy

the Pipelt BIOS. In this context the programmer may only perform CPU intensive computation:s

99

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

read data from input ports and write data to output ports. E@as attempts to use a (non-existing)
runtime feature will cause the compilation of the component to fail. The default for such comp
nents is for them to execute on a dedicated array core. However, as a result of pipeline restructur
several such components can be placed on the same array core or even on the master process
Finally, the PipeltOSLib class has a similar functionality to PipeltOS, but it does not result i
the generation of an autonomous executable. Instead, it produces code that enables the pipe
computation to be invoked from within an external application context, much like a library. In thi
case, the root and sink components must establish an appropriate communication with the app
tion, based on the arguments of ttenfigand/orexecfunctions. In principle, any mechanism and
protocol can be used for this purposgfelt makes no assumptions about this). As a single conven:
tion, the application must invoke a routine following a simple naming convention, which initialize
and spawns th@0SIXthreads for running the root and sink, before attempting to communicat

with them.

4.3.3 Configuration language

The wiring of eachPipelt computation is specified in a separate configuration file, using a simpls
syntax. Configurations are expressed in terms of 3 main elements: component declarations,
connections and composites.

Components are declared by the class names used in the respective implementation files
configuration string may optionally be used to convey initialization information to the instanc
being declared. Configuration strings are not interpreted by ijpelt framework; they are passed
“as is” to the respective components, via a call todbefigfunction. If a component is referenced
only once, there is no need to explicitly declare it, and the class name can be used instead.

Input ports are denoted by placing the respective number in brackets on the left hand side
component name, while output port numbers are placed on the right. Each connection is denc
by a right arrow, starting from an input port and pointing to an output port.

To enhance the structure of complex computations, and to enable the reuse of common ¢

structures (in the same of even different configuration files), configurations have to be grouped i

100

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

so-called composites. A composite can have an arbitrarilypbexrstructure. To the outside, it
merely exports its input and output ports, i.e., appears just like an ordinary component. There
currently no support for nested composition.

Composites have a so-called execution type, for which there are two optionBigeitMaster
type is used for composites that will run on the master processor; their components must ext:
the PipeltOS or PipeltOSLib class. TRegeltArraytype is used for composites that should run on
ordinary array cores, and all of their components must exteniffedtBlOSclass. A configuration
file must have exactly oneipeltMastercomposite, which contains the root and sink of the pipeline.
It can have one or moreipeltArray composites, depending on the complexity of the computation.

Below we present a formal description of tRgeltlanguage:

/«*Component Declarations/

name :: classname(config);
[« multiplex/
namel, name2, ..., nameN :: classname(config);

/«or standalone (demonstrated at Connectiond)
classname (config)

/[« Connections/
classnamel [portID]— [portID] classname?2;

/[« Composites/
PipeltArray namel {
input [portiID] —
Component Connections
—> [portIiD]output ;

}

PipeltMaster master {
output[portiD]—>
PipeltArray Composites
—> [portID]output;

and small example that demonstrates the regular use:

PipeltArray IncIntTwice {
inc :: Inclint();

101

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

input [0] — [O]inc;
inc[0] — [O]IncIint()[0] — output[0];
b

PipeltMaster MyApp {
r :: MyRoot("42");
s :: MySink();

r[0] — output[0];
input [0] — [0]s;
}s

MyApp[0] — [O]IncIntTwice;
IncintTwice [0] — [O]MyApp;

This application is based on two composites to increment agéntvalue twice. Théncint-
Twicecomposite of type PipeltArray uses two appropriately connected instanceslonEtheclass
(defined previously) to do the job. Once instance is declared explicitly while the other is declar
implicitly, via the class name. ThdyAppcomposite of type PipeltMaster containdgRootand
aMySinkcomponent (code not shown here). Note that local (intra composite) connections are «
clared within the respective scope, while global (inter composite) connections are defined at
end of the configuration file. The keywordgut and outputare used to refer to the input and
respectively output ports of the composite. In this case, the computation takes its input via the ¢
figuration string passed to thdyRootcomponent, hence tHdySinkcomponent will receive the

value 44.

4.3.4 Dynamic load balancing support

Ideally, the developer specifies the pipeline structure based on the assumption that all the con
nents (stages) of the pipeline will be executed on a dedicated array core. Unfortunately, this
not guaranteed in an open, general purpose computing system. On the one hand, the actual t
platform may not have as many array cores. On the other hand, some of the array cores ma
used by other programs when the application starts running. It is also impossible to predict w
tasks will arrive or finish during its execution. As a consequence it may not be feasible to keep 1

full-fledged pipeline structure, as this was originally defined by the programmer.

102

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

To enable the execution of pipelines, as efficiently as pasdibelt comes with built-in sup-
port that enables dynamic load balancing. Specifically,Rlpelt runtime can seamlessly place
components on the same or different processors to evenly distribute the processing load on
available resources. In order to keep things simple and efficient, pipeline restructuring obeys
following rule: if two components are to be placed on the same processor, then every compon
between them must also be placed on that processor. This is because components can be onl
ecuted sequentially, not in a time-shared manner. Notably, the most extreme option is to place
components on the master processor. To illustrate this, Figure 4.2 shows all allowed configurati
for a pipeline with 4 components, including the root and sink.

AppropriatePipelt support has been developed to perform this restructuring in a transpare
fashion and to achieve an efficient execution of co-located components. The ultimate partition
decision has to be made by the underlying runtime. On each procBgselt,uses a simple sched-
uler to execute all co-located components sequentially. The components to be executed locally
specified using a so-calléélomponentExecutionMap. The map of each processor is set by speci
profiling code that runs on the master processor (discussed in the sequel) and is sent to the respe
processor using a simple dissemination protocol.

No actual data transfer is performed between co-located components. Instead, both ends of
local link share a data buffer which is accessed from within the respective I/O calls (no synchi
nization is needed since execution is sequential). The I/O behavior of each component is contro
transparently via a so-calld®@Map, which indicates whether th@put and outputcalls should
perform a remote or local/virtual data transfer. The same execution and data passing model is
supported in the context of the root and sink threads, allowing for components to be placed on
master processor and for them to be executed in the context of either thread, as needed. More
in the case where it is decided that all components have to execute on the master processo
optimized version of the sequential execution of the computation may be explicitly coded by tl
developer. This way the overhead of the indiregtelt scheduler invocations which is increased
along with the finer component granularity will be avoided for the sequential execution.

The initial structure of the pipeline is established as follows. When the computation is fir:

103

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

) Transformed Sequential

(B) Deploying Stage 1

CPU
compl();

(C) Deploying Stage 2

comp2();

(D) Deploying Stage 1,2

CPU
compl();
comp2();

(E) Deploying Stage 1,2

CPU
compl();
CPU

comp2();

Figure 4.2: Configurations for a pipeline with 4 components

104

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

deployed,Pipelt runs the pipeline for a number of iterations (defined by the user during compi
lation) sequentially on the master processor. During this initial execution phase, an appropriat
instrumented version of thexeccall is employed, through whicRipelt collects information that
can be used to estimate the processing overhead of each component. Next, the optimal compc
placement scheme that will be used given the available number of processors that is provided by
runtime is decided. Then, the required processors are allocated and the application code along
the correspondin@omponentExecutionMagnd componentOMapsare loaded, and the pipeline
is ready to accept data.

The pipeline can be restructured at any point in time during execution. This makes it possil
to adapt to changing workload conditions, exploiting processors that become available or releas
processors for the benefit of other applications. Moreover, if the master processor gets loaded (
with other conventional applications) and some pipeline components are executing on it, these
be offloaded to array processors if available. In order to guide load balancing, a correspond
system service must be inquired periodically to provide the most appropriate pipeline structu
Since frequent monitoring introduces considerable overhead, the rate can be explicitly enablec
the programmer when compilingRipelt application. If the system decides that a new structure
is beneficial,Pipelt updates the&ComponentExecutionMagnd componentOMaps pushes this
information downstream (instead of actual data), and proceeds with the normal pipeline executi

Figure 4.3 shows two indicative configurations for an application with 5 components, togeth
with the corresponding data transfer and execution mappings. In first case (A) all compone
execute sequentially on the master processor, and communication is done using shared buffer
the second case (B) the third component is set for execution on a array processor, and the ot
mapping of the second component as well as the input mapping of the fourth component are se
invoke the appropriate communication primitives to send/receive data between the master proce
and the array processor. All other communication remains local, within the context of the root a
sink component, respectively. In the same spirit, (C) depicts the deployment of second and tf

component on distinct array processors. The mappings and memory use are accordingly adjus

105

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

IOMap (IOM) ComponentExecutionMap (CEM)

A
) QD@ Ro|S1| S2|S3|Si [] Virtual Transfer
root compl| lcomp2 comp3| | sink
Pipelt Runtime
B) oM CEM Ro thread CEM Si thread
root compll]comp3 \ sink \
IOM CEM
mE (s
\
Pipelt Runtime » Pipelt Runtime . Real Transfer
[] Virtual Transfer
C) IOM CEM Ro thread CEM Si thread
Ro | S1 Si
mOom
root compll sink
]
CEM IOM IOM CEM

mm

0] D mmLC

-ﬁ t-

Pipelt Runtime

Pipelt Runtime

J

Pipelt Runtime

B Real Transfer

[] Virtual Transfer

Figure 4.3: Structures for supporting pipeline restructyirin

Institutional Repository - Library & Information Centre - University of Th
12/05/2024 05:02:55 EEST - 3.145.62.240

106

essaly

4.3.5 Application development and tools

The developer must first provide at least the skeleton for each component (a separate file for €
component class) that will be employed, and then write the application configuration file. Tt
Pipelt compiler parses the file, creates the appropriate data structures used to configure all asf
of the pipeline structure, and generates corresponding flavoyipeit.hfiles, to be included by
convention in each component implementation. These header files contain static declarations of
ious required variables, including the transfer bitmaps and profiling structures, as well as supy.
structures for the mapping of the port numbers to the actual platform-specific addressing primitiy
that will be used by each component. If the target platform features hardware-level reconfigura
interconnections between processors, the compiler must be changed to produce the necessary
figuration support.

The next step is to creataakefileghat will be used to invoke the regular C++ toolchain for
the target platforms as well as for tRgpelt emulation environment (see below). As a final step,
the executables are placed in different folders depending on the platform target, and the scripts
deploying the application are generated. From that point onwards, the rggulaakesnvironment
will take over.

The default configuration produced by the toolchain is to produce code for all components
execute on the master processor environment, and for all components except the root and sir
execute on an ordinary array processor environment. The compiler also accepts a hint in te
of meaningful component co-location for the case where there are not enough array processot
array local memory is not enough to host copies of all components; in the latter case, differe
executables will be generated for different sets of array processors.

The Pipelt toolchain can be used to generate executables for emulated execution on a Lir
host. This is achieved by switching the backends of the runtime classes so that they can exe
on a usual Linux runtime environment. In essence, the master and array processors are emu
using independent processes while component interconnections are emulated via unix named p
When the application is started in emulation mode, the user must specify the desired numbe

processors to use (in the extreme case, as many as components).

107

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Running an application in emulation mode considerably sifreglidebugging. Moreover, it
enables the use of sophisticated profiling tools keof to decide a good partitioning of the com-
putation which will also take advantage of the dynamic load balancing support. Another major m
tivation for using the emulation mode is to assess the expected performance on the target platf
for various configurations. Of course, if the emulation host has a radically different architectu
from the target platform, it might not be possible to make an accurate estimation, but the profili
results may be further evaluated if the developer knows the performance difference factor betw
emulation and target platforms. Of particular importance is also the estimation of the computatic
to-communication ratio, for both local/virtual and real data transfers, which becomes increasing

relevant as the pipeline granularity (and length) increases.

4.4 Proof of Concept Prototype and Applications

As a proof of concept, we use a custom RPPA system, implemented on a FPGA as a system-on-(
for which we have built appropriate backend support intoRheelt framework. In this section, we
discuss our prototype as well as indicative experiments that have been performed using pipeli

versions of well-known applications.

4.4.1 The platform

Our prototype PPA platform is implemented, again, on the Atmark Techno Suzaku [20], whic
features a Xilinx Spartan 3 FPGA along with off-chip 16MB RAM, 8MB flash, a MAC core and
a configuration controller. For all processors (master and array cores) we usiirikeMicrob-
laze soft processor, a classic 32-bit RISC architecture, with 32 general purpose registers anc
orthogonal instruction set, having a 3-stage instruction pipeline with delayed branch capability 1
improved instruction throughput. The platform was developed using the Xilinx Platform Studi
toolchain version 6.3.

The entire system is implemented on the FPGA. The master processor is interfaced to all p

form peripherals and is responsible for running a customized version afGheux embedded

108

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

operating system [39], achievir®y.29 BogoMIPS The array processors have access only to their
local memory and are connected to each other and the master processor using FSL links. U
special support which we have developed in previous work [40], it is possible to dynamically rt
configure the system to instantiate different configurations (in terms of numbers of processors
topologies). In our experiments, we use a pre-installed configuration with 5 processors (1 mas
and 4 array cores) with the appropriate interconnections, which takes up all the resources of
FPGA.

As we have outlined in Section 4.3.4, tRgeltruntime needs to know the available processors
in order to decide about the component placement scheme. For this purpose we have devel
a simple runtime service that keeps track of the available PPA cores as well as the utilization
the master processor, and provides this information tdPipelt runtime on demand via thgroc
filesystem. The service does not employ any sophisticated load balancing policy because we d

intend to investigate load balancing policies in this work.

4.4.2 Applications

As a proof of concept application, we have implement&uleelt version of the Secure Hash Algo-
rithm. We also reused this implementation, in library mode, to develop an application that perfort
the HMAC authentication. In turn, we have integrated this functionality ircthenSSlibrary and
deployed it on our target.

Looking at the sequential code of SHAL it is straightforward to come up with an appropr
ate pipeline structure. The code invokes sequentially 80 times 4 different types of functions tl
perform the same amount of computation on the given data block. Hence, the obvious pipel
structure comprises 6 components, namelyt, one component for each function type, aiok
Below, we list a simplified version of the source code of the component that is responsible f

performing the processing of the first function:

class RO: public PipeltBIOS

{
public :

109

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

RO(){;} "ROO){:}
struct Data x d;

void config(char % args) {
d=pipeitmalloc (sizeof(struct Data));
pipeit_add_input (0, sizeof(struct Data));
pipeit_add_output (0, sizeof(struct Data));
parseargs (args);

}

void exec (void) {
pipeit_input (0, (void x)d, sizeof(struct Data));
ROCalc (d+argl, d+arg2, d+arg3, d+arg4, d+arg5,
pipeit_output (0, (void *)d,sizeof(struct Data));

I

offset

The configuration file, for linking together 80 such componessvell as the root and sink,

properly configured and in the desired order, is as follows (in this case component declarations

implicit, instead class names are used directly for brevity; this is in fact valid configuration synte

which is quite useful if a component is referenced at only one location):

PipeltArray SHAl {

input [0]

~~ [0]RO("a b ¢ d e 0")[0]
—~ [0]RO("e a b ¢ d 17)[0]
_~ [0]RO("a b ¢ d e 157)[0]
—> [O]R1("e a b c d 167)[0]

>~ [0]R1("d e a b ¢ 17")[0]

_~ [0]R2("e a b ¢ d 317)[0]

—> [O]JR4("b c d e a 64")[0]
—> [O]JR4("a b ¢ d e 65")[0]
—> [O]JR4("b ¢ d e a 79")[0]
—> output [0];

110

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

PipeltMaster SHA1App {

SHA1Root() — output [0];
input [0] — [0]SHA1Sink ();

I

SHA1App[0] —> [0]SHAL;
SHA1[0] —> [O0]SHAlApp;

We used thdPipelttoolchain to build the SHA1 transformer. We initially run a simplified ver-
sion of the pipeline, with only 6 components, in emulation mode. As a data input we used a varie
of statically declared blocks in an endless loop. The profiling data indicated that the overhead
local I/0O corresponds td4% of the total amount of processing. This was expected, because eax
component performs just few operations. Actually, this overhead becomes even more notabl
compared to theipelt SHA1 implementation to the original implementation of eyptolibrary,
which used loop unrolling and inline invocation.

At this point, one could revisit the defined pipeline structure to create a coarser partitionit
which would be less I/O intensive. On the other hand, this would reduce flexibility in terms of loa
balancing. The final decision is for the developer to make and is all a matter of tradeoffs.

The HMAC computation can be expressed as a function of the SHA1 computation, as follow

hmac = shal((K @ opad)||shal((K @ ipad)||msg))

where shal is the cryptographic hash function, K is a secret key padded to the right with ex
zeros to the block size of the hash functionsgis the message to be authenticatgdjenotes
concatenatiornsp denotes exclusive or (XOR), the outer paddopad equals0z5chehe..5¢5¢ and
inner paddingpad equals0x363636..3636 (both are two one-block-long hexadecimal constants).
Despite the fact that two consecutive SHA1 computations are needed, it is the inner invocation
actually performs the heavy work to create the message digest. The outer invocation perforn
single iteration because by conventigmadsize is equal to one SHA1 computation blocksize. For

the HMAC implementation we use a different configuration file teaseghe previously described

111

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

SHAL1 implementation as follows:

PipeltArray SHA1 {
input [0] —> output[0]

b

PipeltMaster HMACApp {
HMACLIibRoot () —> output [0];
input [0] — [O]HMACLIibSink ();
I

HMACApPp[0] —> [0]SHAL;
SHA1[0] —> [O]HMACApP;

We have integrated tHeipelt version of HMAC intoCryptolibrary so that it can be used from
well known applications like secure copy (scp).

Note that several applications might wish to execute the same typePgdedt computation
(e.g., HMAC) at the same time. If there are enough resources, several different pipelines will
deployed on the PPA. Else, some computations will be performed on the master processor, u:
a fully “collapsed” pipeline structure. This is what happens in our prototype platform, which ha

very limited resources indeed.

4.4.3 Experimental results

We firstly deployed théipelt version of SHAL on the our prototype platform, as an autonomous
executable. Then we created a simple application that callRiyedt version of HMAC via the
Cryptolibrary. The HMAC keys are set once, at the beginning of the computation. Both applic:
tions feed a variety of predefined blocks of data in an endless loop.

For both applications, we have performed measurements for the case where: i) the pipeli
computation runs only on the master processor; ii) 4 processors are used to run the pipelined c
putation, whereas the master merely runs the root and sink components; and (iii)) 5 process
including the master are used to run the pipelined computation. In all cases, the system was
loaded, i.e., there were no other active applications running at the same time. (iv) Two instan

of the SHA1 computation are executed concurrently. The 4 CPUs are evenly distributed amc

112

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Computation| original | Pipeltseq| Pipelt4 CPUs| Pipelt5 CPUs
SHAl 55.2Kb/s | 43.1Kb/s 156kb/s 192.7kb/s
HMAC 54.1kb/s | 42.8kb/s 154.9kb/ s 191kb/s

Simultaneous Execution of 2 Instances
SHA1 |Instance 1] 76kb/s | Instance?2 | 76kb/s

Table 4.1: SHA1 and HMAC performance on the prototype platform

these two instances (each one is assigned 2 CPUs) while the main CPU is occupied with root
sink components only. Notably, the second instance arrives after the execution of the first one
started using all the available CPUs. In this experiment the platform is reconfigured at runtir
to form different CPU interconnections using the support we have previously developed[40]. T
Pipelt execution transition delay for the pipeline restructuring in this caseisasisecs. The
results are depicted in Table 4.1, including the performance of the original (sequential) code &
reference.

The first observation is that the sequential execution of pipelined computations introduce:
notable overhead of abo2&% compared to the original sequential code. This is becRisat ex-
plicitly invokes each component in aloop, and cannot optimize code, e.g., by using inline functior
The second observation is that the speedup achieved when using 5 procesdérsdasmpared to
the sequential execution of the pipeline, ahdl: compared to the highly optimized original ver-
sion. The performance of HMAC closely follows that of SHA1, which is expected since the HMAC
relies on SHAL, being slightly slower, as expected.

Notably, the4.45x speedup obtained when using 5 processors is far away from what shou
be theoretically possible. This is because the pipeline configuration used in this case also suf
from the execution and communication overhead imposed byibelt runtime for co-located
components. More specifically, for SHA1, 12 components are co-located with the root and si
while each other array core is assigned 17 components. This overhead obviously increases as
processors are used, and the number of co-located components increases, as demonstrated
performance figures for the case of using just 4 processors (where each processor is assigne
components, and the master just the sink and root).

It is possible to boost performance if one revisits the pipeline structure of SHAL, to adapt i

113

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

number of components to the actual platform capabilities niwpducing fewer and more heavy-
weight components. To verify this, we created a second version of SHA1 with 6 components whi
each one contains an integrated optimized version of the code of co-located components for the
of 5 processors. ThiBipelt program achieved a throughput2if3.9kb/s which roughly equals to

a 4.6x performance improvement over the original highly optimized sequential code. There
still some inefficiency, due to the actual data transfer overheads between the processors anc
scheduling overhead of the root and sink threads on the master processor, which partly reflects
limitations of our prototype platform. As a downside, this pipeline is very coarse-grained and ca
not result in a speedup greater than even if the underlying platform features many unused cores
while the initial fine grained partitioning version may theoretically re&@hon an 80-core array.
Having fewer pipeline components/stages also limits the options of the runtime in terms of lo
balancing. Obviously, a reasonable tradeoff must be done at design time by the developer, v
some class of target platforms in mind.

Having thePipelt version of HMAC integrated in th€ryptolibrary made it trivial to exploit
this implementation from within aaxistingandconventionabpplication likescp(version 2 of the
SCP protocol). To get a feeling about the performance impact, we copied over EtheEinétayte
file from a PC connected on the same switch as the Suzaku (so that the network throughput ¢
not become the bottleneck). With the original SHAL1 implementation, file transfer was done
18.1Kb/s. ThePipelt version reache@2.4kb/s, an improvement of.23z. In this case, during
the initialization of the HMAC code that takes place at the beginnirggpthe SHA1 computation
is arranged to evenly execute on all 5 processors (including master). When processing starts
master gets occupied with the execution of the conventional part of secure copy, so our sim
runtime service, because of the increased main processor usage, the next time is inquired it insti
Pipeltsupport to rearrange the SHA1 computation to use just 4 processors (with the master runr
only the root and sink). Of course, the end effect at the application level is not analogous to t
speedup that is obtained at the level of SHAL (for the same case; see Table 4.1). This is bec:
the message authentication process is only a part of the secure copy, which also requires /

encryption and appropriate network stack handling.

114

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

To verify that dynamic load balancing works better when thelmg has a finer granularity, we
also used the coarse-grained pipeline version of SHAL, described previously. For this configu
tion, file transfer speed never got beydttdikb/ s, reducing the previous improvement by roughly
50%. As it turns out, given that the master processor is heavily loaded due to the execution of 1
conventional part of secure cofdipelt has to place two (out of five) components on one of the
four processors. This “balancing” results in a far more uneven distribution of the computation th
when using the fine-grained pipeline, in which case each processor is assigned 20 components

The total size of th&€€omponentExecutionMagndIOMap for the case of fine grained SHA1
Pipeltcomputation is 80 bytes. On our target platform, we have measured that each array proce:

needsl 10usecs to change to a new configuration for this computation which is negligible.

4.5 Related Work

Ambric RPPA architecture [7] integrated with a master CPU that can run a full-fledged OS wou
be an ideal high-performance target for our framework. Currently Ambric uses a structural obje
programming model. The programmer separates the application into high-level processing obj
which can be developed independently and can execute asynchronously with each other, at 1
own clock speed, on their own dedicated processor core. Then the programmer defines how
objects should be interconnected to form a computational model close to a Kahn Process Netw
[1]. The development toolchain provides an emulation environment for debugging and performar
estimation, as well as tools to compile objects, configure and load the processor network at runti
In this approach, the authors consider ambric an application specific processor and compare
DSPs and FPGA accelerator designs. The framework addresses only the development on the
processors which are configured to carry out a computation and assumes that providing and
lecting processed data which implies the integration with a target platform and a master proces
should be handled by external applications. Since ambric building blocks are processor cores,
believe that the integration of array functionality in an OS context is also important. To that en
our proposed load balancing approach could help to efficiently accommodate concurrently runn

applications on ambric processor improving this way its performance and response in a gens

115

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

purpose, multi-tasking environment. Cell processor[43]dbave been another possible target for
our framework, but in this case all processor cores, apart from private local memories, share
main system memory. Therefore, for cell targets, dynamic load balancing should be explored i
more appropriate programming context. We plan to introdRipelt support for Cell in the future.

Pipeltarchitecture design approach has been heavily influenced by the click modular router(:
network packet processor framework which is employed to abstract complexity for a different app
cation domain. Click featuregS++ objects that are calleelementghat also have input and output
ports to receive network packets on which they perform a specific type of operation. Click er
ploys a configuration language as well, that specifies a network of interconnected elements an
create different packet processing configurations and features a runtime to execute them appre
ately. These configurations, contraryR@elt approach are loaded and can be changed at runtime
to dynamically modify the packet processing behaviour. What is more important is that the clit
framework and the corresponding programming model which is clogglt, has been heavily
adopted by the network systems community as fast to learn and easy to use. As a result the nur
of network systems researchers that use click is impressively growing[69].

Streamlt [51] language introduces a high-level model for a broader application domain th.
Pipeltwhich includes all types of applications that use a stream as an abstraction. In this appro
the compiler can automate tasks such as partitioning, static load balancing, layout and mem
management and is currently being used to program the RAW architecture["2temlitthere is
no notion of configuration, the components are hardwired and explicitly interfaced to a neighbo
Moreover, the compiler produces a highly optimized executable aimed to run on dedicated resoul
on the target platform and not in a general purpose context. In this case, to our knowledge, Ic
adaptation to available resources that may change at runtime has not yet been considered.

The approach to define components and wire them in a configuration file has also been in
duced to nicely abstract the event-driven nature of the resource constrained embedded syst
More specifically, network embedded systemses(14] is a component-based, event-driven pro-
gramming language used to build applications for the TinyOS, an operating environment desigt

to run on embedded devices that are used in distributed wireless sensor netves®is built as

116

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

an extension to the C programming language with componenteviogether to run applications
on TinyOS.

In [58] code annotations that enable source-level restructuring are proposed to achieve co
grained pipelined parallelism. A dynamic analysis tool is used to help the programmer balar
pipeline stage workload, and the underlying runtime support is used to fork the pipeline stac
as different private memory processes that communicaté&ria pipes. Pipeline parallelism is
also exploited in [38] using the techniques of Decoupled Software Pipelining [59], also employir
thread-level speculation to opportunistically execute multiple loop iterations in parallel and extre
this way parallelism from previously unparallelizable loops. Both approaches, while they can |
used for a processor array target assume an isolated environment that runs on a shared me
homogeneous multiprocessor system where all the resources serve one pipelined application
time. General purpose execution context is not considered.

In the same spirit several dynamic task partitioning methods have been proposed [61, 62] t
deal with the partitioning of unstructured mesh problems like Computational Fluid Dynamics. |
[61] the sub tasks of a computation are developed using an appropriate programming model al
software framework called Data Movement and Control Substrate(DCMS)[63], which features
extension called Mobile Object Layer(MOL)[64] that enables transparent task migration betwe
processors at runtime. The authors have extended the MOL concept and have added approf
load balancing routines that communicate with respective runtime support. While the main prin
ples of this higher-level approach are close to ours, tasks are just migrated and not restructured
platform targets are not tightly coupled systems-on-chip; They must feature CPUs that can ope
in the traditional time shared manner. Moreover, load balance calls must be added and invo
respectively at the application level.

Task dynamic partitioning support that enables load balancing at runtime has been prover
achieve good performance on Multiple Instruction Multiple Data (MIMD) targets. In [65] the au:
thors have implemented in the Mul-T[66] runtime system support that enables parallel tasks
execute either independently or in the context of a few system tasks based on the resource a

ability. As in our approach, the programmer is expected to identify and expose parallelism withc

117

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

worrying about the granularity while the system limits pagidim to meet platform capabilities.
Their implementation futures Lisp constructs that must be used to define independent execu
entities and is tightly integrated with Mul-T runtime design. This approach is primarily targetted :
parallel algorithms that are naturally expressed at a fine level of granularity which is typical wor
load for MIMD architectures and does not consider pipeline applications. Moreover contrary to o
work, the partitioning decisions have to be explicitly coded and are application driven.

In [70] a different approach is proposed to improve load balance performance. The authe
identify as a basic parallel application performance problem the assumption that all platform pi
cessors are fully available to perform a given computation. To solve this, they present a user-le
task scheduler that schedules tasks onto a fixed collection of processes which the operating sy:
kernel further schedules onto a fixed collection of processors. The proposed scheduler implem:
the work stealing algorithm where each process is assigned a pool of independent tasks to exe

one-by-one and after it depletes it can steal tasks from a neighbour pool.

4.6 Summary

In this chapter we have presentegbelt, a framework to develop pipeline applications for embed-
ded RPPA targets. We have preferred to exploit pipelined parallelism because all computatit
can be transformed to a certain extend for pipelined execution and, moreover, it is a more suite
concept for the use of distributed memory, possibly heterogeneous, PR system on-chip.

Embedded systems require flexibility at all design levels, and therefore reconfigurable ha
ware designs combined with a general purpose runtime are good candidates even for comme
solutions[20], [7]. Our vision is to have such a general purpose system where all userland appli
tions have the ability to deploy stages of execution to dedicated processor cores and, to that «
support for dynamic load balancing and corresponding selective component scheduling is of mz
importance because it enables effective resource usage.

Our approach is in line with the principle of letting the programmer specify the maximum pal
allelism at the application-level, while making system responsible for deploying the code in tf

best possible manner, depending on the underlying platform characteristics and the current ex

118

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

tion context. To accomplish this, we have strived for a gendesign that can be ported/applied
to radically different platforms using appropriate backends. We are currently workiiRjpet
towards two different directions: i) increasing the codebase by transformiPipédt applications
more ciphers from th€rypto library and ii) we are extending the concept and building backend

support to take advantage of the Cell Broadband Engine architecture features.

119

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Chapter 5

Conclusion and outlook

We have addressed challenges at the operating system and application programming level fol
emerging hybrid reconfigurable parallel architectures. We regard as particularly important cc
tributions the abstraction of runtime hardware reconfiguration as a typical system service and
synergistic mechanisms between the OS and the development toolchain that enable dynamic
balancing of workload. With this support hardware/software codesigned and massively parallel
plications can now be used in typical multitasking context, where an application may arrive at a
point in time and share the platform resources contrary to what is currently possible with dedica
application specific setups. Moreover we demonstrate that operating system support remains |
vant in the context of emerging massively parallel platforms because it can facilitate mechanis
to abstract performance asymmetry of the target platform processing elements. In most cases
support allows the developer to partition the application without worrying about the target pla
form available resources because the same partitioning can be effective on a variety platforms \
different number of elements and performance. Our dynamic load balancing approach has b
explored and implemented for distributed memory systems. We believe that the dynamic profili
concept can be also used on shared memory applications and the design should be revisited fo
respective application domain.

Parallel reconfigurable platforms can also be used to improve availability and fault toleranc
Operating systems should be further changed to detect faults, migrate and replay application

ecution. Research on these topics is already active but it is primarily being addressed in virt

120

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

machine context.

121

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

Bibliography

[1] G. Kahn. The semantics of a simple language for parallel programmint=IR74, pages
471-475, 1974.

[2] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language ft
streaming applications. I@omputational Complexifypages 179-196, 2002.

[3] J. R. Hauser and J. Wawrzynek. Garp: a mips processor with a reconfigurable coproces
In FCCM '97: Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computil
Machines page 12, Washington, DC, USA, 1997. IEEE Computer Society.

[4] Timothy John CallahanAutomatic compilation of ¢ for hybrid reconfigurable architectures
PhD thesis, 2002. Chair-Wawrzynek,, John.

[5] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. WavescaCRO,
2003.

[6] Nvidia Corporation, http://www.nvidia.com/cudilvidia CUDA

[7] Michael Butts, Anthony Mark Jones, and Paul Wasson. A structural object programmir
model, architecture, chip and tools for reconfigurable computin§gQ@M '07, 2007.

[8] picoChip Inc, http://www.picochip.conpicoChip Multicore DSP
[9] IntellaSys Inc, http://www.intellasys.nentellasys SEAforth-40

[10] Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu Toney Jacobson, Gouri Landg
Michael Meeuwsen, Christine Watnik, Paul Mejia, Anh Tran, Jeremy Webb, Eric Work
Zhibin Xiao, and Bevan Baas. Hardware and applications of asap: An asynchronous ari
of simple processors. IHotChips 2008 August 2008.

[11] Frank Hannig, Holger Ruckdeschel, Hritam Dutta, and Jurgen Teich. Paro: Synthesis
hardware accelerators for multi-dimensional dataflow-intensive application®AR® '08
2008.

[12] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The cli
modular routerACM Trans. Comput. Sysi.8(3), 2000.

[13] Timothy G. Mattson. How good is openm§ci. Program,.11(2):81-93, 2003.

[14] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. The
nesc language: A holistic approach to networked embedded systefsDIH03: Proceed-
ings of the ACM SIGPLAN 2003 conference on Programming language design and implem:
tation, pages 1-11, 2003.

122

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

[15] Yani Matsumoto and Antoin Masaki. Speed improvement d6RRYy mixing multiple-gate-
width routing switches. lilectronics and Communications in Japan (Part Ill: Fundamental
Electronic Sciencepages 14-22, 2005.

[16] Lesley Shannon and Paul Chow. Using reconfigurability to achieve real-time profiling fc
hardware/software codesign. FPGA '04: Proceedings of the 2004 ACM/SIGDA 12th inter-
national symposium on Field programmable gate arrays, pages 190-199, 2004.

[17] Xilinx Inc. Two Flows for Partial Reconfiguration: Module Based or Difference Ba2&i)3.
Aplication Note XAPP290.

[18] Bryan Fletcher. FPGA Embedded Processors: Revealing True System PerformaBoe. In
bedded Systems Conference San Fransisco, number ETP-367, 2005.

[19] John Williams. The Microblaze-uClinux kernel port Project
http://www.itee.uq.edu.au/ jwilliams/mblaze-uclinux/.

[20] Atmark Techno Inc, http://www.atmark-techno.com/en/products/suzazaku Series
[21] Nigel CunninghamSuspend?2 projechttp://www.suspend2.net/.
[22] Greg Ungerer. netflash utility. http://docs.linux.com, October 2002.

[23] Williams J Lu Y, Bergmann N. Dynamic loading of peripherals on reconfigurable system-or
chip. InSPIE Microelectronics: Design, Technology, and Packagingdlume 6035, 2005.

[24] Greg Stitt, Frank Vahid, Gordon McGregor, and Brian Einloth. Hardware/software partitior
ing of software binaries: a case study of h.264 decodeCODES+ISSSpages 285-290,
2005.

[25] Miljan Vuletic, Laura Pozzi, and Paolo lenne. Programming transparency and portable ha
ware interfacing: Towards general-purpose reconfigurable computin§SAR pages 339—-
351, 2004.

[26] Matthias Dyer, Christian Plessl, and Marco Platzner. Partially reconfigurable cores for xilir
virtex. INFPL '02: Proceedings of the Reconfigurable Computing Is Going Mainstream, 12t
International Conference on Field-Programmable Logic and Applicatigragyes 292-301,
London, UK, 2002. Springer-Verlag.

[27] Edson L. Horta and John W. Lockwood. Parbit: A tool to transform bitfiles to implemen
partial reconfiguration of field programmable gate arrays (fpgas). Technical Report WUC:
01-13, Washington University Department of Computer Science, 2001.

[28] Anup Kumar Raghavan and Peter Sutton. Jpg - a partial bitstream generation tool to supy
partial reconfiguration in virtex fpgas. IPDPS '02: Proceedings of the 16th International
Parallel and Distributed Processing Symposiupage 192, Washington, DC, USA, 2002.
IEEE Computer Society.

[29] Inc Atmel. Field Programmable System Level Integrated Circuits (FPSLIC)(2002).
http://www.atmel.com/products/FPSLIC/.

123

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

[30] Brandon Blodget, Philip James-Roxby, Eric Keller, SddtiMillan, and Prasanna Sundarara-
jan. A Self-Reconfiguring Platform. IRroceedings of Field Programmable Logic and Appli-
cations pages 565-574, 2003.

[31] Reetinder P. S. Sidhu and Viktor K. Prasanna. Efficient metacomputation using se
reconfiguration. I-PL '02: Proceedings of the Reconfigurable Computing Is Going Main-
stream, 12th International Conference on Field-Programmable Logic and Applications, pag
698-709, London, UK, 2002. Springer-Verlag.

[32] Ryan J. Fong, Scott J. Harper, and Peter M. Athanas. A versatile framework for fpga fie
updates: An application of partial self-reconfiguation. IEEE International Workshop on
Rapid System Prototypingages 117-123, 2003.

[33] John Williams and Neil Bergmann. Embedded Linux as a platform for dynamically self
reconfiguring systems-on-chip. Rroceedings of the International Conference on Engineer-
ing of Reconfigurable Systems and Algorithms, pages 163—-169, 2004.

[34] Vincent Nollet, Jean-Yves Mignolet, Andrei Bartic, Diederik Verkest, Serge Vernalde, an
Rudy Lauwereins. Hierarchical run-time reconfiguration managed by an operating syste
for reconfigurable systems. Engineering of Reconfigurable Systems and Algoritlpages
81-87, 2003.

[35] Christian Haubelt, Dirk Koch, and Jurgen Teich. Basic OS Support for Distributed Reconfi
urable Hardware. IfProceedings of the Third International Workshop on Systems, Architec
tures, Modeling, and Simulation, pages 18-22, Samos, Greece, July 2003.

[36] Xilinx Inc. Architecting Systems for Upgradability with IRR0O01. Aplication Note
XAPP412.

[37] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynam
binary instrumentationSIGPLAN Not.42(6):89-100, 2007.

[38] Matthew J. Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and David I. Augus
Reuvisiting the sequential programming model for multi-core. Phoceedings of the 40th
IEEE/ACM International Symposium on Microarchitectu2807.

[39] John Williams. The Microblaze-uClinux kernel port Project
http://www.itee.uq.edu.au/ jwilliams/mblaze-uclinux/.

[40] Dimitris Syrivelis and Spyros Lalis. System- and application-level support for runtime harc
ware reconfiguration on soc platforms. WSENIX ATC '06

[41] Wim van Dorst.BogoMips mini-Howto http://tldp.org/HOWTO/BogoMips/.

[42] The xiph open source community. Tremor Ogg Vorbis decoder.
http://wiki.xiph.org/index.php/Tremor.

[43] Michael Gschwind. Chip multiprocessing and the cell broadband engin€FI{06: Pro-
ceedings of the 3rd conference on Computing frontigagies 1-8, 2006.

[44] Michael Gschwind, David Erb, Sid Manning, and Mark Nutter. An open source environmel
for cell broadband engine system softwa@mmputey 40(6):37—47, 2007.

124

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

[45] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, aodrdd Lai. The impact of per-
formance asymmetry in emerging multicore architectu®§&ARCH Comput. Archit. News
33(2):506-517, 2005.

[46] Sun Wei. A FPGA-based Soft Multiprocessor System for JPEG Compressior
WWW.0pencores.org.

[47] Kevin Skey, John Bradley, and Karl Wagner. A reuse approach for fpga-based sdr waveforr
In MILCOM 2006 pages 1-7, 2006.

[48] Kaushik Ravindran, Nadathur Rajagopalan Satish, Yujia Jin, and Kurt Keutzer. An fpga-bas
soft multiprocessor system for ipv4 packet forwarding.15th International Conference on
Field Programmable Logic and Applications (FPL-QPppges pp 487-492, 2005.

[49] Wei Du, Renato Ferreira, and Gagan Agrawal. Compiler support for exploiting coarse-grain
pipelined parallelism. I'5C '03: Proceedings of the 2003 ACM/IEEE conference on Super
computing page 8, 2003.

[50] Mary H. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica S. Lan
Detecting coarse-grain parallelism using an interprocedural parallelizing compilé&roin
ceedings of the 1995 ACM/IEEE conference on Supercomppiigg 49, 1995.

[51] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language f
streaming applications. I@omputational Complexifypages 179-196, 2002.

[52] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben Greer
wald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert Ma, Arvind Sara
Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, &
Anant Agarwal. The raw microprocessor: A computational fabric for software circuits an
general-purpose program&EE Micro, 22(2):25-35, 2002.

[53] Message Passing Interface Forum. MPI: A message-passing interface standard. Techr
Report UT-CS-94-230, 1994.

[54] F. Mueller. Pthreads library interface.

[55] B. Dreier, M. Zahn, and T. Ungerer. Parallel and distributed programming with pthreads ai
rthreads. IrProc. of the 3rd Int’l Workshop on High-Level Parallel Programming Models and
Supportive Environmentpages 34—-40, 1998.

[56] T. Loos and R. Bramley. MPI performance on the SGI Power Challenge. pages 203-2(
1996.

[57] John Bircsak, Peter Craig, RaeLyn Crowell, Zarka Cvetanovic, Jonathan Harris, C. Alexanc
Nelson, and Carl D. Offner. Extending openmp for numa machirg&s. Program. 8(3),
2000.

[58] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A practical approach
exploiting coarse-grained pipeline parallelism in ¢ prograd@th Annual IEEE/ACM Inter-
national Symposium on Microarchitectyumages 356—-369, 2007.

125

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

[59] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matth&sidges, Guilherme Ottoni,
and David I. August. Speculative decoupled software pipelining.Proceedings of the
16th International Conference on Parallel Architectures and Compilation Techniques (PACT
2007.

[60] Yoshiaki Sakae, Satoshi Matsuoka, Mitsuhisa Sato, and Hiroshi Harada. Towards dynar
load balancing using page migration and loop re-partitioning on omni/scasihPtoceedings
of The Fourth European Workshop on OpenMP (EWOMP 2(@X)2.

[61] Kevin Barker, Andrey N. Chernikov, Nikos Chrisochoides, and Keshav Pingali. A load bal
ancing framework for adaptive and asynchronous applicatitifiSE Trans. Parallel Distrib.
Syst, 15(2):183-192, 2004.

[62] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning for adaptiv
unstructured meshegdournal of Parallel and Distributed Computing, 47(2):102—-108, 1997.

[63] Kevin Barker, Ni Chrisochoides, J Dobbelaere, D Nave, and K Pingali. Data movement at
control substrate for parallel adaptive applicatiori3oncurrency Practice and Experience
14:77-101, 2002.

[64] N. Chrisochoides, K. Barker, D. Nave, and C. Hawblitzel. Mobile object layer: a runtime
substrate for parallel adaptive and irregular computatiéads. Eng. Softw31(8-9):621-637,
2000.

[65] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy Task Creation: A Techniqu
For Increasing The Granularity Of Parallel Programs. Technical Report MIT/LCS/TM-44¢
1991.

[66] D. A. Kranz, Jr. R. H. Halstead, and E. Mohr. Mul-t: a high-performance parallel 8$B-
PLAN Not, 24(7):81-90, 1989.

[67] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multiprc
grammed multiprocessors. 8PAA '98: Proceedings of the tenth annual ACM symposium or
Parallel algorithms and architecturepages 119-129. ACM, 1998.

[68] R. Blumofe and C. Leiserson. Scheduling multithreaded computations by work stealing.
Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa
New Mexico., pages 356—368, 1994.

[69] Eddie Kohler.The Click Modular Router Projechttp://read.cs.ucla.edu/click/.

[70] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multiprc
grammed multiprocessors. 8PAA '98 pages 119-129. ACM, 1998.

126

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 05:02:55 EEST - 3.145.62.240

