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In this work, non-equilibrium transport phenomena have been examined via the kinetic theory
of gases. The behaviour of the gas in low pressure conditions or in low-dimensionality systems can
not be captured by the usual Navier-Stokes formulation, in conjunction with the constitutive laws
of Newton-Fourier-Fick. The limited number of intermolecular collisions results in departure from
equilibrium and the particulate nature of the gas must be taken into account, greatly increasing the
computational effort.

The problem is described by the integro-differential Boltzmann equation, which is used to
determine the distribution of particles in physical and molecular velocity space, as well as in time.
There are difficulties associated with the seven-dimensional nature of the distribution function, as
well as with the complexity of the collision term, which is usually substituted by an appropriate model.
The most widely used and successful numerical methodologies, the Discrete Velocity Method (DVM)
and the Direct Simulation Monte Carlo (DSMC), are applied here in the whole range of the Knudsen
number. It is important to employ approaches based on kinetic theory, since these are the only ones
which are valid for any rarefaction level.

In this work, several problems including non-equilibrium phenomena are considered. The in-
teraction of gases with solid surfaces is considered for several problems according to the Cercignani-

Lampis boundary conditions. The non-linear form of this scattering kernel, which had not been pre-
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viously used in the literature, is applied on the problem of heat transfer between parallel plates and
coaxial cylinders. Its linearized form has also been employed for both flow and heat transfer problems
and a comparison with relevant experiments has lead to surface characterization with respect to argon
and helium flows.

Non-linear heat conduction phenomena are also studied for the parallel plates and coaxial cylin-
ders geometries. Cases in a wide range of temperature differences are considered in the whole range
of the Knudsen number by the Shakhov kinetic model equation. The intermolecular interaction is
considered through the Inverse Power Law model. Results on heat flux, temperature and density pro-
files are presented and non-equilibrium phenomena, such as the non-uniform pressure distribution,
are discussed.

An advanced and computationally efficient discrete velocity scheme has been developed for
the numerical treatment of linear and non-linear flow and heat transfer configurations. Through this
algorithm, memory and CPU time requirements have been significantly reduced. The proposed al-
gorithm allows the effective simulation of demanding problems, such as linear and non-linear flow
through orifices and tubes of finite length, where the distribution function is 5-dimensional. A com-
parison has also been performed with DSMC results and solid remarks about the effectiveness of the
proposed discrete velocity algorithm have been drawn. In this problem, we have also developed and
applied a boundary condition model for adiabatic walls, which have not been considered before in the
literature.

Furthermore, we study the range of validity for linearized kinetic equations for the problems
of heat transfer between parallel plates and cylinders and flow through short tubes by comparing with
the non-linear results. This investigation is significant because if this range is proven to be sufficiently
large, the combination of this formulation and the DSMC method can cover any possible condition and
for any rarefaction level. It has been found that in the problems given here the linearized formulation
results can be applied well beyond their theoretical limits with sufficient accuracy. Also, the part of

this work concerning linearized flow through orifices and tubes of finite length due to small pressure
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differences has not been studied previously in the literature and is very important for two reasons:
first, the zero-length case is one of the few configurations that is not affected by the wall surface
accommodation properties, making it an ideal problem for the benchmarking of numerical methods
and kinetic models, and second the fact that other methods such as DSMC face significant difficulties
in solving this problem.

The effect of the channel ends on the flow field and mass flow rate has been investigated for the
geometries of rectangular channels with large aspect ratios and cylindrical tubes. A novel methodology
is proposed to extend the well known fully developed flow analysis, applied in infinitely long channels,
to channels of finite length. These results may be combined with a typical integration procedure to
obtain the complete solution, greatly reducing the computational effort and significantly improving
the accuracy of the simulation.

Finally, problems of non-linear flow through axisymmetric channel elements have been con-
sidered. Flow through a short tube has been examined by solving the Bhatnagar-Gross-Krook (BGK),
Shakhov (S) and Ellipsoidal (ES) kinetic model equations by the DVM, applying an advanced nu-
merical scheme. Results have been benchmarked by corresponding values obtained by the DSMC
for a wide range of pressure differences. Also the problem of non-linear flow through an expan-
sion/contraction pipe element, consisting of two cylindrical tubes connected in series, is studied nu-
merically by the DSMC method and compared with experimental results. This geometry is particularly
useful in the study of rarefied gas flow networks, where results concerning various components may

be combined to provide a complete simulation.
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IIpocopoimon @uivopiveav HETAPOPAS 6€ GLVONKES
ROKPLE oo T Ogppodvvapiki) wooppomio pEcm® TS KivnTiKNG Oemwpiog
ILE EQUPROYES TV TEYVOAOYID KEVOL Kol To. MEMS

Xapavng [Hovtalng

[Tavemomuo Osscariog, lovviog 2011

EmBrénmv: A. Baiovyedpyng

Avtikeipevo g 100K TOPIKNG O1aTpiPng vt 1 TPoGoHOImOT PO®Y aEPI®V EKTOG BEpLOdVVOLL-
KNG 160ppomiog LEcm g Kivntikng Bempiog. H apatorompévn katdotoaon tov agpiov Adym cuvOnkomv
YOLUMANG TTiEON G 1} O CLOKEVEG TTOAD UIKPDV S10CTAGEWDY OV UTOpEl va TePypael amod Tig eEIoMGELS
Navier-Stokes oe cuvovacud pe tovg Kataotatikovg vopovg Newton-Fourier-Fick. O Adyog eivat
OTL 0 TTEPLOPIOUEVOC APLOUOS EVOOLOPLOK®DY OAANAETIOPAGEMV GUVETAYETOL OTOUAKPLVOT OO TN
Oeppodvvapkn woppomia. o To Adyo avTd, TPEMEL GE AVTEG TIG TEPITTMOGELS VO AopPBdveTol vT’ dyv
1 COUOTIO0KT VG TOVL 0EPTIOV, LE AUEST] GUVETELD TY) GNUAVTIKT AOENGT TOV VTOAOYIGTIKOD KOGTOVG.

To TpOPAN U TEPTYPAPETOL ETAPKDS Y10 TOL OPALOTONIEVA OEPTLA LEGH TNG OAOKATPO-I10pOPL-
KNG kvnTikng e€icmong Boltzmann, 1 onoia ypnotponoteitat Yo ToV VTOAOYIGUO TG GUVAPTNONG
KOTOVOUNG TOV HOPI®V GTO QUGIKO YMPO KOl TOV YOPO TMOV HOPLOKADV TAYLTHTOV, KAODS Kol 6TO
ypovo. H enilvon g cvvnbog mapovcidlel peydieg duokoAieg AOym g ento-dldotaTng GOHONG
KO TOV OGLVEYEIDV TNG GLVAPTNONG KATAVOUNG, OAAN KOl AOY® TNG TEPITAOKOTNTAG TOL OPOL TMV
oLYKpoVOGE®V. O1 10 emTLYNUEVEG HEBOSOT AVTILETOTIONG TOV KIVITIKOV TPOPANUATOV v 1 emily-
on g &&icmong Boltzmann avtikabiot®vtag Tov 0po TV GLYKPOVGEMV LE KIVITIKG LOVTEAN KOt
SLOKPLTOTOIMVTOS KOl TOV YDPO TWV HOPLOK®V TayLTNTOV (LEB0d0G TV Atakprtav Tayvttov, DVM),
KoODG Kot 1 OVTIKATAGTOGT TOL 0EPiov amd Evav aplipd EIKOVIKOV GCOUATIOIMV TOV AAANAETIOPOLV

HETAED TOVG PE OTOYUOTIKOVG Kavoves (LEBodog Amevbeiag [Ipocopoiwong Monte Carlo, DSMC).
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Elvar onpavtikd va tovicBet 6t pdvo mpoceyyiceis mov Pfacifovror otnv kivntikn Oempio amodidovv
£€yKvpa amoteAéspota yio kébe eminedo apatomoinong.

X ot T 010aKToptkn dtaTpiPr| avTipeTtomileton po vpeio ykapo TpoAnudtev eKTog Oeppo-
duvapkng wwoppomiag. H aAlnAenidopacn tov aepiov pe oteped torydpoTo pehetdtor pe Pdon tig
ocuvoplakég ovvinieg Cercignani-Lampis. H pun-ypopitky] Lopen T0v GUYKEKPIUEVOL HOVTEAOV, M
omoia dev Exel ypnoporombei oto mapedbov ot PiAoypaeia, EpapuoleTon 6To TPOPAN O LETAPOPAS
Bepuomtog avdpeca oe mapdAAnies mAdkes | OUOKEVTPOLS KVAIVOPOLG AdY®m avbaipeta peydimv
Babuidwv Beprokpacios. H ypappikomomuévn popen| tov €xel eniong emotpatevdet yio mpofinpato
PONG KOt LETAPOPAS OeproOTNTAG KOl LEGO 0Td TN GVYKPLOT| LE OVTITTOTYO TEPAUATIKG OTOTEAEC AT
001 YOVLLOGTE GTO YOPAKTNPIOUO EMUPAVELDV GYETIKA LE TN PO1| apyoD Kot NAiov.

"Exovv pehetn el un ypapliikd @otvopeva Petapopds 0epuotntog yio i YEMUETPIES TV Topd-
AMNAOV TAAKOV KOl TOV OLOKEVTPOV KLAIVIpaV. ‘Exouv e&etachel meputtdoelc dapopds Oeproxpa-
clag o€ éva peydho 0pog pe Baon to Kivntkd poviédo Shakhov. Ot evdopopilakés aAANAETIOPAGELS
TPo- Gopolwvovtal pEcw Tov poviéhov Inverse Power Law. [Topovoidlovion aroteAéoparta yio Tig
Katavopég Bepopong, Tukvotntag Kot Oeppokpaciog Kot oyoAdlovtol ovopeva AOY® omoUAKPUV-
ong amd TN OEPLOSVVAUIKT] IGOPPOTIDL, OIS 1 GVOLOLOLOPPT) KOTOVOUN TTiEoNG,.

To apOunTiKd oyfua TOV S1OKPLITOV TOYVTHTOV avarTTOYXONKE Kot 1 arddoon Tov BeATidbnke
Yl0L TNV OVTIUETOTIOY] TOGO YPOUUIK®OY OGO KOl UN-YPAUUIKOV podv. Méowm Ttov avafaduicuévov
aAyopifLov, 01 AMOLTGELS GE LVTUT KO DVTTOAOYLIGTIKO YpOVo petddnkay onuavtikd. O TpotetvOIevog
aAYOPIOLOG EMTPETEL TNV ATOTELEC LLALTIKT] TPOGOUOIWGT) AT TIKMV TPOPANUATOV, OTWS TNG YPOLLLLL-
KNG KO UN-YPOUMKNG PONG OUEGOD KLAVOPIKMY CYIGHMY KOl KOVOAM®OV TETEPAGUEVOD UNKOLG,
OOV M GLVAPTNON Katavoung ival S-dtdotatn. H ovykpion pe anoteréopata tng DSMC odnqynoe og
€VVOIKE GUUTEPAGILATO Y10l TNV OITOOOTIKOTITO TOV TPOTEWVOUEVOL AAYOPIOLOV OOKPITOV TAYLTHTMV.
Eniong, avartoyOnke kot epappocOnke yo mpd@Tn @opd £vag vEOg TOTTOC GLVOPLUK®Y GLVONK®OV Yo
ad10aTIKE TOLY®UATOL.

INUaVTIKT QOVAELE £YELYIVEL KO GTOV TPOGOLOPICUO TOL EDPOLS IGYVOGC Y10 TIG Y POLLLUIKOTOU UE-
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veg KnTikéG e£I0MGELS, 01 0Toleg TapAyovToL Yo lKpES wB0VGES QUVALELS, OTMG KAIGELS Tieong 1)
Oeppokpaciag, HEG® NG GVYKPLIONG LE TO OVTIGTOL(O UN-yYpappikd TpofAnuata. H Eépgvva avtn etvon
ONUOVTIKN YTl av avTd To €0POG £QPUOYNG amodeyBel 0Tt elvar apKeTA LEYAAO, TOTE UTOPOVLE VO
avTIpETOTIcoVE OAEG TIG TBOVEC GLVONKEG Kot Yo KAOE eMimedo apatomoinong LEC® EVOG KATAAANAOL
oLVOLACLOV YPOUUIKOTOINIEV®Y KIVNTIKOV e§lo®oeV kat TG peBddov DSMC. Eyel Bpebel 611 ta
OTOTEAEGLATO TNG YPOUULKN G Oempiog LTopovv va paprocHoly Kot TEPUV TV 0VoTN POV OempnTIKOV
opimv Tovg pe wavoromTikn axpifeto. Avti n peAétn mpaypatoroleitol Yo TpoPApaTe TdG0 pong
0G0 Kol HETAPOPAG BepudTnTOG 08 KOPTESIAVY Kot KOAVOPIKY| yempetpio. Eniong, to koppdtt wov
aQOPAE TN YPOUUKOTOTNILEVT] POT| OLUEGOV KOVOMODV AOY® younANg Baduidag mieong dev £xel avTLeT®-
miclel Eava ot PrAoypagia kot eivar onpovtikd yio 6o Adyovs. O Tpmdtog etvat 0TL N TepinTmon
UNOEVIKOV UNKOVG Etvar ol amd TIg AMYeg TEPUTTAOGELS OTTOL 1) poT| OV EMNPPEALETOL ATO TIC WO1OTNTES
TOV TOYOUATOV, e aToTEAEGHA Vo, Bempeiton pia 1avikn TepinTmon Yo Ty aStAdynon aplduntikov
nefdd®V kol KivnTikdV povtéAwv. O de0Tepoc Adyog etvar 6Tin néBodog DSMC avtipetonile peydieg
SVOKOMEG TNV EMIAVGT AVTAOV TOV YPOUUKADV TPOPANUATOV AOY® TG TPOGEYYIONG OTNV KATAGTAOT)
1GOPPOTHOG.

H eridpaon twv dkpmv Tov kavailov e pony Aoym PBabpidog mieong LEAETATOL Y10 TIC YE®UETPIES
0pBOYOVIKOV 0y®Y®OV e LEYAAOVG AOYOUG TAEVPDOV KOOMG KO G€ KLAVOPIKE KavaAie. Mo KotvoTOHOG
pebodoroyia mpoteiveTal OVTMG MOTE VO EXEKTADEL 1 TUTTIKY] AVAALGN TOV TANPOG OVETTVYUEVDV
po®V M omoia EPaPUOLETOL GE KOVAALL ATELPOL UNKOVG GE KOVAAO TETEPUAGUEVOL UNKOLS. MEca amd
OTY TN LEAETN TPOKVTTEL OTL 1) YPNOT| TOV ATOTEAECUATOV QLTAOV UTOPOVV VO dDGOLV TOAD aKpifin
OTOTEAEGLATO YOPIG VO YPELGTOVV ¥POVOBOPEG TPOCOUOUDGELS.

TéNog, TO TPOPANUA TNG UN-YPOUUIKNG POTG GE 0EOVOCVUUETPIKG Kavaila £yl peretnOel. H
pon oe aymyd menepacuEvon pnkovg Exet eetactel péow g emilvong TOV KvNTIKOV HOVTEA®V
Bhatnagar-Gross-Krook (BGK), Shakhov (S) kot Ellipsoidal (ES) péom e DVM, epapudlovrog
10 Bedtiopévo apBuntikd oynua. To amoteléopata Egovv cuykplBel e TG avtioTtoyes Tég Tov

mopéyeln pEBodog DSMC yia éva upv edacpa dtapopdv mtieons. Eniong, to mpofAnua g pong péca
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oe éva Kaval pe amodtoun avénon/ueimon g datopng tov e€etdletor apuntikd and ) pébodo
DSMC «at ovykpiveton pe meipapatikd amoteréspata. H mpocopoimon KoavoAidv avtov Tov TOTou
elvar @& ot PeAéTn SIKTH®V 0PALOTOMUEVOV PODV, OTTOV ATOTEAEGLOTO TOV 0LPOPOVV SIAPOPES

YEOUETPIES LITOPOVV VAL GLVOVOGTOVV MGTE VO LEAETNOEL TO TANpEC TPOPANLOL.
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Nomenclature

Qs Maxwell accommodation coefficient

a, Cercignani-Lampis normal kinetic energy accommodation coefficient
oy Cercignani-Lampis tangential momentum accommodation coefficient
153 Dimensionless temperature difference parameter

q Dimensional heat flux vector

u Dimensional macroscopic velocity vector

Uy Velocity vector of the wall

T Dimensional position vector

I3 Dimensional molecular velocity vector

c Dimensionless molecular velocity vector

q Dimensionless heat flux vector (or perturbation)

u Dimensionless macroscopic velocity vector (or perturbation)

T Dimensionless position vector

AL Eftective length increment

AP Pressure difference

AT Temperature difference
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Chapter 1

Introduction

1.1 General concepts

Gas flows are very important in a wide variety of applications encountered in our every day life.
In most cases, the equations of mass, momentum and energy equilibrium, combined by the Newton-
Fourier-Fick constitutive equations, describe their behaviour very well and have been applied success-
fully for many years. However, this formulation is subject to certain limitations due to the underlying
assumption that the gas must be considered as a continuum medium. Even though this is a reasonable
assumption for many cases, there are situations where this hypothesis fails: the mean free path between
inter-molecular collisions may become comparable to a characteristic length, due to conditions of low
pressure or if the gas is confined in a region of very small dimensions.

Beyond a certain limit, it is not possible to investigate such phenomena accurately without
taking into account the molecular nature of the gas. In this case, we may say that the gas is in a rarefied
state, for which the departure from thermodynamic equilibrium leads to a failure of the macroscopic
equations. In order to properly describe such flows, concepts derived from statistical mechanics and
kinetic theory of gases need to be involved. Our purpose is to provide a description of the macroscopic
behaviour, starting from the microscopic equations which govern the motion of molecules from which
the gas is constituted [ 1]. The governing equation in this regime is the Boltzmann equation, described
and commented briefly in Chapter 2. This equation concerns the distribution function of particles,
a 7-dimensional probability density distribution of molecules in physical space, molecular velocity
space and time. The Boltzmann equation is quite complex and can be solved analytically only for
very specific situations. Therefore, we are often lead to the pursuit of numerical solutions, since the

experimental investigation is usually very costly.
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Chapter 1

There are important reasons to extend our studies to such cases,since many emerging tech-
nologies would benefit from this: The creation of micro- and nanometer-sized devices is very impor-
tant since they offer increased reliability, low cost and high efficiency [2, 3] in comparison to their
normal-sized counterparts. Vacuum flows are encountered in many applications, ranging from a sim-
ple pressure sensor [4] to the vacuum systems of fusion reactors [5]. High altitude aerodynamics need
to be investigated very carefully for the correct operation of spacecrafts [6] and satellites [7]. Thus,
the accuracy and efficiency of simulations is of high importance for the design, manufacturing and

optimization of these devices.

1.2 Dissertation structure and contents

The aim of this dissertation is to study numerically several flow and heat transfer configurations
in the whole range of the Knudsen number to upgrade and advance certain numerical simulations
techniques and provide new insight on the physical laws far from local equilibrium. The next chapters

may be outlined as follows:

* A literature review is presented in Chapter 2. The most important concepts, quantities and equa-

tions are introduced and discussed.

* The simulation of boundary conditions is described in Chapter 3. After a brief overview of
the main principles in gas-surface interaction, the Cercignani-Lampis boundary conditions are
applied in several problems, involving flow and heat transfer. Among these problems, both lin-
earized and non-linear formulations are used and the corresponding differences are denoted.
These results may serve for surface characterization, since the Cercignani-Lampis accommo-
dation coefficients can only be found by using at least two experiments. A comparison with

experiments is also included.

* Linear (i.e. slow speed) flows through channels are examined in Chapter 4 for two cross-sections:

a rectangular one with very low aspect ratio (approximated as a “parallel plate” channel) and a
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Section 1.3

circular one. The flow may be linear due to a low pressure difference between the upstream and
downstream ends but also due to a very large channel length, leading to a small local pressure
gradient. In the first case, the complete field is simulated, while in the second case only the
channel ends are considered and solutions are joined together by a well known integration pro-
cedure. The solution for the channel ends and the combination procedure are not trivial, since
they require a new type of boundary conditions for fully developed flow and the utilization of
the effective length concept. Some cases are considered by both methods and a comparison takes
place between them, as well as with earlier results obtained by the simple integration procedure

without taking into account the end effects.

* Non-linear heat transfer phenomena are studied in Chapter 5. Heat conduction through a rar-
efied gas confined between two parallel plates or two concentric cylinders is considered for
any temperature difference and in the whole range of the Knudsen number by the Shakhov ki-
netic model equation. The range of applicability of the linearized formulation is also discussed
through a demonstration of results on heat flux, temperature and density profiles. The inter-

molecular interaction is also considered through the Inverse Power Law model.

* Non-linear flows, driven by arbitrarily large pressure differences for small to moderate length
ratios, are studied in Chapter 6. The problems of flow through a short cylindrical tube and a
contraction/expansion element are investigated by the most popular numerical methods: the
Discrete Velocity Method and the Direct Simulation Monte Carlo. Various acceleration methods
are considered for the non-linear kinetic algorithm and a qualitative comparison is given for the
two formulations. Three kinetic models have been applied, namely the BGK, S and ES, and a

new type of boundary conditions for adiabatic walls have also been developed and applied.

* The dissertation is completed with the conluding remarks, given in Chapter 7. This chapter also
points out several fields where this work could be extended in the near future, as well as various

remarks on the value of the current contributions made here.
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1.3 Novelty and scientific contributions

In this dissertation, results have been obtained by reliable numerical methods in the whole
range of the Knudsen number and for various problems of practical interest. Moreover, further de-
velopment of algorithms and models has been achieved and comparisons with experimental data and
other numerical methods have been performed.

Gas-surface interaction in heat transfer configurations has been studied by the non-linear form
of the Cercignani-Lampis scattering kernel, which has not been applied before in the literature. The
linearized form of this kernel has also been employed for both flow and heat transfer problems and a
comparison with relevant experiments has lead to surface characterization with respect to argon and
helium flows.

The problems of linearized and non-linear heat transfer between parallel plates and concentric
cylinders have been solved numerically by the Discrete Velocity Method. The effect of the radius
ratio, the rarefaction levels, the temperature difference, the surface accommodation properties and the
intermolecular interaction law has been investigated.

The effect of the channel ends on the flow field and mass flow rate has been investigated for the
geometries of rectangular channels with low aspect ratios and cylindrical tubes. A novel methodology
is proposed to extend the well known fully developed flow analysis, applied in infinitely long channels,
to channels of finite length. These results may be used to avoid the complete numerical solution, greatly
reducing the computational effort.

Linearized flow through short rectangular channels with low aspect ratio and short cylindri-
cal pipe elements due to small pressure differences has been studied, providing results for the first
time in the literature. The corresponding non-linear flow configuration for the cylindrical geometry
has also been simulated and compared with DSMC results. A boundary condition model has been
developed for adiabatic walls, which have not been considered before in the literature, and applied
on the latter problem. Through the study of the above linear and non-linear flow problems, as well as

from the previously mentioned heat transfer problems, the validity range of linearized theory has been
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investigated. It has been found that the linearized formulation results can be applied well beyond their
theoretical limits with sufficient accuracy.

An advanced and computationally efficient discrete velocity scheme has been developed for
the numerical treatment of linear and non-linear flow and heat transfer configurations. Through this
algorithm, memory and CPU time requirements have been significantly reduced. A qualitative com-
parison with the DSMC has been performed and solid remarks about the effectiveness of the proposed
discrete velocity algorithm have been drawn.

Non-linear flow through a contraction/expansion pipe element, consisting of two cylindrical
tubes connected in series, has been simulated via the DSMC method. The influence of the governing
parameters has been examined and results are given for flow rates and other macroscopic quantities.
This is an important configuration for practical engineering purposes and this numerical treatment

may be extended in more complex geometries for the modelling of rarefied gas flow networks.
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Chapter 2

Literature review

2.1 Introduction

The simulation of rarefied gas flows is a challenging task of high importance for several fields,
such as the vacuum industry [5, 8], high altitude aerodynamics [9, 6] and the Micro Electronic Me-
chanical Systems (MEMS) industry [2, 3]. During the last few years, there is an increased need for
research and development in these fields since the comprehension of related phenomena is in many
cases quite limited. Some indicative applications are given below.

Hypersonic flows around space vehicles [10, 6] and satellites [7, 11] during re-entry is fre-
quently encountered in rarefied atmospheres. The reentry angle for large Mach number is the most
important parameter in this case. The DSMC numerical method is frequently employed in such cases
and large organizations, including NASA [12], develop their own code versions of this numerical
algorithm. The numerical study of such phenomena is a very important factor for the development
of new technologies [13, 14]. The construction of microscale propulsion devices such as mono- and
bi-propellant thrusters and resistojets, has also increased the needs for the accurate simulation and
measurement of rarefied flows [15].

The detailed modelling of vacuum pumps [16, 17, 18] and gas separators [19] is very important
to obtain the maximum efficiency. Multi-layer insulation (MLI) blankets, extensively used in space
vehicles, consists of several layers of thin sheets with vacuum conditions between them to ensure
that heat is transfered only through radiation. A large factor in the performance of the insulation is its
behaviour in the case of degraded vacuum [20]. Vacuum deposition systems are used for the fabrication
of thin-film materials in the manufacture of integrated circuits, MEMS and nanocomposites [21]. The

scientific branch of cryogenics [22] requires extended usage of vacuum facilities.
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Moreover, vacuum is employed in several scientific experiments that have to be conducted
in rarefied conditions. The aim of the Karlsruhe Tritium Neutrino Experiment (KATRIN) [23, 24]
is to measure the neutrino particle mass. Particle accelerators [25] require ultra-high-vacuum (UHV)
conditions that can only be achieved by careful design and optimization of the vacuum equipment.
The thermonuclear fusion reactor ITER, that is currently under construction in Cadarache, France, is
a promising international programme for covering future energy needs. Due to the high requirements
for pumping [5] (insulation vacuum, low pressure to maintain plasma, fuel pumping), flow conditions
usually correspond to the transitional or free molecular ranges. The AIA prototype [26] is a robotic long
reach carrier, able to move inside a fusion reactor and perform various tasks without deconditioning
the torus vessel. One of its most promising features is leak sniffing, in which it is important to know
the characteristics of the rarefied gas mixture sample flow in the umbilicus connecting the sensor tip
with the detector.

Several applications also exist in the emerging field of microfluidics. In the case of MEMS with
moving parts, such as microresonators [27] and comb drive sensors [28], the damping forces induced
by the rarefied gas ambient can significantly alter performance and sensitivity characteristics. The
flow field around micro heat flux sensors [29] plays an important role in the accuracy of the device.
Flows are also rarefied in flows through porous media [30]. Read-head sliders in hard disk drives can
be designed optimally only if the air flow in the microgap is simulated properly [31].

Other applications include the field of aerosols [32], chemical vapor deposition [33] and vac-
uum metrology [34]. More information on applications and various aspects of rarefied gas dynamics

may be found in [35, 36, 37].

2.2 Brief historical overview and fundamental principles of kinetic theory

The beginning of the statistical approach to the physical description of gases is attributed to
Maxwell [38] and Boltzmann [39]. In his works, Maxwell pointed out that not all molecules move with

the same velocity, but in a random manner. Then he proceeded to calculate the distribution of molec-

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Section 2.2

ular velocities and his findings were corrected by Boltzmann. This Maxwellian (or, more correctly,

Maxwell-Boltzmann) distribution, is Gaussian according to the local conditions

m 3/2 ml€ —u(x, b))’
M (x,€,t) =n(x,1) {W} exp{— £ (’t)]} 2.1

2kpT 25T (, 1)

The interpretation of this expression is that the probability density function of molecular velocities f
can be described at the physical point a, time ¢ and for the molecular velocity vector £ by a Gaussian
distribution connected to the local properties: the gas number density n (x, t), the gas velocity u (x, t)
and the gas temperature 7" (x,¢). The parameter m denotes the molar mass and kg = 1.38065 x
1023 (kg m*)(K sec?) is a constant named after Boltzmann.

Boltzmann further investigated these phenomena and managed to derive an integro-differential
equation describing the evolution of molecular velocity distribution in time and space. The most im-
portant assumptions during its derivation were that only binary collisions take place (which is true

2% e

for low densities) and the hypothesis of molecular chaos (“stosszahlansatz”, “assumption about the
collision number”), which allows the substitution of a two-particle distribution function with a prod-
uct of two one-particle distribution functions. Thus, the term molecular chaos refers to the statistical

independence of molecules [40]. The Boltzmann equation is

3f of of

JrE T E g -Q(1.f) (22)

where the collision operator is given by

V=[] [ (£5-rr) avavdeae, 2.3)

Here, g = |€ — &, | represents the relative velocity, b is the impact parameter and € determines the az-
imuthal angle, as defined in [41]. The operator of (2.3) contains the contribution of particles obtaining
a velocity in £ + d§ after a collision (the “gain” part) and of particles with pre-collisional velocities
in £ + d& but scattering to other velocity vectors after the collision (the “loss” part). Boltzmann also
proved that the Maxwellian distribution is a solution of this equation. The existence and uniqueness

of the solution for the Boltzmann equation were confirmed for Hard Sphere molecules in 1910 by
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Hilbert [42]. Grad [43] also proved the equivalence of solving the Boltzmann equation with the Eu-
ler and Navier-Stokes equations, with the main difference being the time and space scale. It can be
easily seen that the Boltzmann equation also leads to the conservation principles when appropriate
projections are made.

In the case of hydrodynamic equations, the constitutive equations, such as Newton's law of vis-
cosity and Fourier's law of heat conduction, are required to obtain a closed system. These expressions
rely on knowing the values of the transport coefficients, namely the viscosity, heat conductivity and
diffusion coefficient. Similarly, an undetermined part in the Boltzmann equation is the intermolecular
potential. If this is specified, the complete solution of the problem can be obtained without the need
for the determination of the transport coefficients.

In the same works, Boltzmann further investigated these phenomena and formulated the H-

Theorem, which practically expresses the irreversibility of physical processes. The quantity
H= / flog fdg (2.4)

if integrated in the physical space, must always decrease (or remain constant in the special case of
a Maxwellian distribution function). It is well known now that this principle is directly connected to
entropy increase, as expressed by the second law of thermodynamics. At all times, molecules tend
to approach the equilibrium state, where molecular velocities follow the local Maxwell distribution,
since this is the state of maximum entropy.

Solving the Boltzmann equation for the unknown distribution function leads to the determi-
nation of any quantity of practical interest. In particular, the macroscopic quantities are found by

appropriate moments of the distribution function, such as the following:

* Number density

n(@,t) = / fde (2.5)
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* Gas velocity vector

e Pressure

e Stress tensor

* Temperature

» Heat flux vector

(ont) = s [ e

oo

Pan="5 [ (€-wrie
P (w,t):m/(& ui) (& — ;) fd§
7 (.t) = gt [ (€= w) fag
a0 ="y [ (€-w’ - wrig

From Equations (2.7) and (2.9) we may see that the ideal law of gases

P(x,t) =n(x,t) kT (x,t)

is valid even in non-equilibrium systems.

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

Around 1909, Knudsen defined a dimensionless number [44], nowadays named after himself,

describing the rarefaction condition of a gas

A
Kn=2
L

(2.12)

where L is a characteristic dimension of the geometry under consideration or the length scale of a

macroscopic gradient, such as the density, found by L = p/(0p/0x). The mean free path of gas

molecules ) is defined as the mean distance travelled by a molecule between two successive collisions.

If molecules are considered as hard spheres, the mean free path is given by

1

V2rd?n

11
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where d is the molecular diameter and n is the number density. In terms of macroscopic quantities, it

can also be expressed as

\ = VT HY

55 (2.14)

with p being the dynamic viscosity of the gas in temperature 7" and P is the pressure. The most

probable molecular velocity is defined as

2kgT
vy = B (2.15)
m
An alternative rarefaction parameter 0 is also commonly used, given by
NN RV
v Z_ V7 - 2.1
= AT 2 Kn 2.16)
These dimensionless numbers are frequently associated with practical quantities as follows
LP
0= — (2.17)
HUo
ym Ma
Kn=,/—— 2.18
2 Re ( )

where 7 is the specific heat ratio of the gas and Ma, Re are the Mach and Reynolds numbers. These
numbers are until today the prevalent measure of rarefaction, classifying the rarefaction levels in four
(rather loosely distinct) regimes: the hydrodynamic, slip, transitional and free molecular regime. Their

most widely acceptable definition is given below

« Kn < 1073 (or 6 > 1000): Hydrodynamic regime. The gas may be considered as a continuum

medium and the Navier-Stokes equations are applicable.

« 107 < Kn < 107! (or 1000 > § > 10): Slip regime. Non-equilibrium phenomena start
manifesting in the boundary regions of the domain. In particular, velocity slip and temperature

jump are observed on the walls.

+ 107! < Kn < 100 (or 10 > § > 1072): Transition regime. A kinetic description of the gas
1s necessary, since intermolecular collisions are reduced and the distribution function is not of

Maxwellian type.

12

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Section 2.3

« Kn > 100 (or 6 < 1072): Free molecular regime. The molecules undergo ballistic motion and

remain unaffected by other molecules. No intermolecular collisions take place.

As we depart from the hydrodynamic regime, non-equilibrium phenomena appear: the gas and the wall
surface do not have the same velocity or temperature, secondary flows are induced by temperature
gradients (or concentration gradients for mixtures) and so on. These phenomena can not be captured
by the classical hydrodynamic equation systems.

The applicability of Euler/Navier-Stokes equations can be extended up to the slip regime by
using appropriate velocity slip and temperature jump boundary conditions [45]. In this way, existing
CFD methodologies can be extended up to the slip regime with minimal further computational load
and problems of mixed density flow fields and complicated geometries can be tackled [3]. However,
only a limited range of rarefaction (Kn < 0.1) can be simulated in this way. There have been some
attempts of extending the applicability of this approach with higher-order boundary conditions [31, 46]
or by changing the constitutive relations [47]. The most successful treatment is attributed to Sone
with a development of a hydrodynamic system of equations for rarefied gas flows, generated by an
asymptotic expansion of kinetic equations [48].

Also, higher order equation systems have been considered. Chapman [49] and Enskog [50]
independently described the distribution function f of molecules in terms of a deviation series from

the equilibrium Maxwell distribution, according to
f:f(o) —I—an(l)+Kn2f(2)+... (2.19)

By replacing this expression in the Boltzmann equation, we obtain a system of integro-differential
equations. The zeroth, first and second order terms lead to the Euler, Navier-Stokes and Burnett equa-
tions respectively [51]. This was a very important point in the history of statistical mechanics, since the
Chapman-Enskog analysis allowed the calculation of the viscosity and thermal conductivity transport
coefficients from first principles [41]. The solution of Burnett equations is still considerably limited

since they face severe difficulties with numerical stability [52].
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2.3 Kinetic models

In order to deal with the analytical barriers and immense computational requirements associ-
ated with the solution of the Boltzmann equation, several models have been proposed to substitute
the collision term. The description of the complete behaviour of molecular interaction contains a lot
of information which is not needed for many purposes. Thus, the loss and gain terms are modified
according to the assumption that the molecules attain a Maxwellian distribution after a single inter-
molecular collision, while simultaneously matching the first moments of Equation (2.3) with the ones
of the model. In more detail, the basic requirements for the construction of a kinetic model are the

following:

* The laws of conservation must be satisfied, i.e.

[o@a(r.r)i=o (220

where ¢ (§) = 1, m&, m&? /2 are the five collision invariants of mass, momentum and energy.

The distribution function should approach the Maxwellian distribution in equilibrium.

 Results near the hydrodynamic regime should agree with exact results known for that case.

The H-Theorem must be satisfied.

The BGK model, proposed in [53] and independently in [54], was the first model to appear and has

been widely applied, mostly due to its simplicity

Q(f fM)=v ("~ f) (2.21)

with v being the collision frequency, assumed to be independent of the molecular velocity, and f is
the local Maxwellian, calculated with the local number density, temperature and velocity according to
Equation (2.1). The Maxwellian and local distribution parts represent the gain and loss terms of the

Boltzmann collision operator, respectively. This model is closely related to the Maxwell diffuse type
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of reflection for interaction with walls, since molecules relax to the local Maxwellian distribution with
a uniform angular distribution around the point of collision after a single collision.

The BGK model has provided satisfying results in the whole range of the Knudsen number.
In fact, it has been seen in many works that the results provided by this model are reasonably close
to the ones provided by the Boltzmann equation (e.g. within 1-2%) [45]. However, there are some
well known limitations of the model. In particular, the collision frequency must be adjusted according
to the flow needs. For an isothermal flow, a Chapman-Enskog expansion method is used to obtain
the correct value of viscosity, while for non-isothermal transport phenomena the heat conductivity is
matched to the value provided by the full collision integral by the same method. It is impossible to have
simultaneously both transport coefficients correctly determined by this model and therefore yields a
Prandtl number equal to unity for monatomic gases (the correct value is 2/3). In BGK model, the
collision frequency must be multiplied by 3/2 for the solution of heat transfer problems and therefore
it is not appropriate for the simulation of coupled flow and heat transfer phenomena.

Two more models were produced in the same manner but also keeping higher moments of the
collision term, namely the Shakhov model [55]

1422 (1 _Prq-(¢—a) (M—§>] —f} (2.22)

Q(f?fM) :V{fM 5n(k:BT)2 2]€BT 2

and the Ellipsoidal model [56]

n

Q(f. M) :VPT{W | Al exp

=) (& =) Ay (& — ﬁj)] - f} (2.23)

ij=1

where .

2kpTd;;  2(1—Pr) Py
m Pr nm Pr

Pr is the Prandtl number, k5 is the Boltzmann constant, m is the molar mass and ¢;; the Kronecker
delta. The ellipsoidal model is derived to further satisfy the expression

nkgT (1 —Pr) Py

T&-j — Pr (225)

/(& — ;) (& — ) [redé =
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It can be seen that by substituting Pr = 1 in (2.22) and (2.23) the BGK expression is retrieved. In the
simulations of the following Chapters, the characteristic value for monatomic gases, Pr = 2/3, has
been used to obtains correct values for all physical quantities.

A shortcoming of the Shakhov model is that the H-theorem has not been proven for its non-
linear form. However, since it was shown that the H-theorem holds for the ES model [57], it is believed
that it also holds for the S model since they have been produced in the same manner. Furthermore, we
have not observed any unphysical findings in our numerical simulations and therefore conclude that
the Shakhov model is reliable even in its non-linear form.

Other models have been proposed in [58, 59, 60]. In the case of mixtures, kinetic models have
been derived by Morse [61], Hamel [62], McCormack [63] and Kosuge [64]. Their application is more
complicated [65, 66] and additional mixture-dependent information may be required [67, 68].

It is also important to note that it is sometimes possible to linearize the distribution function
in terms of a small quantity depending on the problem at hand (e.g. a small temperature difference
in a heat transfer problem or a small pressure gradient in a pressure driven flow). In this case, the
resulting equations are easier to handle and posess favourable mathematical properties. Furthermore,
similar equations have been widely used in the past in neutron transport problems and this leads to an
exchange of concepts and methods. The linearized formulation is a particularly popular approach for

kinetic model equations and has been employed in several problems of Chapters 3 and 4.

2.4 Numerical methods

The numerical solution of the Boltzmann transport equation still remains a formidable task
due to the seven dimensions of the distribution function and the complicated collision integral. Some
numerical solutions have appeared in the last decades [69, 70, 71]. However, they mostly concern the
linearized form of the Boltzmann equation or are limited to hard sphere interaction. Another physically
realistic method of simulation would be to consider the interaction of all molecules located inside the

domain and apply the laws of motion. This is the method of Molecular Dynamics. No approximations
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are made, except the form of the intermolecular potential, and therefore it can capture the largest
possible variety of phenomena. It is one of the few methods that can also deal not only with rarefied
gases but also with dense gases, liquids and two phase flows. However, due to the enormous amount
of molecules in real conditions, the method is only applicable for problems of very small dimensions,
of the order of a few nanometers, and for very small times. Thus, it is used only sparingly in the field
of rarefied gas dynamics.

For reasons of computational efficiency and memory availability, the kinetic model equations
are more frequently used for the simulation of rarefied gases. This approach has been studied system-
atically for decades and a robust theoretical background is now available. The Discrete Velocity (or
Discrete Ordinates) Method (DVM) [72] is one of the most widely used methods. It is applied in Chap-
ters 3-6 of this work for various conditions, for both linearized and non-linear kinetic formulations. It
is completely deterministic and its basic principle is that only a discrete set of molecular velocities is
examined, carefully chosen so that the integration of the distribution function during the calculation
of the bulk quantities is performed with good accuracy. Thus, we can discretize the kinetic equations
in the physical and molecular velocity space and solve only for these specific discrete velocities in an
iterative manner. This method has been used extensively in several works [73, 74, 75] and is particu-
larly suitable when the distribution function can be linearized in terms of a small parameter [76, 77].
It can also be employed when the form of kinetic models is non-linear [78, 79] but this approach has
not received equally wide attention due to the inherent difficulties in the corresponding problems.

The Direct Simulation Monte Carlo (DSMC) method was formulated by Bird [80, 81] in 1963
and is of statistical nature. It is based on the direct simulation of the interaction between computational
particles, each one representing a large number of real molecules. The simulated gas is composed of
these particles which move and interact among themselves, as well as with solid walls. The collisions
are performed in a stochastic manner, i.e. collision pairs are chosen randomly according to certain
laws, while their motion is deterministic. The underlying assumptions are the same as in the Boltz-

mann equation and it has been proven [82] that for a large number of computational particles the
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method is equivalent to solving the Boltzmann equation itself. The DSMC method is well known for
its simplicity, as well as its accuracy and efficiency in highly non-equilibrium systems. It is also rel-
atively easy to consider various phenomena such as ionization and flows with chemical reactions. Its
most important drawback is the strong statistical noise appearing for transport phenomena close to the
equilibrium state. This problem can be alleviated if appropriate techniques are used [83, 84] but the
proposed modifications are not implemented easily.

In practice, the gas may be close to or far from equilibrium in different positions of the same
apparatus and approaches capable of dealing with multiple levels of rarefaction are often required.
An approach based on kinetic principles is imperative, since it is the only way to describe the whole
range of the Knudsen number. As the complexity increases for high-dimensional problems, the DSMC
method is usually preferred over the use of kinetic equations. However, this method is associated with
certain difficulties in the parallelization of the code [85] and statistical noise for low speed flows,
while in the solution of high speed flows its performance is excellent. On the other hand, deterministic
methods are more appropriate for low Mach numbers, where the transport equations are simplified due
to linearization and their solution is obtained very efficiently due to the proposed acceleration schemes
[76, 66, 86].

There are also schemes where the phase space is discretized and treated similarly to the DVM
but the collision integral is obtained by employing particle methods. These approaches belong in the
family of semi-regular methods [87] and may offer significant advantages.

There are numerous other methods that have not been used in this work, such as the Lattice
Boltzmann method [88, 89], the Information Preservation method [90, 51], the Analytical Discrete Or-
dinate method [91, 92], moment methods [93, 94], variational methods [95], extended hydrodynamic
equation systems [48] etc. Even though these methods can also be very effective, limitations related
to applicability range, generality, accuracy or complexity usually lead us to the selection of DVM or
DSMC.

Finally, it is noted that micro-/mesoscopic numerical methods are now solved much faster than
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in the past, not only due to the larger computational power and availability but also due to the pos-
sibility of extended parallelization programming techniques in Graphics Processing Units (GPUs) by
the CUDA technology [96, 97]. It is expected that these computational techniques will receive more

attention in the near future.

2.5 Boundary conditions

Special attention must be given for the boundary conditions required for the solution of the
Boltzmann equation. The boundary conditions are a very important part for the solution of any problem
and many non-equilibrium phenomena may develop near the domain boundaries. The interaction of
rarefied gases with a solid surface is the most challenging aspect of this scientific branch and deserves
the dedication of extra effort. There has been significant effort in modelling the boundary conditions in
several works [98, 99], even though only the Maxwell scattering kernel has been used. Nevertheless,
there are many arguments against its use in most cases. Another kernel was proposed by Epstein
[100], where the accommodation coefficient depends on the particle velocity, but it is also an empirical
approach and has not been widely accepted.

The application of the Cercignani-Lampis (CL) kernel, first seen in [101] and re-derived by
different approaches in [102, 103, 104], is recommended instead. Some of the facts that establish the
superiority of this model are the distinction between the accommodation of energy and momentum
through the coefficients «,, and a; and the possibility of adjusting them to obtain diffuse, specular or
backscattering reflection. It is widely accepted that this approach seems to be more physical and its
linear form has been used successfully in the past in several papers concerning various flow problems
[105, 106, 107, 108]. It was also easily adapted to the DSMC method [109, 110] after some extensions
by Lord [111, 112]. However, very limited work has been done in linear heat transfer [113] and none
so far involving non-linear kinetic equations.

An alternative approach in modelling gas-surface interaction is to move this effect from the

boundary conditions to the Boltzmann equation. In [ 114] the interaction between wall and gas molecules
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is split in two parts: the long range attractive forces are modelled as a force field on the streaming part
of the Boltzmann equation, while the short range repulsive potential is included in an additional colli-
sional term. This method is derived from Enskog's theory of dense fluids and a Monte Carlo collisional
procedure similar to the one used for the gas molecules can be employed for interaction with walls
as well. This model is able to predict accommodation coefficients qualitatively (and in some cases
quantitatively) close to those provided by MD simulations.

The study of roughness is also another subject of a lot of research currently, such as [115].
In this work, direct simulation Monte Carlo is used along with rough walls, derived by a statistical
approach, and a mathematical formulation is introduced to deal with difficulties associated with the
complexity of calculating the intersection of the surface with the molecular trajectory in an efficient
manner.

The work of Lord is also well known in the literature for the extensions of the Cercignani-
Lampis kernel and its application in the DSMC method [111, 112]. The original Cercignani-Lampis
kernel does not include the case of diffuse reflection with incomplete energy accommodation, i.e. the
reflection of molecules with equal probability at each direction at a partially accommodated energy
level. In this case, the kernel is independent of the tangential velocity orientation and therefore the
coefficient of tangential momentum is unity. However, the accommodation coefficients of energy,
equal for the tangential and normal directions, can be different than unity. This case is considered in
these works, also including the case of partially diffuse scattering. Lord also points out that the CL
model may be used to describe internal degrees of freedom but fails to provide a realistic description
of vibrational states because of its classical (instead of quantum) derivation and modifies the scattering
kernel accordingly.

Three methods have been used to derive the accommodation coefficients of the diffuse-specular

or CL models:

* Derivation through molecular beam experiments

Molecular beams can be used to determine the angular distribution of reemitted molecules
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and obtain information on the validity of theoretical models and the accommodation coefficients.
A beam of molecules of any species (but preferably of small molecular mass, such as helium)
is concentrated on a point of the surface under consideration, while a movable detector is used
to determine the pattern of departing molecules. The beam must be as nearly monoenergetic as
possible and properly focused on the point under investigation. The surface should be a signle
crystal of known orientation and its surface should be clean, or at least, contaminated in a known
way. The actual measurement is the ratio of the molecules scattered for each particular solid
angle to the number of impinging molecules, without distinguishing the molecules according to
their speed. The experimental setup and basic principles are very well described in [116] and

some experiments can be seen in [117, 118].

It can be seen [101] that the departing distributions have a totally different shape than the
one produced by the diffuse-specular kernel, while the CL kernel provides satisfactory results.
The agreement is not simply due to a best fitting, since the values of o, and «; are the same in

all cases.

* Derivation through bulk quantity comparison between experiments and numerical results

The most popular method of determining gas-surface interaction details is via the fitting
of the accommodation coefficients through the comparison of macroscopic quantities between
reliable experimental and numerical data. There are several works employing this principle [119,
120, 121]. A measurable quantity, such as the flow rate through a channel or the heat flux in
a geometry with different surface temperatures, is compared with simulation results or already
tabulated numerical values for different accommodation coefficients in the literature. In this
manner, the very costly examination of gas-surface interaction in the micro-/nanoscale and the

corresponding limitations are avoided.

* Derivation through Monte Carlo / Molecular Dynamics simulations of gas-surface interaction
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The accommodation coefficients can also be found by comparison with Monte Carlo
[122, 118] or Molecular Dynamics [123, 124] calculations. The surface data may be imported
via atomic force microscopy on a real surface [125] or may be generated according to the wall
characteristics [ 124, 123]. This type of study may receive more attention in the following years
due to the high accuracy and increasing availability of computational resources. Furthermore,
in this manner deviations from currently available theoretical models, that are due to approxi-
mations such as the independence of the accommodation coefficients on the impinging particle
conditions (i.e. energy, internal state, direction of incidence), can be observed [123] and mostly

phenomenological modifications have been proposed [124].

Further information on various scattering kernels, their application and comparison with ex-

periments may be found in Chapter 3.

2.6 Flow through channels

The problem of flow through channels of various cross-sections is very important for the rar-
efied gas dynamics community. The flow configuration can be described as follows: Two infinitely
large reservoirs, containing a single, monatomic, rarefied gas, are connected via a channel. The reser-
voirs are maintained at different pressures I5m, Pout, inducing gas motion through the channel. The
temperature of both vessels and all walls remains constant and equal to 7j. Our aim is to calculate
practical quantities, such as the mass flow rate, in the steady state. Problems of this type are investi-
gated for different conditions and channel cross-sections in Chapters 3, 4 and 6.

There are significant applications for such flows and particularly for flow through cylindrical
tubes. In the case of an orifice (i.e. a tube of negligible length), the configuration can be used for
comparison with experimental data without the influence of gas-surface interaction, since results are
practically independent of the wall accommodation properties [126, 45]. Thus, the apparatus can be
realized experimentally and used as a test for kinetic models, numerical methods and intermolecu-

lar interaction models. Furthermore, orifices and finite length channels are commonly encountered in
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many practical applications in aerospace [15], vacuum [127], microfluidics [128] and other applica-
tions [129, 130, 131], while long channels are also common in vacuum and MEMS networks.

Flow through long channels has been considered by many researchers [132, 133, 86] and for
various geometries [73, 134, 135, 136, 74, 137], both numerically and experimentally. The wide avail-
ability of results stems from the simplifications occuring because of the fully developed flow condi-
tions. Due to this hypothesis, the channel end effects are considered to be negligible. In order to further
increase accuracy, some authors have applied the effective length concept [45] to take into account
the finite length. This effect has also been considered in this work and the corresponding analysis is
given in Chapter 4.

The study of short channels poses large difficulties due to the increased dimensionality of the
problem: the distribution function is four- or five-dimensional and the complete flow field, including
part of the upstream/downstream containers, must be included in the simulation. In this case, the
methodology is differentiated depending on the size of the pressure difference.

When large pressure differences are considered, the flow is non-linear. There are several exper-
imental investigations regarding flow through finite (or zero) length channels [126, 138, 127]. Results
include mass flow rates, discharge coefficients and interpolating formulas. Tubes of small length-to-
radius ratios have also been studied experimentally by Sreekanth [139], Fujimoto and Usami [140]
and Marino [141] and Varoutis et al. [142] for a wide range of pressure ratios in the transition regime.

Numerical works during the 60's investigate slit and orifice flows near the free molecular
regime [143, 144, 145], with particular emphasis on flow into vacuum, but their range of applicability
is small. In order to obtain the behaviour of the flow for any rarefaction regime, the most success-
ful approaches rely on the Direct Simulation Monte Carlo (DSMC) method and the discrete velocity
method (DVM). For large pressure differences, DSMC has been used in the whole range of rarefaction,
due to its simplicity and high accuracy for high speed flows, for the solution of slit [146, 147, 148],
orifice [149, 15, 150] and short channel flow [151, 152, 147]. These works have limitations on the

pressure ratio range, up to 0.7-0.9 [149, 152] due to the increased noise in this regime. It is also worth
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mentioning that some authors [146] derive interpolating formulas for the mass flow rate, covering up
to the whole range of rarefaction.

Non-linear kinetic model equations have also been tackled by the DVM for problems of plane
and axisymmetric geometry. Early works [153, 154, 155] may contain some inaccuracy due to the high
computational cost of these calculations and the low-order schemes. More recent works [79, 78] show
that this approach could be used alternatively for any value of pressure ratio in a unified manner, as an
alternative to DSMC. This type of treatment is applied in Chapter 6 for the solution of flow through
a tube of finite length, driven by large gradients of pressure. An enhanced algorithm is proposed by
applying certain computational techniques. In particular, the total number of iterations is significantly
reduced by the Wynn-epsilon acceleration [156, 157], the code is parallelized and memory demands
are reduced by proper handling of the allocated arrays. The efficiency of the algorithm is described
and a preliminary comparison with recently obtained DSMC results [152] is provided. Our objective
is to provide a fully deterministic algorithm for solving non-linear kinetic equations and obtain results
with computational efficiency similar to that of the DSMC method.

In the case of small pressure differences, the literature is rather limited. Very few experimental
works deal with low pressure differences [158, 159]. Regarding numerical works, Akin'shin et al [160]
have solved the linearized non-isothermal slit problem by the integral moment method employing the
Shakhov kinetic model. Flow through a slit has also been examined by Hasegawa and Sone [161] for
small pressure differences with the BGK model. Sharipov has applied the Discrete Velocity method
to solve the linearized isothermal [162] and non-isothermal [163] slit problem, where the satisfaction
of the Onsager theorem is verified.

In Chapter 4 of this dissertation, we apply the Discrete Velocity method to investigate flows
driven by small pressure differences in the whole length of the Knudsen number. The channel geometry
length ratio ranges from zero up to 10 and the channel end effects are considered by including a part
of the upstream and downstream containers. Low pressure differences have not been examined in

the past and a study of this problem is important, since it provides reliable and efficient solutions
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for conditions where the computational cost of DSMC is very high. The range of applicability of
linearized theory is examined via a comparison with DSMC results in the literature, in order to cover
all possible conditions of flow, along with the high-velocity flow in short tubes and the linearized,
fully developed flow through long tubes. This is a continuation of previous work [156] where it was
shown that linearized theory was valid not only for infinitesimally small but also for finite differences
and can be used in a range beyond the strict mathematical limits. Results include distributions of all
important macroscopic quantities (number density, temperature, velocity) as well as the mass flow
rate in dimensionless form.

Besides the case of straight pipes, channel elements with different geometrical configurations
of short length, such as contraction/expansion elements [164, 165, 166, 167] and turns [168], have
been investigated in the literature. Numerical results are usually limited in the hydrodynamic, slip
or free molecular regime or do not take into account the fact that the distribution function is not
Maxwellian at the channel ends [169]. The simulation of gas flows in short channel components is
very important for practical applications. Results for such geometries are necessary for numerical
codes simulating rarefied flows in networks in a very efficient manner, based on kinetic principles
[170]. The objective in this case is not to obtain a complete, highly accurate solution, which in most
cases can only be achieved by extremely demanding kinetic simulations of the whole network, but
to make reliable estimations on the flow rate and pressure drop in vacuum systems and MEMS. This
information is particularly helpful during the designing phase of such devices. Furthermore, it can
assist in optimization and inverse engineering studies. For this purpose, the contraction/expansion
channel element, consisting of two cylindrical tubes of different diameters connected in series, is
examined in Chapter 6 via the DSMC method. The pressure difference is large and various geometrical

configurations are considered.
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2.7 Non-linear heat transfer

In many occasions the design and optimization of high vacuum equipment, micro-devices or
applications of high altitude aerodynamics include the study of heat transfer effects through rarefied
gases. The problem of heat transfer between parallel plates has been studied extensively, both for single
gases [171, 172, 173, 174, 175] and mixtures [176] in the whole range of the Knudsen number. Even
more, it has been used to benchmark the efficiency of several semi-analytical and numerical methods
solving kinetic equations [177, 99, 178]. In the case of heat transfer in a rarefied gas between coaxial
cylinders, it is commonly found in various technological applications, such as the Pirani gauge [4] for
monitoring pressure in vacuum technology. The Pirani sensor is composed of a cylindrical vessel in the
center of which a fillament is heated and its electrical resistance is checked. As the gas pressure inside
the vessel drops, the heat transfered from the fillament to the gas is reduced, the fillament temperature
is increased and the resistance of the wire is modified. It is also used in the area of low/medium vacuum
and its applications are found in the semi-conductor industry, in leak detection and food processing.
Furthermore, this geometry is found in multilayer insulation blankets for cryogenic equipment [20]
and micro heat exchangers in microfluidics. Also, it has been used for a long time to determine the
thermal conductivity of gases and to study temperature jump and energy accommodation at the inner
cylinder.

Most of this work is based on linearized kinetic solutions of the BGK kinetic model equation
under the restrictive assumption of small temperature differences between the two walls. Only few
results exist in the literature for the more general case of arbitrary large temperature ratios between
the plates and most of them are based on the BGK model with purely diffuse reflection at the walls
[179]. Some of the well known drawbacks of this approach are that it can not predict the correct value
of the transport coefficients and simulate non-isothermal flows.

Another important factor that is often neglected in kinetic theory analyses is the influence of the
intermolecular potential. There are several models to apply in this case, such as Hard Spheres, Variable

Hard Spheres, Variable Soft Spheres, Inverse Power Law, Lennard-Jones and realistic potential [68,
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80]. Differences among them lie in the modelling or not of both attractive and repulsive intermolecular
forces, as well as the shape of the potential. The effect of the intermolecular potential is very important
for non-linear heat transfer phenomena, since the differences in the properties of the two colliding
partners become larger. In this work, the Inverse Power Law (IPL) model is used due to its simplicity
and flexibility. The repulsive contribution is taken into account and the viscosity is related to the
temperature via the simple expression p oc 7. The two limiting values w = 0.5 and w = 1 correspond
to the cases of Hard Spheres and Maxwell Molecules respectively, while the intermediate values are

related to the Variable Hard Spheres model of specific gases [80].
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Gas-surface scattering effect in flow and heat transfer problems

3.1 Boundary condition models

The laws of interaction between a gas and a solid surface need to be taken into account in
the vast majority of practical situations, since both internal and external flows usually include some
interaction with walls. These laws are very important from an engineering point of view because
the phenomena of lift and drag, friction, heat transfer, etc. highly depend on them. This interaction,
however, is not easily described theoretically due to the large number of factors of influence, such
as the solid surface structure, its roughness and cleanliness, and the high complexity involved in the
process. In reality, the particle is adsorbed at the impact point and may form chemical bonds, dissociate
and become ionized before being re-emitted after a small time interval back to the main volume of
the gas from a different point of the surface. A complete simulation can not be realized easily since
the departing velocity & can only be determined if the full path of the molecule within the wall is
computed exactly by the method of molecular dynamics, leading to a very high computational cost.
Fortunately, the simulation of the detailed interaction process is not needed in many cases. An adequate
description of the scattering phenomena is obtained by employing simplified but reliable models,
correlating the distribution functions of molecules approaching and leaving the wall surface. Even
though this approach has some limitations, it provides good results for a wide variety of conditions.

At this point, some fundamental notation conventions used throughout the following analysis
need to be explained. In the following, the superscripts —, + are used to distinguish between the dis-
tributions before and after the interaction with the wall. Furthermore, the apostrophe () superscript
is attached to the molecular velocity vector of particles before interaction with the wall. Finally, the

subscripts n, t denote the normal and tangential directions relative to the wall. Thus, for example, the
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distributions of incident and departing molecules are [~ (El) and f7 (&) respectively, while the depart-
ing molecular velocity vector consists of a normal and two tangential components & = (&, &1, &2)-

A scattering kernel R (:13 s x+de, € =&ttt 7') is defined as the probability density
function of the reflected state of the molecule, when it reaches the wall with velocity &', becomes
adsorbed on the wall at point « at time ¢ and departs from it after a time interval 7 at the surface point
x +dx with velocity £. For certain conditions, the scattering kernel may also depend on the impinging
distribution [180] but this case is excluded from this work. Furthermore, in order to make this study
more tractable, some assumptions are in order. First off, the adsorption time 7 and the distance to
the point of re-emergence dx are taken to be negligibly small. Moreover, we assume that the wall
molecules remain relatively unaffected by collisions and are in local thermal equilibrium with each
other at the wall temperature 7;, which may vary on a macroscopic scale. These hypotheses allow us
to assume that R = R (5' — & ) and that the dependence on the surface point x is only a function of
the temperature 7 and the chemical composition of the wall. Finally, all kinds of chemical reactions
and alterations of the molecule are also excluded from this study.

An obvious property of the scattering process is that, if the wall is non-porous and non-absorbing,
all molecules will be re-emmited with some velocity. Thus the total scattering probability must be

equal to unity

/£n>OR(§' %§> g =1 3.1)

It is clear that this property is directly connected to the condition of no wall penetration (u,, = 0). It
is also noted that in some specialized applications, such as interaction with the surface of a vacuum
pump cryo-panel, this condition may not be valid.

The total number of molecules impinging on a wall surface unit area per unit time interval is

r(€)

If we multiply Equation (3.2) with R(& e ) and due to the kernel properties, we derive the general

/

&n

!

d¢ (3.2)
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expression for the boundary conditions

Glr©= [

£,<0

£,

R(€ —¢€)f (€)ade (3.3)

In essence, this simply expresses the principle of mass flux equilibrium on the wall.

The scattering kernel must also be non-negative

R (g’ N 5) > 0 (3.4)

for all £, ¢ due to its definition as a probability density.
Another property that the scattering kernel should satisfy is the so-called reciprocity law (or

detailed balance)

&onlh(€)R(€~€) =l fo© R (~€ - —¢) (3.5)
The physical meaning is that if a gas is at equilibrium at the temperature 7j of the wall and hence
has distribution function fj, the number of molecules scattered from a velocity range (E/, E/ + dEl)
to a velocity range (£, € + d€) is equal to the number of molecules scattered from (—&, —& — d§)
to ( —5/, —5/ — dfl). Thus, if the impinging distribution is the Maxwellian at the wall conditions f
and mass is conserved at the wall, then the distribution function of the emerging molecules is again
fo, or in other words, the wall Maxwellian is preserved and satisfies the boundary conditions. It is a
consequence of time reversal invariance and of thermal equilibrium of the medium.

It is also important to note that, when the problem in question is linearized, we obtain
ht = Ah™ + hy — Ahy, (3.6)

where h,, is the Maxwellian perturbation term of each particular wall and the operator A is defined by

A== [ | R(€ > &) ew (& —€2) (¢) d€
£, <0
- [ le|r(-e~-€)n (¢)a€ (3.7)
£, <0
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This can be derived by substituting the linearization expression, in the form f* = fo(1 4+ h™ — hy),
in Equation (3.3).

Before moving on to the description of various scattering kernels found in the literature, we
must make a note on the visual representation of the boundary conditions in the microscopic level.
The most usual practice is to plot the scattering patterns occuring from a monoenergetic collimated
beam (or, in practice, from a collimated thermal beam) impinging on the surface with a known angle

[180]. The quantity

N(6,0) = Ni / £ (&)1 n|ede (3.8)
0

is the number of molecules scattered per unit solid angle (regardless of their velocity magnitude),

normalized by the total amount of scattered molecules

No = / £ (&) € nde (3.9)

£n>0
The quantity NV is plotted at the plane of incidence in Figures 3.1-3.6 for various models, in order to
get a more direct sense of the phenomena. In the cases shown here, a monoenergetic beam has been
simulated for these plots and the incidence angle is noted below each figure.

The simplest scattering model is the specular kernel, proposed in the early papers of Maxwell

Rs(€ —»¢)=dp € —¢+2m(n-¢) (3.10)

where 7 is the unit vector normal to the surface at point 7 and dp (7) = dp () dp (y) dp (2) is the
Dirac function. In this model, the molecules are assumed to reflect specularly, i.e. the normal velocity
component is reversed (Figure 3.1). This model is not realistic in most practical situations, since it
cannot predict the appearance of non-normal stresses exerted from the gas on the surface.

Maxwell also proposed another kernel for the diffuse type of reflection, which has become the

most well known and widely used model

/ _ m2&, m(& — 'a'w>2
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In this case, the velocity magnitudes of re-emitted molecules follow a Maxwellian distribution, de-
termined by the temperature and velocity of the wall, while the angular distribution is uniform. The
scattering pattern occuring from Equation (3.11) is plotted in Figure 3.2. As stated in [180], the prob-
ability of any particular magnitude and direction of the velocity will be the same as in a gas in thermal
and mechanical equilibrium with the solid. This is due to the fact that during the adsorption of the gas
molecule, it interacts multiple times with the nearby wall molecules, coming to a local thermodynamic
equilibrium with wall particles before returning to the flow domain. The popularity of this approach
is based on the fact that the model is simple, easily understood at both microscopic and macroscopic
level, while the associated numerical effort for its implementation is minimal. For this purpose, it has
been used in a variety of physical systems, providing good results in agreement with corresponding
experimental findings [74, 121]. However, in some cases, the gas may behave much differently. In
particular, exceptionally rough or smooth walls may display different scattering patterns, while light
molecules also tend to reflect more specularly than heavy ones.

In order to achieve a better agreement with practical results, Maxwell had to resort to qualitative
arguments and introduce a phenomenologial parameter «;; which is not directly related to the structure

of the surface

[ o(€)lels(€)d = | o@lels @
— 80 — 3.12
@ €) S 0@l fu () de 12
£,<0 >

It is used to express in which degree have the properties ¢ (&) accommodated to the wall conditions.
The pre-collision property fluxes are the terms containing f—, the post-collision fluxes is the one with
f* and the wall conditioned flux is the integral containing f,,, which is the Maxwellian at the wall

conditions. The diffuse-specular kernel is then expressed by

Ros (€ =€) = anfo (€ =€) + (1 —an) Rs (§ —€) (3.13)

The main assumption is that a portion of every surface element absorbs all the incident molecules

and afterwards allows them to re-emit diffusely, while the remaining portion reflects all the molecules
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incident upon it specularly [180] (Figure 3.3). Another, more commonly used, definition of av, is that
it represents the fraction of diffusively evaporated molecules, while the remaining molecules reflect
specularly. This parameter is called the accommodation coefficient because it expresses the tendency
of the gas to accommodate to the state of the wall. However, it is well known that momentum and
energy accommodate at a different rate: momentum is changed much faster than energy and thus one
coefficient is not enough to describe this process in a realistic manner. Also, as stated in [ 105, 106, 107],
discrepancies are found in other cases between numerical and experimental data [159]. In particular,
the mass flow rate is in reality lower than it was expected by numerical calculations and the required
value of the Maxwell accommodation coefficient 0 < a;p; < 1 would be outside of its physical range.
Also, it has been reported that the value of a); may depend on the rarefaction degree [159, 181].
Therefore, an attempt to examine a variety of gases and surfaces and store the corresponding values of
oy intables would not be effective. It seems that trying to integrate all types of interaction mechanisms
in only one free parameter is not correct and cannot be physically justified.

A more realistic model was presented by Cercignani and Lampis in [101], defined by
Rep = RuRp R, (3.14)

consisting of two tangential

, 1
Fa ((St - §t> - Vo (2 — o) (2kpT,/m)

X exp {—( el U at)gﬂ } (3.15)

2kgT,/m) oy (2 — ay)

and a normal part

B (6~ &) = oo

ex _ [67% + (1 - an) &?} V1-— O‘ngng;z
% p{ (2kpT,/m) a, }]0 (an (k‘BTw/m))

(3.16)

where Iy (x) = (1/27) fozﬂ exp (x cos ¥) di) is the modified Bessel function of the first kind and zeroth

order. The most apparent indication of the CL superiority in comparison to the diffuse-specular kernel
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is the fact that continuous, physically reasonable, lobular shaped distributions of direction and energy
are produced for the re-emitted molecules (Figure 3.4). By combining (3.3) with the CL kernel (3.14)
- (3.16) and defining «,, oy similarly to (3.12), it can be seen that the two accommodation coefficients
a, € [0,1] and ay € [0, 2] correspond to the properties of normal kinetic energy (¢ (§) = (mé&?) /2)
and tangential momentum (¢ (§) = mé&;, @ = 1, 2) respectively. According to the model assumptions,
their values depend only upon the physical nature of the gas and the wall, as well as on the temperature
of the latter. Furthermore, the reciprocity property is satisfied and the whole spectrum of scattering
behaviour is described continuously. Some of the previously mentioned scattering behaviours can
be reproduced by an appropriate selection of the accommodation coefficients. In particular, specu-
lar interaction can be reproduced for oy = «,, — 0, which leads to Ro;, — Rg (Figure 3.5), and
diffuse interaction for oy, = «a,, = 1 with Ro;, = Rp. Back-scattering can also be modelled by
ar — 2,a,, = Owith Rep = 0p (€n +&,) b (§n1 + &) Op (&2 + &) (Figure 3.6). The dependence
on two coefficients is an advantage, since as mentioned before momentum and energy are accommo-
dated at a different rate. This kernel has been used in many recent works [110, 113, 156]. For rough
physical surfaces, a value of oy rather close to unity or slightly larger is to be expected. Finally, the
thermomolecular pressure difference (TPD) exponent is dependent on the accommodation coefficients

and does not remain equal to 0.5 as in the Maxwell diffuse-specular model [105].

3.2 Application of the CL kernel
3.2.1 Introduction

The procedure of the CL kernel application has been validated by reproducing previous works
in the literature, including both flow [105, 107] and heat transfer [113] problems. This work is an
extension to more demanding problems. In particular, the problems of linearized pressure-driven flow
through a rectangular duct, linear and non-linear heat transfer between parallel plates, as well as non-
linear heat transfer between concentric cylinders are treated in the next subsections. Similar method-

ology may be followed for any scattering kernel, if an even more realistic model is proposed.
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3.2.2 Linearized flow through a rectangular duct

The application of the CL scattering kernel is studied here for the well known problem of
rarefied gas flow through a long duct of rectangular cross-section with height A and width W [75].
The flow is fully developed, driven by a small pressure gradient along the longitudinal direction z,
while the rectangular cross section lies in the x — y plane. Isothermal wall conditions at reference
temperature 7} are assumed. This problem is more challenging than previous works due to the large
number of boundary surface points and the two-dimensional nature of the molecular velocity vector.
Detailed results for the conductance and dimensionless flow rate are tabulated in terms of the channel
aspect ratio and certain values of the CL accommodation coefficients to use for practical engineering
purposes. Finally, a comparison with experimental results is also performed.

The problem can be described in the whole range of the Knudsen number by the Boltzmann
equation, where the collision term is substituted by the BGK model. After a well-known mathemat-
ical procedure [182, 77], involving linearization, non-dimensionalization and projection, we get the

governing equation

Oy Oy 1
L~ L 4+ 50 = du, — — 3.17
c o +¢y ay +0p U 5 (3.17)
where
1
0= ﬁ / he, exp (—cz) de, (3.18)

is the projection of the distribution function, ¢;,7 = x,y, z are the components of the molecular ve-
locity (instead of &;, 7 = x, y, z due to the non-dimensionalization) and w, is the macroscopic velocity
along the duct. All quantities in (3.17) are in dimensionless form. The rarefaction parameter ¢ is de-

fined as
B PH

Mo

5 (3.19)

with P = P (z) being the pressure along the channel, i the dynamic viscosity at reference temper-

ature Ty and vy = +/2RT} the most probable molecular velocity, where R is the gas constant. The
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macroscopic velocity is calculated through

1 o0 [e.e]
u, (x,y) = %/ / pexp(—c; — ¢} )deydey (3.20)

For simplicity, the methodology is presented for just the lower boundary, i.e. y = —1/2, but
can be easily extended for the other three walls. The departing velocity components (¢, ¢;1, ¢t2) are
(¢y, €z, C2), while the components of the impinging velocity (c;@, il 022) are (c;/, c., c;) Since lin-
earization has taken place, Equation (3.6) is the starting point here, with terms containing h( vanishing
because the walls are maintained stationary and isothermal at the reference temperature, leading to a

zero perturbation from the reference Maxwellian. Acting accordingly on (3.6) in order to form the

projection of the distribution function, given by (3.18), it is reduced that

| 17 1,
0" (x, —E,cx,cy) = ﬁ / Ah~ (x, —§,cx,cy,cz) c, exp (—cg) dc,
1 oo oo O 00 1
= -~ / / / / cly R (—c — —cl> c.exp (—c2) b~ (ZB, —5,0;,0;,c;> dcz] dc;dc;dc;
(3.21)
for ¢, > 0. This expression can be simplified by calculating the integral
FE (cl — c) = / R (—c — —c/> C, exp (—ci) de,
=R, (—cx — —c:,c) R, (—cy — —c;) / Ry (—cz — —C;) c, eXp (—cg) de, (3.22)

The tangential Cercignani-Lampis component must be substituted in this expression. Taking into ac-

count the non-dimensionalization, Equations (3.15) and (3.16) become

R (C/ —c > = ! exp § — [ = —a0d]" (3.23)
P\ ‘ oy (2 — ay) ap (2 — o) .
: 2en 24 (1—ay)c? 21 = ancnc
R, (cn - cn> — 2% exp {— [+ (1~ an) ] } Iy (ﬁ) (3.24)
Qo (7% Ay,
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and we obtain

o0

/ R, <—cz — —c;> ¢, exp (—c2) de, = (1 — a;)c, exp (—c?) (3.25)

—00

Then, we substitute this result in Equations (3.22) and (3.21) to get

oo oo 0
1 1—06 ’ ’
T - R T T

’ ’ ]_ ’
X c, exp <_sz> h~ (:1:, 37 Car Gy Z> dc dc dc (3.26)

’

Y

Finally, after rearranging this expression to get the (o~ projection according to (3.18) with c,
and substituting the rest of the scattering kernel components from (3.23) and (3.24), the CL boundary

conditions read as

oo 0
+(x—lc c)— 2(1— ) // ( c/>c/
(p ) 27 X y \/m ()0 7 I’ y y
{ c;f + (1 —ay) C; [(1 —ay) ¢y — C;}Q } (2\/1 — ancyc;/
X expq — ) Iy

n a (2 — oy O

> de, dc, (3.27)

for the lower horizontal wall and ¢, > 0. In terms of the polar molecular velocity coordinates, it is

expressed as

1 (1-— / /
SO+ (xa __7Cp78) = at // ( , 7Cp70> Cp2 sin
2 /Ty (2 — o)

{ (c,sin0)? + (1 — ay) (¢psinf)? (1 — o) (cpcos6) — (c, cos 0/)}2 }
X exp ] —

o 0 (2= o) (3.28)

de, df

P

; (2\/1—an(cpsine)(c;sin9/)> ;o
X Lo

O

for 6 € [0, w]. Following the same procedure at the upper horizontal wall (y = 1/2) leads to

1 (1-— / /
2 ap/moy (2 — o)

38

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Section 3.2

 exp {_(c; sin0)? + (1— an) (5in0)2  [(1— o) (¢, c080) — (¢, cosé)')]g} (.29
a, a (2 — ay)

Op

I (2\/1 — (¢ sinb)(c, sin@l)) dc;,dQI

and 0 € [—m,0]. The procedure is similar for the vertical walls. For the left wall we get

371'200

1 1—Oé ’ ’
Rl (— ,0,0): ) // ( ,y,c,H)c%os@
4 ( 9 /T (2 — o) P P

< exp {_(c;, cos )2 + (1 — a,) (cpc080)>  [(1— ay) (¢, sin) —)(c;, sine'>]2} (.30

o, a (2 — oy

Qp

o, (2\/1 — (¢, c0s 6) (¢, cos 9’)) ac. do

for 0 € [—n/2, 7 /2] and for the right wall

n\/ 7TOét — Oét

 exp {_(c; cos ') + (1 = a) (cpc080)® [(1 — ) (¢, sin ) — (¢, sin@')]z} aan
ap, a (2 — )

I (2\/1 — ap(cp cos B)(c, cos b )) dc;dﬁl

Qn
for 0 € [r/2,3m/2].

The final integrals (3.28)-(3.31) are calculated numerically at each iteration of the numerical
scheme and take up the largest part of the simulation. Some common terms can be grouped and stored
in an array to reduce the computational effort but this may result in high memory demands. Also, the
impinging and departing distributions must be stored. These factors pose significant computational
difficulties in the application of CL boundary conditions for high dimensional problems.

For practical calculations, the reduced flow rate is estimated by

W /(2H)
= 2—/ / (z,y) dydx (3.32)
71/2

W/(2H)
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Once the kinetic problem is solved, the dimensionless kinetic quantities are converted to dimension-
alized bulk quantities following a standard procedure based on mass conservation along the channel
[45]. The conductance of the flow is obtained by [74]

4(H xW)*> R,T,

¢= 2(H+W)vgm L G (3-33)
where
1 o1
G* = / G (6)dd 3.34
5= s (9) (3.34)

Here 6; and 5 correspond to the inlet and outlet conditions, R, is the universal gas constant, while m
denotes the molar mass. The integrodifferential system of (3.17) and (3.20), along with the boundary
conditions (3.28)-(3.31), may be discretized by the discrete velocity method and solved in an iterative

manner, presented here briefly:

1. The gas velocity u (z, y) is initially assumed

2. The discretized version of Equation (3.17) is solved using a marching scheme

|98)

. The departing distribution ¢ is calculated by the Cercignani-Lampis final expressions

4. The gas velocity is re-calculated from the new values of ¢ via Equation (3.20)

9]

. Steps 2 - 4 are repeated until convergence has been reached for the bulk velocity u (x, y).

This procedure is given in detail in later chapters, along with various modifications.

3.2.3 Linearized and non-linear heat transfer between parallel plates

The examination of an isothermal flow problem, such as the one presented in the previous sec-
tion, allows the determination of the tangential momentum accommodation coefficient o; with good
accuracy, since in that case the flow rate is practically independent of the normal energy accommoda-
tion coefficient «v,. In order to determine the latter coefficient, a second experiment may be performed
for the same combination of gas and surface type, involving heat transfer. In this subsection, the prob-

lem of heat conduction in a rarefied gas confined between two parallel plates of infinite dimensions is
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presented briefly for small and arbitrary temperature differences. The reader is referred to Chapter 5
for more details on the non-linearized formulation. The consideration of arbitrary temperature differ-
ences here also sheds some light in the application of the CL scattering kernel on the non-linear form

of kinetic equations and the differences in the corresponding results.

3.2.3.1 Linearized heat transfer

Two parallel plates are maintained at different temperatures 7’| y=tl = Ty F AT /2, where
T} 1s the average temperature of the two walls. A rarefied gas is confined between them and we
are interested in calculating heat conduction in the whole range of the Knudsen number. When the
temperature difference AT is small, the distribution function can be linearized around the Maxwellian
in the equilibrium conditions fj, i.e.

I=r (1 + h%) (3.35)

After non-dimensionalizing and applying the projections

Y= %//hexp (—ci — ci)dcxdcz (3.36)
P = %//h (Z+c2—1)exp(—c2 — c2) deyde, (3.37)
on the Shakhov kinetic model equation, we obtain the system
cyg—g;—irégo:é{p—irT(cZ—%)jL%qcy(z—g>} (3.38)
cyg—z +oY =9 |:7' + %qcy] (3.39)

where the perturbations of number density, temperature and heat flux are defined as

n —nyo TO 1
P= AT = o= | exp(-a) dey (3.40)
T-T, 1
T=TAT - 3ﬁ/ 20+ ¢ (20, = 1)] exp (=¢]) de, (3.41)
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qg To 1 5 3 )
T P AT 7 -3 - 42
4 POUO AT \/E |:¢ + i (Cy 9 Cy €Xp ( cy) dcy (3 )

Once again, we start from Equation (3.6), with the perturbation from the reference Maxwellian being

1 1
hlyess = Puolyoss F 5 (c2 — —) (3.43)

The presence of the impermeability constants p,, may seem a little odd here but they are eliminated
further below in the process. We operate on (3.6) accordingly so that we get the boundary conditions

in terms of the projections (3.36) and (3.37)

ot = % / / exp (—cf: —¢2) (Ah™ + hy — Ahy,) deyde, = B, + C, — Dy, (3.44)

—00 —00

Yt = % / / (2 +c—1)exp(—c2 — ) (Ah™ + hy — Ahy,) degde. = By +Cy — Dy, (3.45)

—00 —00

where A is defined in Equation (3.7) and B;, C;, D;, i = ¢, 1 are the three parts of the corresponding
integrals. The latter terms are calculated for each wall in the same way as in Section 3.2.2, that is, by
separating the variables and carrying out analytically some of the integrals. The intermediate quantities

B;, C;, D; are found to be equal to

2 , 24 (1 — ) cn? 27T = ancnc N
By=—— [ c.ex {—C” aall - ) € 110( ao‘ ¢ C”) o <cn> dé, (3.46)
c;1<0
2(1 — oy)? , 24 (1 — ) ey 2/1 — ancac, N\
el I B e P e K CA L eXD
5, <0
1/, 1

C<p|y:i% = Pw|y:i% + B (Cy - 5) (3.48)
C _ ! 3.49
vly—s1 = F3 (3.49)

1 ) 1
Dolyys = puly—ss T 5 [(an —1) ¢ —an] + 7 (3.50)

(1— )
Dyl sy =F—5 (3.51)
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where ¢, are the positive ¢, values and c’n are the negative c, values for the lower wall, while c,, c;
are the negative and positive ¢, values for the upper wall. Therefore, from Equations (3.44)-(3.51),

we obtain the final expressions

oy = BoE 5 (1-6) (3:52)
(6 (Oét 2)

(3.53)

3.2.3.2 Non-linear heat transfer

When the temperature difference AT takes large values, the non-linear form of the kinetic equa-

tion must be used. The Shakhov model kinetic equation, after non-dimensionalization and projection

2
S §>} - 90} (3.54)
T 2

9 4 ;
cya—;b:%p\/;{wM [1—1-5/% (%—%>] —w} (3.55)

where the projections ¢, 1) are defined as

of the distribution function, leads to the system

0 4 gc
-l

Cya_y

(10 (y7 Cy) = //g (ya C) dcﬂ?dcz (356)
el = [ [+ g0 dede. (.57
and the dimensionless number density p, temperature 7 and heat flux ¢ are given by
ply) = / pde, (3.58)
2 2
T(y) = 3 (v + cp) de, (3.59)
a(y) = q,(y) = / ¢y (¥ + cyp) dey (3.60)

The reader is referred to Section 5.2.2 for further information on the formulation and the numerical

simulation of the problem.
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The general expression for the application of boundary conditions, Equation (3.3), is employed

in its non-dimensional form

g @ = [

c;<0

’
cn

R (c’ = c) g- <c> dc (3.61)

and we operate on it with [ [ (-)dc,dc, and [ [ (+) (¢2 + ¢2) de,dce, to obtain

leal T () = c|R(c —c)g (c)de | degde. (3.62)
[T S el o)
lcn] 0T (e) = // / c|R <cl — c) g (cl> de | (2 + ) deyde, (3.63)

c;<0
with ¢, ¢, being the positive and negative cy values resprectively for the lower wall and vice versa

for the upper wall. We may substitute the Cercignani-Lampis kernel here, including the temperature

1 _[ct—(l—at)c;}z
T (2 — i) =P { Toy (2 — ay) } (3.64)

/ g 1 - n 2 V1= Gnptp :
R, <cn N cn) _ 2¢, exp {_ [Cn +< 8% )an| }IO (M) (365)

TOy, TOy, TOy

variation

Rt (C; — Ct) =

Similarly to the previous examples, some integrals of Equations (3.62) and (3.63) can be calculated

7 7Rt (c; — cz> R, (clx — cz> deyde, =1 (3.66)

—00 —0O0

analytically, such as

7 7Rt (clz — cz> R, (c; — cx> (2 +c2)deyde, = (1— o) (0;2 + 0;2) +70y (2 — ay) (3.67)

—00 —00

Finally, Equations (3.62) and (3.63) lead to the boundary conditions

2 : 2+ (1—ap)e? 2vT = ancac,\
ot =— / Y c,exp (—C" 1 —ae, )[0 (w) de,, (3.68)
Oy,

anT T TOYy,
c/n<0
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2 ,
Yt = —— / [(1 — at)Qw_ + 70y (2 — o) gp‘] ¢,
! c/n<()
24 (1—aq,)c? 21 = a,cC. ,
X exp (—C” 1= ) Iy (ﬂ> dc, (3.69)
Ty, TO,

It can be confirmed that for oy = v, = 1 the diffuse reflection expressions are obtained. The ¢~ part
in Equation (3.69) may seem counter-intuitive at first but it provides the impermeability constant for

diffuse reflection.

3.2.4 Non-linear heat transfer between concentric cylinders

Another problem of involving heat transfer, namely heat conduction between concentric cylin-
ders, has been used for many years to determine the Maxwell accommodation coefficient and can also
be used for our purposes. A rarefied gas is confined between two concentric stationary cylinders of in-
finite length. An arbitrarily large temperature difference is imposed between them, causing radial heat
flow through the gas from the hot towards the cold cylinder. The main parameters are the reference
rarefaction parameter d, the ratio of the inner to the outer cylinder radius y and the ratio of the temper-
ature difference to the outer wall reference temperature 3. The kinetic equation is non-dimensionalized

and projected to express the dimensionless distribution function g in terms of
@ (1, cp, 0) = / gde, (3.70)

Y (r,cp,0) = /cigdcz (3.71)
The molecular velocity has two components, namely ¢, = ¢, cos f and ¢y = ¢, sin ¢, and the governing

equations for the reduced distribution functions ¢, ¥ read as

¢p COS Hg—f _ @ s;an_geo = 0opV/T (¢° — ) (3.72)
¢y COS eg—f - S;neg—g = Sop/T (V5 — ) (3.73)
where the Shakhov terms are
% =M |1+ %%qcp cosd (07_12) — 2)] (3.74)
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S M 4 1 Cg
lp = 1/) 1+ 1_5chp cos b ? — (375)
and the Maxwellian distribution is
2
oM — 2 exp (—C—p) (3.76)
xs T
M_ P &
Y = —exp| —— (3.77)
2m T
The symbols p, 7, ¢ denote the dimensionless number density, temperature and heat flux respectively,
calculated by
2m oo
p(r)= //cpcpdcpdﬁ (3.78)
00
9 2T o0
T(r) = 390 / / (o + 1) cpdcydd (3.79)
00
2w oo
q(r) = / / (cpcost) (chp + ) cpdeydf (3.80)
00

The most important quantity for practical calculations is the radial heat flux at the inner cylinder wall
q(), where - is the inner to outer wall radius. The problem is axially symmetric and therefore becomes
one-dimensional in physical space. Thus, the boundary conditions are only imposed in two points. It is
noted that, even though gas-surface interaction is correctly described with the CL model, the involved
computational effort is significantly increased. Thus, for the present heat transfer problem, only purely
diffuse boundary conditions are applied on the outer wall (r = 1). This choice is also justified by the
fact that one of the main purposes of this heat transfer configuration is to provide a methodology for
determining the accommodation coefficients of the inner cylinder. Thus, a technical surface with no
exceptional treatment would suffice for the outer cylinder and, as a result, purely diffuse boundary
conditions should be adequate. Moreover, a larger impact of the scattering kernel is expected on the
inner cylinder due to temperature variation. Based on the above, the following boundary conditions

are applied for the reduced distribution functions at the outer wall (r = 1)

1
" (1,¢p,0) = —exp (=) (3.81)
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vt (1,¢cp,0) = % exp (—c2) (3.82)

The above expressions are valid for 6 € [7/2,37/2]. At the inner wall (r = -), we choose to impose
the Cercignani-Lampis scattering kernel for 6 € [—7 /2, 7/2].
Even though the governing equations are quite different, the procedure is similar for the case

of non-linear heat transfer. The starting point is the general equation (3.3), expressed in dimensionless

lgt @ = [

c;1<0

form

/
CTL

R (c’ N c> g <c> dc (3.83)

Acting accordingly on (3.83) to form the projections ¢, v on the left hand side, we get

len| @7 (€) = c|R(c —=c)g (c)dc | de, (3.84)
lea| ¥ (e) = c|R(c —=c)g (c)de | Ede. (3.85)
/ / (¢ =)o (¢)

We may substitute the Cercignani-Lampis kernel here, including the temperature variation on the inner

(hot) wall

/ r— (1 — oy ;2
Re(e > e) = 12_at>exp{—[6 (1 - ai)q] } (3.86)

Ty ( T (2 — ay)

, 2¢,
R, (cn — cn) = exp (3.87)

TOp TOp TOp

{ [+ (1— ) C;LQ] } I <2\/1 - ozncnc;>
- 0

At the inner boundary we have (¢, ¢, c2) = (¢, ¢g, ¢.) and (c,,, ¢y, ) = (¢, ¢y, ). Similarly to
the previous subsection, the following integrals are calculated

o0

/ R, <c; N cz> de, =1 (3.88)
/ R, (C; — cz> de, = (1 — at)z cg + gat (2 —ay) (3.89)
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and Equations (3.84) and (3.85) lead to the final expressions

371'/2 o0

(7.6, 0) = —//
¥ (’Y P ) 1—|—63/2 7Tat _at

w/2 0

c cos@ <7, c;), 0’) X

exp

[_ (cpc0s6)® + (1 — a,) (c, cos 9/)2] exp [_ [(cpsinf) — (1 —ay) (e, sin@')]2] «

(1+ ) an (1+B)ou (2 =)
[2\/1 — o, (¢, cos §) (c, cos 6/)] L dd (3.90)
(1+8) ay, e
31/2 oo
+ 0) — 6
YT (7, ¢, 0) W1+ B) 3/2\/m 4! C COS

[(1 — @t)2¢_ ('y, c;” 9/> + 1 —|2- Bozt (2 —ay) @~ (7, c;,, 9/>] X

exp

(1+8)ay, (1+8) oy (2 — ay)

; 2y/T =0y, (¢, c0s ) (c, cos b))
’ (14 5) an

It can be confirmed that for o, = a,, = 1 the diffuse reflection expressions are obtained. As in the

[_ (¢yc080)* + (1 — ay) (c;, cos 0/)2] exp [_ [(cpsind) — (1 — ) (c;7 sin0/)]2] y

] ¢, dc,df (3.91)

case of non-linear heat transfer between parallel plates, the ¢~ part in Equation (3.91) provides the

impermeability constant for diffuse reflection.

3.3 Results and discussion
3.3.1 Flow through a rectangular duct

The numerical results have been obtained using a uniform grid of 200 intervals in both the x and
y directions, 20 magnitudes, distributed in [0, ¢,,,.] according to the Legendre polynomial roots, and
120 polar angles, uniformly distributed in [0, 27]. The validity of the code has been benchmarked for
oy = oy, = 1 by comparing with corresponding results in the literature [182] obtained using Maxwell

diffuse boundary conditions and good agreement has been found. Also, the qualitative behaviour of
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the CL results resembles the one observed in other geometrical configurations, such as flow through
a cylindrical tube [107].

In Table 3.1 the reduced flow rate G is shown for three aspect ratios H /W in the whole range of
the rarefaction parameter d. It is seen that it highly depends on the value of the tangential momentum
accommodation coefficient. Lower values of conductance are observed for higher o, occuring due to
a higher probability of bouncing-back molecular behaviour. Furthermore, the variation of «,, does not
play a significant role. In more detail, the influence of o, on G depends on the degree of tangential
accommodation: for a; < 1 an increase in «,, causes a decrease in the flow rate, while for a; > 1 the
opposite tendency is demonstrated. The flow rate is also highly dependent on the aspect ratio of the
orthogonal cross section and increases as the ratio decreases. Finally, it is noted that in every case, the
Knudsen minimum occurs for values of ¢ around unity.

It would be useful to compare the current numerical simulations with relevant experimental
data in order to obtain the accommodation coefficients, thereby characterizing the specific gas-surface
combinations. For this purpose, the TRANSFLOW (Transitional Flow Range Experiments) test facil-
ity [74], set up by the KIT research team, has been employed. The basic principle of the TRANSFLOW
test rig is the measurement of the conductance of different channels in the transitional and near tran-
sitional flow regime at isothermal conditions, based on the direct dynamic approach: a constant flow
is adjusted and the pressure difference is measured. The constant flow into the test rig is provided by
a dosing unit. The temperature and pressure of the injected gas can be measured in the dosing dome,
which is directly connected to the dosing unit. The test channel follows the dosing dome in the flow
direction. At the downstream end it is connected with the pump dome. The pump dome serves to
measure temperatures and pressures at the outlet side of the test channel. It is also equipped with tur-
bomolecular pumps, which are further connected to the forepumps, to maintain the vacuum conditions
inside the system. A complete description can be found in several previous works, such as [74, 183].
In this work, a long duct of square cross-section with length L = 1277mm and H = W = 16mm

has been used [75]. The inner surface of the channel was of standard clean technical quality without
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special treatment. Gas nitrogen (/N>) has been used in average temperature 7j, = 296K.

Based on the dimensionless results, in Table 3.2, the conductance is provided for nitrogen flow
through a square duct used in the experimental part of this work. It is seen that the dependency of the
conductance on the CL accommodation coefficients is similar to the one observed for the reduced flow
rate. In Figure 3.7, the computational results based on the CL and Maxwell diffuse boundary conditions
have been compared with the corresponding experimental data [74]. In order to obtain the values of the
CL accommodation coefficients, it is observed that in Tables 3.1 and 3.2 the dependence of the flow
rates on «,, for this pressure driven flow, is negligible. Therefore, it is safely assumed that o, = 1,
while the value of «; is varied to reduce the discrepancies with the experimental results. It is found
that, by setting oy = 1.06, excellent agreement is obtained with the corresponding experimental results
in the whole range of §. The previously implemented Maxwell diffuse boundary conditions slightly
overestimate the experimental results [74]. It can be thus stated that for the specific combination of
nitrogen and technically clean steel surface the back-scattering phenomenon may occur, producing
flow rates relatively lower than the ones predicted by the Maxwell diffuse kernel.

This comparison has been performed for a vacuum apparatus and a corresponding experiment
in the microscale is required to examine possible similarities and differences in the scattering behaviour
for both scales. The experimental results of [121] for the mass flow rate have been reproduced in
Figure 3.8, concerning flow of He and Ar through a microduct of dimensions H = 1.88 x 107 %m,
W =21.2x10"%mand L = 5x 10~3m. The corresponding numerical values for diffuse reflection and
for CL interaction have been plotted along the same figure. The tangential accommodation coefficient
has been adjusted to a; = 1.02 for argon and a; = 1.04 for helium in the whole range of the Knudsen
number. The small deviations between the diffuse numerical and experimental results are also within
the experimental uncertainty and therefore we may argue that the non-diffuse accommodation effect
is practically negligible for this apparatus. The tangential accommodation coefficient is very close for
the two gases and in fact a little larger for the light gas, as also seen in recent studies [184]. The curves

shown here do not display qualitative differences with corresponding ones concerning vacuum flow
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and thus we conclude that, for technical surfaces, some back-scattering may occur but the tangential

momentum accommodation coefficient remains close to unity, as stated before.

3.3.2 Heat transfer between parallel plates

For the heat conduction problem between parallel plates, the heat flux is displayed in Tables
3.3 - 3.5 for a variety of physical situations, characterized by different rarefaction levels, temperature
differences and accommodation coefficients. In particular, the linearized results are given in Table 3.3,
the non-linear for a low temperature difference (74/7T5 = 1.1, 5 = 0.05) in Table 3.4 and the non-
linear for a high temperature difference (74 /T = 3, 5 = 0.5) in Table 3.5. The values 1 < a; < 2
are not displayed due to the symmetrical properties of Equations (3.52)-(3.53) and (3.68)-(3.69), as
far as oy 1s concerned: results for a; > 1 are equal to the ones for a; = oy — 1. At all cases, the heat
flux is reduced when the accommodation coefficients are not equal to unity. This is particularly visible
as the normal kinetic energy coefficient o, is decreased, since the boundary conditions approach the
specular law. The value of «; plays a minor role in the phenomenon compared to «,,, since it only
affects one of the two projections for each problem and only as a multiplier, while o, appears in the
denominator of various involved fractions in all projections.

The three tables become comparable if we divide the non-linear results with 23 (or if we mul-
tiply the linearized results by the same constant). A very good agreement is then found between the
linearized heat fluxes (Table 3.3) and the non-linear ones for 5 = 0.05 (Table 3.4) ; however, there are
tangible differences with the results of case 5 = 0.5 (Table 3.5). It is seen that, if we compare diffuse
results of high and low temperature differences, large discrepancies are observed. On the contrary,
if we examine the values for lower accommodation coefficients and particularly for smaller «,,, the
agreement is always relatively good. This may be explained by an extension of the considerations
given in Section 5.4.2: in the extreme case of nearly free molecular conditions and very large tem-
perature differences, most molecules move with very low velocities within a very narrow velocity
magnitude range, with a direction from the cold wall to the hot one, while very few of them move fast

in the opposite direction. As a result, the temperature (variance of molecular velocity) is quite low and
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higher moments involving the difference (¢ — u)?, such as the heat flux, are also reduced. This is the
reason that diffuse reflection results for large [ differ so much from the other two tables. However,
as the accommodation coefficients drop and approach specular interaction, molecules moving fast are
affected in a smaller degree by the cold wall and retain their large velocities. Therefore, the tempera-
ture 1s closer to the corresponding linear profile and the heat flux remains linearly proportional to the

temperature difference.

3.3.3 Non-linear heat transfer between two concentric cylinders

The influence of the gas-surface interaction law on the radial heat flow for the cylindrical
heat transfer problem is studied in Figures 3.9-3.11 by providing numerical results for ¢ (r = ) in
terms of the parameters 0 < a; < 2and 0 < «, < 1 and for various values of (3, v and J,. In
Figures 3.9 and 3.10, the radial heat flow ¢ (r = ) is plotted for 5 = 1 and v = 0.5 in terms of
each accommodation coefficient while keeping each time the other one constant and equal to unity.
It is clearly observed that the dependency of ¢ on « is relatively weak, while, on the contrary, its
dependency on «, is significant. Even more, as expected in both cases, as J; is decreased the effect
of the accommodation coefficients becomes stronger. It is also noted that the radial heat flow in terms
of oy is symmetric around o = 1. This property is inherent in the form of the boundary conditions
(3.90) and (3.91). Values of a; > 1 correspond to a large number of bouncing-back molecules, which
occur at rough surfaces. In terms of «,,, ¢ is monotonically increased. It is found that «,, is more
important than «; in pure heat transfer problems. The same features are observed for other values
of . Furthermore, the behaviour of the macroscopic quantities in terms of the two accommodation
coefficients is qualitatively similar in linear and nonlinear configurations.

Since the implementation of the CL boundary conditions is demanding in terms of formulation
and numerical implementation and in order to increase our confidence on the accuracy of the present
numerical solution based on the nonlinear Shakhov model, the results reported here are compared with
previously reported results for the same heat transfer configuration based on the linearized Shakhov

model [113]. The values of the heat flow provided in Table 3.6 for 5 = 0.1 and v = 1/65 and
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for a wide range of «o; and «,, may be directly compared with the corresponding results of Table
IV in Reference [113], reproduced in Table 3.7 including the appropriate transformations. Since the
normalized temperature difference is small (5 = 0.1), it is expected to have good agreement between
the present nonlinear results and the corresponding linearized ones. In fact, for dpy = 0.1 there is
agreement to all three significant figures for many cases. For d;y = 1 the agreement is still very
good since 2-3 significant figures are the same. Finally, for Jpy = 10 the agreement is reduced to
1-2 significant figures. This is reasonable since, even though 5 = 0.1 is a relatively small normalized
temperature difference, it is not small enough to have very accurate linearized results at large dq. It
is clear that nonlinear effects become important in dense atmospheres, even for small temperature
differences.

For completeness purposes, corresponding results are provided by imposing the well known
Maxwell diffuse-specular scattering law at the inner wall. In Figure 3.11, the radial heat flow ¢ (r = )
is plotted for 5 = 1 and 7 = 0.5 in terms of the accommodation coefficient 0 < «y; < 1. As expected,
the corresponding results in Figures 3.9 and 3.10 for the specific values of a,, = ay = 1 and apy =1
respectively are identical. Furthermore, a qualitative remark on the comparison with these figures can
be made: it is seen that the heat flows of Figure 3.11 for o = 0 and §; = 20 are similar to the
corresponding ones in Figures 3.9 and 3.10 foray, = 1,0 < o, < land 0 < o4 < 1, 0, = 1
respectively, while for the intermediate values of 6y = 2 and J, = 10 the heat flows in Figure 3.11 are
similar to the resulting ones obtained by a combination of the corresponding heat flows presented in

Figures 3.9 and 3.10.

3.4 Concluding remarks

In this Chapter, the Cercignani-Lampis scattering kernel, known to describe the behaviour of
the gas more realistically in comparison to previous models, has been applied in one flow and three
heat transfer problems. In particular, linearized flow through a long rectangular duct has been exam-

ined on the basis of the BGK model and results have been compared with experimental data, provid-
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ing a tangential momentum accommodation coefficient of around 1.02-1.06 and indicating a slight
back-scattering behaviour for technical surfaces and Argon/Helium gases. This coefficient has been
found to be slightly larger for the lighter gas, in accordance with recent studies [184]. Linearized and
non-linear heat conduction between parallel plates, as well as non-linear heat conduction between
concentric cylinders have been investigated by the Shakhov model. It is seen that the normal kinetic
energy accommodation coefficient is in this case more important than the tangential momentum ac-
commodation coefficient. The linear and non-linear models provide nearly identical results in their
common range of applicability, while an unusual agreement is observed as the interaction becomes
more specular and is interpreted as being due to the fact that the molecules are only partially affected
by the scattering properties of the wall. The complete behaviour of the most significant quantities in
practical applications, i.e. the flow rate and heat flux, have been tabulated for all possible scattering
patterns, various geometrical configurations and a wide range of the Knudsen number. These simula-
tions can be used to determine the accommodation coefficients and characterize specific gas-surface
interactions. In this manner, the effect of the wall boundary conditions may be accurately taken into

account.
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Table 3.2: Conductance C' [I/sec] dependence on the accommodation coefficients for N, flow through
aduct (H =W = 16mm, L = 1277mm) into vacuum at 296K

) oy a,=0.50 0.75 1.00
0.50 1.065 1.055 1.047
0.75 0.700 0.696 0.693

0.00 | 1.00 0.514 0.514 0.514
1.25 0.395 0.399 0.402
1.50 0.305 0.311 0.317
0.50 1.033 1.025 1.019
0.75 0.671 0.668 0.665

0.10 | 1.00 0.486 0.486 0.486
1.25 0.369 0.371 0.374
1.50 0.279 0.285 0.290
0.50 1.005 1.002 0.998
0.75 0.649 0.648 0.647

0.50 | 1.00 0.467 0.467 0.467
1.25 0.352 0.353 0.354
1.50 0.266 0.269 0.271
0.50 1.005 1.003 1.002
0.75 0.652 0.651 0.650

1.00 | 1.00 0.471 0.471 0.471
1.25 0.357 0.357 0.358
1.50 0.273 0.274 0.275
0.50 1.146 1.146 1.145
0.75 0.790 0.789 0.789

5.00 | 1.00 0.605 0.605 0.605
1.25 0.490 0.490 0.490
1.50 0.409 0.410 0.410
0.50 1.362 1.360 1.358
0.75 0.997 0.996 0.996

10.00 | 1.00 0.808 0.808 0.808
1.25 0.690 0.691 0.691
1.50 0.609 0.610 0.612
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Table 3.3: Heat flux for the parallel plate problem, obtained by the linear formulation

0 o On
0.50 0.75 1.00
0.50 | 2.63x 107" | 3.39x 107" | 451 x 107!
0.00 [ 0.75] 343 x 107" | 418 x 107" | 5.31 x 107!
1.00 | 3.76 x 10T | 451 x 10T | 5.64 x 1071
050 | 2.52x 107" | 323 x 107" | 4.25 x 107!
0.15[075] 321 x10° T | 393 x 10T | 4.95x 107"
1.00 ] 3.49x 10T | 421 x 107" | 5.23x 1071
0.50 | 1.99 x 10T | 250 x 10~ | 3.10 x 107!
1.5 [075] 233 x107F [ 285 x 107" | 345 x 107!
1.00 | 245 x 10T | 297 x 10T | 3.57 x 1071
0.50 | 8.03x 1072 | 886x 1072 | 9.53 x 102
15 [075] 849 x 1072 | 922 x 102 | 9.83 x 1072
1.00 | 862x107% | 9.33x 1072 | 9.92 x 1072
050 | 1.18 x 1072 | 1.20x 1072 | 1.21 x 1072
150 [0.75] 1.19x 1072 | 1.21 x 1072 | 1.22 x 1072
100 1.20x 1072 | 1.21x 1072 | 1.22x 1072
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Table 3.4: Heat flux for the parallel plate problem, obtained by the non-linear formulation for 5 = 0.05

Qp

% | 0.50 0.75 1.00
050 2.63x 1072 | 3.38x 1072 | 4.51 x 1072
0.00 [0.75] 343 x 1072 | 418 x 1072 | 5.30 x 1072
1.00 | 3.76 x 1072 | 451 x 1072 | 5.64 x 1072
050 | 252 x 1072 | 3.23x 1072 | 4.25 x 1072
0.15[0.75] 321 x1072 | 3.93x 1072 | 4.95 x 1072
1.00 | 3.49x 1072 | 420 x 1072 | 5.23 x 1072
050 [ 1.99 x 1072 | 2.50 x 102 | 3.10 x 1072
1.5 [075] 233x107%2 | 285 x 1072 | 3.45 x 1072
1.00 | 245 x 1072 | 297 x 1072 | 3.57 x 1072
0.50 | 8.03x103 | 885x 1073 | 9.53 x 1073
15 [0.75] 848 x 1073 | 922 x 102 | 9.83 x 1073
1.00 | 862 x 103 | 933 x107% | 9.92 x 1073
050 1.20x 1073 | 1.22x 1072 | 1.23 x 107
150 [075] 121 x1073 | 1.22x 1073 | 1.23x 1073
1.00 | 1.21x 1073 | 1.23x107% | 1.24 x 1073

Table 3.5: Heat flux for the parallel plate problem, obtained by the non-linear formulation for 8 = 0.5

Oy,
% | 0.50 0.75 1.00
0.50 | 2.60x 107" | 3.24 x 1071 | 4.05 x 107!
0.00 [ 0.75 ] 3.39 x 10T | 4.00 x 1071 | 4.76 x 1071
1.00 | 3.71x 10T | 432x 107" | 5.06 x 1071
050 249 x 107! | 3.12x 107! | 3.86 x 107!
0.15[0.75] 317 x 107" | 3.78 x 1071 | 4.49 x 107!
1.00 | 3.44 x 10T | 4.05 x 107" | 4.74 x 1071
050 | 1.94x 107" | 241 x 1071 | 2.90 x 107!
1.5 [075] 227x 10T | 273 x 107 | 3.22x 1071
1.00 ] 239 x 10T [ 284 x 10T | 3.32x 10T
050 | 7.84x 1072 | 864x 1072 | 9.30 x 1072
15 [0.75] 828 x1072 | 899 x 1072 | 9.59 x 1072
1.00 | 841 x 1072 | 9.10x 1072 | 9.68 x 1072
050 1.17x 1072 | 1.19x 1072 | 1.20 x 1072
150 [0.75] 118 x 1072 | 1.20x 1072 | 1.21 x 1072
1.00 | 1.18 x 1072 | 1.20x 1072 | 1.21 x 1072
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Table 3.6: Radial heat flow ¢ (r = ) with CL boundary conditions for 5 = 0.1 and v = 1/65

doy

Qg

,=0.25

0.50

0.75

1.00

0.1

0.50

2.69 x 1072

3.33 x 1072

3.96 x 1072

4.58 x 1072

0.75

3.17x 1072

3.80 x 1072

4.42 x 1072

5.03 x 1072

0.90

3.30 x 1072

3.93 x 1072

4.55 x 1072

5.16 x 1072

1.00

3.32x 1072

3.95 x 1072

4.57 x 1072

5.18 x 1072

0.50

1.80 x 1072

2.09 x 1072

2.33 x 1072

2.55 x 1072

0.75

2.01 x 1072

2.26 x 1072

2.48 x 1072

2.68 x 1072

0.90

2.06 x 1072

2.31x 1072

2.52%x 1072

2.71 x 1072

1.00

2.07 x 1072

2.32 x 1072

2.53 x 1072

2.72 x 1072

10

0.50

4.02x 1073

416 x 1073

4.26 x 1073

4.34 %1073

0.75

4.11x1073

4.22 x 1073

4.31 x 1073

4.37x 1073

0.90

4.13x 1073

424 %1073

4.32x 1073

4.38 <1073

1.00

4.14%x 1073

424 x 1073

4.32x 1073

4.40x 1073

Table 3.7: Results for the radial heat flow ¢ (r = «) with CL boundary conditions, obtained by the
linearized model and reproduced from [113] for 8 = 0.1 and v = 1/65

doy

Qg

,=0.25

0.50

0.75

1.00

0.1

0.50

2.69 x 1072

3.34 x 1072

3.97x 1072

4.59 x 1072

0.75

3.17x 1072

3.81 x 1072

4.43 x 1072

5.04 x 1072

0.90

3.30 x 1072

3.93 x 1072

4.55 x 1072

5.16 x 1072

1.00

3.33 x 1072

3.96 x 1072

4.58 x 1072

5.19 x 1072

0.50

1.82 x 1072

2.10x 1072

2.34 x 1072

2.55 x 1072

0.75

2.02 x 1072

2.27 x 1072

2.49 x 1072

2.68 x 1072

0.90

2.08 x 1072

2.32x 1072

2.53x 1072

2.72 x 1072

1.00

2.09 x 1072

2.33 x 1072

2.54 x 1072

2.72 x 1072

10

0.50

3.99 x 1073

4.08 x 1073

4.17x 1073

4.24 x 1073

0.75

4.06 x 1073

4.14x 1073

4.21 x 1073

4.27x 1073

0.90

4.08x 1073

415 x 1073

4.22 %1073

4.27x1073

1.00

4.09x 1073

4.15x 1073

4.22 x 1073

4.28 x 1073
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Figure 3.1: Specular reflection for the impinging angles # = —7 /6 (blue) and §# = —7/3 (green)

K- ~ < . T 7

)

Figure 3.2: Diffuse reflection for the impinging angle § = —7 /6

N~ v - 1T 7 7

)

Figure 3.3: Diffuse-specular reflection with ay; = 0.8 for the impinging angle = —7 /6
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Figure 3.4: Cercignani-Lampis reflection with a,, = 0.50, o = 1.00 (green) and «v,, = 1.00, oz = 0.50
(red) for the impinging angle § = —7 /6

Figure 3.5: Nearly specular reflection (a; = a,, = 10™*) for the impinging angles §# = —/6 (blue)
and = —7/3 (green)

K N ¢ 3 I 7T A

Figure 3.6: Nearly back-scattering reflection (a; = 1.9999, a;,, = 10~%) for the impinging angles 0 =
—m/6 (blue) and § = —x /3 (green)
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Figure 3.7: Comparison between experimental and numerical results for conductance (nitrogen, 296K)
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Figure 3.8: Comparison between experimental and numerical mass flow rates for argon (up) and he-
lium (below), for high (left) and low (right) ¢ values
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Figure 3.9: Dependence of the dimensionless radial heat flow on the CL accommodation coefficient
o while keeping «,, = 1 constant for v = 0.5 and 5 = 1.
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Figure 3.10: Dependence of the dimensionless radial heat flow on the CL accommodation coefficient
o, while keeping oy, = 1 constant for v = 0.5 and 5 = 1.
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Figure 3.11: Dependence of the dimensionless radial heat flow on the Maxwell accommodation coef-
ficient oy for v = 0.5 with g = 1.
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Chapter 4

Linear flows driven by pressure gradients

4.1 Introduction

The linear, fully developed flow of a rarefied gas through channels of various cross sections has
been studied extensively by several deterministic methods, as seen in Chapter 2. This state is charac-
terized by zero velocity in the transversal directions and constant density at each cross-section, based
on the underlying assumption that the channel is sufficiently long. However, in many practical situa-
tions there are significant deviations from this behaviour near the channel ends, where the assumption
of constant density at each cross-section is not valid and the flow becomes two- or three-dimensional.
This effect is particularly apparent in short channels, even for linear flows, and the fully developed
profile may not be observed at all. Furthermore, even when the channel is long, the channel end effect
may be significant in applications where high accuracy is required.

For the case of short channels with low pressure difference, the complete geometry must be
simulated, including a part of the containers before and after the channel [152]. This type of investiga-
tion is possible for short to moderately long channels and has been realized here for two geometries: a
rectangular channel of very low aspect ratio (i.e. Height / Width < 0.01), simplified to a parallel plate
geometry, and a cylindrical tube. Flow due to low pressure differences is examined for the complete
problem in the following sections, since the corresponding calculations have not been realized before
in the literature, while the investigation of large pressure differences will be dealt with in Chapter 6.
The channel length ranges from zero (the terms “slit” and “orifice” are widely used in the literature for
this special case of parallel plate channel and cylindrical tube respectively) up to ten or twenty times
the plate distance or tube radius.

An alternative methodology is also proposed to calculate the influence of the two ends for mod-
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erately long to very long channels. The inlet and outlet parts of the channel are considered separetely
and the deviation from the fully developed profile is expressed via the effective length concept. This
quantity has been calculated in the past using the integro-moment method [185] and in this manner the
solution can be obtained by properly combining results with the fully developed flow field. The most
important advantage of this approach is that the results of this work may be used to obtain the complete
profiles with a very low computational cost in comparison to the full simulation. The same geome-
tries have been considered and the results are applicable for any pressure ratio and for sufficiently long
channels, as long as the local gradient of pressure is small.

It is noted that, since the formulations for the plane and axisymmetric geometries have many
common elements, they are presented in a unified manner. The geometrical description of the com-
plete geometry is shown in Figure 4.1. Two reservoirs containing a rarefied gas at pressures P, and
pout and maintained at temperature 7} are connected via a channel through which the gas flows. The
reservoirs are infinitely large and only a fraction of their real size is shown here. The position vector
x = (1, 22, r3) may refer to (z,y, z) with a characteristic length Ly = H or (z,r, ) with Ly = R,
where H is the distance between the plates and R is the tube radius. The flow is oriented towards the
positive direction of the x coordinate for both cases. Due to the geometrical properties of the flow, the
dependence on the component x3 will also be ommitted in most cases. Finally, the velocity vector is
denoted by ¢ = (c1, ¢, ¢3) and the component orientations are identical to the ones of corresponding

coordinates in the physical space.

4.2 Linearized flow in short channels
4.2.1 Introduction

In this section, we examine the case of flow due to small pressure differences between the
upstream and the downstream vessel, i.e. AP/P, < 1 with AP = Pout — FA’m and the right con-

tainer conditions as reference quantities, i.e. Py = P,,;. The derivation of the governing equations,

boundary conditions and macroscopic quantities, including linearization of the distribution function,
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non-dimensionalization and projection, is presented for the two geometries in a unified manner.

4.2.2 Governing equations for small pressure differences

Due to the small pressure difference, we may linearize the distribution function according to

where h (&, ¢) is the perturbation of the distribution function f (&, ¢) from the Maxwellian distribution

at the reference conditions

fo=no/ 2rksTy)** exp [~ (& — @)* / (2RTy)] (4.2)

caused by the pressure difference. All quantities are then expressed in dimensionless form as follows:

T |k
w:£7 c:éj Vo = 2_Bj-ba
Ly Uy m

T(%)—To P()

p(z) = o AP T(x) = . AD (4.3)
P(x)—- P P 7 B
plx) = <w])30 OA;)D, u(x) = ’U,QE;B)A_;)

with vy being the most probable molecular velocity, kg is the Boltzmann constant and p, 7, w, p are
the perturbations of density, temperature, velocity and pressure and no = P,/ (kgTp). The degree of
rarefaction is described by the rarefaction parameter ¢, defined here as

Pyl

HoUo

J

4.4)

where [ 1s the gas viscocity at reference temperature 75,
The BGK model (2.21) substitutes the collision term due to its simplicity and the nearly isother-

mal properties of this flow. The kinetic equation becomes

oh 5 3
c-a—m—é[p-l—T(c—E)—FQc-u—h] 4.5)
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Similarly, the macroscopic quantity perturbations are expressed in terms of the perturbation h
as

[c o lNe oo o)

= % / / /hexp dcld02d03

—00 —00 —O0

1 o
——////hcexp d01d62d63

[ e o}

1 2
] ] [ oncrini

—00 —00 —OO

(4.6)

The pressure perturbation is calculated by the ideal gas law, we get p (x)

=p(x) + 7 ().

The molecular velocity vector is transformed to cylindrical coordinates, (c,, 8, c,) for the paral-
lel plates and (c,, 0, c,.) for the tube, as seen in Figure 4.2. In the case of flow through parallel plates, it

is further possible to eliminate the ¢, component of the distribution function by introducing appropriate

projections, as explained in Chapter 1, expressed by the following moments

1
Vi(z,y,cp,0) = ﬁ / h(z,y,cp, 0, c,)exp (—cg)dcz 4.7)

1 1
X (z,y,¢p,0) = ﬁ / h(z,y,cp,0,c,) (ci — 5) exp (—cg)dcz (4.8)

Thus, by properly acting on the governing equation, we finally obtain the final system, con-
sisting of two equations for the parallel plates

cpcos

8V —i—cpsmea—v +6V =9

3y o+ (c — 1) + 2 (¢, cos Bu, + ¢, sinbuy)] (4.9)
. 0X T
CpCOSQ%—f—CpSIHQa—y—l—(SX —55 (4.10)
and one for the tube
oh inf Oh oh 3
coseg—cps;n R +5h-5{p—|—7’(c —§)+20-u] @.11)
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The macroscopic perturbations are expressed by

2T oo
1
—//V exp (—c2) de,df
m
0 0
1 2w oo
Uy = ;//Vcﬁcos@exp (—c2) de,dd
00
1 21 oo
uy = — //ch) sinf exp (—c2) de,df
0 0
21 oo

:%//[(02—1)V+X] cpexp (—c3) deydf
0 0

for the 4D parallel plates problem and by

2

P= "5
—o0 0

1 [o.¢]

Ur = ﬁ
oo 21 o
1
Us = =373 / //hcxcpexp (—CQ)dcdedcx

s

—oco 0 0

/ he, exp (—¢) deydfde,
0

O\E\f

/ h (¢, cos ) cpexp (—c?)de,dfde,
0

oo 2w oo

1 2
= =5 / //h (§c2 — 1) cpexp (—c?)de,dfde,
T

—oo 0 0

for the 5D cylindrical tube problem.

4.2.3 Boundary conditions

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

The formulation is completed by providing the boundary conditions for h and V, X, corre-

sponding to the plate and tube problems respectively. Molecules entering from the free surfaces

(A),(B),(F),(G) (as shown in Figure 4.1) conform to a Maxwellian distribution according to the con-

ditions of the corresponding vessel. Thus, for the left vessel, we have n = n;,, T'= Ty and @ = 0 and
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therefore the perturbation from the equilibrium distribution is

Nip — N (P0+AP>—PO

P o (AP/Py) By (AP/Py)
V=1
Xt =0

(4.20)

Similarly, it is found that in downstream free surfaces (F),(G), where n = ny, T' = Ty and . = 0,

the perturbation of the incoming distribution is ™ =V = X+ = 0.

For the walls (C),(D),(E), the diffuse boundary conditions are imposed according to the imper-

meability condition (the velocity component normal to the wall must be equal to zero) and the velocity

integrals (4.13)-(4.14) and (4.17)-(4.18). Thus, we have

. Iimpinging
Pw = _I—
departing

with

024 0

[departing|a - // [C§¢a (9):| eXp (_CIQJ) dede

01 O

T+02, 0

Iimpinging|a - / /V_ [C;Qba (9)] eXp (—CIQ)) dedH

7+014 O

and the possible values of the above quantites for a = C, D, E are
C:01c=-m)2,00c=7/2,0c(0) =cosb
D391D:0,92D:7T,¢D(9>:Sin0

Ei@lE:W/2,92E23W/2,¢E(6)20059

for the parallel plates and

Cg2q T—01q 0O

Licpartingl, = / / / [cp@a (6, ¢p, )] €XP (—cfo — ci) de,dfde,

Cyla T—024 O
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—Czla ‘92(1 oo

Lipingingl, = / //h_ [cp@a (0, Cp, c)] €XP (—ci — ci) de,dfdc, (4.26)
—Cz2q 014 O
C: 616’ :()3920 =T ,Cplqg = —O0, Cx2q :O,QSc(g,Cp,Cx) = Cg

D:601p=0,0p=7/2,cCp1a = —00, Cy2a = 00, $p (8, ¢p, c) = ¢, cOS O (4.27)
E:91E:0902E:7Tacx1a2076x2a:Ooa¢E(076pacx):Ca:

for the cylindrical tube. An example of this derivation for the wall (C) in a parallel plate geometry is
shown in Appendix 1. It is noted that the integrals of departing velocities (4.22) and (4.25) are also cal-
culated numerically for consistency reasons: since the macroscopic velocity is calculated completely
numerically, integration errors may lead to the appearance of non-zero normal macroscopic velocities
if Ijeparting 18 calculated analytically. These velocity components may be quite small if the discretiza-
tion is sufficient, but may have a significant impact on the conservation of mass for long channels.

The boundary condition finally reads as

ht = py
Vvt = Puw (4.28)
XT=0

Diffuse-specular boundary conditions can also be taken into account by adjusting the accommodation

coefficient ary,. For the cylindrical tube, the boundary conditions at the walls read as:
ht = apype+ (1 —ap) h™

and the p,, constants are given by

Iimpinging + (1 - aM) Ispecular

P = — (4.29)

aMIdeparting

The integrals of Equation (4.29) are

Cz2q T—014 00

Liepartingl, = / / / [cp@a (6, cp, ca)] €XP (—CIQJ — ci) de,dfdc, (4.30)

Cxla T—024 O
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—Cgzxla 92(1 oo
Limpinging|, = / //h_ [cpta (0, Cp, )] exp( c —c ) de,dfdc, (4.31)
—Cz2a 014 O

Cr2q T—014 00

Lpecutar|, = / / /hspeculaT [cpta (0, Cp, cx)] €XP ( c —c ) de,dfdc, (4.32)

Cyla T—b024 0

0:91020992027T5C$1a:_005012a:0:¢c<070p7cz>20$
D:6p=0,0p=7/2,Cp10=—00, Cp2a =0, ¢p (0, ¢p, ) = ¢, cO80 (4.33)
E:elE:OaQQE:Waczla:050$2a:OO:¢E(‘970p7Cm):Cx

Finally, at the axis of symmetry (xo = 0) the molecules are reflected specularly
h* (2,0,¢p,0,c) = h™ (2,0,¢p,m — 6, ¢;)

V*(2,0,¢,,0) =V~ (x,0,c,,—0) (4.34)
X*(2,0,¢,,0) = X~ (x,0,¢,,—0)

The most important quantity for the practical applications is the mass flow rate through the
channel, defined by
M= / mn (&)] i, (&) dA (4.35)

with A being the channel cross-section. In both cases, the flow rate is non-dimensionalized by the
analytical free molecular solution (d;, = d,,; = 0) for flow through a channel of zero length. This
solution can be easily extracted by the method of characteristics and yields Mp i = AAP /vy with

A, = H /+/7 for the plates and Ay, = R?\/7 for the tube. Results are presented for the dimensionless

flow rate
W, = — = 4/7G; (4.36)
Mg
where
1/2

Gpl, = /ux (z,y)dy
0
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1

Gul, = / g (x,7) rdr (4.37)
0
are the reduced flow rates obtained by the simulations. The analytical derivation of these expressions

is found in Appendix 2.

4.3 Formulation of the end effect problem
4.3.1 Introduction

In the alternative formulation, the channel is divided into three segments as seen in Figure
4.3, denoted here by the terms “inlet part”, “middle part” and “outlet part”. These are distinguished
by the transformation of the flow field, which is two-dimensional for the two channel end parts but
gradually turns into one-dimensional at the middle part, which is characterized by fully developed
flow conditions. By studying the areas of flow entrance/exit, we can determine the perturbation of
pressure far from the channel ends and then apply a well known integration procedure to obtain the
pressure profile in the middle part. In this manner, the solution of the complete problem is avoided,

greatly reducing the computational effort. In fact, if the pressure perturbation values are tabulated for

each geometry and 9, the integration step can provide the pressure profile within a few minutes.

4.3.2 Governing equations

The most challenging task is the application of appropriate boundary conditions at the inter-
faces between the three parts of the channel. In the middle area, pressure and density are constant at
each cross-section, varying linearly in the x—direction, with a constant gradient. Thus, it would be
preferrable to use a reference pressure varying linearly inside the channel with the same gradient, as
seen in Figure 4.4 for the outlet problem, in order to obtain a constant perturbation term as the interface
is approached.

Since the geometries of the channel entrance and exit are exactly the same, the study of only
one of them is required. The outlet end geometry considered here is displayed in Figure 4.5, where the

region ; > O represents the container, while 2; < 0 corresponds to the channel. The gas flows from
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the long channel into the infinitely large container, where it is maintained at pressure F <: Pout> and
temperature 7 (: Tout> far from the channel exit. Inside the fully developed region of the channel,
a constant pressure gradient | X p| < 1 is maintained far from the channel end

Lo OP
Xp =22
PP, o,

(4.38)

Thus, it would be preferrable to use a linearly varying reference pressure inside the channel, such as
B, 1 >0
Pp = . T 4.39
R { PO [1+XP(£C1/L0)] , X1 <O ( )
in order to approach the linear trend of the real pressure at large distances from the channel exit, that is

when 7, < — L, and obtain a constant pressure perturbation term, as seen in Figure 4.4. The reference

number density is defined by
P[)/ (]{IBT()) , il >0
= . . 4.40
= { Po[L+ Xp(31/Lo)] / (kTo) , &1 <0 (4.40)
A linearization can then be performed in terms of X p, according to
f=fr(1+4+hXp) (4.41)
with [ being a Maxwellian at reference conditions
R &
fr= exp ( ) (4.42)
T @rR, )Y \2R, Ty
All quantities are expressed in dimensionless form as follows:
T = z? C = é) Vo = 2k_BTO7
Lo Vg V. om
n(x) —ng T (x) —To
= — =7 4.43
p . ~
@ =Pr o 2@)
UoXp

p(x) = P.X,

with vy = \/2kpTy/m being the most probable molecular velocity, ks is the Boltzmann constant and
p, T, w, p are the perturbations of density, temperature, velocity and pressure. The degree of rarefaction

is described by the rarefaction parameter ¢, defined in (4.4).
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The BGK model substitutes the collision term and the same projections as in the previous
section, given by Equations (4.7) and (4.8), are also used here. Therefore, after expressing the velocity

vector in polar and cylindrical coordinates as before, the final equations are

ov .
cp COS Q(Z—V—Fcp sin Qa——l—cﬂf =0[p+T (CZQ) — 1) +2 (¢, cos Qu, + ¢, sinbuy) | +9 (2, ¢,,0) (4.44)
€ Y

0X . 0X T
¢p COS 0% + ¢, sin Qa—y +0X = 5§ (4.45)

for the channel and

oh  c¢,sinf Oh oh 3
cpcosﬁg— Ld . @—k%%ﬁtéh:é {p+7(02—§> +20-’u} +g(x,cp) (4.46)

for the tube. It can be seen that the only differences with Equations (4.9) - (4.11) are the source terms,

given by
0 , x>0
Yeh ($a Cp, 0) - { —c, cos 6§ , < 0 (447)
0 , z>0
g (x,cp) = { . <0 (4.48)

These terms are obtained during the linearization of the streaming part due to the physical space de-

pendence of the reference pressure. For example, for the tube case we have

O[fr (1 +hXp)] dfr

oh

(4.49)

and the second part of the right hand side eventually leads to the source term.

The macroscopic moments are found by exactly the same expressions as before, Equations
(4.12) - (4.15) for the plates and (4.16)-(4.19) for the tube. Moreover, the pressure perturbation is
calculated by p (x) = p () + 7 (x) from the ideal gas law.

Even though this formulation is valid for the outlet part of the channel, it can also be used
to model the inlet part by noting that the dimensionless pressure gradient X p has the opposite sign
and thus the flow direction is reversed. The final objective of this study is to calculate the pressure
perturbation at the fully developed cross-section of the end geometry, which will finally serve for the

correct connection at the interfaces between the middle and the end parts.
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4.3.3 Boundary conditions

All boundary conditions except the one imposed on surface (A) (Figure 4.5) are also similar
to the ones employed in the full problems of the previous section. At the free surfaces (D),(E) incom-
ing molecules conform to the Maxwellian distribution at the local reference values and therefore the
perturbation of the distribution function is zero (h™ = 0). The impermeability condition (u,, = 0) is
imposed at the walls (D),(E), i.e. A" = p,, V' = p,, X = 0 where p,, is found again by equations
(4.21) - (4.27). At the axis of symmetry (x5 = 0) molecules are reflected specularly, as in Eq. (4.34).

At the incoming surface of the channel (A), the distribution function conforms to the condition

lim = lim = lim
z——00 OT z——00 OT z——00 OT

=0 (4.50)

since that cross-section is characterized by fully developed flow conditions and thus the perturbations
should remain constant. After substituting (4.50) in equations (4.44) and (4.46) and taking into account

that 7;,, = u, ;, = 0 due to the fully developed conditions

oV

8hm Cp sin ¢ 8h,m
_ h. = , 2 , 4.52
Cp COS 9 a’[” , 89 + 5 in 5 [pzn + Cxux,m] + g (IL‘, C:L‘) ( 5 )

it may be seen that we can further project the equations with

1 o

Y (e = - / Vin (= Laew s €or ¢4 € exp (—c2) de (4.53)
1 o0

Z(r,cp,0) = ﬁ / Rin, (—Laey, 7, Cp, 0, ¢1) € €XP (—ci) de, (4.54)

and obtain the well-known, fully developed flow problems, described by the equations

Y (y,cy) 1
Cya—yy +0Y (y,¢y) = Oty in (y) — B (4.55)
0Z (r,cp,0)  ¢psinf 0Z (r,cp, 0) B 1
¢pcos b o - 20 +8Z (r,¢p, 0) = Oy i, (1) — 5 (4.56)
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As a final step, the unprojected distribution at the incoming surface (A) can be retrieved by the ex-

pressions
Vin (Y, ¢p, 0) = 2(c,c080) Y (y, ¢, sinf) + pin, () (4.57)

hin, (1, ¢p, 0, ¢0) = 2.2 (1, Cp, 0) + pin (1) (4.58)

and used as incoming boundary conditions. The corresponding projection to X leads to X;,, = 0 and
therefore is omitted.

To summarize, the boundary distributions, denoted by the “plus” superscript, are equal to

+ _ + _ + N N + _
huizll = Pw hcintainer =0 hcjb_annel - hm hcinter - hspecular
Vw_ic_zll = Puw ‘/Ycintainer =0 ‘/cl_li_annel = V;n ‘/Cintm“ = V;PECUZW’ (459)
Xwall =0 Xcontainer =0 Xchannel =0 Xcenter = XSPGCUlCW

Before the presentation of the numerical algorithm, it is important to discuss the application
of the boundary conditions (4.50) and (4.57) - (4.58) on surface A. In order to use (4.57) - (4.58),
the distribution functions Y and Z need to be calculated by the solution of (4.55) - (4.56) with the
corresponding boundary conditions. This step is performed once at the beginning of the numerical
solution and Y, Z are stored to be used at each iteration. This type of incoming boundary condition
is preferred here over the use of (4.50) since it provides an estimation of the error of the scheme: the
distribution of molecules arriving at surface A from the exhaust must also conform to (4.57) - (4.58)
with a relatively good accuracy, something which is not enforced in the iteration process. Furthermore,

it provides a better representation of the physical conditions.

4.3.4 Dimensionless flow rate derivation including the channel end effect

The pressure perturbation at cross-section (A) is the main quantity of interest here. Its value can
be used to determine the entrance/exit pressure and, along with a well known integration procedure
for the fully developed part of the flow [186], the complete pressure profile along a channel can be

obtained. From Figure 4.4 and Equations (4.43),(4.39), it can be seen that

5P = P — PR =Pp <_Ldev7$2) PRXP (460)
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and

tangb = —XPPR (461)

leading to

ALout =D (_Ldem x2) (462)

Similarly, when the geometry represents an inlet part (Xp > 0,0P < 0) we get

ALm =D (_Ldevu l’g) (463)

Thus, we may obtain a very good agreement for the middle part of the complete channel (which
usually is the largest part), if we apply the integration procedure at a “modified” geometry, where
L has been increased by a fictional AL;, at the inlet and AL,,; at the outlet. Alternatively, we may
get the complete pressure profile by properly combining fully developed and end results during the
dimensionalization.

The integration procedure is performed according to

7R3 dP TR3 AP
= —Grp (6 - g 4.64
FD ( ) Vo d$1 Vo L ( )

where the z; coordinate takes values in [0, L] and Grp is the fully developed solution for a channel

of infinite length. The quantity G is a constant, adjusted to obtain this equality. From (4.64) we get

Grp (9) 351 G% (4.65)
and using the definition of the rarefaction parameter (4.4)
Grp (9) CZZ = G@ (4.66)
If we separate the variables and integrate, we get
dout L

in
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and therefore the expression for GG is obtained

Jout
G-t / Grp (6)d6 (4.68)
5in - 5out

Finally, if we repeat the same procedure taking the end effect into account (by changing the integration

limits in the right hand side of Equation (4.67) to —AL;, and L + AL;,) we deduce that

6out
L 1
G = Grp (0)dd 4.69
L + ALG + ALout 5zn - 5out o ( ) ( )
6in
For the tube geometry, we can further simplify to get [45]
L 5171 + 5out

G(L,6) = G _ 4.70
(Lo0) = AL T Al FD( 2 ) (4.70)

4.4 Numerical scheme
4.4.1 Introduction

In this subsection, we derive the discretized equation and describe the typical numerical algo-
rithm. Furthermore, we highlight various improvements in the computational scheme, which allow us
to consider larger domains in order to impose the boundary conditions at their appropriate locations.
Finally, the numerical parameters and some information on their selection are given. It must be noted
that the computational resources of the supercomputing facility in Juelich research center, Germany

have been used for all the simulations discussed here.

4.4.2 Discretization and description of algorithm

The main characteristics of the numerical scheme are similar to the ones found in previously
formulated discrete velocity schemes. The continuum spectrum of the molecular velocity magnitudes
¢p and ¢, are discretized to M values, their values being chosen according to the roots of the M/ th order
Legendre polynomial mapped in [0, ¢ maz] and [0, ¢, maz] respectively, while the molecular velocity

angles NNy are uniformly distributed in [0, 27 ([0, 7| for the tube due to the axisymmetrical proper-
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ties of the flow). The distribution functions, bulk quantity fields and governing equations are further
discretized by a finite volume scheme in the physical space to N, x N, or N, x N, points.

The discrete velocity method algorithm is then applied, consisting of the following steps:

—

. Bulk quantity perturbations p, w and 7 are initially assumed.

2. Ifthe end geometry is considered, incoming distributions in cross-section (A) are estimated from

Equations (4.57) with cos # > 0 for the channel and (4.58) with ¢, > 0 for the tube.
3. The discretized equations are solved using a marching scheme.
4. New estimations for the bulk quantities are calculated.

5. Steps 2 - 4 are repeated until convergence has been reached for the macroscopic quantities.

Kinetic equations (4.9) - (4.11) and (4.44) - (4.46) are discretized according to the second-order
finite volume scheme. The procedure is presented for Eq. (4.46), since this is the most complicated

case: at each interval Ar;, A0;, Axy, around 14, 0;, x5, we act upon the governing equation with

Az Ab; Ar;
$k+Tk 0;+—5L ri+—5t

A= / / /(-)drd&dm (4.71)

Az A9j ri— Ar;

Tp—

2 9]'— 2 2

to eliminate all derivatives [156]. Then, all integrations can either be carried out analytically or sub-

stituted by the trapezoidal rule, causing the second-order error. The detailed derivations are shown in

lym

Appendix 3, while the final discretized equation is seen in Table 4.1, where for example h;\ . =

h <ri + AQ” , Tk + %, cé, 0; + %, c?) and so on. This expression is applied for any interval, re-
gardless of the grid distances and the angular discretization, and is also usable as » — 0 after the

application of the 1'Hospital rule on the indeterminate fractions.

4.4.3 Description of the marching step and related benefits
The kinetic equations are solved independently for each velocity component (¢, 6) or (c,, ¢;;)

(the angles ¢ are not independent with each other in the cylindrical case) if the macroscopic quan-
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tities are known. A marching scheme is applied to solve these equations to avoid solving a system,
maximizing efficiency and reducing memory consumption. This is highly desirable since the prob-
lems of channel and tube are 4- and 5-dimensional respectively and therefore subject to significant
computational limitations. A brief explanation is given here for the channel problem (see also Figure
4.6, up). At each node column, the distribution function is calculated by solving for the corresponding
unknown component in the discretized equation, properly substituting the boundary conditions (blue
arrows) and the previous column values (green arrows). The first component to be calculated is the one
moving downwards from the physical node right below the upper boundary (component 1 in the same
figure), since all values of distribution required for this calculation are known, followed by the one
below it for the same angle (component 2) and so on, until the lowermost component is reached (com-
ponent 3). Due to the symmetry conditions, this procedure also returns the upward moving counterpart
(component 4), without the need for storage in memory. Finally, we keep on solving in the positive y
direction to component 5 and further above, until all values are known. When the whole distribution
column in x is completed, all information on the macroscopic conditions and impermeability vari-
ables is stored and we move on by Az to the next column. The calculated distribution function is then
moved to another temporary array to store the *“previous" values and the whole procedure is repeated
for the rest of the columns (and overall for each velocity vector).

The description for the cylindrical geometry marching scheme is quite similar (Figure 4.6,
below). The discretized equation is solved for the unknown values (white nodes) using the known
quantities (dark nodes) from the previous column (green arrows) or the boundary conditions (blue
arrows). However, we must also take into account the additional complexity of the angular velocity
component. The angles are calculated starting from 6 = 7, where a simplified version of the discretized
equation can be applied, solving all the way until the lower boundary. Then, angles starting from 6 =
7w — A6 down to § = 7/2 are calculated in this sequence (as the purple arrow indicates) while moving
downwards. The symmetry condition is applied at the center and thus the boundary values for § = 7/2

down to 6§ = 0. Finally, we solve for these distributions until we reach the upper surface. Angles in
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(m, 2m) are symmetric and do not need to be calculated again. By taking the discretized version of the
moments (4.12) - (4.19), employing Gauss-Legendre quadrature for the velocity magnitudes and the
trapezoidal rule for the angles, macroscopic quantities are calculated and this procedure is repeated
for all columns and each combination of ¢, ¢, until the complete macroscopic field has been found.

The application of this algorithm has two important consequences: First, memory require-
ments are dramatically reduced, since two temporary arrays of dimensions (V,,2) for the channel
and (N,, Ny) for the tube can be used for the distribution function in the current and the previous
column instead of one large with dimensions (N, N,, M, Ny) and (N,,, N,, M, Ny, M) (which would
also be more costly to access in memory due to the multiple dimensions). Storing the distribution
only in parts of the domain needed by the marching scheme allows the simulation of much larger and
denser grids. Second, the velocity magnitude independency leads to a straightforward parallelization
of the code. Each processor solves the kinetic equation for a group of velocities and information on
macroscopic quantities and impermeability constants is exchanged between the processors at the end
of each iteration. In this manner, the transmition of the distribution function is circumvented, greatly
reducing the cost of parallel communication. A large number of processors, namely M x Ny /2 and
M?, can be used for the channel and tube problems respectively.

It has also been seen that the convergence rate benefits significantly by adjusting the initial
assumption for the macroscopic variables to reasonable values. For example, in the problems of lin-
earized flow through channel or tube, the density perturbation is chosen equal to unity in the left vessel,
zero in the right and varies linearly inside the channel. In the same context, velocities are set to zero
everywhere in the field. This selection is quite close to the final expected distribution of macroscopic

variables and significantly reduces the number of iterations.

4.4.4 Numerical and domain parameters
These steps of the algorithm are repeated, using the new values for the bulk quantities again for
the solution of the kinetic equations and the new estimation of incoming distributions in surface (A)

for the end effect geometry. The iteration scheme is completed when all macroscopic quantities have
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converged, satisfying a predetermined criterion: in our calculations the average residual per node has

been chosen

Niotal

4Ntotal ; Upz - pf?"\ + "Ti - sz’”’ —+ ’U:cl,i — u’;’ii’ + |ux27i — u%ﬂH (4.72)

residual =

where the pr superscript denotes the corresponding quantities in the previous iteration and NV, is the
total number of nodes. The solution is repeated for different values of Lief/ Lo, Lyignt/ Lo, Laey/ Lo to
ensure the correct application of boundary conditions by checking the convergence of the quantities
of interest (flow rate and pressure perturbation). For the complete geometry, the values L. s:/Lo =
L,igni/Lo = 15 are found to provide accuracy levels higher than 1%, while regions up to L;.s/Lo =
L,ignt/Lo = 50 have been tested. The corresponding domain parameters for the end geometry are
given in Table 4.2. In order to ensure that the accuracy would be sufficient in areas of large gradients,
a non-uniform grid has been used in the physical space, described in Appendix 4. It is displayed in
Figure 4.7 in an exaggerated form in order to clarify the areas of high/low discretization. At all times,
the maximum interval is kept low, even if the field appears to be quite smooth, in order to avoid the
appearance of discretization error. An analysis has also been performed for the numerical parameters
through several runs, resulting in the values given in Table 4.3 in order to obtain grid independent

results. These values depend on § and the channel geometry (cross-section, L/ Ly).

4.5 Results

4.5.1 Introduction

The results shown in this section are divided in two sections, corresponding to the solution of
the complete problem and the end effect problem, respectively. In the first case we focus on the flow
rate values and the field characteristics, while in the second one we compare the results obtained by the
end effect approach in comparison to the fully developed flow simulations and the complete channel

simulation for moderately long channels.
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4.5.2 Linearized flow

The code has been benchmarked with previous results for the slit case [162], showing good
agreement for < 5. There are discrepancies for larger o but since there is a very good agreement
with the non-linear BGK model flow rate values for the parallel plate channel with Pout / Pm = 0.9
[79] and for the cylindrical tube with Pt / b, = 0.9,0.99 (Chapter 6), we conclude that the present
values are correct. Furthermore, the free molecular solution (Appendix 6) is obtained with very good
accuracy and the principle of mass conservation (Appendix 5) is fullfilled in the whole domain with
an error less than 0.1%.

Results include flow rates for the parallel plate channel in Table 4.4 and for the cylindrical
tube in Table 4.5. It is observed that the flow rate is relatively close for both geometries for small
L/ Ly ratios and small §. This is just a consequence of the non-dimensionalization with the analytical
solution for L./ Ly = 0 and § = 0. Furthermore, the flow rate increases monotonically along with the
rarefaction parameter for all geometrical cases except L/H = 10. In the latter case, the onset of the
Knudsen minimum phenomenon is observed for the plate channel. The flow rate obtains a minimum
value between 0 = 0.5 and 0 = 1, due to a small percentage of molecules moving almost axially along
the channel, having a very small transversal velocity component. When the Knudsen number is high,
their contribution to the mass flow becomes very important, while as the Knudsen drops, the mass flow
rate is also decreased due to the appearance of intermolecular collisions, interrupting these long axial
trajectories. On the other hand, very large collision frequencies induce an overall drift velocity which
increases the mass flow through the channel. The Knudsen minimum phenomenon is not observed
in the case of the tube for the length-over-radius ratios shown here and it seems that a longer tube
is required. Furthermore, the flow rate is significantly reduced for all cases as the channel length is
increased due to the lower pressure gradient and the wall friction.

Indicative results for incomplete accommodation are also presented in Table 4.6. It is seen
that, in comparison to the fully accommodated results of Table 4.5, the flow rate remains constant for

orifice flow. This is one of the favorable properties of orifice flow, making it an ideal configuration for
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the evaluation of numerical schemes, kinetic models and intermolecular potentials, since the factor of
gas-surface interaction can be neglected in this case. It has been found in the past [162] that the slit
also posseses similar properties, which have not been investigated in this work. For a tube of finite
length, it increases significantly, especially for small 4. In particular, the deviation is up to 21% for
L/R=1,6<1,15%forL/R=1,6=10,93%for L/R =10,6 < 1land42% L/R = 10,6 = 10.
This trend is to be expected since surface accommodation properties play a more important role for
highly rarefied atmospheres and longer channels.

A comparison of the flow rate values with previously obtained DSMC results (Pout / ﬁm =
0.9 [149] and Pout / ]5m = 0.7 [152]), reproduced in Table 4.7 modified by the expression Wp;, =
Wpsne / (1 — P / f%) , shows good agreement, especially near the free molecular regime. These
similarities for ) — 0 are explained by the fact that the Reynolds number also approaches zero and thus
the flow field becomes symmetrical. The same trend appears for small A P and large L/ R, also leading
to small Mach and Reynolds. The low pressure difference value in [149] acts beneficially for this
comparison and the maximum error observed here for orifice flow is about 7.7 % at 6 = 10. Thus, since
the orifice is the most non-linear case, it is expected that this value is the maximum deviation between
the two methods for Pout / lf’m < 0.9, 6 < 10 and any tube length. Comparing with [152] confirms that
discrepancies are reduced when the tube becomes longer due to the lower pressure gradient.

It would not be easy to make a direct comparison between linearized and DSMC results be-
cause of the inherent difficulties of both formulations to deal with flows far from or near equilibrium,
respectively. However, it can be seen that at a pressure ratio value of about Pout / Pm = 0.9, both
formulations give satisfactory results in good agreement with each other. This conclusion has two
implications: First, linearized equations provide correct results at a wider range than expected from
the mathematical derivation, i.e. up to AP/ Py = 0.1 or even more for low §. Thus, the results shown
here are useful for a considerable range of pressure ratios, for which another computational method is
not available in the whole range of the Knudsen number. Secondly, practically all physical conditions

for these two problems can be simulated by applying either DSMC or linearized kinetic equations in
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the respective range of each method. Therefore, problems driven by forces of any magnitude can be
considered using the linearized and DSMC formulations and in a wide range of the Knudsen number.

For all cases considered here, the field is symmetric around x = L/ (2L,) for any channel
length and in the whole range of the Knudsen number, as expected. Furthermore, the macroscopic
quantity fields for both geometries are found to be quite similar. This characteristic is observed in Fig-
ures 4.8 - 4.13, where the pressure perturbation, the dimensionless axial velocity and the streamlines
are plotted for both the plate and cylindrical channels, with /Lo = 0,9 = 1 and L/Ly = 10, 6 = 10.
Besides the differences caused by the different reference length, leading to a larger dimensionless
opening for the tube, there are many similarities between the two flow fields. The pressure ranges
between the two reservoir values inside the channel and around its ends, while a region of higher and
lower density than the container values is also observed just above the channel opening. The velocity
field values are also quite close to each other. The velocity is nearly zero as we approach the upstream
container incoming surface, it increases until the center of the channel, where the maximum value is
attained, and then gradually drops back to zero in a symmetrical fashion. Finally, the streamlines are
nearly identical for both cases. Structures appearing in non-linear flows, such as vortices, are absent
here for all cases. It is confirmed that the impermeability condition is always satisfied, producing com-
pletely horizontal lines inside the channel even for the demanding case of the relatively long channel
with L/Ly = 10. Since the streamlines are nearly identical for all cases considered here, they are
not shown in the comparisons further below. Due to these common characteristics, conclusions on
the dependence of the flow field on various characteristics are the same for both geometries and are
presented below for just one of them each time.

The effect of changing the plate channel length is examined for a constant rarefaction parameter
0 = 1 by comparing Figures 4.8 - 4.10 (up) for L /Ly = 0, Figure 4.14 for L./Ly = 2, and Figure
4.15 for L/Ly = 10. The pressure distribution around the channel ends gradually becomes closer
to the container values as the length increases, i.e. the pressure contour coloring at each container is

more uniform in Figure 4.15. This happens because the area of the reservoirs affected by the channel
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flow is smaller for longer channels, due to the smaller induced gas velocities. The axial velocity is
significantly reduced for longer tubes and seems to obtain a developed profile as we move inside the
channel away from it ends. The end influence on the velocity profile seems to fade away around one
unit of dimensionless length inside the channel for L /Ly = 10 and 6 = 1.

The influence of ¢ is shown in Figures 4.16 and 4.17 for a cylindrical tube of L/L, = 2 and
0 = 0.1,1 and 10. No significant changes occur for pressure for this length, besides a slightly larger
deviation of pressure in the containers from the equilibrium values as ¢ is increased. The axial velocity
values are also increased along with ¢ but no other significant differences occur. Similar conclusions
can be drawn for a cylindrical tube of L/Ly, = 5 and the same ¢ values, shown in Figures 4.18 and
4.19. The velocity profile in this case seems to develop to a nearly constant profile inside the channel
for 0 = 10, which implies that the end effect treatment, discussed in detail in the next subsection, may
be applied under these conditions to provide results with decent accuracy while avoiding the complete
solution of the problem. For smaller ¢ or shorter channels, the fully developed flow characteristics are
not so strong.

The axial distribution of pressure is shown in Figure 4.20 for several values of L /L, and ¢ and
for both geometries. It is seen that the profiles are quite similar at all cases shown here and nearly
linear inside the channel. This is reasonable since the pressure gradient is small and the hypotheses
of fully developed flow are practically fullfilled. The differences are mostly located in the gradient of
pressure, determining the flow rate. There are larger discrepancies for the parallel plate channel and
qualitative differences appear for large length ratios: it can be observed that for a small value of the
rarefaction parameter (0 = 0.1), the profile is not linear due to the channel end effect, in contrast to

0 = 10 where the effect of the finite length fades away in short distance from the channel ends.
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4.5.3 Investigation of the end effect

The fictional length increments AL, which are equal to the pressure perturbation found in the
end geometry as shown before, provide the extra “effective” length and are shown in Table 4.8 for
various rarefaction levels. It is seen that its value becomes smaller for larger J, showing that the end
effect is more important for highly rarefied flows. The decrease in AL is also steeper for small 6.
Furthermore, we observe that the effective length decreases with a smaller slope for the cylindrical
case, in comparison to the parallel plate geometry. A comparison to the values previously obtained
by an approximate solution in reference [45] is also provided. The authors consider the complete
channel geometry by an integral method and match the AL constant to fit their results. However,
there are significant deviations due to the different formulation of the two problems and different
discretization/geometric parameters Le,, Lyign: used in the reference.

The absolute value of the density perturbation at the center of the channel (z5 = 0) is shown in
Figure 4.21 for 6 = 0.2, 1 and 10. The most striking feature is the fact that the density perturbation is
practically constant along the x; axis as x1 — — Lg.,. Since the temperature variation is very small in
this isothermal problem, it is seen that p ~ p. Therefore, the constant trend of the density perturbation
obtained after some point in the channel is a direct consequence of the linearity of the pressure profile
for long channels and our reference pressure selection. A larger developing length is observed when
the rarefaction parameter is low. It is also seen that density and temperature perturbations are nearly
zero at the reservoir boundaries, since the reference conditions prevail there.

A part of the density perturbation field is also plotted in Figure 4.22 for some representative
values of §, namely 6 = 0.2, 1, 10. In this two-dimensional plot, it can be seen that the density pertur-
bation progressively becomes constant along each cross section as we move far from the channel end.
Furthermore, for highly rarefied conditions the expansion structure spans to a larger area inside the
container in fact in the longitudinal direction. This seems to have some connection with the molecu-
lar beaming phenomenon, since the number of particles arriving at the outlet container with an almost

completely axial velocity should increase when fewer inter-molecular collisions occur. As ¢ increases,

90

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Section 4.5

this phenomenon is reduced and the number density field is affected in a smaller area of the container,
also producing more round isolines. The dimensionless horizontal velocity u, also displays a nearly
developed velocity profile at the left end of the channel, which coincides with the solution of the fully
developed problem at the inlet cross-section. The maximum value of the macroscopic velocity also
seems to behave according to the Knudsen minimum, taking its smallest value around 6 = 1. Com-
ments on the expansion structure given before are also valid here: a smaller area is influenced for
flows near the hydrodynamic regime.

An application of the end geometry results is presented here for the case of flow through a
moderately long cylindrical tube. An identical procedure may be applied for the plane geometry if

needed. According to Equations (4.68) and (4.64), the mass flow rate using fully developed flow

results is
. R AP din + Oou
Mpp = — 227G ( 2Ot (4.73)
Vo L 2
and using the end effect treatment (4.70), it becomes
. TR3 AP Oin + Oout
Mg = — —_ 4.74
EE Vo L + ALln + ALout FD ( 2 > ( )

When the complete geometry is considered in the simulation, the mass flow rate is found by Equation

(4.36)
Mpiny = AP47252 Grin (4.75)
for the linearized formulation and
e = BT Gy (4.76)

for the non-linear one, given in detail in Chapter 6. It is expected that the ratio of mass flow rates, using
complete simulation and typical integration with/without end effects, should approach unity as the tube
length increases. These ratio values are given in Table 4.9 for a variety of flow conditions. It is seen
that the maximum discrepancy for the end effect treatment (1%) occurs for highly rarefied conditions
(0 = 0.2). This is due to the fact that the tube is quite short in comparison to the development length

required to achieve a constant pressure perturbation, as seen in Figure 4.21. However, as § obtains
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values over unity, we observe that the discrepancies drop significantly for the end effect treatment
(less than 1 % at all cases examined here), in comparison to the fully developed flow simulation (up
to 7-19 %). The lowest discrepancies are found for the extra cases of L/R = 20, executed in the
complete geometry to enhance our trust on this methodology. It is seen that discrepancies in this case
drop for both methods and we reach the conclusion that errors below 1% may be obtained by the
end effect simulation if § > 1 and L/R > 20 are considered. Finally, some non-linear runs with
L/R = 20 and a pressure ratio Pout/ﬁm = 0.5 are included in Table 4.10. Since the values 6 = 0.5, 5,
needed for the outlet part fictional length AL,,,; are not included in our calculations, a simple linear
interpolation is used in the values of Table 4.8. Even though this approach contains some error, it is
seen that the agreement is still much better than the corresponding value obtained by fully developed
flow simulations.

A comparison in terms of the axial pressure distribution is also shown in Figure 4.23 for the
linearized and in Figure 4.24 for the non-linear formulation and Pout / lf’m = (.5. These have been ob-
tained by adjusting the channel length according to the fictional “effective length” increments, before
and after the real channel, and applying the integration procedure. It is seen that at all cases, the curves
of the complete and end effect simulations are very close to each other except the areas very close to
the channel ends. On the other hand, the typical integration curve always provides a larger pressure
gradient.

Atall cases examined here, the end effect approach seems to provide results of higher accuracy.
Furthermore, from Figures 4.23 and 4.24, it is reasonable to infer that discrepancies are greatly reduced
as the length is increased, since the gradients of all three solutions must become indistinguishable as
the length tends to infinity. Thus, we can conclude that including the effective length in the typical
integration scheme should greatly enhance the accuracy of results for relatively short to moderately

long channels, especially for large 0, and it could also benefit highly rarefied flows for long channels.
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4.6 Concluding remarks

In this Chapter, we have investigated flow through two channel geometries, namely a rectan-
gular and a cylindrical channel, due to a small pressure difference by the linearized BGK model. A
highly efficient memory storage scheme and the algorithm parallelization have been described. We
have found very good agreement with non-linear results and some disagreement with DSMC due to
its computational restrictions in the low pressure difference regime. The corresponding fields of pres-
sure, axial velocity, streamlines, as well as the axial distributions of pressure have been discussed.
Moreover, the end effect for channels of moderate to large length ratios has been considered and
compared with fully developed flow simulations and the complete simulation. It has been found that
this approach offers significant improvements over previous methodologies, allowing the usage of the
typical integration scheme to model short to moderately long channels with a maximum error of 2%
instead of simulating the complete channel, and the corresponding values given here can be used in

practical applications with minimal computational effort.
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Table 4.1: Discretized equation for the tube end geometry problem
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Table 4.2: Geometric parameters for the end geometry

) 021041 |21|4]| 810
Lgeyw/Lo | 60 | 50 | 40 | 30 | 30 | 20 | 20
Lyigne/Lo | 10 | 10 | 12 | 12 | 15 | 15 | 15

Table 4.3: Numerical parameters used in the simulations

Parameters Channel Tube
Nodes / unit length in dense areas (N, = N, = N, ) 150 — 200 150 — 200
Grid non-uniformity parameter (1) 1072-1073 1072-1073
Discrete angles (NVy) in (0, 27) 250 — 400 300 — 400
Discrete magnitudes M 16 — 20 16 x 16
Max. value of velocity magnitude (¢;q44) 4—-5 5
Convergence criterion 1078-107" 107%-107"
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Table 4.4: Dimensionless flow rate TV for plate geometry and several § and L/H values

L/H
0 0.5 1 2 5 10

0 10.999 | 0.802 | 0.682 | 0.541 | 0.356 | 0.240

0.01 | 1.00 | 0.805 | 0.685 | 0.542 | 0.356 | 0.239

0.1 | 1.05 | 0.837 | 0.709 | 0.556 | 0.356 | 0.231

0.5 | 1.21 | 0.957 | 0.798 | 0.609 | 0.366 | 0.222

o 1 1.40 | 1.09 | 0.894 | 0.666 | 0.383 | 0.225
2 1.73 | 132 | 1.07 | 0.772 | 0.424 | 0.242

5 2.67 | 197 | 1.54 | 1.07 | 0.561 | 0.313

10 | 3.97 | 290 | 224 | 1.54 | 0.792 | 0.438

Table 4.5: Dimensionless flow rate 1V for tube geometry and several ¢ and L/ R values

L/R
0 0.5 1 2 5 10

0 ]0.999 |0.801 | 0.672 | 0.514 | 0.311 | 0.191

0.01 | 1.00 | 0.805 | 0.675 | 0.516 | 0.311 | 0.191
0.1 | 1.04 | 0.833 | 0.696 | 0.530 | 0.316 | 0.192

0.5 | 1.19 | 0.947 | 0.786 | 0.589 | 0.341 | 0.201

o 1 1.37 | 1.08 | 0.892 | 0.660 | 0.373 | 0.217
2 1.72 | 1.35 | 1.10 | 0.799 | 0.440 | 0.251

5 277 | 213 | 1.70 | 1.20 | 0.642 | 0.362

10 | 435 | 332 | 2.63 | 1.86 | 0.988 | 0.554

Table 4.6: Dimensionless flow rate I/ with incomplete accommodation for the linearized tube problem

L/R
0 1 10
a=05|a=08a=05|a=08|a=05|a=0.8
0 1.00 0.999 0.814 0.726 0.368 0.247
6 10.1 1.04 1.04 0.840 0.751 0.368 0.247
1 1.37 1.37 1.07 0.955 0.402 0.271
10 4.35 4.35 3.03 2.76 0.786 0.617
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Table 4.7: Dimensionless flow rate IV obtained by DSMC in previous works

P/ P | 0.9[149] 0.7 [152]

L/R 0 0.5 1 2 5 10
0 - 0.803 0.670 0.510 0.310 0.181

0.1 1.03 0.820 0.683 0.520 0.310 -
0.5 - 0.900 0.747 0.567 0.333 0.202

s 1 1.30 1.00 0.830 0.633 0.353 -
2 - 121 0.993 0.733 0.410 0.233

5 - 1.80 1.47 1.06 0.580 -
10 4.02 2.54 2.13 1.57 0.877 0.487
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Table 4.8: Effective length increment values for the two geometries

Table 4.10: Flow rate ratio for non-linear flow (Pout / ]5m = 0.5)

L/R MFD/MNL MEE/MNL MFD/MEE
s=1 ] 20 1.08 0.978 1.10
§=10] 20 1.07 1.00 1.07
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) 02 | 04 1 2 4 8 10
ALy Present Work 2.15|1.55| 1.05 | 0.827 | 0.654 | 0.574 | 0.556
crannet | Table 351in [45] | 1.76 | 1.34 | 1.01 | 0.820 | 0.715 | 0.720 | 0.665
ALube Present work | 1.33 | 1.16 | 0.964 | 0.841 | 0.735 | 0.688 | 0.682
Table 4.9: Flow rate ratio for linear flow
L/R | Mpp/Mpin | Mgg/Mpin | Mpp/Mgg
6=021] 10 1.28 1.01 1.27
0= 10 1.19 1.00 1.19
0= 10 1.17 1.00 1.17
6 =10 10 1.14 1.00 1.14
0=1 20 1.10 1.00 1.10
6 =10 20 1.07 1.00 1.07
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Flow direction
>

Figure 4.1: Flow configuration and coordinate system
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r

Flow direction_

Figure 4.2: Velocity coordinate system for the parallel plates (left) and the tube (right)
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Figure 4.5: Flow configuration and coordinate system
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Figure 4.6: Schematical representation of the marching scheme for the channel (up) and tube (down)
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Figure 4.7: Non-uniform grid used in the numerical solution
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Figure 4.8: Pressure perturbation for the plate (up) and tube (down) geometry with L /L, = 0 and
o=1
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Figure 4.9: Axial velocity for the plate (up) and tube (down) geometry with L /Ly =0 and 6 = 1
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Figure 4.10: Streamlines for the plate (up) and tube (down) geometry with L/Ly = 0and § = 1
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Figure 4.11: Pressure perturbation for the plate (up) and tube (down) geometry with L /L, = 10 and
0 =10
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Figure 4.12: Axial velocity for the plate (up) and tube (down) geometry with L /Ly = 10 and 6 = 10
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Figure 4.13: Streamlines for the plate (up) and tube (down) geometry with L /Ly = 10 and § = 10

112

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Section 4.6

4 -3

Figure 4.14: Pressure perturbation (up) and axial velocity (down) for the plate geometry with L/ H = 2
and 6 =1
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Figure 4.15: Pressure perturbation (up) and axial velocity (down) for the plate geometry with L/H =
10and 6 =1
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Figure 4.16: Pressure perturbation for the tube geometry with ./ Ly = 2and § = 0.1
(up), 0 = 1 (middle), 6 = 10 (down)
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Figure 4.17: Axial velocity for the tube geometry with L./ Ly = 2 and 6 = 0.1 (up), 6 = 1 (middle),
0 = 10 (down)
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Figure 4.18: Pressure perturbation for the tube geometry with /Ly = 5and 6 = 0.1 (up), § = 1
(middle), 6 = 10 (down)
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Figure 4.19: Axial velocity for the tube geometry with L /Ly = 5 and 6 = 0.1 (up), 6 = 1 (middle),
0 = 10 (down)
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Figure 4.20: Pressure perturbation distribution at the symmetry axis for the plate (left) and tube (right)
geometry with L/Lq = 0 (up), L/Lo = 2 (middle), L/ Lo = 10 (down)
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Figure 4.21: Density perturbation along the symmetry axis for the plate geometry and 6 = 0.2(top),
0 = 1(middle), 6 = 10(bottom)
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Figure 4.22: Density (left) and horizontal velocity (right) perturbation distributions for 6 = 0.2(up),
0 = 1(middle) and 6 = 10(below)
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Figure 4.23: Comparison of results obtained by the end geometry formulation with linearized results
for 0 = 1 (up) and 6 = 10 (down)
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Chapter 5

Non linear heat transfer

5.1 Introduction

The study of heat transfer phenomena in rarefied gases is important in several practical appli-
cations, as seen in Chapter 2, and have therefore been theoretically investigated by many researchers
[187, 177, 179, 188, 113]. In most cases, only small values of the normalized temperature differ-
ence have been considered since the linearization of the distribution function leads to a more tractable
mathematical formulation with a robust theoretical background. The corresponding works with a fi-
nite temperature difference are limited [188, 189, 190] and, in most cases, results are provided only
within a certain range of the rarefaction, thermal and geometrical parameters involved in the problem.
Questions arise on the range of applicability for the linearized formulation and the effect of higher tem-
perature differences and different intermolecular potentials. Therefore, there is a need for a complete
and accurate study of such phenomena.

A detailed investigation of the conductive heat transfer problem in a rarefied gas is performed
here for a wide range of all involved parameters. The geometries of parallel plates and concentric
cylinders are examined for simplicity, in order to focus on the physical aspects of the problem. A set
of nonlinear kinetic equations subject to suitable boundary conditions is solved numerically for the
unknown distribution function based on the discrete velocity method. Complete treatment of the heat
transfer problems under consideration has been successfully applied in the literature only in the case
of small temperature differences based on linearized kinetic theory [177, 175, 113].

In the present work, the nonlinear form of the Shakhov kinetic model [55] has been employed,
subject to Cercignani-Lampis (CL) boundary conditions [101]. The Shakhov model, unlike the BGK

model, provides simultaneously the correct expressions for the heat conduction and viscosity transport
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coefficients. Intermolecular interactions are simulated based on the Inverse Power Law (IPL) [80]. By
varying the viscosity dependence on temperature according to the IPL model, various intermolecular
potentials have been considered. The two limiting cases of the IPL interaction, namely the Maxwell
and the hard sphere interaction are examined in detail. The numerical solution is based on an advanced
discrete velocity algorithm providing accurate results with modest computational effort. Macroscopic
quantities, such as heat flux, density and temperature, are provided in the whole range of the Knudsen
number for several values of the radius ratio and for small, moderate and large temperature differences.
The influence of the intermolecular interaction model is also investigated. Based on this study the range
of validity of the linearized kinetic analysis is discussed.

In the next section, the kinetic formulation is presented for the two problems in question. Then,
the implemented computational scheme is described in detail. Finally the most important results are

provided in the last section, where the effect of each parameter is discussed.

5.2 Formulation of the two problems
5.2.1 Introduction

In the following subsections, the kinetic modelling of two problems of non-linear heat conduc-

tion are presented. In particular, the geometries of interest here are

+ two infinitely wide and long parallel plates at a distance H

* two concentric cylinders with radii R4,Rp

The geometries are displayed in Figure 5.1. In both cases, an arbitrarily large temperature difference
AT is imposed between the walls. The physical conditions are fully determined if the rarefaction state,

the temperature difference and the radius ratio y = R4/ Rp (in the cylindrical case) are given.

5.2.2 Heat transfer between parallel plates

The task is to describe the state of a stationary monoatomic gas confined between two infinite

parallel plates, fixed at §; = FH /2,7 = A, B as seen in Figure 5.1. The plates are maintained at
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constant temperatures T; = Ty + AT/2,i = A, B, while T, is a reference temperature. Then, the
temperature ratio is defined as 74 /T = (14 3)/(1 — ), where 8 = AT /(21}) is the dimensionless
temperature difference. In the kinetic approach applied here, the main unknown is the distribution
function f = f(y,&), which for the specific configuration depends on the coordinate between the
plates y and the molecular velocity & = (&;,&,, €. ). Since the problem is non-isothermal, the Shakhov
kinetic model equation

Syaf _L {fs f} (5.1)

is more suitable than the BGK model. The Shakhov model term is

2m . mé? 5) ) ]
s M

_ 1+ R = __ 5.2
! d [ 15n (kBT)qugy (QkBT 2 52)
where the appropriate Prandtl number value for monatomic gases (Pr = 2/3) has been substituted and

3/2 2
M m mé

= — 53

f " <27T]€BT) xp |: 2kBT] ( )

is the local Maxwellian distribution. The number density n (), temperature 7" (¢) and heat flux ¢ ()

are found by moments of the distribution function, i.e.

) = / / / FdEde, de, (5.4)
= 3nkg / / / &2 fde,de, e, (5.5)

i =a,0)= [ [ [ (5.6)

By applying the conservation of energy (see Appendix 5) it is easily deduced that the heat flux is
constant at any position between the plates (§(y) = constant). Finally, m and kp denote the molecular
mass and the Boltzmann constant respectively. At this stage it is convenient to introduce the dimen-
sionless quantities

c=—, g="—"—, p=—, T=, (= =—7F — (5.7)

_y
y_.[v'.[7 Vo TL()7 Un) T()
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where H is the distance between the plates, vy = \/m is the most probable molecular velocity,
g = g(y, c) is the dimensionless distribution function, p, T and ¢ are the dimensionless number den-
sity, temperature and heat flux respectively, while Fy = nokpTj is a reference pressure. The average
number density
1 N
=g [ n)ds 58

—H/2

has been used to specify the density level. Even more,

_RH _ 71 (5.9)

b vr -
oV 2 Kng

is the reference rarefaction parameter, while 1 is the gas viscocity at temperature 7. The rarefaction
parameter is inversely proportional to the Knudsen number and therefore as ; is increased the atmo-
sphere becomes more dense (or less rarefied). The cases of 6y = 0 and §; — oo correspond to the free
molecular and hydrodynamic limits respectively. Then, after employing the hard sphere law for the

dependence of viscosity on temperature

W T
— =/ = 5.10
o To (.10
Equations (5.1)-(5.3) become
0
Cya—g = dopV7 {9° — 9} (5.11)
Y
4 gc, (2 5

S _ M 1 I et - _ 12
g g [ + hpr2 \ 7 2 (5-12)

2

M_ _ P <
g - (7_‘_7_>3/2 eXp |: 7_:| (513)

Furthermore, due to the symmetries of the configuration, it is possible to eliminate the two
components of the molecular velocity in the x and z directions by taking appropriate moments of the
distribution function to form the so-called projections. To eliminate the independent variables c, and

¢, we define

SO (y7 Cy) = //g (yv C) dCfEdCZ (514)
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¢(y70y)://(01+63)9(ym) de,de, (5.15)

and operate accordingly on Equation (5.11) to reduce after some routine manipulation the final coupled

set of non-linear integro-differential equations

Cyg_;j = bopv/T {¢” — ¢} (5.16)
g = dopy7 {0° ) (5.17)
where the S model terms are
oS = oM {1+%% (?—g)} (5.18)
S = M {14—%% (?—%)} (5.19)

Equations (5.16) and (5.17) must be solved for the unknown reduced distributions ¢ and v, which
depend only on two independent variables, reducing significantly the required computational effort.

The projections of the Maxwellian distribution, ©* and ¢, are

2
M P y
= - 5.20
LY { r } (5:20)
2
M p\/F Cy
== - 5.21
(8 Jz P { . } (5.21)
Finally, the dimensionless macroscopic quantities in terms of ¢ and v are
ply) = / pdc, (5.22)
2 2
T(y) = 3 (v + ) dey (5.23)
q(y) = q,(y) = / ¢y (U + ) de, (5.24)

The interaction between the particles and the walls is modelled according to the Cercignani-

Lampis boundary conditions. The final expressions are reproduced here from Section 3.2.3

2 : 2+ (1—ap)c? 2VT —ancnc,\
o = — / ©C,exp <—C" 1 —an)e, )Io <&> de,, (5.25)

a,T TOp Ty
c;L<0
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2 ,
Pt =— / [(1 — ogt)2 VT 1o (2 — ay) go_} c,
anT
c:L<O
24 (1—a,)c? 2V/T = a, ¢ ,
X eXp (—C" +1-a )C"> I, (ﬁ) dc, (5.26)
T, T,

with ¢, ¢, being the positive and negative ¢, values resprectively for the lower wall and vice versa
for the upper wall.

The problem is described by kinetic equations (5.16) and (5.17), coupled by the moments
(5.22)-(5.24) and subject to boundary conditions (5.25) and (5.26). It is seen that the rarefaction pa-
rameter J and the temperature ratio 5 fully determine the physical conditions, if the accommodation

coefficient values are known.

5.2.3 Heat transfer between coaxial cylinders

Consider two concentric stationary cylinders of infinite length, with radii R4 and Rp and the
annular region R4 < 7 < Rp filled with a monoatomic gas at rest and at arbitrary density level. The
cylinders are maintained at different temperatures 7'y and Tz, with T’y > T's. Due to the temperature
difference AT = T4 — Ty, which may be arbitrarily large in magnitude, there is a radial heat flux
through the rarefied gas from the hot towards the cold cylinder. The problem is axially symmetric and
its configuration is shown in Figure 5.1, where it is seen that the letters A and B refer to the inner (hot)
and outer (cold) cylinders respectively. The objective is to estimate all macroscopic distributions in
terms of the three parameters governing this heat transfer problem, namely the temperature difference
between the cylindrical walls, the ratio of the two cylindrical radii and the degree of gas rarefaction.

It is convenient to introduce these three parameters in dimensionless form, taking the quantities

at the outer cylinder as reference quantities. In particular

Th—Tg
= - 5.27
§= (527)
is the dimensionless temperature difference,
R
=—= 5.28
s (5.28)
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1s the radius ratio and
R RpPp Py \/_ 1

5o — _
°7 upup 2 Kng

(5.29)

is the reference rarefaction parameter. In the latter expression, Pp is the reference gas pressure, mea-
sured when the system is in equilibrium (74 = T), up is the gas viscosity at reference temperature
Tg and vg = \/m, with kg being the Boltzmann constant and m the molecular mass, is the
most probable molecular velocity.

The governing equation is the nonlinear Shakhov kinetic model, which, taking into account the
symmetries of the problem under consideration, is written as [55]

af gpsm08f P

&p 57 g {fs } (5.30)
with
s oM 2m ) mé? 5
fo=f [1 + qup cosf (QkBT — 5)] (5.31)

being the Shakhov model term and

fM _ n( m 3/2 o B m§2 (5 32)
omkpT P ok,T '

being the local Maxwellian. Here, f = f(7, &) is the unknown distribution function, 7 is the radial

spatial coordinate and £ = (&, &, &) = (§,c0s6,,sinb, &) is the molecular velocity vector, while
€, = (&, &), shown in Figure 5.1, is the planar velocity vector, with &, = ‘5 ‘ Also, n, T and ¢ are
the macroscopic distributions of number density, temperature and radial heat flow respectively, which

may be obtained by the moments of the distribution function according to

= [ [ [ teasasac. (5.33)

“ m
0 =gt [ [ ] 6+ ) seasavae. (5.34)

=3 [ [ [ (€+€) €cos0) seacydsac. (539)

~

q(r) =

'$>

Furthermore, 1 is the viscosity of the gas at local temperature 7', while P is the local pressure of the

gas, given by the equation of state P = nkgT.
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It is noted that, even though the Shakhov model fulfils the collision invariants and provides
correct expressions of the transport coefficients, there is no proof so far that it satisfies the H-theorem.
This is a drawback for the Shakhov model. However, this unresolved issue produces no numerical
problems or unphysical findings (e.g. negative distributions). Furthermore, it has been chosen between
several nonlinear kinetic models, mainly due to the fact that the corresponding linearized solution for
the specific heat transfer problem is available in the literature [113], allowing a direct comparison
between the linear and nonlinear solutions at small temperature differences. This is important, in or-
der to benchmark the nonlinear results in the linear limit and also to check the range of validity of
the linearized theory. As mentioned before, all results are in good agreement with the corresponding

nonlinear BGK results, provided that in the BGK model

af B fpsin9g B
o Foo00

u(fM — ) (5.36)

&pcost

the collision frequency is chosen as ¥ = (2P)/(3u) in order to obtain the correct heat conduction
transport coefficient.

The unknown distribution function introduced in the previous section depends on four inde-
pendent variables (one in the physical space and three in the velocity space). Following a typical
projection procedure, it is possible to eliminate the z-component of the molecular velocity vector. By
reducing the number of independent variables from four to three the associated computational effort is
significantly reduced. Also, for practical reasons all equations and quantities are non-dimensionalized.

The following dimensionless quantities are introduced:

7 £ fud n T g P P
= —’ C = —_—, = _—, = —7 T = _—_, fry , e —
RB UB g np P np TB q PBUB PB

r (5.37)

All quantities with the subscript B are considered as reference quantities. Here, g = ¢(r, ¢) is a dimen-
sionless distribution function, with v < r < 1 and ¢ = (¢,, ¢y, ¢,) denoting the independent variables
(¢, = ¢pc080,cy = c,sinf), while ¢, denotes the magnitude of the dimensionless planar molecular
velocity magnitude. Furthermore, p, 7, ¢, and p are the dimensionless distributions of number density,

temperature, radial heat flow and gas pressure respectively.
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Then, to proceed with the mathematical manipulation, molecular interaction must be specified.
The IPL interaction, where the repulsive force between two molecules is proportional to the inverse
of the nth power of the distance between their centers, is introduced. The IPL interaction yields a

viscosity of the form [80, 51]
p=pp(T/Tp)* (5.38)

where w = 1/2 + [2/ (n — 1)]. The parameter w takes the values of 1/2 and 1 for the hard sphere
(n — o0) and Maxwell (n = 5) interactions respectively, which are the two limiting cases. Based on
the above, it is easily deduced that the local rarefaction parameter, defined as § = (PRp)/(uv), is
given by

§ = Soprt ¥ (5.39)

where ¢ is the reference rarefaction parameter defined in Equation (5.29).
The quantities given by Equations (5.38) and (5.39) are introduced into Equations (5.30) and

(5.32) to yield the dimensionless nonlinear Shakhov kinetic model equation

dg  cpsind @

cp COS v SopT ¥ {gs — g} (5.40)
where
¢° = gM [1 + %#qcp cos 6 (c; — g)] (5.41)
with
= L (—;2) (5.42)

being the dimensionless local Maxwellian. Since the Shakhov collision model satisfies, as it should,
the collisional invariants of mass, momentum and energy, the corresponding conservation equations
may be obtained by operating accordingly on Equation (5.40). The detailed derivation is contained in
Appendix 5. The mass equation implies that u,.(r) = 0 is always satisfied, while the energy equation
yields that the product ¢(r)r is constant at any position v < r < 1 between the cylinders. Both

conditions are implemented to benchmark the accuracy of the computed distribution function. Also,
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from the 7-momentum equation it is deduced that the gradient dp/dr is different than zero. Thus, there
1s a pressure gradient due to heat flow and not due to fluid flow. This is a non-equilibrium cross eftect,
which becomes stronger as the temperature difference between the cylinders and the gas rarefaction
are increased, while it is completely eliminated in the hydrodynamic limit.

Next, the projection procedure is introduced by defining the reduced distribution functions

2 (’f‘, Cp; 0) - /gdcz (543)

b (1, 6) = / 2gde, (5.44)

Then, by operating successively on Equations (5.40)-(5.42) with the integral operators [ (-)dc, and

[ (-)cZdc,, the following two coupled integro-differential equations are obtained for the unknowns ¢

and :
0 cpsing 0 o
Cp cos@af P . 8? = Sop7' 7 (¢° — ) (5.45)
0 ¢, sinf 0 W
¢, cosd alf it . (;g = Gop7' ¥ (v° — ¥) (5.46)
Here,
2
o5 =M {1 + 145 L —5qc,cosf (% — 2)1 (5.47)
S =M {1+i— c cos@<§—1>} (5.48)
- 15 pr2 1 T '
while
M P 0120
M= Lo (-2 (5.49)
M_ P c
P = 5. €XP <—?p) (5.50)

are the local Maxwellians. The same non-dimensionalization and projection procedures are applied
to the moments (5.33)-(5.35), to find that the macroscopic quantities are given, in terms of ¢ and 1) ,

according to
2

T) ://wcpdcpdﬁ (5.51)
0 0

134

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Section 5.2

2m oo

go + ¢ cpde,do (5.52)

q(r)= //(cp cos f) (cf)go + 1) cpdc,df (5.53)
00

Also, gas pressure is given by p (1) = p(r) 7 (). Equations (5.45)-(5.50), along with the associated
moments (5.51)-(5.53) constitute the basic set of equations to be solved.

Having established the set of governing equations, all that is left is to derive the appropriate
boundary conditions for the outgoing distributions at the inner (r = ) and outer (r = 1) walls. Since
this has been done in detail in Section 3.2.4, we only reproduce the final equations here. At the inner

wall r = =, the Cercignani-Lampis boundary conditions read as

37T/2 o0

Pt (v, 0p,0) = — 1+53/2\/T0‘t //

w/2 0

exp [_ (cpeosd)” + (1 — ay) (¢, cos ) ] exp [_ [(cpsin®) — (1 — ay) (c,sinf)] ] y

c cos 6 (7, c;,, 9'> X

(1+8)an (1+8) (2 - )
[2\/@ (¢, cos ) (c,cosd)

1+ 7)o, ] cpdc,dd (5.54)

37/2 oo

2148 3/2\/m / /
{(1 — Oét)2¢7 (7, c;), 0’) + —gﬁat (2—ay)p™ (fy, c;), 9/>] X

[_ (¢, c080)” + (1 — ay,) (c, cos 9')2] exp [_ [(cpsinf) — (1 — ay) (c, sin 0')}2] y

VF (7, ¢,0) = c cos9

exp

(1+8)ay, (1+8) (2 —ay)
2y/1 — a,, (¢, cosf cos P
I an (6 0050) (e c080) | v 10 40 (5.55)
(14 8)ay pep
and are valid for 6 € [—7 /2, 7 /2], while on the outer wall we impose diffuse boundary conditions
- 1 2
ot (1,¢,,0) = —exp (=) (5.56)
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vt (1,¢,,0) = % exp (—c2) (5.57)

for the angles 6 € [r/2,37/2].
The nonlinear set of Equations (5.45)-(5.50) along with the boundary conditions (5.54)-(5.57)
provide a theoretically well-established kinetic formulation for the heat transfer problem under con-

sideration.

5.3 Numerical scheme

The computational scheme, based on the discrete velocity method, has been successfully ap-
plied in the past to solve linearized kinetic model equations describing several non-equilibrium sys-
tems [77, 74]. Here, it is extended to deal with non-linear kinetic equations in a very efficient and
accurate manner. In the following discussion, the numerical scheme is presented for the cylindrical
case, but a similar procedure is also followed for the plane case with ¢, instead of c,, while also
omitting the streaming term containing the velocity angle 6.

Both the molecular velocity space (c,, #), with ¢, € [0,00) and 6 € [0, 27], and the physical
space r € [v,1] are discretized. The continuum spectrum of magnitudes of the molecular velocity
vector is replaced by a set of discrete magnitudes )™ € [0, cy®®],m = 1,2,..., M, which are taken
to be the roots of the Legendre polynomial of order M accordingly mapped from [—1, 1] to [0, cj***].
It is obvious that the choice of this discrete set is directly connected to the implemented numerical
integration over the molecular velocity space. Although, various discrete velocity sets may be applied,
it has been found that the Gauss-Legendre integration provides reliable results with less computational
effort in the whole range of the Knudsen number without changing the integration rule depending upon
the gas rarefaction. The numerical parameters related to the choice of the discrete velocity magnitudes
used in the present work are provided in Table 5.1. Also, by using a uniform grid, the angular space
is divided into N intervals. Each of the angular intervals is defined by its angle #,,, n = 1,2,..., N.
Finally, the distance between the two cylinders is divided into I equal segments, defined by r;,7 =
1,2,.., 1+ 1.
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The governing kinetic equations (5.45)-(5.50) are discretized in the variable ¢, and the resulting
equations are integrated over each spatial and angular interval, [r;_1/2, 7i11/2] and [6,_1/2, Oni1 /2]
The first and the second term at the left hand side of the kinetic equations are integrated analytically in
terms of  and 6 respectively and then the integration in terms of the remaining variable is performed

based on the trapezoidal rule. The resulting discrete equation for ¢ is

(m) (m)
(m) cp cost, cp sinf,, l—w
Puidivt |7 2Ar VUL
(m) -c;(,m) cos 0, cz(,m) sinf,  dy l—w- N
Puotirvt | T 9Ay A T gl
[ (m) (m) o i
(m) ¢ cosb, ¢ sinb, @ l—w 553
Purticy |77 2Ar  ar A0 T APl | (.38)
[ (m) (m) o i
(m) ¢ cosb, ¢ 'sinb, by | _
P-4 N 2r, 1 A TP
60 —w S,(m S,(m —w S,(m S,(m
Tl (G el ) T o (G 9]
where
) (m)y2 4 1 (m)y2
P> = LU exp [— &) ] {1 t 550G ™ cos b, [(Cp S 2] } (5.59)
' TT; Ti 15 pi; Ti

The corresponding equation for ¢ is derived in a similar manner and is omitted here. Due to the
trapezoidal integration, the error is of O(Ar?, A#?) and its form is known. Similar derivations on

Equations (5.16)-(5.21) for the plane problem lead to

£+5P 1/24/Ti+1/2 (m)
Ay 2“‘/ i+1/

(m)
T Qi1

i+1/2

c(m) do
_A_y+ 2/% 1/2/Ti—1/2

_ %
(pz+1/2\/71+1/290z+1/2+m 1/24/Ti—1/2¥;_ 1/2) (5.60)

4 1 (C(m))2
1+ — (m) |2 2 _9 5.61
{ + 15 p;7? Ty [ T; ( )

with

)

(pS,(m) _ P exp [_ c
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(m
n,t

The discretized equations for ¢ ) and wf:z) and the associated discretized moments (5.51)-(5.53)
for p;, 7; and ¢; are solved in an iterative manner. Based on the computed values of p;, 7; and ¢; of
the previous iteration (or on a reasonable initial assumption at the beginning), the kinetic equations

are solved for w(i';) and wf:?). Then, updated values of p;, 7; and ¢; are obtained by introducing in

n
the moments the computed distribution functions. The new values of the bulk quantities are used to
initiate the next iteration. This iteration process is terminated when some convergence criteria imposed
on the macroscopic quantities is fulfilled and is named in this text the typical iteration algorithm. The
flow diagram of this algorithm is shown in Figure 5.2. This algorithm is applied for the parallel plates,
using I = 401 nodes and M = 80 discrete velocities. The convergence criterion, set as the average
absolute residual per node, has been set equal to 10~® and the results are considered accurate to all
three significant figures.

For the cylindrical case, due to the slow convergence of the code for small radius ratios (y <
0.1), some modifications are required to reach convergence faster. The typical iteration algorithm has
been upgraded by implementing the Romberg integration rule and the Wynn-epsilon (We) acceleration
algorithm [191, 192]. In particular, the Romberg rule provides very accurate estimates of integration in
the macroscopic quantities and in the boundary conditions, even when coarse angle and spatial grids
are used, while the We algorithm speeds up the slow convergence of the typical iteration scheme.
Both methodologies result to a significant reduction of CPU time. The flow diagram of the upgraded

algorithm is shown in Figure 5.3.

The Romberg integration rule is carried out by the expression

AN (20) — Ty (1)

T (D) 4k — 1

k=1,2,3.. (5.62)

where T} (1) denotes the estimation of an integral with [ intervals after k integration steps, while Ty(1) is
the original trapezoidal rule with [ intervals. This treatment can be implemented in both the spatial and
angular domains and the resulting accuracy is of O (Ar?*+2, A§?+2). The Romberg rule is applied
twice. First, at the Cercignani-Lampis boundary conditions (5.54) and (5.55), when integration with

respect to the angle 6, is performed. The trapezoidal estimates are obtained initially on a coarse grid of
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n angles, which is doubled repeatedly until the total number of N angles is reached. Secondly, at the
macroscopic quantities (5.51)-(5.53), where the computation is performed initially on a coarse spatial
and angular grid and, after convergence has been reached, it is repeated in a refined mesh, where
the grid parameters have been doubled. This refinement is repeated £ — 1 times and the results are
combined according to Equation (5.62) at each spatial point until the final number of /V angles and
space nodes is reached.

It is also noted that in each grid refinement the results of the previous grid have been used as
an initial condition to speed up convergence. This procedure has lead to an accurate solution with a
moderately dense grid. In particular, the initial number of angular and spatial intervals are N = 24
and I = 51 respectively. Then, the Romberg rule is applied four times (k = 5) in the angular space
and two times (k = 3) in the physical space, leading to the final values of N = 192 and / = 201. The
above parameters are used for all values of the rarefaction parameter ¢j.

The We acceleration is a strongly nonlinear sequence accelerator that can exhibit spectacular
acceleration for some sequences and has been described as the most elegant of all convergence accel-
eration methods [192]. The convergence of a series S;,j = 1, ..., J, can be accelerated by forming a

tableau whose even columns are estimations of the sequence limit

. . . ~1—1
el = el [eb* -] 56

i i
with 5(_]% = (0 and e(()j ) = S;. This algorithm is imposed inside the typical iteration loop to all macro-
scopic quantities, p;, 7; and ¢;. Thus, a value of each sequence is stored in regular intervals between the
iterations and a transitional stage is allowed before each application of the algorithm. It is important
to numerically monitor the values of each sequence and ensure that the series is converging. Then, the
We acceleration is implemented. If the series is diverging then the We acceleration is not used within
this iteration loop and the last estimation obtained by the typical iterative scheme is kept. Also, in
general, the upgraded iterative method with the We acceleration scheme is stable and converges in the
whole range of the J. Attention is needed in the hydrodynamic regime, where the parameters of the

We scheme must be chosen after some numerical trials in order to optimize performance. This is also
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the regime where the largest reduction in the number of iterations has been observed (up to 75% for
0 = 650 [156]). In the calculations, a total of J = 51 terms have been used for §; < 200 and J = 101
for 69 > 200.

Comparing the computational efficiency of the typical and the upgraded algorithms it has been
found that while keeping the same accuracy in the results, the CPU time of the latter one is reduced
by at least one order of magnitude. Furthermore, both Romberg and We schemes are easily applied in
both linearized and nonlinear kinetic problems. Finally, it is noted that for more demanding problems
the upgraded algorithm can be further improved by extending and optimizing the implementation of

the Romberg rule.

5.4 Results and discussion
5.4.1 Introduction

Results in graphical and tabulated form are presented for the macroscopic quantities in terms of
all parameters involved in the problem. In particular, in Section 5.4.3.1 the radial heat flow as well as
the distributions of temperature, density and pressure are provided for various values of the normalized
temperature difference (3, the radius ratio v and the reference rarefaction parameter §,. Gas-surface
interaction has been studied for these problems in Chapter 3 and thus is omitted here. The influence
of the intermolecular collision models on the macroscopic quantities is examined in Section 5.4.3.2
respectively. Finally, in Section 5.4.3.3 the range of validity of the linear solution is considered by
comparing the present nonlinear results with the corresponding linearized ones for various values of
B.

The results presented here, are based on the discretization and the numerical parameters given
in Section 5.3. This set of parameters ensures grid independent results to all three significant figures
given in the tables below. Validation of the numerical solution and benchmarking of the results has
been performed in several manners. The numerical results satisfy the conservation equations obtained

in Appendix 5 with at least 0.01% accuracy, while in the free molecular and hydrodynamic limits,

140

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Section 5.4

they coincide with the analytical solutions presented in Appendix 6. Also, for all cases examined the
obtained results based on the nonlinear Shakhov model are in very good agreement with the corre-
sponding ones obtained by the nonlinear BGK model, provided that the proper collision frequency is
implemented in the BGK model. In addition, for adequately small temperature differences the nonlin-
ear solution provides identical results to several significant figures with the corresponding linearized
ones. Finally, additional benchmarking has been performed by considering the limiting case of v being
very close to one, which corresponds to the problem of heat transfer between two parallel plates. Very
good agreement has been obtained between the cylindrical results with the radius ratio v = 0.999 and

the corresponding ones for the plane heat transfer problem.

5.4.2 Heat transfer between parallel plates

In Table 5.2, numerical results for the dimensionless heat flux ¢ defined by Equation (5.24) have
been tabulated for 0 < ¢y < 150 and for small, moderate and large values of the ratio 7y /T's. It is seen
that for g < 1.5, as T'a /T is increased, the heat flux is also increased up to some value of 74 /T and
then as T4 /Tp is further increased the heat flux is reduced. The ratio 74 /75 at which the maximum
heat flux is observed depends on dy. This is an unexpected behaviour of ¢ in terms of 74 /T and it
is not easily justified physically. For ; > 15, the heat flux is increased monotonically with T4 /T .
Next, in terms of d, it is seen that for 74 /Ts < 7 the heat flux is decreased as dy is increased, i.e. as
we are moving from the free molecular to the continuum regimes. This is expected and has been also
observed in linear analysis with small temperature ratios. Here, however, for T4 /T > 10, as dy is
increased, the heat flux is initially increased and then at some ¢, is reduced. It is noted that for j = 0
and dy = 150, which correspond to the free molecular and hydrodynamic limits, the agreement with
the corresponding analytical results presented in [179, 176] is at least two significant figures.

Results on the dimensionless heat flux, based on linear kinetic analysis, are presented in Table
5.3, for the same set of the parameters dy and T’y /Ts. It is seen that for small and moderate 7'y /Ts there
is a qualitative agreement between linear and non-linear results. Also, for small values of 7’4 /T there

is good quantitative agreement. Of course, for moderate and large 74 /7’5 there are discrepancies and
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as expected the linearized kinetic analysis is not capable of producing accurate results. In particular,
at small 0y and large T’y /Ts the linear results are erroneous. Therefore, linear analysis can not capture
the non-monotonic behaviour of ¢ at large temperature ratios, which has been previously observed.
However, it may be argued that the range of applicability of the linear analysis is wider than expected.

Temperature profiles, based on linear and nonlinear analysis, are presented in Figure 5.4 for
0o = 0, 1.5 and 150, with Ty /T = 3 (5 = 0.5). The linear results are always symmetric about y = 0.
This is not the case for the non-linear analysis. In the non-linear results the temperature jumps at the hot
plate (y = —1/2) are much larger than the corresponding ones at the cold plate (y = 1/2). These results
are indicative for other values of §y and 7’4 /Tz. The drop in the temperature in the free molecular limit
may be explained if we remember that the temperature is a second order moment, representing the
variance of the molecular velocities. For a large temperature difference, the vast majority of molecules
moves from the cold to the hot wall with a very low velocity (located in a narrow velocity range due
to the Maxwellian form). The number of molecules moving in the opposite direction is much smaller,
and even though their velocities are far larger, they are not able to increase the variance of molecular
velocities. As aresult, the complete normalized temperature profile is constant and lower than the mean
temperature. On the other hand, the non-linear temperature profile near the hydrodynamic regime is
not of constant gradient due to the dependence of the gas thermal conductivity on the temperature.

Finally, in Figure 5.5, typical profiles of the reduced distribution functions ¢ and v in terms
of the molecular velocity ¢, are provided at y = +1/2 and y = 0 for 69 = 1.5 and T4 /Tz = 3. The
parts of the distribution for ¢, > 0 and ¢, < 0 correspond to particles moving from left to right (hot
to cold) and vice versa respectively. The discontinuity at ¢, = 0 is evident and it is much stronger at
the walls than in the center of the slab. Also, in general the discontinuities become stronger as Jg is
increased and/or T4 /T’ is increased.

Another unexpected feature here is that the required number of iterations for convergence
shows a non-monotonic trend in terms of the rarefaction parameter g, as seen in Table 5.4. In par-

ticular, the minimum number of iterations is observed around d; = 1. It has also been seen that this
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behaviour is observed only when the formulation of the problem is such that a normalization expres-
sion, such as (5.8), is included for the density.

5.4.3 Heat transfer between coaxial cylinders
5.4.3.1 Bulk quantities for hard sphere molecules with diffuse boundary conditions

In this subsection the study is focused on the dependency of the macroscopic quantities on dy,
~ and . Therefore, only diffuse boundary conditions (o; = o, = 1) and hard sphere molecules (w =
1/2) are considered. The reference rarefaction parameter varies in the whole range of the Knudsen
number (0 < §y < 650), the outer radius is 2 up to 65 times larger than the inner radius (1/2 <
v < 1/65), while the normalized temperature difference takes the values of 5 = 0.1, 1 and 10. The
temperature ratio is 74 /T = 1 + (. It may be stated that the values of § = 0.1, 1 and 10 correspond
to linear, nonlinear and strongly nonlinear heat transfer configurations respectively.

First, results for the radial heat flow, a quantity with great practical interest defined by Equation
(5.53), are presented. As it is noted before, if the radial heat flow is defined at some point v < r <1,
then based on the energy conservation principal (the product ¢(r)r remains constant), it may be easily
calculated at any point along the radius using the relation ¢(v)y = ¢(r)r = ¢(1). Therefore, most of
the results and discussion are based on the estimation of ¢(r) at r = .

The behaviour of the radial heat flow ¢(r = ) in terms of the reference rarefaction parameter
0o 1s shown in Figure 5.6 for v = 0.1, 0.2, 0.5 and § = 0.1, 10. It is seen that in most cases as
g 1s increased (i.e., the gas becomes more dense) the dimensionless radial heat flow is decreased
monotonically. In particular, it is decreased very slowly for §; < 1, while the reduction becomes
much faster for )y > 1. However, it is seen that in the case of 5 = 10 and v = 0.1, starting from
do = 1072 the heat flow is slightly increased, reaching a peak in the transition regime around &y ~ 1,
and then it is decreased as J; is increased. This is a nonlinear effect appearing at large 5 and small .
Overall, it is obvious that the gas rarefaction strongly influences the radial heat flow for all values of
£ and 7.

The radius ratio effect can also be noticed in Figure 5.6. It is seen that in the free molecular
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regime 0 < dy < 0.1 the radial heat flow is independent of v for both small and large temperature
differences. Then, as ¢ is increased the effect of v on ¢ becomes more evident. In particular, for
do > 0.1, q is decreased as -y is increased (i.e. as the annular region is decreased).

The behaviour of the radial heat flow ¢(r = ) in terms of /3 is shown in Table 5.5, covering
a wide range of all three parameters determining the heat transfer problem. For small values of /3
the radial heat flow is increased proportionally to 3. However, as (3 is increased and in particular for
B > 1 the dependency is not linear any more and ¢ is increased faster, following a power law of /3.
It is also seen that this nonlinear behaviour becomes stronger as the rarefied gas becomes denser, i.e.
as Jy is increased. It may be useful to note that tabulated results are important in this type of research
work since they can be easily accessed in the future for comparison purposes with experiments or
as benchmarks for computations. In this framework, the results of Table 5.5 will be used in the next
subsections in order to study the influence of the intermolecular interaction law. In addition, they will
also be used to study the range of validity of the linear approximation by comparing with corresponding
linear results previously reported in the literature. In order to provide this comparison in a direct
manner, we have chosen to provide the heat flow results in Table 5.5 in terms of 3,y and the product
0oy. It is readily seen that the values of the rarefaction parameter in Table 5.5 vary in 0 < §y < 650.

Next, the macroscopic quantities of number density and temperature, defined by Equations
(5.51) and (5.52) respectively, are considered. In Figure 5.7, the temperature distributions 7(r) of the
gas are presented along the radius v < r < 1 for § = 0.1, 1,10, v = 0.1, 0.5 and various values of
dp. It is noted that the dimensionless temperature of the inner (r = ) and outer (r = 1) cylindrical
wall is 74 = 1 4+  and 73 = 1 respectively. It is clearly seen that the temperature jump at the
walls is increased as J is decreased. It is also observed that the temperature jump at the inner wall
is significantly larger than the corresponding jump at the outer wall. Evenmore, as [ is increased the
temperature jumps at both walls are increased. However, it is evident from the plotted results that the
increase of 3 has a much stronger effect on the jump at the inner compared to that of the outer wall.

To illustrate this significant impact of 3 on 7(+y) it is stated that in the free molecular limit (5o = 0) for
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$ = 1 the temperature of the wall is 74 = 2 and the temperature of the gas at the wall is 7() = 1.4.
The corresponding values for § = 10 are 74 = 11 and 7(vy) = 3.3. This behaviour may be explained
by the fact that the gas becomes more rarefied as its temperature is increased. Beyond the quantitative
differences, the qualitative behaviour of the temperature profiles with regard to /3 is similar. Comparing
the temperature profiles for v = 0.5 and 0.1 it is seen that the temperature is decreased more rapidly
in the latter case.

The dimensionless number density distributions p(r) are shown in Figure 5.8 for 5 = 0.1, 1, 10,
do = 0,2,20 and v = 0.5. As expected, the values of the number density are low at the hot wall
and high at the cold wall, while they are monotonically increased between the two walls. This is in
agreement with the related characteristics of the temperature distributions discussed above. Also, in
all cases the density distributions have the common S-shaped profile, except in the case of 5 = 10 and
dp = 20. The latter behaviour is a nonlinear effect and it is present at large 3 and d, . Since, according
to Equation (5.39) in the cases of hard sphere and Maxwell molecules, 6 = dop/T and 6 = dyp
respectively, the variation of the local rarefaction parameter between the cylinders is qualitatively
similar to that of the density profiles in Figure 5.8. Thus, moving from the hot towards the cold wall
the rarefaction parameter is monotonically increased, i.e. the atmosphere becomes less rarefied.

The dimensionless pressure profile is also plotted in Figure 5.9 for 5 = 0.1,1,10, v = 0.1,0.5
and various values of dy. Although the pressure distribution may be directly obtained by the density
and temperature distributions, p = p7, it is plotted for completeness and clarity purposes. It is seen
that, in all cases, there is a pressure variation along the radius of the annulus, which is increased as
o 1s decreased and [ is increased. This observation has been theoretically proven in Appendix 5 and
it has been also observed by other researchers [193, 194]. The pressure variation is quite small for
£ = 0.1 and this is the reason that it has not been reported before in all related papers based on linear
analysis. Of course for 5 = 1 and 10 the pressure variation is significant and there is no way to be
due to numerical error. The build-up of a pressure gradient due to an imposed heat flow is sparkled by

non-equilibrium conditions and becomes more profound at large temperature differences and highly
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rarefied atmospheres.

5.4.3.2 Influence of intermolecular interaction law

The influence of the intermolecular interaction on the heat transfer characteristics is studied
through the variation of the IPL coefficient. The radial heat flow and temperature distributions are
plotted in Figure 5.10 for hard spheres (“HS”) and Maxwell molecules (“MM?”) characterized by w =
0.5 and w = 1 respectively. Results are provided for v = 0.5, # = 0.1,10 and §; = 0, 2,20. As
expected, the corresponding results are identical in the free molecular limit (; = 0). For 6g > 0 it is
deduced that the variation between the “HS” and “MM” results is negligibly small at 5 = 0.1 even
for large values of §y. However, the discrepancies are significant at 5 = 10, particularly for §; = 20.
Observing the heat flow distributions it is seen that the heat flow results of the “MM” are always
higher than the corresponding ones for the “HS”. Comparing the temperature distributions of the two
types of molecules it is deduced that at both walls the temperature jumps of the “MM” are always
larger than the ones of the “HS”. Therefore, the corresponding distributions are crossing each other
somewhere along the annular radius closer to the cold wall.

In addition, tabulated results of the radial heat flow ¢(r = ) for Maxwell molecules are given
in Table 5.6 for a wide range of the involved parameters. The results of Table 5.6 can be compared
directly with the ones in Table 5.5 for hard spheres. This comparison confirms that the deviation
between corresponding “HS” and “MM?” results is enlarged as § and J, are increased and that it is
also increased as v is decreased (i.e. the annular region becomes larger). Indicatively, it is reported
that for v = 0.1 and 69 = 10 (dgy = 1) the relative error is 4% at § = 1 and 14% at = 10, while
the maximum deviation between the reported results in Tables 5.5 and 5.6, which is 58%, occurs at
g =10,y =1/65 and 6, = 650.

To extend this analysis beyond the limiting “HS” and “MM” molecules, in Figure 5.11, some
dimensional radial heat flow results (W /m?) in terms of the reference pressure Pp (Pa) are given
for three different monoatomic gases, namely helium, argon and xenon having under standard condi-

tions w = 0.66,0.81 and 0.85. These results are provided in dimensional form in order to facilitate
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comparisons with experiments in the short future. The inner and outer diameters are R4 = 1lcm and
Rp = 10cm, while the reference temperature is T = 293K. The reference pressure and the type
of the gas are easily related to the reference rarefaction parameter dy, while in order to keep these
results as general as possible, the other two parameters 3 and  are kept in dimensionless form. As
expected, at highly rarefied atmospheres the heat flow is proportional to the gas pressure, while at
dense atmospheres the heat flow becomes independent of the gas pressure. When the gas pressure is

in the transition regime the relation is complex.

5.4.3.3 Range of validity of linear analysis

The numerical treatment of linear integro-differential equations compared to the nonlinear ones
1s much more tractable since it is based on a well-established theoretical basis. Therefore, it may be
interesting to check the range of validity of the linear solution by comparing the corresponding linear
and nonlinear results for various values of the normalized temperature difference parameter. According
to theory, the linearization of this heat transfer problem is allowed provided that § < 1.

Results for the radial heat flow, denoted as ¢, based on the linearized Shakhov model and
diffuse boundary conditions are provided for various values of ¢y and ~y in Table II of Reference [113].
A comparison can be made with the corresponding nonlinear “HS” results, presented here in Table
5.5, after multiplying the linear heat flows in Table II with the appropriate value of 3. As /3 is increased
significant deviations are observed. The maximum difference for § = 1 is about 16% and for g = 10
about 64%.

The percentage error between the nonlinear and linear heat flows, definedas e = |(¢ — q.)/q| x
100%, is presented in Figure 5.12 for several values of 6y and v = 0.1, 0.5. In highly and moderate
rarefied atmospheres (0y = 0.2, 2) the introduced error for all 5 = 0.1, 1, 10 is less than 2%. In less
rarefied atmospheres (69 = 10, 20) the error is increased. For example for 5 = 10 and §; = 20 the
error is about 15%. However, it is seen that even for large temperature differences the discrepancies
remain within reasonable margins. It may be argued that the range of applicability of the linear analysis

is wider than expected and this might be quite useful in practical applications.

147

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Chapter 5

Furthermore, the nonlinear and linear profiles of the radial heat flux and temperature are plotted
in Figure 5.13, for v = 0.5, 5 = 0.1, 1,10 and §g = 0, 2, 20. As expected, the discrepancies are very
small for both quantities when 5 = 0.1 and then they gradually increase as (3 is increased. However,
it is interesting to note that the discrepancies between the temperature distributions are significantly
larger compared to the discrepancies of the heat flow distributions for the same set of parameters. For
example, in the case of 5 = 10 and d, = 20 the deviation in the heat flow is about 15% and more or less
remains constant along the radius, while the corresponding error for the temperature profiles varies
along the radius and takes a maximum value of about 35% at » = ~. This is an unexpected observation,

which may be important when linearized theory is applied to finite temperature differences.

5.5 Concluding remarks

The problem of nonlinear heat transfer through a rarefied gas confined between two coaxial
cylinders is solved based on the nonlinear form of the Shakhov kinetic model, subject to Cercignani-
Lampis boundary conditions, while intermolecular interactions are simulated based on the Inverse
Power Law. The governing equations are discretized based on the discrete velocity method and a typi-
cal second order finite difference scheme. The numerical algorithm becomes computationally efficient
by applying the Romberg integration rule and the Wynn-epsilon (We) acceleration algorithm.

The quantitative behaviour of all macroscopic quantities (radial heat flow, density, temperature
and pressure) in terms of the rarefaction parameter, the radius ratio and the temperature difference is
examined in detail. A pressure variation in the radial direction is detected and confirmed. Departure
of the corresponding linear results has been observed as the temperature difference between the cylin-
ders is increased and as the gas atmosphere becomes less rarefied. This deviation becomes significant
at large temperature differences and small Knudsen numbers. However, it is concluded that linear
analysis can capture the correct behaviour of the heat flow configuration even for moderate temper-
ature differences and it is argued that the range of applicability of the linear analysis is wider than

expected. By studying the cases of hard sphere and Maxwell particles it is verified that the type of
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molecular interaction plays an important role when the heat transfer configuration becomes strongly
nonlinear, while the influence of the gas-surface scattering law has similar effects both in linear and
nonlinear conditions. Even more, although the formulation and most of the results are in dimension-
less form, some dimensional results are also provided for specific gases in order to demonstrate in a
more comprehensive manner the effect of the problem parameters on the radial heat flow.

The present work may be useful in engineering applications as well as in comparisons with
experimental results which, as far as the authors are aware of, are not available for the case of large

temperature differences at this stage.
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Table 5.4: Number of iterations needed for some indicative cases with diffuse reflection
5 Ty/Tg=(1+5)/(1—-p)

1.1 1.5 3 7
0.15 87 87 86 81
1.5 54 53 52 48
15 610 698 779 849
150 | 28724 | 35502 | 41679 | 46378
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Table 5.5: Radial heat flow g,.(r = ) for hard sphere molecules with diffuse boundary conditions

Sy | v=1/2 1/5 1/10 1/20 1/65
0 |5.64x1072|5.64x1072|5.64x 1072 | 5.64 x 1072 | 5.64 x 1072
0.1 [5.54x10%2[545x10%2[538%x 10 %2[531 x10° 2] 5.18 x 102
F=01] 1 [473x102[4.05x102[3.62x102[324x10°2]272x102
5 [286x1072[1.78x 1072 [1.36 x 1072 [ 1.10 x 1072 | 8.24 x 1073
10 [1.90x 1072 [ 1.02x 1072 | 7.563 x 1072 | 5.94 x 1072 | 4.40 x 1073
0 |[5.64x107" [ 564x107" | 564 x 107" | 564 x 107! | 5.64 x 107!
0.1 [ 5.54x 1071 | 546 x 1071 [ 5.39 x 1071 | 5.31 x 10~ | 5.14 x 107!
=111 [473x1071[4.02x 1071 [3.57x 1071 [ 3.18 x 107! | 2.68 x 107!
5 [201x 10T [1.86x 10T [145x 10T [ 1.19x 10T [ 9.06 x 1072
10 [2.00x 10T | 1.12x 1071 [ 839 x 1072 | 6.69 x 1072 | 4.97 x 1072
0 5.64 5.64 5.64 5.64 5.64
0.1 5.58 5.61 5.61 5.53 5.18
=10 | 1 4.78 4.06 3.50 3.03 2.48
5 3.04 2.04 1.63 1.37 1.10
10 2.24 1.38 1.08 895 x 1071 | 7.02 x 1071
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Table 5.6: Radial heat flow ¢,.(r = ~) for Maxwell molecules with diffuse boundary conditions

Sy | v=1/2 1/5 1/10 1/20 1/65
0 [564x1072]564x1072]564x1072]5.64x 1072 5.64 x 1072
0.1 [554x102[545x 1072 [538x 1072 [531 x10°2]5.18 x 1072
B=01] 1 [478x102[4.07x102[3.64x102[3.26x 102274 x 1072
5 1289x1072[1.80x1072[138x1072|1.12x 1072|840 x 1073
10 [ 1.93x 1072 [ 1.04 x 1072 [ 7.69 x 1072 | 6.07 x 1073 | 4.49 x 1073
0 |5.64x107"|5.64x107"|5.64x107" | 5.64x 107" | 5.64 x 107"
0.1 [555x 10T [547x 10T [ 541 x10° T [533x 10T [5.16 x 107 T
B=1 1 [482x107T[415x10 1 [3.71x10°1[333x10°1]283x 10T
5 1312x10°T[206x10T[1.63x10°T[1.35x 10T [ 1.04 x 10T
10 [221 x 10T [1.29x 1071 9.75x 1072 | 7.85 x 102 | 5.89 x 102
0 5.64 5.64 5.64 5.64 5.64
0.1 5.61 5.64 5.65 5.60 5.27
=10 | 1 5.09 4.52 3.99 3.50 2.91
5 3.70 2.67 2.19 1.88 1.55
10 2.94 1.98 1.60 1.36 1.11
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Figure 5.1: Geometry and coordinate system for the parallel plate (up) and coaxial cylinders (down)
problems
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Figure 5.2: Flow diagram of the typical iteration algorithm
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Figure 5.5: Reduced distribution functions ¢ (left) and v (right) in terms of the molecular velocity c,
at several locations between the plates for o = 1.5 and 74 /T = 3 (5 = 0.5)
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Chapter 6

Non linear flows

6.1 Introduction

The pressure driven flow problems examined in previous chapters concern only small pressure
differences between the reservoirs or local gradients. These conditions allow the linearization of the
kinetic equations, leading to a formulation of favourable mathematical properties. In order to simulate
high speed flows, we must either use the non-linear form of the kinetic models or the DSMC method.
In this chapter, both approaches have been used to study non-linear flow through short channel com-
ponents, commonly found in micro-electro-mechanical systems and vacuum networks.

The ellipsoidal kinetic model equation, solved by the discrete velocity method, has been em-
ployed to tackle the problem of flow through a short cylindrical tube of isothermal or adiabatic walls.
Even though this configuration has been considered in the past using the DSMC method [152], it
would be useful to reexamine it under the scope of deterministic kinetic modelling to investigate for
possible differences and their sources. We also provide an upgraded numerical scheme, significantly
reducing memory consumption and computational effort. This is performed by an efficient marching
scheme, similar to the one presented in Chapter 4 but augmented by Wynn-¢ convergence accelera-
tion, grid refinement and parallelization. A qualitative comparison with DSMC is also included for
this problem, both in terms of flow rates and computational performance. Furthermore, another reason
to consider this configuration is that a systematic study of non-linear transport is required in order to
obtain a better understanding of the differences with the linearized formulation and the correspond-
ing limitations. This is a key factor in developing a methodology which covers all possible physical
conditions for the problem at hand.

Furthermore, the DSMC method has been used to simulate flow through an expansion/contraction
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element, consisting of two consecutive tubes of different diameter connected in series. The existing
in-house code has been adapted to the new geometry and new results are provided and compared
with experiments. Our purpose is to examine the flow field produced for this configuration and high
pressure differences and provide insight regarding the influence of each geometrical parameter. The
DSMC method is chosen here since non-linear flow are more frequently encountered in practical ap-

plications for such geometries.

6.2 Kinetic formulation - Short tube flow
6.2.1 Introduction

In this section, we present the formulation for the non-linear, pressure driven, short tube flow.
A detailed description of the problem is the following: Consider a monatomic rarefied gas stored in
two large reservoirs connected by a cylindrical tube of radius R and length L, as shown in Figure 6.1.
An arbitrarily large pressure difference is imposed between the two containers (Pout < f’m), causing
flow of the gas through the tube. The walls and the gas in the container areas far from the tube are
maintained at the same temperature 7.

In the following subsections, we present the derivation of the governing equations, the macro-
scopic moments and the boundary conditions. Their final forms are obtained in dimensionless form,
using the ellipsoidal (ES) kinetic model equation. It is noted that the distribution function is five-
dimensional for the current problem and no projection is possible. Finally, isothermal and adiabatic

boundary conditions are formulated in the corresponding subsection.

6.2.2 Governing equations

The coordinate system in the physical space (7, #) and the molecular velocity coordinate system
(&, &9, &) coincides with the one given in Chapter 4 for the tube problem, given in Figure 4.2. The
symbol ) denotes the direction perpendicular to the » — 2 plane, while € is the molecular velocity
angle in the 7 — ¢ plane. The computational domain includes a part of the containers upstream and

downstream of the tube, since the channel is relatively short and the effects of flow entrance and exit
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The starting point is the ES kinetic model equation [56], which has been found to exhibit sig-

needs to be taken into account.
nificant advantages in comparison to its predecessor, the BGK model, such as the adjustment of the
(6.1)

Prandtl number. In cylindrical coordinates it is expressed by
of
v (17 =)

of &of
Sor T v o0 o
with f = [ (7, 2,&., &, &) being the distribution function and v is the collision frequency. The colli-
(6.2)

;) Agj (&5 — ﬁj)]

(6.3)

V] A]exp

ij=1

sion term is retained in its non-linear form with

FES L
A = [(@hsTd,) / (mPr) —2(1 — Pr) Py/ (nm Pr) -

where

In the previous expression, Pr is the Prandtl number, k5 is the Boltzmann constant, m is the molar
mass and 9;; is the Kronecker delta. Also, n, T', 4, FA’ij are the number density, temperature, gas bulk

velocity and stress tensor components, respectively. By substituting Pr = 1 it can be seen that the

BGK expression is retrieved. The characteristic value for monatomic gases, Pr = 2/3, has been used

The left reservoir conditions, i.e. the number density 7;, and pressure F;,, are chosen as ref-

in the following calculations.
erence quantities and are also denoted by ng, Fy, with Py = ngkgT} from the ideal gas law. Then, all

quantities of interest are non-dimensionalized as follows:
r x I3 fud n o U
r = — T = — C = — = — = — = —
R ) R ) vo y 9 no P no ) Vo
T G P P
- - P:_ Pz:iv ‘7.:/(97 64
T=T0 97 By X p, I mve (6.4)
with vy = /2kpTy/m being the most probable molecular velocity and 4 is the heat flux vector.
The collision frequency is given by the expression
P
v=—Pr (6.5)
W
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where p is the dynamic viscosity. For hard sphere interaction, we may substitute po/p = /1o/7,

with p being the gas viscocity at reference temperature 7, and the ideal gas law P = nkgT to get

v = Wﬁ% Pr (6.6)
The reference rarefaction parameter Jy is also defined here as

8o = Bl _ vr 1 (6.7)

Moo 2 Kno

It is inversely proportional to the Knudsen number and therefore as d is increased the atmosphere
becomes more dense (or less rarefied). The cases of g = 0 and d; — oo correspond to the free
molecular and hydrodynamic limits respectively.

It is seen that the distribution function ¢ = g(z, 7, ¢,, ¢y, ¢;) can not be projected in the velocity
space because all molecular velocity components are required. As a result, g depends on a total of five
dimensions, similarly to the linearized tube problem of Chapter 4. The velocity vector is transformed

into cylindrical coordinates ¢ = (¢, 0, ¢,) and the final form of the governing equation is

dg  c¢psind 8g 8

¢, COS 081” — 55t = Gopy/TPr (g% — g) (6.8)
where the dimensionless ES model term becomes
g¥% = 5/2Pr3/2 | K| exp Prz ¢ —u;) Kij (¢j — uy) (6.9)
5,j=1
with
K = [ri; — (1= Pr) P;/p] (6.10)

We only examine velocity angles in 6 € [0, 7] since the distribution function is axisymmetrical.
For completeness purposes and since an indicative model comparison is presented in the results
section, the BGK and S models, properly adjusted for the current problem, are also presented here.

The ¢¥° term in Equation (6.8) is substituted by

2
g5 = P exp [——(C_ u) ] (6.11)

(7?7')3/2 T
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g5 = gBeK { 5;_2 (1-Pr)q-(c—u) [@_—u) _ ?] } (6.12)

T 2

The collision frequency in these cases

v
VBGK,S = 5op\/;ﬁo (6.13)
does not contain the Prandtl number.

6.2.3 Macroscopic quantity moments

The macroscopic quantities are also non-dimensionalized, leading to the following expressions:

2///cpgdcxd9dcp (6.14)

0 —o©

™

/ / Cp [(cp cosf — ur)z + (¢, sin «9)2 + (cp — uzﬂ gdc,dfde, (6.15)
0 —o0

4
T =—
3p

0

2 oo T [o.¢]
Uy = — / / / cpCzgde,dide, (6.16)
P 0 0 —
2 oo T (o)
= —// / ¢, cos Ogdc,dfdc, (6.17)
p
0 —00

™ o0

:2///cp ¢ — w) (¢; — uy) gde,ddc, (6.18)
0 —00

/ ¢y [(cpcosf — u,)? + (¢psin6)® + (co — ux)z} (¢ — uy) gde,dbdc, (6.19)

/ ¢y [(cpeosf — u)? + (¢, sin0)* + (¢, — u,)?] (¢, cos 6 — u,) gde,dfde,  (6.20)

Vector/tensor components containing the ¥-direction once, i.e. wy, p,9, P-9, 9, are equal to zero, while

Doy 1s not. Pressure can be obtained by P = pr.
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The main quantity of interest is the mass flow rate through the tube M and our aim is to calculate
it for a wide range of the parameters characterizing the flow: the reference rarefaction parameter dy,
the channel aspect ratio L/R and the pressure ratio P,,; = f’out / Pm For the current problem, the
mass flow rate is found by

R
M =2r / [mn (2, 7)) Gy (&, 7) 7dr (6.21)

0

The flow rate is non-dimensionalized by the analytical free molecular solution for flow through an

orifice
: R2\/7P,,
Mpy = REVmP,

Vo

(6.22)

which is obtained by the method of characteristics. Results are presented for the dimensionless flow

rate
M
W = — = 4v/7G (6.23)
FM
where the reduced flow rate
1
G|, = /ux (x,r)rdr (6.24)

0

is obtained from the numerical simulations. The analytical derivation of these expressions is found in

Appendix 2.

6.2.4 Boundary conditions

The incoming boundary distributions at the free surfaces (A),(B),(F),(G) have a Maxwellian
form, with a number density value obtained by the corresponding container conditions p = P/ or
the condition of no wall penetration. Incoming molecules from all non-specular boundary surfaces

conform to

C c?

In the following, we discern between the following situations:

* [sothermal flow
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Due to the reference value selection, we have 7;, = 7,,; = 1 for all boundary surfaces, leading

to

for the left and

Cout = Pout = Pout (627)

for the right container Maxwellian distributions. Furthermore, on the walls we have
Cuw = pu (6.28)

where the p,, constants are found by imposing the impermeability condition (u,erme = 0) for
diffuse boundary conditions. This condition leads to
Iim ingin,
P = _% (6.29)
departing

with

Cz2q T—014 00
1
Lieparting|, = —57 / / /exp (—cﬁ — ci) [cp@a (6, ¢p, c2)] deydfde, (6.30)

Cyla T—024 O

—Czla 024 00

Limpingingl, = / //g [cp@a (8, Cp, )] deypdfde, (6.31)

—Cz2a Ola 0

The subscript a = C, D, E is used to discern between the wall surfaces, according to the letters

shown in Figure 6.1. The possible values for the above quantites are
C: 910 :O:QQC =T ,Cpla = — O, Cz2q :Oa¢0(970pacm) = Cg

D:6p=0,0p=m/2,Ch10=—00, Cp2a =0, ¢p (0,¢p,y) = c,co80 (6.32)
E:91E:0302E:7Tacsc1a:OaCzQa:OO,¢E(QacpuC$):C:B

These expressions are obtained in a procedure very similar to the one used in Chapter 4 for the

linearized equations, elaborated in Appendix 1.
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* Adiabatic flow

The case of adiabatic flow can also be considered by imposing a second condition at the walls,

besides the usual one of no wall penetration: the condition of zero normal heat flux. Since the

temperature is unknown for adiabatic walls, we may consider it as an adjustable parameter.

Therefore, we have two parameters (p.,, 7,,) for each wall, which we use to impose the desirable

conditions (Unormal = Gnormar = 0). In order to avoid solving numerically the resulting system

of equations, which would lead to a considerable computational effort at each iteration, we solve

the departing integrals analytically in this case. The resulting expressions are

Pw,i = MSAi,Twi = —Bi - Aiu?,’i =C,D,E (6.33)
Y Twi ’ 2A;
///cmcpgdcpdedcx (6.34)
0 0
oo T/2 oo
= / //cf, cos g~ dc,dfdc, (6.35)
“50 0 0
0 7 oo
= ///cxcpgdcpdedcm (6.36)
“50 0 0
:///cpcx g “dc,dfdc, (6.37)
0 0
0o T/2 0o
Bp = / //cpcr(c—u)dicdedcx (6.38)
“50 0 0
0 7 oo
Bp = / / / pCalc — ) g~ de,dbde, (6.39)
“50 0 0
where s = 1 for walls C,D, s = —1 for wall E and u, is the wall tangential velocity (u, for walls

C.E and u, for wall D). A detailed derivation is included in Appendix 1.
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At all cases, specular reflection is imposed at the center due to the axial symmetry.
gt (0,2,¢,,0,¢,) =g (0,2,¢p,m— 0, ¢,) (6.40)

for angles in 6 € [0, 7/2].

6.3 The Discrete Velocity numerical method and its optimization
6.3.1 Introduction

In the following subsections, we discuss the derivation of the discretized equation, the numeri-
cal algorithm and the modifications applied to complete the simulations more efficiently. In particular,
we discuss the Wynn-¢ algorithm and the technique of grid refinement, which reduce the total com-
putational time by at least an order of magnitude. Other numerical details, such as the discretization

parameters and convergence criteria are also given.

6.3.2 Numerical scheme

The discrete velocity method is applied in the molecular velocity space. The continuum spectra
of ¢, and ¢, are discretized by the Legendre polynomial roots mapped in [0, ¢, ez and [0, ¢z maz]
respectively, while the molecular velocity angles are uniformly distributed in [0, 7].

A second order finite volume scheme has been applied here for the discretization of the gov-
erning equation (6.8) in the physical and angular spaces. The final expression is derived by integrating

in r, 0, x for an arbitrary discretization interval, in the same way as in Appendix 3 for the linearized

ES,(I,m
i7j7k

equations, and is displayed in Table 6.1. Note that the ES model terms g ), the local rarefac-
tion parameter dop; x+/7; and the radius r; depend on the physical coordinate indices of all nodes
surrounding the discretization interval, in a manner occuring naturally through this procedure. The
discretized expression is also usable at » = 0 after the application of the I'Hospital rule to eliminate
1/r terms.

The solution procedure is iterative, leading to the determination of the distribution function.

The discrete velocity typical algorithm steps may be summarized as follows:
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1. At first, a reasonable assumption is made for the distributions of various macroscopic quantities,

such as p, u, 7, g and P;;.

2. The kinetic model term is calculated from Equation (6.9) (or Equations (6.11) and (6.12) for the

BGK and S models), using the macroscopic variables.

3. The discretized equations are solved, using a marching scheme and the macroscopic quantities.

4. The new values for the distribution function are used to generate new values for the bulk quan-

tities via the corresponding moments, Equations (6.14) - (6.20).

5. Steps 2 - 4 are repeated until a proper convergence criterion, imposed on the bulk quantities, is

satisfied.

The only difference with previously shown algorithms is the calculation of the kinetic model term at
each point in the 5-dimensional phase space.

The advanced marching algorithm described in Chapter 4 for the linearized tube problem is
identical to the one used here. Since it has been previously presented in detail, we will just outline its
main characteristics here. The improved memory management leads to a reduction in the dimension
of the distribution function array from five to two dimensions. The size of this array is determined
by the height of the entrance/exit regions and the number of the molecular velocity angles. A small
difference with the linearized tube scheme is that two additional temporary arrays need to be allocated
for the calculation of the collisional model term in the current and previous columns. The code is also
parallelized for the velocity magnitudes only, since the distribution function values of various velocity
angles are not independent with each other as explained in Chapter 4, and each processor solves the
kinetic equation for a group of velocities. Macroscopic quantities and impermeability constants are

transmitted to all processors at the end of each iteration.
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6.3.3 Further improvements in the numerical algorithm

The accuracy and convergence of the numerical method have been improved by using the
Wynn-¢ algorithm [156, 157]. The Wynn-¢ algorithm is a strongly nonlinear sequence accelerator,
applied in regular iteration intervals on the bulk quantities to obtain a converged solution faster. In
particular, the macroscopic quantities at each physical point and the impermeability constants form
sequences which gradually lead to the converged values. The convergence of a sequence S;, j =
1,...,J, composed of an odd number of terms .J, can be accelerated by inserting them in a table whose

even columns are estimations of the sequence limit

. . . N1—1
el = eItV + [+ — ] (6.41)

with 5@% = 0 and Eéj ) = S;. In this table, the even columns contain accelerated values and the best
estimation is located in the element 551).

It is important to numerically monitor the values of each sequence and evaluate if it is appropri-
ate to apply the acceleration method or not. For this purpose, we check if the minimum and maximum
values of the sequence are the first and last terms (or the other way around), since a non-monotonic
curve may lead to an erroneous result. Moreover, approximations of the first and second derivatives
are found using points of the sequence and are used to ensure that it is converging. The absolute value
of the second derivative must also be above a certain value to ensure that the trend is not exactly linear.
In our calculations a quite low value is chosen for the second derivative (10~% — 10~!!) since for large
delta the changes in most macroscopic quantities are very slow, nearly linear with a very small gradi-
ent, even for a wide iteration interval. Finally, the sign of the estimated value is checked if density or
temperature is considered.

The application of the above technique can greatly decrease the number of iterations near the
hydrodynamic regime. Furthermore, false convergence effects appearing in large ¢, are significantly
reduced. Finally, another important feature of this method is that it can also be easily applied with
linearized kinetic equations after minor modifications, or in fact with any numerical method which

includes an iterative scheme.
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Another technique that has to be used due to the very large computational effort is physical grid
refinement. Initially, the physical mesh is uniformly distributed with only 5 intervals per unit length in
every direction. The simulation is performed with this grid and, after convergence has been reached,
it is repeated in a refined mesh, where the number of intervals at each physical direction has been
doubled, using the previous solution as an initial condition. This procedure is repeated until the final
number of nodes has been reached, in order to avoid a large number of iterations for the dense grid,
leading to great savings for large values of 9.

The discretization parameters used are displayed in Table 6.2. Finally, it is noted that the con-

vergence criterion is the average residual per physical node, defined as in Chapter 4

Niotal
> o= o+ |7 = 7+ [uas — 62| + |urs — 2] (6.42)
=1

residual =

4N, total
where Ny, 1S the total number of physical nodes and the pr superscript denotes quantities in the

previous iteration.

6.4 DSMC formulation - Flow through an expansion/contraction element
6.4.1 Introduction and problem description

We also investigate the problem of flow through a channel with sudden expansion/contraction
via the DSMC method. This is another application of DSMC in a more complex geometry. This work
is useful in various configurations of vacuum engineering and design. It is motivated by the need
of estimating the mass flow rate and pressure difference under conditions encountered in practical
applications.

Consider a monatomic, rarefied gas, confined in two containers held at different pressures ISM
and Pout, with [f’m > Pout and identical temperatures 7j. The containers are connected by a contrac-
tion or expansion element, i.e. an element consisting of two cylindrical tubes of different diameters
connected in series. Due to the pressure difference, there is gas flow through the element. The pressure
gradient direction may be oriented either from the tube of the larger diameter towards the smaller one

or vice versa, causing sudden contraction or expansion of the flow respectively. Since the channels
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considered here are short, the finite length effect is considered by including virtual computational
regimes at the entrance and exit of the element, representing a part of the reservoirs upstream and
downstream. The geometry and coordinate system are displayed in Figure 6.2. Results include var-
ious bulk quantities of practical interest, such as channel conductances, as well as distributions of

density, temperature and velocity.

6.4.2 The DSMC method

In the DSMC algorithm, the main hypothesis is that at each discrete time interval, particle
motion and intermolecular collisions are considered as two independent, uncoupled steps. If the time
interval is smaller than the mean free time between collisions, the method produces physically realistic
results. The physical space domain is discretized into cells, which are used to track particles and cal-
culate the bulk properties. The boundary conditions are imposed by properly adjusting the velocity of
particles departing from the boundary surfaces, resulting to specular, diffuse or symmetry conditions.
The intermolecular collision pairs are chosen randomly, with the probability being proportional to the
collision cross-section and the relative velocity.

The steps of the DSMC algorithm can be briefly described as follows:

1. The geometrical characteristics (radii, lengths and region sizes), the numerical parameters (num-
ber of computational particles, time step, cell discretization) and the flow conditions (such as

00, P,u) are provided as input to the numerical code.

2. The positions and velocites of molecules are assigned values according to an initial assumption
of the macroscopic quantity fields. In particular, the molecules are placed uniformly inside each
cell, their number being dependent on the pressure of the left container for x < (L; 4+ Lo)/R;
and the right container pressure for > (L1 + Lo)/R;. The distribution of their velocities is a

Maxwellian according to the reference temperature 7 and the local density.

3. The free motion of particles is considered, using simple relations of the form

T — xg = cAt (6.43)
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where x, x are the initial and final positions, c is the velocity vector and At is the time interval.
The boundary conditions are performed in the same step: molecules leave and enter the domain
from the open boundaries, scatter at the walls according to the gas-surface interaction model of
our choice or are projected in the x — r plane to take into account the axisymmetry. The number

of molecules entering the domain from each free surface is approximately
1
Nfree = ZAfreenfreeUmAt (644)

with Ay, being the free surface area through which the molecules pass, 74, is the num-

ber density conditions at the corresponding container and vy, = /(8kzTp)/(mn) is the mean
molecular velocity. In the steady state of the problem, the total incoming flow of computational

particles through the free surfaces is equal to the total outgoing flow.

4. The particles undergo a number of binary collisions, found by an appropriate model. The col-
lision partners are selected randomly from the molecules located at the local area of the cor-
responding cell (also called a sub-cell), in order to ensure that only molecules in proximity to
each other are selected as collision partners. The number of collisions is found by an appropriate

model. The molecule pairs subject to the collision are chosen with a probability equal to
Pcoll - FNO-TCTAt/‘/cell (645)

Thus, the number of collisions is proportional to the ratio of real to computational molecules
Fy, the collision cross-section o7 and the relative velocity ¢,, the time step At and the volume
of the cell V.. This probability is further divided by F..j; mas, Which is the same quantity for
the maximum value of orc, inside each cell. The post-collision velocities are chosen so that the

principles of momentum and energy equilibrium are satisfied.

5. The cell and sub-cell of each particle are registered in relative arrays, in order to be used in the

collision and bulk quantity calculation steps.
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6. Macroscopic quantities ¢..;; are calculated at the center of each cell by properly combining the
properties of computational particles. Since we are interested in the steady state of the flow, we
can average the sample in time after ensuring that the macroscopic quantities do not change any
more. This should not be performed in every time step in order to avoid correlations between

consecutive time instances.

7. The computational time is advanced by an interval At and steps 3-6 are repeated, until we are
certain that the steady state has been reached. This is measured by examining the statistical

fluctuations of macroscopic flow rates.

Results include dimensionless flow rates and macroscopic quantity field contours, defined as in Equa-
tions (6.23) and (6.4) respectively. Also, the comparison with experimental data is performed in terms

of the conductance, given by
RuTO

- M 6.46
O m (Pz - Pout) ( )

where R, is the universal gas constant.

6.4.3 Numerical details

The DSMC numerical code developed for the solution of flow through a short tube [152] has
been extended for the geometry of interest. The 3-level cell grid shown in Figure 6.3 has been adopted
in the DSMC simulations to capture the large macroscopic gradients and possible vortices near the
corner. The dimensions of the upstream and downstream computational regions have been taken equal
to 8 R; x 8R; for both containers.

In problems of this kind, due to the projection of the axisymmetrical domain on the = — r plane
and the large pressure drop, the number of computational particles in some cells may not be sufficiently
high to obtain meaningful statistical quantities. For this reason, several weighting zones have been
used both in the radial and axial directions to obtain a better distribution of model particles and a
high degree of accuracy in the whole domain. When molecules pass through these virtual surfaces,

they may be cloned or eliminated depending on the direction of their movement, in order to keep an
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adequate number of particles per cell. The number and position of weighting zones, as well as other
important numerical parameters such as the number of particles, are given in Table 6.3.

Moreover, in order to reduce the required simulation time to reach the steady state, the number
of computational particles initially distributed in the domain was 25% of the final number. After a
certain amount of time (10 dimensionless time units in our calculations), the number of particles is
doubled and the sampling arrays are cleared. This procedure is repeated after another 10 dimensionless
time units and finally, the sampling arrays are re-initialized once more after the same interval.

In our calculations, the non-time counter scheme (NTC) has been employed for the calculation

of particle collision pairs. According to this model, the number of probable collision pairs is
1 _
Npaim = §NNFN (O-Tcr>m(w At/‘/cell (647)

where NV is the time average of the molecules in the cell. After the determination of each collision pair,
it is accepted or rejected according to Equation (6.45), divided by the maximum probability in that
cell. Finally, the Hard-Sphere model is chosen for the intermolecular potential, while purely diffusive

scattering is assumed at the walls.

6.5 Results
6.5.1 Introduction

In the following subsections, we present results on the bulk quantity fields, flow rates and con-
ductances. Furthermore, the performance of the numerical codes is evaluated, by means of the number
of iterations, parallelization speed-up and CPU time. In subsection 6.5.2 we discuss the problem of
flow through a short tube, while subsection 6.5.3 concerns the contraction/expansion element. It is
noted that the supercomputing facility of Juelich research center in Germany provided the necessary
computational resources for the simulations with the non-linear scheme, while the DSMC calculations
and single core non-linear runs have been performed in the cluster of the rarefied gas dynamics group

of the department.
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6.5.2 Flow through a tube
6.5.2.1 Flow rates and field distributions

The most important quantity for practical applications is the dimensionless flow rate 11/, shown
in Table 6.4 for a wide range of the governing parameters. As seen in previous studies [152], the flow
rate drops as the rarefaction parameter is decreased or as the length and pressure ratio are increased.
The free molecular analytical solution (Appendix 6) is also obtained with very good accuracy. The
Knudsen minimum is not observed for the length and pressure difference range examined here. It is
also quite interesting to examine the similarities of the values for P,,; = 0.9 with the linearized flow
rates, presented in Chapter 4 (Table 4.5). In order to have a direct comparison, the values shown here
must be multiplied with the conversion factor 1/(1— P,,;) = 10. Even though they have been obtained
using different kinetic models, the flow is nearly isothermal for such a slow flow and both models
provide accurate results. The deviations between the values shown in the two tables drop significantly
as the channel length increases or the rarefaction parameter decreases. This is to be expected, since the
flow becomes more linearized and is another confirmation of the validity of both codes. Furthermore,
this another indication that the linearized formulation is valid for a linearization range larger than it
may be expected by the strict mathematical limits.

A comparison with previous DSMC results shows some discrepancies. The flow rates of [ 149,
152], presented in Table 6.5 for P,,; = 0.1,0.5,0.9 where they are available, display deviations be-
tween 0.7 % and 7.1%. It is important to note that the largest discrepancies occur in situations which
are closer to equilibrium (such as when P,,; = 0.9 or L/R = 10), where the DSMC method is
highly affected by numerical noise and a great computational effort is required to get reliable results.
In other cases, where the problem conditions are further away from thermodynamic equilibrium (such
as L/R < 1), the maximum discrepancy is around 4 % in the transition regime. This is attributed to
the limitations of the ellipsoidal kinetic model, since the post-collision distribution function probably
does not conform to the prescribed modified Maxwellian for such non-linear flows. A second factor
which may influence the results in this regime is the mis-treatment of the distribution function discon-

tinuity. However, it has been seen in the past [195] (and it has been confirmed in our studies) that for

183

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Chapter 6

integrated quantities, such as the flow rate, the ray effects tend to cancel each other out and the inte-
grated quantity is smooth if it is plotted along, say, the x-axis, even with no particular treatment. The
two factors discussed here are estimated to be responsible for 1-2 %, while the remaining discrepancy
may be due to the much smaller size of computational regions for the two containers in the DSMC
studies. It must be noted that our purpose here is not to make a direct comparison with DSMC. Due
to the existence of many variants of the DSMC algorithm and the stochastic nature of the method, it
is difficult to ensure that the comparison will take place on the same basis.

In order to evaluate the differences between various kinetic models and justify our selection of
the ES model, the dimensionless flow rate is given in Table 6.6 for the BGK and S model, in direct
comparison with the values in Table 6.4. It is seen that the differences are relatively small (lower than
4%) and are based on the capability of each model to describe non-isothermal flows.

Some cases for the linearized flow through the cylindrical tube, presented in Chapter 4, have
also been reproduced using the non-linear form of the BGK model. A pressure ratio value of P,,; =
0.99 has been chosen to achieve the linearized state for two length values, namely L/R = 1 and 5. The
resulting flow rates are shown in Table 6.7. In order to perform this comparison, the values shown here
must be multiplied with 1/(1 — P,,;) = 100 in order to correspond to the flow rates shown in Table
4.5. A very good agreement is then observed, with the maximum deviation being 0.5 % for 6 < 5
and 2.3 % for 6o = 10. An important note here is that the convergence criterion must be more strict
in such pressure ratios, since it is based on absolute quantities. The general agreement observed here
is another indication of validity for both codes. Furthermore, it is another important advantage of the
non-linear model equations, since they are found to work very well even in this case, which is very
difficult to simulate with the DSMC method. In fact, the non-linear kinetic solver works even better
for small pressure ratios, since the initial conditions imposed here are very close to the final state: the
density is nearly linear with a very small area affected in the containers, the temperature is practically
equal to unity everywhere and the velocity is nearly zero. Thus, a very low number of iterations is

required for the convergence of the code.
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The density and axial velocity fields, as well as the streamlines, are also presented for some
indicative cases. At first, the dependence on d is shown. In Figures 6.4 - 6.6, the values 6p = 0.1, 1, 10
are examined for some highly non-linear cases, with a pressure ratio P,,; = 0.1 and L/R = 0. It is
seen that as the rarefaction parameter increases, the density field becomes unsymmetrical due to the
increase of the Re number, found by Re = Ma x ¢ from Equations (2.16) and (2.18), while also
dropping slightly more abruptly. The axial velocity increases along with the rarefaction parameter and
takes quite high values after the orifice (L/R = 0), up to Ma = 0.92. The ray effects are quite strong
in the low rarefaction fields due to the large discontinuity of the distribution function. Concerning the
streamlines, they also become less symmetric as the gas becomes denser and a vortex appears near the
wall of the downstream container for J; = 10. On the other hand, some cases of slow flows are also
given in Figures 6.7 - 6.9 for the same values of dy, for L/ R = 10 and P,,; = 0.9. It is seen that they
display symmetrical properties and close resemblance to the linearized field plots of Chapter 4. The
density and streamline plots are nearly identical to each other and the only real difference is found on
the magnitude of the gas velocity.

The dependence on the tube length is given in Figures 6.10-6.12, for L/R = 0, 5, 10, P,,; = 0.5
and dy = 10. These cases are chosen here since the differences become more apparent, due to the high
rarefaction parameter: as the tube becomes longer, the vortex becomes smaller, the velocity magnitude
drops and the density isolines become nearly vertical inside the tube. The same characteristics are seen
for increasing pressure ratio from 0.1 up to 0.9 in Figures 6.13 - 6.15 for L/R = 1 and ¢y = 2. The
approach to symmetry is particularly apparent in these cases for the axial velocity contours.

Results on flow through a tube with adiabatic walls are also presented here. Some representative
flow rate values are given in Table 6.8. The adiabatic flow rate is lower for the orifice geometry and
higher for /R = 1 in comparison to the isothermal values of Table 6.4. However, in most cases,
the two tables present very similar values. Nearly all significant figures are the same for oy < 0.1,
while the maximum deviation in the condition ranges examined appears for 6o = 20 and L/R = 1

(around 1.3 %). Therefore, we limit this study to the similarities and differences observed in the fields.
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An indicative plot for the normal heat flux along the tube boundary, in order to verify the correct
application of the boundary conditions, is given in Figure 6.16 for L/R = 1, §g = 20, P,; = 0.5.Itis
seen that the heat flux is zero only for the adiabatic formulation, in the whole boundary except the two
ends. The latter characteristic is easily explained if we consider that g, is no longer perpendicular to
the wall at the corners and is allowed to be non-zero along the vertical walls. Density and axial velocity
field contours for the same case are given in Figures 6.17 and 6.18. It is seen that, in the case of the
adiabatic tube, the density drops faster at the downstream container, the bulk velocity magnitude is
lower and the vortex is significantly smaller. It has been seen that the wall heat permeability properties
have a negligible effect on flows of small Re (i.e. small §; or larger L/ R) due to the already low heat

fluxes.

6.5.2.2 Computational performance

The computational time ranged between few hours and few days, depending on the rarefaction
parameter, the pressure ratio and the availability of processors. Several aspects of the numerical code
performance are examined in this subsection, such as parallelization, memory consumption, acceler-
ation, etc.

The speed-up S (CPU) obtained by the parallelization, defined here as
S (CPU) = [Time (8) x 8] / [Time (CPU) x CPU] (6.48)

with CPU being the number of processors, is displayed in Figure 6.19, using a number of CPUs varying
from 16 to 256. The simulation time for eight processors has been taken as a reference, since this is
the minimum number of processors that can be allocated in the Juelich supercomputing center. The
scaling characteristics of the algorithm are quite good, considering the number of variables that have
to be exchanged at each iteration. An average efficiency of about 94% for 64 processors and 75% for
256 processors is calculated. It is expected that a secondary parallelization in the spatial coordinates as
well would further reduce the cost of exchanging information, since only a part of the domain would be

stored (and transmitted) at each computational node. It is noted that Wynn-¢ acceleration has not been
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applied while timing the simulations in order to obtain a more accurate picture of the performance of
the code.

The benefits of starting with a sparse grid and gradually refining it are seen in Table 6.9. The
solution of each grid level is used as an initial condition for the simulation of the next level. Linear
interpolation has been used here to connect the solutions of various grid levels as a first approximation.
It is clear that the gain in the number of iterations for large values of dy is significant and could further
increase if a more advanced interpolation technique had been used. The iterations in dense grids are
two orders of magnitude lower than the corresponding sparse grid number, leading to much lower
simulation times.

The effect of Wynn-¢ acceleration is demonstrated through an indicative case (L/R = 1, 6y =
10, P,,; = 0.1) shown in Figure 6.20. The evolution of the residual is plotted against the number
of iterations for both a normal and an accelerated run. Both cases follow the same course for the
first 500 iterations, to allow for a transitional stage before applying the acceleration scheme. Then, the
sequence terms are collected every two iterations until 81 terms have been collected. Finally, Equation
(6.41) is applied at iteration 660 as shown in Figure 6.20, causing an abrupt spike in the residual of
the accelerated run. However, after this step, the residual of the accelerated run drops dramatically,
leading to convergence in less than half the iterations required for a normal run. This improvement is
also displayed in Table 6.9, where it can be seen that the application of the Wynn-¢ scheme reduces
the number of iterations for sparse grids up to 64 %.

The benefits of the algorithm modifications noted here are better appreciated by making a
comparison of the computational time. The required CPU time in hours is presented in Table 6.10
for the execution of four different runs. In the first one, a single CPU is used and the modifications
of parallelization, multiple grids and Wynn-¢ are deactivated. Sixteen processors in parallel (MPI)
are employed for the second run. The third column concerns runs with the grid refinement technique
activated and in the fourth one the Wynn-¢ acceleration has been additionally applied. The numerical

parameters for this table are quite different than the normal simulations to ensure that the single core
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runs would be executed in a realistic amount of time. The differences with Table 6.2 are N, = N, =
100, M = 12, Ny = 100. In cases 3 and 4, the physical grid is initially N, = N, = 25 and obtains
its final resolution in two steps. Finally, the upstream/downstream regions had a size of 8 x 8. It must
also be stressed here that the specifications of the computer used in the single run (Case 1) are quite
different than the ones used in the parallel runs (Cases 2,3,4). Therefore, this table only represents an
indication on the efficiency of each approach, rather than the scaling and exact performance of the
code. It is observed that the CPU time is drastically reduced from the single run when 16 processors
are used, especially for large d,. Furthermore, a dramatic improvement is also observed when multiple
grid levels are considered: the total time is reduced by at least 76 % . Finally, the benefits of the Wynn-
e scheme are not so apparent for the cases shown here because it is mostly applied on the low grid
levels. However, judging from corresponding cases for the problem of non-linear heat transfer between
cylinders, it is expected that it would be much more useful near the hydrodynamic regime.

The number of iterations required for various g, L/R and P,,; values are given in Figure
6.21 for five grid levels. Some fluctuations are to be expected in the sparse grid levels 1 and 2 due
to the application of the Wynn-¢ scheme. As it is expected, the number of iterations for the dense
grid drops as the flow becomes more linear, i.e. as P,,; increases because of the favourable selection
of the initial conditions (linear density distribution along the tube, zero velocity, temperature equal to
unity). However, it increases for longer tubes due to the larger number of impermeability constants that
need to be stabilized. Furthermore, a large length to radius ratio practically means a narrow geometry,
causing larger convergence times because of the difficulties in the transport of the gas from one vessel
to the other. The increase of the reference rarefaction parameter dy also leads to an increase of the
number of iterations, as commonly seen in discrete velocity numerical codes.

An analysis on the total computational time required for each of the elementary parts of the
algorithm is presented in Table 6.11. These values have been obtained by averaging the correspond-
ing times in a variety of runs. It is seen that the calculation of the macroscopic quantities and the

Maxwellian distribution are the most time-consuming parts due to the complicated exponential ex-
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pressions they contain. The parallel communication cost is quite low here since the results concern
16 processors but may be increased for a very large number CPUs. The diffuse boundary conditions
take up a very small part of the total time. Finally, miscellaneous computational work, including the
allocation of arrays, the application of the Wynn-¢ algorithm, the calculation of the residual, the tem-
porary storage of the field to restore in case of unexpected shutdowns, etc. also takes up a relatively
small part of the total effort.

Memory requirements for some indicative discretizations are shown in Table 6.12. A moder-
ately long channel of L/R = 10 is taken as a test case with a relatively dense discretization. It is
seen that memory consumption remains low as we modify the channel length and the number of dis-
crete velocity magnitudes or angles, even to extremely large values such as L/ R = 200. This is quite
reasonable given the structure of the modified algorithm storage scheme. It is seen that it is signifi-
cantly affected by the container region size and the number of physical nodes but in any case not in
a restrictive degree, given the availability of computational resources today. This is a very important
advantage of the code, leading to the conclusion that channels of any length can be simulated with it,
especially if we consider that flow through long channels is low and thus the container regions can

become even smaller.

6.5.2.3 Qualitative comparison with DSMC

It is hard to provide a definite conclusion regarding which numerical approach performs best,
the DSMC or the DVM for non-linear kinetic equations. The reason is that there is a great deal of
parameters that need to be fine-tuned in order to have numerical simulations corresponding exactly to
one another and some who only exist in one of the two methodologies. Some examples of the variables
that need to be adjusted are the fluctuation level, residual, number and position of weighting zones,
time intervals of particle doubling or sampling array resetting, grid refinement parameters, Wynn-¢
parameters, the number of discrete velocity angles and magnitudes, number and shape of cells, number
of intervals per unit length, non-uniformity of mesh/cell grid, number of particles, time step, maximum

value of the velocity magnitude. It is obvious that the two approaches are largely different and we can
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only make a qualitative comparison.

Other difficulties arise in this effort to determine the fastest method: the memory requirements
of the DSMC code can be very high for an accurate calculation, if computational regions of size 15x 15
dimensionless units are used. Also, since the DSMC code is not yet parallelized (and even if it were,
there would be significant difficulties in distributing the load evenly among the processors [85]), a
comparison of this size would take up a significant amount of time. Thus, we restrain ourselves in the
runs given in Table 6.10 while including the cases of P,,; = 0.9 and 6y = 1, 10.

In Figures 6.22 and 6.23 the evolution of the flow rate at the two ends is plotted against the com-
putational time for the two methods. The abrupt changes for the DSMC code are due to the doubling
of computational particles, shown explicitly in the Figures, performed to produce a rough estimation
of the flow field. For the DVM, there are also changes in the flow rate, even though much smaller, due
to the refinement of the grid. It is observed that both methods produce practically convergent values
in comparable CPU times for P,,; = 0.1. A conclusion on which method performs best in this case
would be highly subjective, since several parameters such as the convergence criterion for each grid
level and the doubling times are chosen rather intuitively. However, it is clear that the computational
difficulties grow for DSMC when P,,; > 0.5 is considered. On the other hand, the DVM works even
better in this regime.

Thus, we may conclude that both methods work equally well for high pressure differences and
short channels. The DSMC method may be slightly more accurate than the non-linear kinetic models
as expansion into vacuum is approached, due to its equivalence with solving the Boltzmann equation
and its ability to deal with discontinuities of the distribution function. As the pressure ratio becomes
larger (say, 0.5 < P,,; < 0.9), the non-linear kinetic equations should be more reliable and much
faster in convergence. Finally, in the case of very low pressure differences (F,,; > 0.9) and highly
rarefied flows (09 < 10), the Monte Carlo method is completely out of the question, unless some
special treatment takes place [83], and the non-linear equations provide accurate results within even

lower computational times. In the latter case, the linearized results of Chapter 4 can also be utilized to
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avoid a complete simulation.

6.5.3 Flow through an expansion/contraction element

Due to the large number of parameters involved in this problem (0, P,/ Pin, Ro/R1, L1/ Ry,
Lo/ Ry), it would be very difficult to tabulate and present results for every possible parameter combi-
nation. Moreover, in many cases there are similarities with the flow through a simple tube, examined
in detail before in previous sections. A qualitative analysis on the influence of each parameter may be
infered by examining some representative geometrical cases, given in Table 6.13. Indicative results
are presented, demonstrating the applicability of the DSMC code, and will be extended in future work.

Field distributions of density and velocity, as well as streamlines, are shown in Figures 6.24
- 6.31 for both channel types. The gas behaviour is typical for the expansion of the gas to a lower
pressure. A decrease in density and an increase in velocity are observed after the entrance of the
channel at x = 0, returning to their equilibrium values after a short distance from the channel exit. In
the first case, Figures 6.24 - 6.25, the field quantities are shown for the expanding channel element and
a moderate radius ratio (Rz/ Ry = 2). The results are quite similar to the ones found for the single tube,
with the exception of a small vortex forming at the corner of the expansion for large 9. Furthermore,
if we compare these results with Figures 6.26 - 6.27, where the second case geometry with a higher
radius ratio (Ry/R; = 5) is studied, we can see that only small differences exist regarding the density
and axial velocity fields (even in terms of maximum values and contour levels). This practically means
that the field is not affected in a large degree by adjusting the radius ratio to a value higher than 2. On
the contrary, the streamlines are inevitably altered significantly by the change in geometry. The most
striking difference lies in the shape of the vortex for = 10, which spans at a much larger area and has
a non-elliptic shape around the second tube exit. Regarding the contracting tube, the two geometrical
cases 3,4 are shown in Figures 6.28 - 6.31 to describe the influence of the length increase on the flow
field. It seems that as the length increases, the first (large) tube also does not play an important role on
the flow field, since the left container equilibrium values are also observed in a large part of the first

channel. The appearance of noise is strong in the most demanding cases, such as in the streamlines at
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the left container part in Figure 6.31 due to the low pressure difference and the approach to equilibrium
values in that area. A considerable computational effort would be required to reduce the noise in this
case.

The flow rates W, defined by (6.23) but calculated as a function of molecules passing through
the inlet and outlet cross-sections, are given for some indicative cases in Table 6.14. The similarities
with corresponding values in Table 6.5 are evident for the expansion element and the agreement is
even better as we further enlarge the second tube. This is not true in the contraction part, since it is the
narrower tube part dimension that plays the most important role in the flow rate value. The trends are
the same as the flow through a short tube, described earlier, regarding the pressure ratio, length and ¢
influence.

Typical conductance results shown below concern the geometry used in the experiments, where
Ry = 10.4mm, L; = 9mm, Ry, = 20.7mm, L, = 14.9mm. The upstream pressure F;, ranges in
0.003 — 30 Pa and nitrogen is used in average temperature 7y = 296K. Conductance curves are
displayed in Figure 6.32, obtained by both numerical and experimental approaches. Experimental
measurements have been performed at the TRANSFLOW facility of KIT in Germany, described in
section 3.3. It is seen that overall the agreement is good, with an average relative error below 10%,
especially in the viscous regime (small Kn number). Larger discrepancies appear in the transition and
free molecular regime, where the pressure is reduced and the accuracy of the measurements is strongly
affected by the offset deviation of each flow device. This is probably a consequence of experimental
inaccuracies and will be clarified in the near future.

Rathakrishnan and Sreekanth [164] have also studied this type of flow before experimentally
for the case of the tube with a sudden expansion. However, the channels used in this particular in-
vestigation were relatively long (the geometrical parameters for the shortest one were L;/R; = 2,
Ly /Ry = 3.68) and the Knudsen number is quite low for most cases (0.0026 to 1.75), leading to com-
putational difficulties. Furthermore, the mass flow rate values were not presented in a tabulated form

but in figures of low resolution. Thus, a comparison is not easily made with this work.
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6.6 Concluding remarks

To sum up, an efficient discrete velocity algorithm has been presented and applied for the sim-
ulation of non-linear pressure driven flow through short, axisymmetrical channel elements. The flow
rates and macroscopic quantities are in good agreement with previously reported results obtained by
the DSMC method. Three kinetic models are applied for the collision term, namely the BGK, S and ES
models. A new type of boundary conditions is introduced for adiabatic walls. The computational effort
and memory demands are drastically reduced by the implementation of grid refinement, paralleliza-
tion, Wynn-¢ acceleration, and the usage of memory has been optimized. Overall, the performance
of the non-linear code is similar to the performance of the DSMC code for high pressure differences
while it is significantly faster as linearized flow is approached.

In the case of the channel with expansion/contraction, our goal is to extend our previous knowl-
edge on flow through short tubes to the case of channel elements with more complicated geometries,
frequently encountered in practical applications. Similarities are found and a comparison with exper-
imental results shows good overall agreement, which degrades for low pressures due to experimen-
tal difficulties. The contracting channel seems to provide steeper gradients of pressure, temperature
and velocity. This work will be continued to complete the study for a wide variety of channel ge-
ometries, such as tees, junctions, conical expansion and contraction elements. These can in turn be
combined in a numerical code simulating flow networks as various components forming the complete

vacuum/microflow system.
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Table 6.1: Discretized equation for the problem of non-linear flow through a tube
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Table 6.2: Discrete velocity algorithm numerical parameters

Initial number of nodes per unit length N, = N, 5-40
Number of grid levels 3-6
Final nodes per unit length N, = N, 80-160
Discrete angles Ny in (0, ) 160
Discrete magnitudes M 16 x 16
Maximum value of velocity magnitude ¢, oz = Czmax 5
Convergence criterion 2.5 x 1077
Container sizes Licft, Lyight 15 x 15

Table 6.3: DSMC numerical parameters

Number of particles 20 — 30 x 10°

Cells per unit length 20 — 80

Time step 0.01R /vy

Maximum statistical fluctuation 0.1%

Axial weighting zones 6 (r =0.25,0.5,0.75, 1, 2, 3)

Radial weighting zones 3(x=0,Ly, L1 + Ly)
195

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Chapter 6

[2ST ‘6111 s3Hom snotadxd ur poyjowr HINS Yl Aq paureIqo 4| 93el MO[J SSO[UOISUSWI(] :S'9 J[qeL

€cco - v11°0 - ¥€60°0 - S¢600 | S0
12¢€0 - ¢61°0 : ILT°0 : 0LT°0 o
88¢°0 1LT°0 L61°0 SLTO 910 9¢1°0 ce1o S0
6¢5°0 454" 0€€0 ¥0€°0 16C°0 18C°0 6LC0 o
9980 8¢9°0 vLy'0 Sor'0 0L£°0 eveo 9¢€0 S0
SO'T €160 19L°0 6890 8¥9°0 €190 S09°0 10
0r'0 - - 0¢r’o - €010 - 60
6l'1l - - €190 - 6050 - S0
144! - - €0l - 0160 - 10
oI S [4 ow S0 10 0 mor | g/

L1600 | €¥S0°0 | 6S€0°0 | €5C00 | 6100 | ¥0200 | €6100 | 16100 | 06100 | 60
6S¢€°0 6¢C0 091°0 611°0 901°0 101°0 €960°0 | SS600 | ¥S600 | SO | OI
10 8C¢0 6vC0 0020 S81°0 8L1°0 eL10 LT 0 ILT°0 10
¥91°0 9L600 | I+¥90°0 | ¥¥¥0°0 | 8.€00 | S¥E€0'0 | 8I1€00 | IT€00 | OIE€00 | 60
1850 86¢£°0 0820 LOTO ¢81°0 691°0 8S1°0 9¢1°0 ¢e1°0 S0 S
10L°0 LESO €0 Ive0 clreo L6C0 €870 08¢0 6LC0 10
SIv0 Y920 0L1°0 4950 80600 | 86,00 | 00L0°0 SL9°0 ¢L90 60
SOl 888°0 690 S0S0 8r0 $8¢0 LYE0 LEEO 9¢£0 S0 !
LT1 901 1€6°0 88L°0 €IL0 999°0 6190 9090 $09°0 10
¥8S°0 434\ 08¢0 9L1°0 or1o 1C1°0 So1'o 001°0 001°0 60
0¢'1 (14! Y01 8LLO €590 850 81570 <050 00¢°0 S0 0
05T V'l SEl 8T LOT 001 €60 €060 0060 10
0¢ 0T S 4 ow S0 10 10°0 0 mor | g/

[opowr ST 9} 10J /| 9¥eI MO[J SSO[UOISUAWI(] 49 9Bl

196

Institutional Repository - Library & Information Centre - University of Thessaly

18/05/2024 09:45:51 EEST - 18.117.98.51



Section 6.6

T68'0 | 8T¥'0 | LYE€O | 9E€0 | SO |
LO'1 8IL0 | 0T9°0 S09°0 | 1°0
0z'1 0590 | 8IS0 | 0050 | §0 |
€r'1 90T €260 | 0060 | 10
01 I 10 0 no

0g "l g/

S[[em OT)EQRIPE PUE [9POW S oU} 0] /| 916l MO[J SSO[UOISUSWI(] :8°9 d[qeL

=0T X 00T | ¢ 0IXGF9 | ¢ 0L XGLE | ¢ O0IXSI'E | ¢ 0IX0IE | S
e=0T X 69 | 0T XTLT | ¢ 0T X¥6'8 | ¢0IX969 | ¢ 01X3L9 | 1
01 S I 10 0
0 /1

66°0 = "°4 pue [opow D Y} 10} || )6l MO[J SSO[UOISUdWI(] :/'9 d[qe],

7970 | 090 | #6800 | 18800 | L6900 | $6900 | 60
988°0 | SS8°0 | TTr0 | LIFO | 9¥€0 | SkE0 | SO | 1
90'1 90'1 90L0 | €0L0 | L190 | L190 | 10
LTV0 | vTv0 | LE10 | SE10 | 010 | 010 | 60
171 171 %90 | S€9°0 | 9IS0 | SISO | S0 | 0
! ! 90'1 90’1 1260 | 0760 | 1°0
S 3Dg S 09 S D9

01 I 10 med |\ a/T

09

S[opowI § pue S[DE Y 10J /| 18I MO[J SSO[UOTSUSWI(] :9°9 [qBL

197

Institutional Repository - Library & Information Centre - University of Thessaly

18/05/2024 09:45:51 EEST - 18.117.98.51



Chapter 6

Table 6.9: Effect of grid refinement and the Wynn-¢ scheme on the number of iterations

. Nodes per Grid
Fou | 0 | Grid level unit lenI;gth refiment Wynn-¢
1 25 96 56
0.1 | 1 2 50 20 20
3 100 16 16
1 25 2340 837
0.1 | 10 2 50 145 128
3 100 94 88
1 25 96 53
05 | 1 2 50 17 17
3 100 14 14
1 25 2342 925
0.5 | 10 2 50 200 163
3 100 150 134
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Table 6.10: Total CPU time [h] for various algorithm improvements

0o P,.: | Single CPU | 16 CPUs | Multiple grid levels | Wynn-¢
1.00 | 0.1 169.09 14.84 3.54 3.33
1.00 | 0.5 168.96 14.86 3.14 2.92

10.00 | 0.1 >1591 360.46 30.72 26.10
10.00 | 0.5 >1849 360.60 41.00 38.25

Table 6.11: CPU time analysis [%] of the average time allocation for a typical run

Macroscopic quantities 53.2

Maxwellian distribution 26.2
Marching scheme 17.3
Parallel communication (MPI) | 0.1
Boundary conditions 0.1
Miscellaneous 3.1

Table 6.12: Memory requirements for the non-linear DVM code

Parameter values Test case Parameter dependence
L/R NG M Lleft7Lright NxaNr
Length ratio L/ R 10 200 10 10 10 10
Nodes per unit length N, = N, 100 100 100 100 100 120
Discrete angles Ny in (0, ) 160 160 400 160 160 160
Discrete magnitudes M 16 x 16 | 16 x 16 | 16 x 16 | 32 x 32 16 x 16 16 x 16
Container sizes Lic s, Lyignt 15 15 15 15 10 15
Memory consumption [MBytes] 922 1300 933 922 423 1300
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Table 6.13: DSMC expanding/contracting tube geometrical cases

Dimension | Case 1 | Case 2 | Case 3 | Case 4
Ry/ Ry 2.00 5.00 0.50 0.50
Li/Ry 1.00 1.00 1.00 3.00
Ly/ Ry 1.00 1.00 1.00 3.00

Table 6.14: DSMC expanding/contracting tube flow rate I/

J

Parameters

0.1 0.5 1 5 10

Casel, P,,; =0.1]| 0606 | 0.641 | 0.682 | 0.909 1.05

Casel, P, =05 | 0336 | 0363 | 0400 | 0.655 | 0.872

Case2, P, =0.1] 0.612 | 0.612 | 0.689 | 0.915 1.05

Case2, P, =0.5| 0342 | 0368 | 0405 | 0.660 | 0.867

Case3, P, =0.1] 0.113 | 0.116 | 0.120 | 0.146 | 0.172

Case 3, P,,; = 0.5 | 0.0624 | 0.0646 | 0.0681 | 0.0914 | 0.120

Case 4, P,,; = 0.1 | 0.0582 | 0.0592 | 0.0600 | 0.0714 | 0.0861

Case 4, P,,; = 0.5 | 0.0320 | 0.0328 | 0.0334 | 0.0430 | 0.0561
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Figure 6.1: Cylindrical tube geometry
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Figure 6.2: Expansion/contraction channel geometry
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Figure 6.3: Expansion/contraction channel computational cell grid
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Figure 6.4: Density contour for the short tube geometry and /R =0, P,,;, = 0.1 with 6 = 0.1 (up),
0 = 1 (middle) and 6y = 10 (down)
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SR

Figure 6.5: Axial velocity contour for the short tube geometry and L/R =0, P,,; = 0.1 with § = 0.1
(up), 0 = 1 (middle) and 6y = 10 (down)
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Figure 6.6: Streamlines for the short tube geometry and L/R = 0, P,,; = 0.1 with § = 0.1 (up),
0 = 1 (middle) and oy = 10 (down)
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0.9

Figure 6.7: Density contour for the short tube geometry and L./ R = 10, P,,; = 0.9 with 6 = 0.1 (up),
0 = 1 (middle) and 6y = 10 (down)
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Figure 6.8: Axial velocity contour for the short tube geometry and L/R = 10, P,,; = 0.9 withd = 0.1
(up), 6 = 1 (middle) and oy = 10 (down)
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Figure 6.9: Streamlines for the short tube geometry and L/R = 10, P,,; = 0.9 with § = 0.1 (up),
0 = 1 (middle) and 6y = 10 (down)
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Figure 6.10: Density (up) and axial velocity (middle) contours, as well as streamlines (down) for the
short tube geometry and L/R = 0, P, = 0.5, 69 = 10
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Figure 6.11: Density (up) and axial velocity (middle) contours, as well as streamlines (down) for the
short tube geometry and L/R =5, P,,; = 0.5, 09 = 10
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Figure 6.12: Density (up) and axial velocity (middle) contours, as well as streamlines (down) for the
short tube geometry and /R = 10, P,,; = 0.5, o = 10
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Figure 6.13: Density contour for the short tube geometry and L/R = 1, 6y = 2 with P,,; = 0.1 (up),
P, = 0.5 (middle) and P,,; = 0.9 (down)
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Figure 6.14: Axial velocity contour for the short tube geometry and L/R = 1, §y = 2 with P,,; = 0.1
(up), P,,; = 0.5 (middle) and P,,; = 0.9 (down)
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Figure 6.15: Streamlines for the short tube geometry and L/R = 1, §y = 2 with P,,; = 0.1 (up),
P,,; = 0.5 (middle) and P,,; = 0.9 (down)
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Figure 6.16: Heat flux in the direction normal to the wall for adiabatic and isothermal walls, with
L/R=1,60=20,F,; =05
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Figure 6.17: Density (up) and axial velocity (middle) contours, as well as streamlines (bottom) for
flow through an adiabatic tube with L/R = 1, P,,; = 0.5 with §, = 20
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Figure 6.18: Density (up) and axial velocity (middle) contours, as well as streamlines (bottom) for
flow through an isothermal tube with L/R = 1, P,,; = 0.5 with §, = 20
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Figure 6.19: Speed up due to parallelization for various dy and P,,,; = 0.1
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Figure 6.20: Wynn-¢ effect on the residual for §; = 10,P,,; = 0.1
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Figure 6.21: Tterations for various grid levels with /R = 1 (up) and L/R = 10 (down) and for
0o = 0.1 (square), oy = 1 (triangle), oy = 10 (circle)
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Figure 6.22: Evolution of the dimensionless flow rate I/ from DSMC against CPU time at the inlet
and outlet cross-sections of a tube with L/R = 1, for §g = 1 (left), 6o = 10 (right) and for P,,; = 0.1
(up), Py = 0.5 (middle), P,,; = 0.9 (down)
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Figure 6.23: Evolution of the dimensionless flow rate W from DVM against CPU time at the inlet and

outlet cross-sections of a tube with L/R = 1, for ¢
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Figure 6.24: Density (up) and axial velocity (middle) contour, as well as streamlines (down) for the
expanding tube geometry (Case 1) with P,,; = 0.1, = 0.1
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Figure 6.25: Density (up) and axial velocity (middle) contour, as well as streamlines (down) for the
expanding tube geometry (Case 1) with P,,; = 0.1, 6 = 10
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Figure 6.26: Density (up) and axial velocity (middle) contour, as well as streamlines (down) for the
expanding tube geometry (Case 2) with P,,; = 0.1, = 0.1
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Figure 6.27: Density (up) and axial velocity (middle) contour, as well as streamlines (down) for the
expanding tube geometry (Case 2) with P,,; = 0.1, 6 = 10
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Figure 6.28: Density (up) and axial velocity (middle) contour, as well as streamlines (down) for the
contracting tube geometry (Case 3) with P,,; = 0.1, = 0.1
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Figure 6.29: Density (up) and axial velocity (middle) contour, as well as streamlines (down) for the
contracting tube geometry (Case 3) with P,,; = 0.1, 6 = 10
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Figure 6.30: Density (up) and axial velocity (middle) contour, as well as streamlines (down) for the
contracting tube geometry (Case 4) with P,,;, = 0.1, = 0.1
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Figure 6.31: Density (up) and axial velocity (middle) contour, as well as streamlines (down) for the
contracting tube geometry (Case 4) with P,,; = 0.1, 6 = 10
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Figure 6.32: Numerical and experimental conductances for the contraction (up) and expansion (down)
elements
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Concluding remarks

7.1 Summary and contributions

Several topics have been discussed in this dissertation, involving non-equilibrium transport
phenomena in the whole range of the Knudsen number. Kinetic model equations have been solved de-
terministically and solutions of the Boltzmann equation have been obtained by stochastic approaches.
The most important numerical methods, the Discrete Velocity method and the Direct Simulation Monte
Carlo, have been applied and compared. This comparison involved not only results in terms of bulk
quantities, such as flow rates, but also a qualitative analysis about the computational efficiency of each
approach.

The application of advanced boundary conditions and in particular the ones derived using the
Cercignani-Lampis scattering kernel, has been discussed for both flow and heat transfer configura-
tions. This work not only provides a physical intuition regarding the influence of gas-surface in-
teraction on the quantities of practical interest for the particular problems but may also lead to the
calculation of the accommodation coefficients through a comparison with experimental results. The
Cercignani-Lampis boundary conditions have been applied for the first time in several problems: lin-
earized and non-linear heat transfer between parallel plates, non-linear heat transfer between coaxial
cylinders and linearized flow in a rectangular duct. The non-linear form of the scattering kernel has
not been used before for any problem in the literature and the differences in the formulation and the
macroscopic quantities are highlighted. A comparison with experimental results is performed for flow
through a rectangular duct and leads to a reasonable estimation of the tangential momentum accom-
modation coefficient, around a; = 1.02 — 1.06 for technical surfaces and various gases. Similarities

and differences are discussed for the linear and non-linear heat transfer between plates problem. The
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symmetry in terms of o, of the heat flux for the cylindrical geometry are explained by the form of the
boundary distribution function.

The problem of linearized flow in a parallel plate channel and a cylindrical tube, not consid-
ered before in the literature, have been studied here. The flow is due to a small pressure difference
and linearized kinetic equations provide flow rates and macroscopic fields in a regime where other ap-
proaches, such as the DSMC method, have great difficulties. A comparison with DSMC indicates that
a maximum deviation of around 7.7% is to be expected for any length with 6 < 10 and Pout / Pm =0.9,
indicating that this may be a useful limit in determining our simulation choice between the two ap-
proaches. It is also found that accommodation effects are negligible for the case of zero length and con-
siderably stronger for moderate lengths, as expected. Moreover, the end effect is considered for long
channels of both plane and cylindrical geometries. Results for both the axial pressure distribution and
the dimensionless flow rate are compared between the typical integration scheme, the linearized (or
the non-linear) formulation for the complete geometry and the end effect approach, and it is seen that
the end effect approach greatly reduces discrepancies for moderately long channels (10 < L /Ly < 80)
in comparison to the typical scheme. It is believed that this method is an important contribution that
can be easily applied in engineering calculations, significantly improving accuracy.

The study of heat transfer phenomena in problems of lower dimensionality, that is in the geome-
tries of parallel plates and concentric cylinders, lead to a more complete understanding of differences
between the linearized and non-linear formulation. It is seen that for small values of the rarefaction
parameter d, or the temperature ratio 3 the two approaches provide results very close to each other.
Thus, a reliable estimation on the range of applicability of the linearized method has been provided,
which is larger than the one expected by the strict mathematical limits. Non-linear effects due to de-
parture from equilibrium, such as non-constant pressure profiles due to temperature differences, have
been discovered. Different types of intermolecular interaction have been tested and differences in the
temperature and heat flux profiles have been pointed out.

Even though the problem of non-linear flow in a cylindrical tube has been considered before
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with DSMC, its treatment in this work based on the deterministic solution of kinetic model equations
is beneficial for several reasons. First, the non-linear formulation is equally efficient for the simulation
of flows in any pressure ratio, thus avoiding the obstacle of noise for moderate to low pressure differ-
ences which prohibits the usage of the DSMC method. Second, performance aspects of the code have
been studied and compared qualitatively with the corresponding “in-house” version of the DSMC
code for several values of the pressure ratio. Also, various kinetic models have been tested in this
realistic configuration and this allowed the evaluation of the behaviour of various kinetic models. Fi-
nally, results extracted here serve as further validation of previously given results and strengthen our
confidence towards their values.

The investigations described above for the linearized and non-linear formulations has lead to a
significant outcome: the limits of the linearized formulation have been determined, in the search for a
complete methodology covering all possible flow conditions. In this context, the above heat transfer
and pressure driven flow problems have been examined and the interfaces separating the regimes
where each methodology produces the most accurate results have been determined.

A study of adiabatic walls also does not exist in the literature to our knowledge. This new type
of boundary conditions is applied in the non-linear pressure driven tube problem. Results show that
for the particular flow configuration, the flow rate found for isothermal conditions is nearly identical
to the adiabatic one for the range of parameters examined here. Some deviations are found for the
macroscopic quantity fields. It is expected that this type of boundary conditions will receive more
attention in the future due to the materials involved in the fabrication of MEMS.

Short channel elements of contraction/expansion geometrical characteristics have also been
examined. Various different geometrical parameter combinations have been considered, indicating
the dependence of the flow on each quantity. The DSMC algorithm included various techniques for
the accurate and efficient simulation of the flow, such as weighting zones and particle doubling. A
comparison with experiments shows good agreement. The extended study of these elements could be

very beneficial for the simulation of realistic flow networks, where such geometries are frequently
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encountered.

Memory optimization has been applied on all channel/tube codes involving the complete simu-
lation of flow the flow field, allowing the use of very large computational domains. Various numerical
techniques, such as the Wynn-¢ acceleration, Romberg integration, grid refinement and paralleliza-
tion, have been developed or applied for the efficient calculation of the most demanding non-linear
problems. It is found that these techniques greatly benefit convergence time, reducing it by 1-2 orders
of magnitude.

The current dissertation includes the upgrade and advancement of kinetic algorithms and mod-
els, the investigation of non-equilibrium transport phenomena and the extraction of results for linear
and non-linear heat transfer and flow problems, including comparisons with experimental data and
other numerical methods. To sum up, the most important contributions of this dissertation are outlined

below:

* The non-linear form of the Cercignani-Lampis scattering kernel, which has not been applied
before in the literature, has been used. Furthermore, the linearized form has also been employed
for both flow and heat transfer problems. Comparisons with relevant experiments has lead to

surface characterization with respect to argon and helium flows.

* Anadvanced and computationally efficient discrete velocity scheme has been developed for the
numerical treatment of linear and non-linear flow and heat transfer configurations. Through this

algorithm, memory and CPU time requirements have been significantly reduced.

* Linearized flow through orifices and tubes of finite length due to small pressure differences has

been studied, providing results for the first time in the literature.

* The effect of the channel ends on the flow field and mass flow rate has been investigated for
the geometries of rectangular channels with large aspect ratios and cylindrical tubes. A novel

methodology is proposed to extend the well known fully developed flow analysis, applied in
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infinitely long channels, to channels of finite length. These results may be used to avoid the

complete numerical solution, greatly reducing the computational effort.

* Non-linear flow through orifices and tubes of finite length has been solved and compared with
DSMC results. A qualitative comparison between the two numerical methods has also been
performed and solid remarks about the effectiveness of the proposed discrete velocity algorithm

have been drawn.

A boundary condition model has been developed for adiabatic walls, which have not been con-

sidered before in the literature.

* The range of validity of linearized theory has been investigated through the problems of heat
transfer between parallel plates and coaxial cylinders, as well as through flow through a cylin-
drical tube. It has been found that the linearized formulation results can be applied well beyond

their theoretical limits with sufficient accuracy.

* Non-linear flow through a contraction/expansion pipe element, consisting of two cylindrical

tubes connected in series, has been simulated via the DSMC method.

7.2 Future work

There are several possibilities for future work, concerning both theoretical and practical aspects

of the current work.

 Further application of the Cercignani-Lampis scattering kernel in more complicated geome-
tries and extension of comparison with experimental data. Other scattering kernels may also
be applied to evaluate the validity of several models in a variety of physical conditions. Direct

comparison with molecular beam data can also be attempted.

* Investigation of the limits of linearized theory and search for a methodology able to deal with

any condition. For example, if the range of applicability of the linearized formulation has been
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studied extensively, we could reach a conclusion on its limits and argue that all other problems

may be solved by non-linear kinetic equations or DSMC.

» Simulation of the end effect geometry in a wider range of conditions and publication for engi-
neering purposes. This is expected to lead to significantly better results than the simple integra-
tion scheme for moderately long channels with only minor modifications of the corresponding

numerical codes.

* Numerical stability analysis and investigation of more effective acceleration schemes for non-
linearized kinetic model equations. Even though the computational effort has been significantly
reduced with the schemes shown here, it would be highly desirable to examine the possibility of

acceleration methodologies similar to the ones applied before in the linearized problems [76].

» Use of the non-linear code for temperature driven flows. These physical conditions have already

been integrated in the numerical code and simulations are under way.

* Study of mixture flow with linear and non-linear kinetic models in various configurations. The
study of mixtures is obviously very important for nearly all practical applications and non-linear

effects have not been studied extensively.

* Modification of the parallelized numerical codes in order to be executed by the GPU with
CUDA. This new technology is becoming very popular for the numerical solution of problems

in all scientific fields and generally delivers high performance improvements.

» Extension of the DSMC or non-linear DVM codes in more complicated geometries, with par-
ticular interest in various network elements such as junctions, curves and so on. This kind of
work may be realized relatively easily due to the flexibility of the DSMC method and the related

experience in this work.

It is hoped that the current work will stimulate more research in the related fields of non-linear kinetic

equations, DSMC, as well as related experimental studies.
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Appendix 1

Derivation of boundary conditions

1.1 Impermeability condition

The impermeability condition at the walls is imposed by setting the density constant of the
departing distribution in a value such that the velocity component normal to the wall is equal to zero.
An example is given here for linearized flow through a parallel plate channel examined in Chapter 4
for the vertical wall (C), as seen in Figure 4.1. The normal velocity component in this case is found

from Equation (4.13)

m
0 —

2T oo
1
Uy = —/ / Vs cosfexp (—c3) deydd =0 (A.1.1)

The integral may be split in two parts: the one containing distributions departing from the wall V'

and another one for those impinging on the wall V'~

co | /2 37/2
/ / V= cicosfexp (—c2) df + / V*ccoshexp (—c)) db | de, =0 (A.1.2)
—oo  |—-m/2 w/2

Diffuse boundary conditions are imposed, i.e. the perturbation from the Maxwellian is substituted
for the departing distribution V', but since the wall is isothermal and stationary, it simply leads to
V+ = p, where p, = p,, (y) is a constant which must be adjusted to keep the velocity equal to zero.

Thus, we get

[impinging + pw[departing =0 (A13)
where
7'1'/2 o0
Liypinging|, = / /V_ [c}% cos 6] exp (—cﬁ) de,df (A.1.49)
—7m/2 0
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37T/2 o0

Laepartingl. = / /[cgcose} exp (—c2) deydd (A.15)

w/2 0

1.2 Fully developed flow boundary conditions

Another point that needs to be addressed is the derivation of unprojected distributions (4.57)
and (4.58). Since the distribution function does not change in terms of x; when fully developed con-
ditions are met, as seen in (4.50), the deviation from the Maxwellian is not caused by a dependence

on z; and we expect that it can be described by
Vin (—Ldev, Y, Cor ¢y) =Y (y,¢y) A(cz) + B () (A.1.6)

The first function A (¢, ) is found by substituting this expression in the projection equation (4.53)
1 o
Y (y,¢,) = NG / Y (y,¢y) A(ca) + B (y)] caexp (—c2) de, (A.1.7)

and simplifying to get A (¢,) = 2¢,. Then, Equation (A.1.6) is inserted in the governing equation for
the boundary (4.51) and, after substracting Equation (4.55) multiplied by 2¢,, we obtain

B
cy% 4 8B (y) = dpin (A.1.8)

which directly leads to B (y) = py, if we take into account that dp;, /dy = 0. The whole procedure

can be repeated for the tube end geometry, substituting
Rin (—Ldev, 7, ¢p, 0, ¢.) = Z (1,¢p,0) A(c,) + B (r) (A.1.9)

and working similarly with the projection (4.54) and the governing equation (4.52).

1.3 Adiabatic wall condition

In the case of adiabatic walls, we must impose the conditions of no penetration (%,erma = 0)

and zero heat flux (¢,orma = 0) simultaneously. Therefore, from Equation (6.16) we get

2 oo T oo
Uy = —// / cpCrgde,dide, =0 (A.1.10)
P

0 0 —oo
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and due to the boundary conditions

[e=]

///cpcxg dcxdﬁdcp—i—// / cpcx 3/2 exp [ —-2 degdfde, =0 (A.1.11)
00 0 0 0 - (77wc ) ©

Solving the second integral analytically leads to

oo ™o

. 1 1
///cpcxgdcxdﬁdcp—i- frg—/g\/%(w) (§> <—§) =0 (A.1.12)
000

0

Finally, solving for p,, ¢ yields

Pw,c = 4\/%A (A.1.13)

where

[© oI/ Ne o]

A:///cpcwg_dczdﬁdcp (A.1.14)
00 0

In the same way, the starting point for the imposition of zero heat flux is the corresponding

moment, Equation (6.19)

[c oY/ Ne o]

=2 // / cpCs [(cpcosf — u,)? + (¢, sin0)” + ¢2] gde,dfdc, = 0 (A.1.15)

0 —
where we have substituted u,, = 0. After the use of the boundary conditions, it becomes

[o oI/ Ne o]

///cpcx [(cpcosf — u.) + (c,sin6)® + 2] g~ dc,dbde,
00 0

[ 7 2 o2, 21 Pwc ¢ +co
+ // / CpCa [(cpeost — u, )" + (¢, sinf)” + 2] —— 573 €Xp (— b ) deydfde, =0
0 _

o

(r7¢) TC
(A.1.16)
We can solve the second integral analytically and obtain
oo T 9
w.Cy/ 2
///cpcx [(cpco80 — u,)* + (¢, 5in6)* + 2] g’dcdedcp—p ov/Te (U +270) _ 0 (A.1.17)
4/
00 0
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Finally, we solve for p,, ¢ again to get

4/
O = A.1.18
P ="z (a2 + 270) (A.1.18)
where e
B = ///cpcx [(cpc080 —u,)* + (¢, 5in0)* + 2] g~ de,dbdc, (A.1.19)
00 0
By combining Equations (A.1.13) and (A.1.18) we finally obtain the expression for 7, ¢
B — Au?
=—7" A.1.2

Tw,C 54 ( 0)

and p,, ¢ 1s given by (A.1.13).

264

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:45:51 EEST - 18.117.98.51



Appendix 2

Derivation of mass flow rate equation

2.1 Linearized flow

The mass flow rate through channels is obtained by associating it to the corresponding di-
mensionless numerical results. The complete procedure is shown here analytically for the case of the

linearized flow through a parallel plate channel. The flow rate is defined by Equation (4.35)
M= [ fn (8.5 (3. 9) 9 (A21)

and the pressure is substituted by the ideal gas law P = mnRT = mnuv? /2

H/2

= |

—H/2

2P :f; ) o
] Uy (%,9) dy (A2.2)

Then, it is non-dimensionalized according to (4.3)

1/2
. AP 2Py(1+ hAP/P
M = (v =5-)(H) ol ; £i) / ug (z,y) dy (A2.3)
0 Uo
~1/2
and terms of order (AP/P,)* are omitted
1/2
. 2APH
M = / ug (x,y) dy (A2.4)
v
’ ~1/2
Furthermore, due to the symmetry of the field we get
1/2
. AAPH
M = /uz (z,y)dy (A.2.5)
Vo
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Dividing by the free molecular solution for flow through a slit My, = (HAP) / (vgy/7) we finally

obtain the dimensionless flow rate

W = .M = 4y/7G (A.2.6)
FM
with the reduced flow rate defined as
1/2
G|, = / Uy (2,y) dy (A.2.7)

0

The quantity G is obtained by the numerical results and W is tabulated in the previous chapters of
this work. When results in dimensional form must be provided, the quantity I/ in Equation (A.2.6) is
multiplied by the free molecular solution for the conditions of interest, that is

HAP

M=W
Uoﬁ

(A.2.8)

2.2 Non-linear flow

Similar derivations are given here for non-linear flow through a tube. The flow rate definition

(6.21)
R
M =2r / [mn (2, 7)) Gy (&, 7) 7dr (A.2.9)
0

is non-dimensionalized according to (6.4)
M =27 (mng) (vo)(R?) /p T, 1) Uy (T, 7) rdr (A.2.10)
0

Then, we multiply and divide with vg = \/2(kg/m)T} and use the ideal gas law Py = nokgT) to get

2F,
Vo

M =2rR*= [ p(x,r)uy (z,r)rdr (A2.11)

0

Finally, dividing by the free molecular solution My, = R2\/7P,, /vy, we get the dimensionless flow

rate
M

FM

W =

= 4/7G (A.2.12)
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where the reduced flow rate is defined as the integral

1

G|, = /p(x,r) ug (x,7r) rdr (A.2.13)

0
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Derivation of discretized equations

The procedure of the finite difference equation derivation consists of integrating to remove all
derivatives and using the trapezoidal rule when the remaining integrals can not be calculated analyti-
cally. In particular, for the case of Equation (4.46)

0059@—cp5in8@+ oh
or 00 “or

+5h—5{p+7<c2—§)+2c-u1 +g(z,c;) (A.3.1)

we can apply the operator (4.71)

Aac Af; Ar;
et 0+ =t rit =5t

A= / / / (-) drdfda (A3.2)

Az
Tp— 2k 93'7

on both sides to get

Ax Ab;
Tp+—5k 0+ % rit

’ Oh  c,sin0dh Ok
/ / / [ COSQE— . %+cx%+5h]drd9dx—

Ar;

Az A0 Ar;
2% e 2T
2 9] 2 Ti 2

Tp—

A’I‘,L

Ctk-‘rArk 9 +

/ / / { {HT <C - ;) 2 “} +g(x,cx)} drdfdz (A3.3)

a:k— ;

and if we calculate some 1ntegrals analytically we obtain

apt A2k 0,4 550 ot 25k it S
1
Cp COS Qj / / [hH_ — hz_] dfdx — Cp sin 0]‘ / / {— (hj+ — hj_):| drdx
T
Tp— Azk 9 —Ai ZEk—Agk ’V‘i—AQTi
ot B2 0,4 500
/ ey — ] drdd  + 0 / / / hdrdfda = (A.3.4)
'r Tp— ]
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Ar;

Ax
$k+72k i+

5 (A;) / / [p +7 (02 — g) + 2¢- u} drdz + g (z,c;) (AzpAb;Ary)
Ax Ar;

7

T
where for example by = h (r; &£ &%), hje = h (Hj - %), hie = h (2, &= 22£) and so on. We have
also substituted cos 0; = £ [cos (0; + A0;/2) +cos (0; — Ab;/2)] and sin6; = 3 [sin (0; + Ab;/2)
+sin (6; — A#;/2)] from trigonometric equalities, since cos (Af;/2) = 1 is a very good approxima-
tion because of the relatively dense angular grid.

Finally, we apply the trapezoidal rule on Equation (A.3.4)

¢, cos ;A0 Axy,
P iRYj
1 (Pt gt R jmgor — Pz oy — Pi ket

Fhig gk + i b = hiojph —hiojk-)

Cp sin HjAr,-Aa;k 1

(Pit g ot — i oot + Pt e — P i i)

4 Tir
1
+— (i g et = Piejm ot i o — iy i)
e, AT;AG;
= (g & P + hicjir + his ot
—hit k- = Pig ok — P e — hie k)
OAT; A0 Ay,
g (argr Py + i o+ hie
Fhit g k- + it + P+ hie k)
. 5AT1AQJAIk

1 {(Pir ot + Pic gt + Piro— + Pi i)

+ {(%)2 +(c.)’ - ;} (Tig ket Tim b + Tipoe + Tie k)
+2¢, €08 0 (Wit b+ + Uriv ot + Upig o T Urie )
+2¢4 (Ug it bt + Upie ot + Ug it e + Ugie o)} — gup (Tk, €) AT AO; Ay,
Finally, after dividing with Ar;Af;Ax;, and applying the discretization in the velocity magnitudes,

(1,m)

: l m
Le. ¢y, = ¢ e = O Pit j o+ — hi+7j+7k+,

we obtain the finite difference equation shown in Table

4.1.
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Grid description

The discretization in the physical space is dense near the corner points and gets sparser as we

move away into the tube or in the inlet/outlet containers. The intervals vary according to

Ar { Azip(1+m) , &< Q

! A.]?i,l (1 + 7]) , >0
L (A41)

Ar _{A’I”H_l(l—FU) s 7’<PiL

! ATZ_1(1+77) s r>R

for the left corner and )
Ax: = { A'ri+1 (1 =+ 77) ) T < IA-Jchannel

AZEi_l (]. + 77) s T > L channel (A 4 2)

Ap — AT1+1(1‘|‘77) , 7’A‘<f:£
! AT1_1(1+77) , T>R

for the right corner. The minimum intervals Az, Arg are chosen according to

Ny—1 )

> Axy(l+m) =1 (A.4.3)
0

N,—1 )

> Arg(l+m) =1 (A.4.4)
0

and remain constant when we enlarge the computational domain (e.g. when L. s,/ Ly is increased) for
a constant number of nodes in the first unit length V., in order to ensure that changes in the quantities

of interest are only due to the domain size modification.
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Conservation principles

5.1 Introduction
All conservation principles are easily deduced by taking appropriate moments of the governing
equations. The right hand side (collision) terms are always eliminated, since this is a property that all

collisional models must posess (collisions can not create or destroy mass, momentum or energy).

5.2 Non-linear heat transfer

For plate geometry, mass, momentum and energy conservation principles are obtained by op-

/oo /oo 7(-) degdeyde, (A.5.1)

—00 —00 —0OQ

erating on Equation (5.11) with

(o <JuNNe oo o]

///(~)cydczdcydcz (A.5.2)

—00 —00 —0O0

[© < JNNe olNe o]

/ / / () (2 + cf, + cﬁ)dczdcydcz (A.5.3)

—00 —00 —0O0

to get
Quy _ (A.5.4)
dy
P
9Py _ 0 (A.5.5)
Ay
94y _ (A.5.6)
Ay
For the cylindrical case, we apply the operators
oo 00 27
/ // (+) cpdfde,de, (A.5.7)
—oo 0 0
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00 oo 2
/ / / (+) ¢ cos Odfdc,de, (A.5.8)
o0 0 0

0o oo 2

///() (c;—l—cz)cpdﬁdcpdcz (A.5.9)

"0 0 0

on Equation (5.40) and take into account that

cpsinfdg 10 ' g
00 roo [(cpsinb) g] " (cpcos8) (A.5.10)
cyeosfsinfdg 19 (¢, cos ) (¢, sin6)”
b I _ - 2 : _\*p P
. %0 = 750 [(c2 cosBsinb) g] gty (A5.11)

(cpsind)’0g 10 (c2cosfsinf)

. %= 190 [(cp sin 0)29} — 279 (A.5.12)
The conservation principles are
Arur) _ (A.5.13)
or
oP,, 1
5 [Pyg — Py] =0 (A.5.14)
0P, 2P,
) L) (A.5.15)
or r
20e) _ (A.5.16)
or

The continuity equation, associated with the no penetration condition at the cylindrical walls, yields
u(r) = 0, while the energy equation results to ¢ (r) r = constant. Finally, since p,. # pgg, the r-

momentum equation implies that dp,../Or # 0.

5.3 Linearized flow through a channel

In the case of linearized flows, the mass flow conservation is found by acting on equations

[ 0/ (-) epdc,df (A.5.17)
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and o
/ //() de,dfde, (A.5.18)
—oo—7m 0
to obtain
Ou, — Ouy
— =0 A.5.19
ox oy ( )
and
1orw) | Ous _, (A.5.20)

r Or ox

since the right hand side terms are eliminated, as expected.

5.4 Non-linear flow through an axisymmetric channel element

The mass conservation principle is found by acting on the governing equation (6.8) with

7 ] 7 (-) de,dode, (A.5.21)

—oco —m 0

and results in
19(rpur) | 9lpus) _ (A.5.22)
r Or ox

which is quite similar to the expression for linear flow through a cylindrical channel.
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Appendix 6

Analytical solutions

6.1 Introduction

In some cases, it is possible to derive analytical solutions in the two limits of the Knudsen
number: the free molecular regime (Kn — oo) and the hydrodynamic regime (Kn — 0). Sometimes,
we are also able to extend the hydrodynamic approach up to the slip regime (Kn < 0.1) if appropriate
boundary conditions are taken into account. Closed form expressions are provided in this chapter,

serving as benchmarking criteria for our numerical methods.

6.2 Free molecular regime

In the collisionless regime (6 — 0), the right hand side of the Boltzmann equation vanishes

and the problem can be solved analytically by the method of characteristics.

* Non-linear heat transfer between parallel plates

Since there are no collisions, the distribution function remains constant for every ¢y and equal to
the boundary conditions. Therefore, the distribution function is

(D) ¢?

= Wa 2kp Ty for é-y >0 (A61)
™M oEE fore, <0 (A.6.2)
= (QWkBTl)?’/Q y .0.

where nq,ny, T, T5 are the densities and temperatures on the right and left wall respectively.
Using the above, we find that the density remains constant and equal to ng = (n; + ng)/2, the

impermeability condition at the walls (u, = 0) gives ny/ny, = /15/T and we obtain

m =200/ (/T +VTh) (A.6.3)
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ne = 2n0vV/Ti/ (VT +VTh) (A.6.4)

Then, the heat flux can be found by its definition, Equation (5.6), along with Equations (A.6.1)

and (A.6.2). After non-dimensionalizing, the heat flux is

0 == (VIFB=P=F = VI=F =P+ ) = —=/Am (V7 — V7)) (A65)

NG
The temperature profile is calculated by

rim = 1= B = 7T (A.6.6)

* Linearized heat transfer between parallel plates

For the linear problem, the boundary conditions are

1 3
h+}y::ﬁ:% = pwall|y::ﬁ:% + 2 (02 - 5) (A.6.7)

In a similar manner, this leads to

1
Pfmlin = Po = 5 (pwall‘y:% + pwall’y:_%> (A.6.8)
1
pwall’y:i% = po £ 1 (A.6.9)
1
Qfm,lin = ﬁ (A.6.10)
Tfm,lin = 0 (A611)

* Non-linear heat transfer between coaxial cylinders

The right hand side of Equations (5.45) and (5.46) becomes zero and in the case of Maxwell
diffuse boundary conditions (o = «,, = 1) the reduced distribution functions are given for

0 € [-n/2,7m/2] by

_ P %
¢ (7, 6,0) = mexp <—1 n 5) (A.6.12)
2
¢(7;Cp70) = S—ZCXP (_125) (A613)
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and for 0 € [r/2,37/2] by

1
¢(1,¢,0) = —exp (—c}) (A.6.14)
T

¥ (1,¢,,0) = %exp (=) (A.6.15)

where the impermeability parameter p,, is obtained by the no penetration condition according

to
371'/2 o0

2/
-V A.6.
Puw e / /(cpcose) cpde,db (A.6.5)

w/2 0

Finally, by substituting these expressions into Equations (A.6.5) and (5.51)-(5.53) it is found

that
1
ho =5 (A.6.16)
1 1
pir) =1 <ngﬁ Lo 91> (A.6.17)
7(r)= %% [91 1—|—5+(7T—91)} (A.6.18)
and
() = f\% (A.6.19)

The discontinuity angle #; = sin~' (v/r) is displayed in Figure 5.1. This problem can also be
solved when the Cercignani-Lampis boundary conditions are imposed on the inner cylinder. It

is found that in this case the heat flux is given by

g =22 (o + 20 — ;) (A.6.20)

2r\/m

which is similar to the linearized case appearing in [ 113]. It is seen that, although the distribution
function is independent of r in the free molecular limit, the macroscopic quantities still depend
on the space variable. The numerical solution for §; = 0 is in excellent agreement with the

analytical results of Equations (A.6.17)-(A.6.20).
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* Flow through a slit/orifice

At each point on the cross-section of a zero length opening, the distribution function is the

Maxwellian at the upstream vessel conditions for positive axial velocities

2

Nin ___ w5 for €, > 0 (A.6.21)

fin=—""=73
(2mkpTy)*?

and the Maxwellian at the downstream vessel conditions for negative axial velocities

Tou __&
fout = W‘B 2k Ty for&, <0 (A.6.22)

By substituting these expressions in the definition of the macroscopic velocity and integrating

along the opening, one can calculate the flow rate.

1. Linearized flow through a slit

After the linearizing according to Equation (4.1), non-dimensionalizing with (4.3) and

projecting with (4.7) and (4.8), Equations (A.6.21) and (A.6.22) read as
Vin=1 X; =0 for& >0 (A.6.23)

Vour =0 Xoup =0 for&, <0 (A.6.24)

and using Equation (4.13) we obtain that

1

e = 5= A.6.25
B 2y ( )
Substituting this result in Equation (A.2.4) we reach the final result
: HAP
Mgy = (A.6.26)

’Uoﬁ

2. Linearized flow through an orifice

Similarly to the previous case, the upstream/downstream distribution functions are

hin=1 for& >0 (A.6.27)
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Bow =0 foré&, <0 (A.6.28)

and the macroscopic velocity definition, Equation (4.18), leads to

1
= —— A.6.29
Integrating in the surface of the opening and dimensionalizing, we obtain
. R2AP
Mgy = VTRAP (A.6.30)
Vo
3. Non-linear flow through an orifice
After non-dimensionalizing Equations (A.6.21) and (A.6.22) with Equation (6.4)
1 .
POU —
Gout = 3_/56 “ forc, <0 (A.6.32)
T

Using the definition of the dimensionless macroscopic velocity, Equation (6.16), we obtain

Pl = ﬁ (1= P,u) (A.6.33)
Then, the reduced flow rate GG can be calculated from Equation (A.2.13)
G = L (1= Pout) (A.6.34)
Ve
and the final free molecular solution for an orifice and an arbitrary pressure drop is
Mpy = ﬁf;jp”‘ (1 — Poy) (A.6.35)

6.3 Hydrodynamic regime
In the continuum regime (0 — o0), we can apply the hydrodynamic equations, as well as the
constitutive relations. We can also extend our study to the slip regime by including appropriate velocity

slip/temperature jump boundary conditions.
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* Non-linear heat transfer between parallel plates

For the hydrodynamic limit we have

d ar
k = A.6.36
i (5) ¢ (030
where £ is the thermal conductivity, with
k T\"
== A.6.37
e (%) (4637

and boundary conditions 7' (—1) = Tp + AT/2 and T' (3) = Ty — AT /2. After integrating

twice, we obtain

7§ (w+1)
ko

Tt = le1§ + c] (A.6.38)

where the two constants are determined by

AT o Te ]t AT aTg " 2T (w+1)
To + A Ty — — — _— A.6.39
[ 0o+ 5 + Cr kOT‘”} 0 5 CrA ko TY o 2 ( )
AT (Tt AT aTe 1t HTY (w+1)
To+ — + (A - - =——0 "¢ (A6.40
[ 0+ + (r k:oTw} [ 0 CrA k’oT“} o ca ( )
If we set (7 = 0 we obtain
2/3
T2 _ 32 B2 3/
T=|-2 ! 2 ! A.6.41
2H * 2 ( )
for the case of hard spheres (w = 1/2) and
2ATTy  AT? +4T¢
T = \/ — - A.6.42
7 T 1 ( )
for Maxwell molecules.
* Linearized heat transfer between parallel plates
The heat transfer equation in the slip regime is
d*T
dy?
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Using the boundary conditions containing temperature jump terms

AT dT
T|g=¢g =T, + 5 + (A i (A.6.44)
we obtain
AT 200\
T = T (1 + %) y+To (A.6.45)

where (r is the temperature jump coefficient, equal to 1.954 for the S model. The corresponding

heat flux is equal to

. AT 260\ . 157 2¢r\ "
15 26\
I =g (1 + = ) (A.6.47)

The results are in very good agreement with numerical results for 6 = 150, while they also

remain relatively close for 6 = 15.

* Non-linear heat transfer between coaxial cylinders

The Fourier law is introduced into the energy equation to give

0 or
- T Al = A.6.4
57 {k( )afr} 0 (A.6.48)
where, based on the IPL interaction, we have
T w
k(T)=k(Tg) <—) (A.6.49)
Tp

Substituting Equation (A.6.49) into (A.6.48) and nondimensionalizing the resulting equation

according to Equation (5.37), leads to the temperature distribution

1/(wH1)
T(r) = { (14 ) —1] 112—; + 1} (A.6.50)

For hard sphere molecules, following the calculations carried out in [36] it is deduced that

5 (148" 1]
¢(r)=— 5in (A.6.51)
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Expressions (A.6.50) and (A.6.51) are in very good agreement with numerical results for large
values of 9y but only in cases with small temperature difference. For large [ the temperature
gradient at the wall becomes important and temperature jump boundary conditions must be
introduced. However, the jump solution is not provided here, since the mathematical derivation
becomes complex when £ = % (T') and w is involved, and more importantly does not really
support further benchmarking of the present work. In the linear case, the solution is much simpler

and is given in [36].

* Linearized flow through a slit

Roscoe [196] and Hasimoto [197] studied the problem of linearized slit flow in the hydrody-
namic regime. Their result is

3/2

Numerical simulations with the linearized BGK for 6 = 20 have indicated that the analytical

solution is achieved with a deviation smaller than 2%.

* Linearized flow through an orifice

The same authors [196, 197] studied the problem of linearized orifice flow in the hydrodynamic
regime and obtained

2
W=—=¢ A.6.53
S (A.6.53)

There are deviations with the dimensionless flow rate shown here and values of § closer to the

hydrodynamic regime need to be considered.
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