
H.265/HEVC decoder

optimization

Submitted by

Antonios Kalkanof

Advisor

Prof. Ioannis Katsavounidis

University of Thessaly

Volos, Greece

February 2014

1



Acknowledgements

I am grateful to my family and friends for their support over the years.

I sincerely thank my advisor, professor Ioannis Katsavounidis, whose advice and
wisdom always inspired and influenced me.

2



Contents

       Introduction
Chapter 1. Video Encoding

Raw video
Video Codecs

Introduction
Basic principles
Pre/Post processing Stage
Encoding/Decoding Stage
Pixel prediction
Residual coding
Entropy coding
Deblocking filtering
Brief History

Chapter 2.
High Efficiency Video Coding (HEVC)

Introduction
Partitioning

Basic blocks
Block arrangements and Parallelization tools

Inter-prediction
Intra-prediction
Residual Coding
In loop filters
HM 10.0 reference decoder

Building
Profiling

Chapter 3. Decoder optimizations
Optimized Interpolation Filter
Optimized Deblocking filter
Further optimizations

Misc functions
Microsoft Visual Studio

Final Results
Future work
Summary - Conclusions
References

3



Introduction

In 2013, JCT-VC released the H.265/High Efficiency Video Coding (HEVC)         

standard, the highly anticipated successor of H.264/MPEG4-AVC. Designed to evolve         

the video compression industry, HEVC supports video resolutions of up to 8k x 4k and              

further intends to reduce the average bit rate over H.264 (the industry’s standard for             

the past ten years) by an additional 50% at the same video quality.

In order for the standard to be tested and evaluated by users, reference source             

code, known as HEVC test Model (HM), is provided online for both encoder and             

decoder. Both implementations are quite slow since they are coded in C++ and are             

not targeted for performance but merely for research and code-readability. Reference          

test data, such as encoded bitstreams, is also available online, covering various           

profiles, bitrates and resolutions.

In this thesis we optimized the HM 10.0 reference decoder on an x86 Windows             

7 platform. We applied techniques such as data parallelization, using SSE2 SIMD           

instructions, as well as C++ specific optimizations and achieved a total speedup of up             

to 2.15x. Results showed that 17 out of the 20 reference bitstreams we tested with              

video resolution of 832x480 at various bitrates, could be decoded in real time using             

our optimized HM decoder.

We begin with a brief introduction to Video-encoding basics, after which we           

present the new video codec standard, HEVC. We continue by explaining in detail the             

optimizations we applied on the HM decoder and conclude our work with our results             

and future work.

4



Chapter 1. Video Encoding

Raw video

Digital video (also referred as raw video) comprises of a series of orthogonal            

bitmap digital images displayed in rapid succession at a constant rate. These images            

are called frames and the rate at which they are displayed is called fps (frames per               

second). Each frame consists of pixels.

Codecs use the YUV format (YCbCr 4:2:0) which takes into account human           

perception and represents data with luminance(Y) and chrominance components (Cb         

Cr). In specific for every 4 luminance (Y) pixels, 2 chroma (1 Cb and 1 Cr) pixels                

correspond, as shown below.

Fig. 1 YCbCr 4:2:0 format. 4 luma (Y) and 2 chroma (Cb,Cr) pixels

A pixel has a fixed value, typically 8 bits. The more bits the more subtle              

variations of colors can be reproduced. If it has a width of W pixels and a height of H                  

pixels we say that the frame size is WxH.

For example, an hour long video with a frame size of 720x480 and a             

frame-rate of 30fps (NTSC) (or equivalently, 720x576 and 25fps for PAL systems) has            

720x480 luma pixels and (360 x 240)*2 chroma pixels per frame, in total            

720x480*1.5*30*3600 = 56GBytes.

5



In specific,

● pixels per frame = 720 * 480 * 1.5 =  518,400

● bits per frame = 518,400 * 8 =  4,147,200 = 4.14 Mbits

● bit rate  = 4,147,200 * 30 =  124.4 Mbits/sec

● video size = 124.4  * 3600 =  56 GBytes!

Today’s internet resources and storage capacities cannot handle this excessive         

amount of data, unless it can be reduced by orders of magnitude. This is the work of                

a software or hardware program, called video codec.

Video Codecs

Introduction

A video codec first encodes the original source, achieving a high compression           

ratio, for example 50:1. After the encoded video is transmitted/stored, the codec           

decodes it, thus producing a lossy representation of the original. It is specifically, the             

decoding stage that is standardized by the different video standards that have           

emerged over the years (MPEG-1, MPEG-2, H.264, HEVC). Finally the reproduced result           

can be rendered. Video codecs in general sacrifice quality for quantity.

Fig. 2 Basic stages of video codecs

6



Basic principle

A video encoder works by using entropy coding techniques to reduce the size            

of raw video. As known, any signal has inherent entropy (the minimum amount of             

info that is necessary to represent a signal without distortion) and a corresponding            

rate-distortion function which shows the minimum amount of information        

necessary to represent a signal at a given distortion. As a result an encoder typically              

sends a much smaller amount of information than the original uncompressed          

signal. A video decoder can recover the original signal or an approximation to it,             

from the information sent by the encoder.

Fig. 3 Example of exploiting temporal redundancy between frames

Video encoding relies on two basic assumptions. The first is that human eye            

sensitivity to distortion in a picture is smaller for high frequencies. The second is             

that pictures share a lot of common pixels, although in different locations, even            

when movement occurs, between one frame and the next. Data can be reduced both             

by allowing distortion where it is less visible (ie high frequencies) and by sending             

only the difference between one picture and the next.

7



Pre/Post processing Stage

Usually input devices and video codecs use different color formats to represent           

images. For example cameras represent the captured data in the RGB field using 8             

bits for each of the three colors (24 bit color depth). Codecs, on the other hand, use                

the YUV format, described above. Conversion from one format to the other is            

required before encoding and after decoding.

Encoding/Decoding Stage

Block-based processing

A video codec divides a frame into evenly sized blocks, known also as            

Macroblocks (MBs) or Coding Tree Blocks (CTBs). These are the basic processing units            

and each of these blocks passes through all of the following stages, in order for the               

whole frame to be encoded/decoded.

Fig. 4 A frame partitioned into blocks

Frame Types

Video frames are typically grouped into I and P/B. I (intra) are also called intra              

frames and are encoded independently, similar to the way JPEG pictures are coded.            

8



P/B frames on the other hand, where P/B stands for predictive/bi-predictive are           

inter-coded, meaning their decoding depends on data from other decoded frames.

Fig. 5 Example of types. Notice how P-frames are

dependent on I-frames, while B-frames depend on both

Pixel prediction

Intra-Prediction

Intra coding exploits spatial redundancy, which exists between regions of the          

same frame, by using pixels that have already been coded - and thus known to the               

decoder, as well - as reference for the current block. For example, horizontal intra             

prediction uses pixels from the border of the horizontally previous block as reference            

for the pixels of the current block. More details will be provided in subsequent             

sections.

Motion Estimation/Compensation (Inter-prediction)

Inter-coding uses motion estimation which takes advantage of the temporal         

redundancy that exists between regions of different frames. It is in this step that the              

different pixels are identified, making it the most important and the most compute            

intensive part of a video encoder. Instead of encoding a whole block, an encoder only              

calculates an offset (called a Motion Vector), which represents how much the current            

block has to move relative to a block in a reference frame. Finding the best motion               

vector (or equivalently the optimal reference block) out of multiple locations in           

different frames, is a process called Motion Estimation and is executed by the            

encoder. The reverse process, called Motion Compensation, is executed by the decoder           

and it uses the provided motion vector, in order to assemble the correct prediction.

9



Fig. 6 Motion Estimation

Residual coding

After finding the best motion vector, the encoder calculates the difference          

between the current block and the reference block thus obtaining pixel differences           

that are further encoded.

Transform

The first step to improve coding efficiency to de-correlate the video signal,           

transforming it from the time to the frequency domain. In doing so, we obtain less              

non zero values in the Frequency domain compared to the pixel value differences in             

the time domain. The Discrete Cosine Transform (DCT) and Inverse DCT (IDCT) are            

useful for this purpose.

10



DCT function

Quantization

The frequency coefficients computed in the previous step are further         

quantized, which makes the encoding process lossy. However, the amount of          

distortion can be controlled by a quantization parameter (QP), taking values in the            

range [0,51], where QP = 0 represents no quantization (lossless quality) and QP = 51              

means heavy distortion and high compression ratio. Quantization typically involves         

dividing frequency coefficients with an integer parameter, known as QP, and keeping           

the integral part.

Entropy coding

By now, the necessary data for transmission/storage (i.e motion vectors and          

quantized DCT coefficients) are available. However there is still redundancy in this           

data that can be exploited. Algorithms in this stage, such as Huffman encoding and             

Arithmetic coding, perform lossless compression thus determining the smallest        

amount of bits needed to represent this data. Thus, the final encoded bitstream is             

ready for storage or transmission.

Deblocking filtering

Finally because of the blocking nature of all the algorithms (block-based          

coding,motion estimation, transform etc) artifacts typically appear in the decoded         

video. Artifacts are uneven, in terms of location, regions, usually concentrated          

around block edges and are noticeable by the human eye. That’s why each decoded             

frame further undergoes one or more filtering processes that smooth out transitions           

between blocks.

11



Without deblocking With deblocking

Fig. 7 Effects of the Deblocking filter

Brief History

Many successful and well-established standards have been developed. Starting        

from MPEG-1 and MPEG-2 in 1993 and 1996 respectively, which set the ground for             

video compression, later MPEG-4 and H.264, also known as Advanced Video Coding           

(AVC), emerged, the latter being the industry standard for the past 10 years. H.265,             

better known as HEVC, is H.264’s successor and intends to reduce data rates by             

approximately 50%. The next picture shows a brief history of the standards and the             

achieved compression ratios.

12



Fig. 8 Compression ratios

13



Chapter 2.

High Efficiency Video Coding (HEVC)

Introduction

HEVC was developed by the Joint Collaborative Team on Video Coding (JCT-VC),           

a partnership consisting of the ITU-T Video Coding Experts Group (VCEG) and the            

ISO/IEC Moving Picture Experts Group (MPEG).

Designed to evolve the video compression industry, HEVC addresses        

essentially all existing video applications but intends to reduce the average bit rate            

over H.264/MPEG4-AVC by an additional 50% at the same video quality, and provide            

substantially higher quality at the same bit rate. HEVC supports video resolutions of            

up to 8k x 4k and also provides tools to expose and exploit parallelism suitable for               

modern multicore/manycore architectures. Finally, the standard tries to remain        

network-friendly by targeting a wide range of devices and transport systems.

H.265 follows the well established hybrid (motion-compensated, transform +        

quantization) video encoder schemes, shown below.

14



Fig. 9 Hybrid HEVC encoder

Fig. 10 HEVC decoder

15



Partitioning

Basic blocks

The Basic Partitioning Unit

H.265 doesn’t use 16x16 macroblocks like its predecessors (MPEG1/2, MPEG4,         

H.264). We briefly mention that a macroblock in these older standards consists of 3             

arrays, one of size 16x16 for the luminance (Y), and two for each one of the               

chrominance (Cb/Cr) components corresponding to the same physical location on a          

video frame. Depending on the chroma sampling, the chroma arrays can be 8x8 for             

the most popular consumer video format, called YUV420, 8x16 in case of YUV422 and             

up to 16x16 for the YUV444 color format.

In H.265 nomenclature, combining information from 3 color component        

arrays forms a unit, while each one of the components is termed a block. For ease in                

notation, we will be using the luminance component to describe H.265’s basic           

partitioning in the following. HEVC pictures are divided into so-called coding tree           

blocks, or CTBs for short, which appear in the picture in raster scan order. Depending              

on the stream parameters, they are either 64x64, 32x32 or 16x16, and this            

information is coded in the sequence-parameter-set (SPS) structure.

Macroblock partitioning (previous codecs) CTB partitioning (HEVC)

Fig.11 HEVC basic partitioning

16



Each CTB can be split recursively in a quadtree structure, all the way down to              

8x8. So for example a 32x32 CTB can consist of three 16x16 and four 8x8 regions. As                

another example a 64x64 CTB can consist solely of one 64x64 region. These partitions             

of a CTB are called coding blocks, or CBs. CBs are the basic unit of prediction in HEVC.                 

The CBs in a CTB are traversed and coded in Z-order.

Fig. 12 Example ordering in a 64x64 CTB.

Numbers 0 through 15 illustrate the Z-order traversal

Prediction blocks

Solely for the purposes of Inter and Intra prediction, a CB can be further             

subdivided (not recursively, only once) into prediction blocks, PBs for short. This           

decision is made by the encoder and it’s conveyed to the decoder. For intra-prediction             

a CB can be further split, with a smallest PB size of 4x4. For inter-prediction,              

alternative subdivisions are available since 4x4 (subdivision #4 in the figure below)           

is forbidden.

17



Fig. 13 PB subdivisions

Intra-prediction subdivisions: 1,4

Inter-prediction subdivisions: 1,2,3,5,6,7

Transform blocks

For residual coding, a CB can be recursively subdivided (the same way CTBs are             

split into CBs) into transform blocks, TBs, of size 4x4, 8x8, 16x16 or 32x32, as shown               

below on Fig.X Partitioning of TBs and PBs is performed independently, since it            

happens at different stages, thus PBs and TBs need not be aligned.

Fig. 14 TB subdivisions

18



Fig. 15 Transform quadtree recursive partitioning  (CBs full lines, TBs dotted lines)

HEVC supports video of resolution up to 8k x 4k, so it is necessary to offer so                

many partitioning options, in order to cover videos of different resolutions/contents.          

It provides the encoder great flexibility to use large partitions when no motion, or             

large object motion is present and small partitions when more detailed predictions           

are needed (small object motion). This leads to higher coding efficiency, since large            

prediction units (up to its maximum, the size of CTBs) can be cheaply coded when              

they fit the content. Furthermore, when some parts of a CTB need more detailed             

predictions, these can also be efficiently described. Quadtree representations,        

although not a novel idea, are applied extensively in H.265. In previous standards,            

they were limited to the “4MV” mode in MPEG4-part2 (partition of a 16x16            

macroblock into 4, 8x8 prediction blocks) and variable prediction sizes between 4x4           

and 16x16 in H.264.

Chroma sampling

HEVC supports YCbCr 4:2:0 sampling which means that each luma CTB of LxL            

size is followed by 2 Chroma CTBs of size L/2 x L/2. The structure which holds all this                 

data is called CTU (coding tree Unit). A CTU is a logical unit - the actual data is                 

contained in the corresponding CTBs, which are the ones that undergo all           

subsequent processing. Respectively there are CUs, PUs and TUs, corresponding to          

CBs, PBs and TBs. One needs to keep in mind that chrominance CTBs, CBs, PBs and TBs                

follow the quadtree structure of their luminance counterparts.

19



Fig. 16 CTU logical structure with YCbCr 4:2:0 sampling

Block arrangements and Parallelization tools

Slices

Slices are consecutive CTUs that are processed in raster scan order. A picture is             

a collection of one or more slices. The default encoder configuration is 1 slice per              

frame. Two slices can be correctly decoded independently, meaning that all data           

required for the different decoding stages (transform,quantization,motion      

compensation) is available in each slice header. The algorithms applied on each           

stage have no data dependencies between slices of the same picture, with the            

exception of the deblocking filter when applied on slice boundaries.

There are 3 kind of slices

1. I-slices, where only intra-prediction is allowed for every CTU.

2. P-slices, allow both intra-prediction and inter-prediction with only one frame         

per PB can be used as a reference (uni-prediction)

3. B-slices, allow intra-prediction and inter-prediction, with both uni-prediction       

and bi-prediction. In the later case, pixels from two different frames can be            

averaged - or weighted-averaged, in general - to form prediction for a given            

20



PB.

Fig. 17 Slice partitioning

Parallelization tools are used in order to provide implementability for parallel          

processing.

Tiles

Tiles are self-contained and independently decodable rectangular regions of        

the picture. Multiple tiles may share header information by being contained in the            

same slice. Alternatively, a single tile may contain multiple slices. A tile consists of a              

rectangular arrangement of CTUs.

21



Fig. 18 Tile partitioning

Wavefront parallel processing (WPP)

Finally, with wavefront parallel processing, a slice is divided into rows of           

CTUs. Decoding of each row can begin as soon as a few decisions that are needed for                

prediction and adaptation of the entropy coder have been made in the preceding            

row. This supports parallel processing of rows of CTUs by using several processing            

threads in the encoder or decoder (or both), typically with some time-offset among            

them. For design simplicity, WPP is not allowed to be used in combination with tiles.

Fig. 19 WPP partitioning. Workloads of threads T1 and T2 are distanced by 2 CTUs

Temporal sub-layering

A more subtle form of parallelization can be achieved with temporal          

sub-layering support. Each frame belongs to a layer identified by a temporal id            

(0,...6). Frames on the same temporal layer with non overlapping dependencies can           

be decoded in parallel as shown in the example below.

22



Fig. 20 Example of temporal sub-layering. Red colored frames have temporal id = 2.

When their dependencies are resolved, they can be decoded in parallel.

Inter-prediction

HEVC, just like H.264, uses quarter pixel precision for Inter-prediction, which          

means that a motion vector can point to units of one-quarter the distance between             

adjacent luma samples. For chroma samples the precision is determined from the           

chroma sampling format, which for 4:2:0 YCbCr, is one-eighth the distance of chroma            

samples.

23



Fig. 21 Example of quarter pixel precision.

Grey squares represent integer (original) pixel sample.

Orange samples are to be generated.

Non-integer position samples have to be generated by the decoder, since          

frame data contain only integer pixel values. HEVC uses separable application of an            

8-tap filter for the half-sample luma positions and a 7-tap filter for the            

quarter-sample luma positions. In H.264, there is a 6-tap filter applied separably in            

order to obtain half-pixel values. Quarter-pixel values are then obtained by          

averaging half- and integer pixel values. In H.265, rounding is only applied after the             

final filter pass has been completed.

24



Fig. 22 Luma interpolation positions

upper case A i,j : available samples on integer positions

lower case (rest): samples that must be generated.

a,b,c & d,h,n : only one filter application needed

e,f,g,i,j,k,p,q,r: two filter applications required.

1-D Filter pass

Samples labeled a0,j, b0,j, c0,j, di,0, hi,0 and ni,0 are derived from samples Ai,j             

by applying the 8-tap filter for half-sample positions (b0,j and hi,0) while the 7-tap             

filter is used for the quarter-sample positions ( a0,j, c0,j, di,0 and ni,0) as follows:

25



Fig. 23 First filter pass formulas

B is the Bitdepth, in bits per luma/chroma sample, which is usually 8. This             

means that the rounding operation (arithmetic right shift by 0, in this case) can be              

omitted. The filter coefficients for Luma samples are the following - hfilter[] is the             

8-tap filter applied for half-pixel positions and qfilter[] is the 7-tap filter is applied in              

the form given below, or reflected for the two quarter-pixel positions, ¼ and ¾,             

correspondingly.

Fig. 24 Luma interpolation filter coefficients

2-D Filter pass

In order to calculate the rest of the positions, the filter is applied again but              

now on the non-integer samples calculated in the previous step, as shown below.            

When B = 8, the order of the filter applications is interchangeable because there is no               

loss of precision.

26



Fig. 25 Second filter pass formulas

After this step, weighted prediction is applied if necessary. While H.264          

supported both implicit and explicit prediction, HEVC supports only the latter. The           

encoder conveys the specific values, which are scaled, offset and rounded by the            

decoder, using the following formula

src0[x][y] * w0+ src1[x][y] * w1 + (( offset0 + offset1 + 1)>> 1 )

Chroma filtering requires only 4 adjacent samples (4-tap filter) and, as we           

explained earlier, the accuracy is one eighth of a pixel. Coefficients for positions ⅛,             

2/8, ⅜ and 4/8 correspond to filter1[], filter2[], filter3[] and filter4[], while positions ⅝,             

6/8 and ⅞ are reflected versions of filter3[], filter2[] and filter1[], correspondingly.

Fig. 26 Chroma interpolation filter coefficients

27



Intra-prediction

Intra prediction is similar to the one in H.264 but with additional modes            

available. In total, 35 modes are available, 33 of those are directional. The other two              

are the DC (use the average of all neighboring pixels as common prediction for all              

pixels in current block) and Planar (form a bi-linear interpolation surface with           

respect to neighboring pixels) modes.

Residual Coding

Transform

Integer basis functions are integer versions of the discrete cosine transform          

(DCT) and are defined for square TB sizes 4x4, 8x8, 16x16, and 32x32. For the 4×4               

transform of luma intra-picture prediction residuals, an integer transform based on          

the discrete sine transform (DST) is alternatively specified.

Quantization

As in H.264/MPEG-4 AVC, uniform reconstruction quantization (URQ) is used in          

28



HEVC, with quantization scaling matrices supported for the various transform block          

sizes. Quantization parameter (QP) varies from 0 (no quantization applied) to 51           

(highest compression ratio, with heaviest compression artifacts).

Context-adaptive-binary-arithmetic-coding (CABAC)

HEVC specifies only one entropy coding method, CABAC, rather than two          

(Huffman coding/arithmetic coding) as in H.264/MPEG-4 AVC. The core algorithm of          

CABAC is unchanged, using different contexts for the various syntax elements          

(motion vectors, transform coefficients), converting each syntax element into a         

binary string first and using binary arithmetic coding, with adaptive probability          

estimates for each bin (0/1).

In loop filters

After decoding of a frame has been completed, two post-processing filters are           

applied before a frame can be stored in the Decoded Picture Buffer and thus used for               

rendering and subsequent motion compensation of later frames.

Deblocking Filter

The Deblocking Filter (DBF), which is applied first, intends to reduce artifacts           

introduced by block-based processing. Unlike H.264, which deblocked 4x4 blocks,         

HEVC operates on an 8x8 grid, independently of the PB or TB partitioning applied on              

previous decoding stages. Similar to H.264, frame boundaries are not processed by           

the deblocking filter. Slice boundaries can also be omitted, depending on proper           

encoder flag in the slice header.

Deblocking Filter processes an 8x8 block as follows. For each of the 8 four-pixel             

long block boundaries (4 vertical and 4 horizontal), it makes a decision based on its              

neighboring pixels, whether to apply strong, weak or no filtering at all. Each block             

boundary has a corresponding area of 4x8 pixels, on which filtering is applied. All             

vertical edges in the picture are deblocked first, followed by horizontal edges.           

Because of the 8-pixel separation between edges, edges do not depend on each other,             

29



thus enabling a highly parallelizable implementation.

Fig. 27 The deblocking filter grid

Sample Adaptive Offset (SAO)

After deblocking is performed, a second filter optionally processes the picture.          

This filter is called Sample Adaptive Offset, or SAO. This relatively simple process is             

done on a per CTB basis, and operates once on each pixel. SAO is a process that                

modifies the decoded samples by conditionally adding an offset value to each sample            

after the application of the deblocking filter, based on values in look-up tables            

transmitted by the encoder. For each CTB, the bitstream codes a filter type and four              

offset values, which range from -7 to 7 (in 8 bit precision video).There are two types               

of filters: Band and Edge.

30



HM 10.0 reference decoder

In order for the HEVC standard to be tested and evaluated by users, reference             

software source code, referred to as HM (HEVC test Model) is provided online for both              

the encoder and the decoder. The code is written in C++, but it is rather slow since it                 

targets code-readability and experimentation, rather than performance. Alongside       

the reference code, reference test data such as encoded bitstreams, with their           

encoding configuration parameters and cross-check time results, are also provided.

Building

Since this work focused on HEVC decoding performance, we built the 32-bit HM            

10.0 decoder using Microsoft Visual Studio 2010 on a Windows 7 64-bit platform with             

an Intel Xeon E5520 Quad-core @ 2.27GHz processor. 20 official reference encoded           

bitstreams were used for testing, all of which in YUV420 color format, at 832 x 480               

resolution and frame rates in the range 30, 50 or 60 fps, at various quantization              

parameters (22,27,32,37) corresponding to compressed bitrates between 1Mbps -        

6Mbps. The default configuration (.cfg file) used for the encoding of these bitstreams            

doesn’t use slices,tiles, or WPP nor uses temporal sub-layering and the          

Group-of-Pictures (GOP) structure is open. Such configuration allows no exploitation         

of standard parallelization tools and relies solely on an optimized reference decoder           

to achieve real-time decoding. The official cross-check times, which match the ones           

we measured, show that only a few of these bitstreams can be decoded in real time               

on the target platform.

Profiling

To obtain profiling results we used Intel® VTune™ Amplifier XE 2013. In order            

to avoid additional CPU usage, other tasks not essential to the decoding process,            

such as MD5 frame checksum comparisons and storing of the decoded data to an             

output yuv file, were disabled, after verifying the validity of the decoded results.            

Furthermore, all console output was redirected to a text file.

31



Fig. 28 Profiling results of the reference HM 10.0 decoder

TComInterpolation is the most compute-intensive class and is the first one we           

targeted for optimization. This class is responsible for interpolation filtering, which          

is applied during inter-prediction. The second group, shown as “[not part of any            

known object class]” in the profiling results because they are stray C-like functions            

that don’t belong to any specific C++ class, contains miscellaneous functions, some           

used for memory allocation (such as memfree() and memcopy()), and others, like one            

called partialButterfly(), used in the Transform phase. TComYuv follows, which         

manages the yuv picture buffers and after that is TComLoopFilter, which handles           

the Deblocking and SAO filters. It is worth mentioning that these top-4 CPU            

consumers account for about ⅔ of total decoder complexity.

32



Chapter 3. Decoder optimizations

Optimized Interpolation Filter

Introduction

As a quick reminder, fractional sample interpolation for luma samples in          

HEVC applies an 8-tap filter on eight neighbouring pixels for the half-sample           

positions and a 7-tap filter on seven neighbouring pixels for the quarter-sample           

positions, while chroma filtering uses 4 pixels per output sample. In our           

implementation we exploited the nature of this algorithm using SSE2 SIMD          

instructions and we achieved a speedup for the entire class of 3.41x - 5.64x,             

depending on the test stream.

We begin this section by describing the parallelization techniques used on the           

HEVC interpolation filter, after which we present some code-specific optimizations         

we applied. Finally we compare the profiling results of the optimized versus the            

original version.

Algorithmic Optimizations

We need to remember that Intel’s IA32 and x64 architectures offer a variety of             

single-instruction-multiple-data (SIMD) registers and assembly instructions that can       

process 64-bit (MMX registers) or 128-bit quantities (XMM registers) by treating them           

as arrays of bytes, short-integer (16-bit) or integer (32-bit) elements.

Optimized Vertical Luma Filter

The optimized Vertical filtering algorithm, as shown below, is quite         

straightforward and it is based on data-parallelization. If we multiply each PB line            

with its respective filter coefficient, and then add the 8 intermediate results we            

acquire 8 interpolated samples. The reference software (HM) uses 16-bit data to store            

pixel values, in order to cover all possible video signals, which means a 128-bit SSE2              

register can contain up to 8 pixels. Since the most commonly used PB size is 8x8, a                

throughput of 8 samples per round of calculations can be achieved.

33



Fig.29 Vertical parallelization

Optimized Horizontal Luma Filter

First version

In our first attempt to optimize horizontal filtering, we used dot-product          

between a line of a PB (up to 8 pixels, to be precise) and the filter coefficient values,                 

since SIMD instructions allow for a limited application of the Multiply-and-Add          

(MADD) operation. However, the challenge was to achieve throughput of 8 results           

per 8 MADD operations, given that intermediate multiplication results needed to be           

stored in 32-bit accuracy, which limited throughput to 4 samples. In our initial            

approach, we calculated 4 dot products which we stored on one SSE register and then              

stored to memory, as illustrated below. This had a throughput of 4 samples per             

round of calculations.

34



Coeffs     x PB

XMM 128-bit register

Fig. 30 Horizontal parallelization. Each colored line represents a 32-bit

dot- product which is stored on an XMM register accordingly.

Following the profiling process described in chapter 2, we tested the available           

bitstreams on different QP levels. Our initial profiling results (shown below) show           

that there is room for improvement.

Optimized code Serial code Speedup

BQMall 832x480 3.21s 6.54s    (2.03x)

BasketBallDrillText

832x480

1.86s 3.89s   (2.09x)

BasketBallDrill 832x480 1.86s 3.88s   (2.09x)

PartyScene 832x480 3.3s 7.1s  (2.15x)

Fig. 31 Results of first attempt in horizontal filtering optimization

35



Second (and final) version

We took a better look on the horizontal filtering algorithm and redesigned it            

to follow to same scheme as the Vertical filter. We no longer use dot products to               

calculate immediately each fractional sample but rather a pipeline where each          

loaded pixel stride (8 pixels for luma, 4 for chroma) is multiplied with its respective              

coefficient. The first loaded pixel stride begins from position i, the second from i+1, …              

and the eighth from i+7 as shown on Fig.32. All the intermediate results are added at               

the end, thus forming 8 results per round of calculations.

Fig. 32 Example of loaded pixel strides for Horizontal interpolation filtering.

Fig. 33 Horizontal parallelization

36



Optimized Chroma Filtering

The same algorithms were applied on the Chroma functions of the class, with            

slight modifications that are explained below.

PB Sizes

A PU consists of one MxM Luma PB, followed by 2 Chroma PBs of size M/2 x M/2                 

(for the case of YUV420 format). Since a CU’s minimum size is 8x8, luma PB width               

varies from 4 to 64 while chroma PB widths are from 2 to 32.

(4, 8), (4, 16),

(8, 4), (8, 8), (8,16), (8, 32),

(12, 16),

(16, 4), (16, 8), (16, 12), (16, 16), (16,32), (16, 64),

(24, 32),

(32, 8), (32, 16), (32, 24), (32, 32), (32,64),

(48, 64)

(64, 16), (64, 32), (64, 48), (64, 64)

PU sizes (width,height)

We are only interested in the width because it determines the throughput of            

the parallelized code, while height - corresponding to video lines - are processed in a              

for-loop and thus dictates the iterations of the algorithm. The optimized filters           

presented earlier can process 8 lines, thus providing 8 results per round, which can             

cover all PB sizes except (4,x) and (12,x). Separate versions of the functions, that             

handle these cases were created. Specifically for the (2,x) and (6,x) PB chroma sizes,             

which can be encountered rarely, we let the original standard-C version handle           

them. Finally, it should be noted that the most frequently used PU size is 8x8, which               

translates into 8x8 luma and 4x4 chroma PB sizes. These sizes were the basis for              

designing these algorithms.

37



To sum up, these are all the functions so far

Fig. 34 Different versions according to PB width -

 serial version refers to the original HM code

Code Optimizations

In this section we focus on optimizations that are not of data parallelization            

nature, but rather C++ and architecture specific.

1) Function Pointers

The HM reference code has a lot of control logic that uses if-else statements             

which aids code readability but impairs performance. Further if-statements were         

added for the selection of the different versions of the algorithms, we mentioned            

above. We decided to remove all if-statements by using function pointers and some            

simple hashing, in order to implement the function calling logic. This change alone            

brought a 1.28x speedup.

2) Input data analysis

HEVC supports profiles of both 8-bit and 10-bit pixel depth. For this reason, the             

input as well as the output data for every function of the reference code is 16-bit               

shorts. However, the actual data is not always 16-bit. When the first filter pass is              

applied, in order to calculate horizontal positions a,b, or c, or vertical positions d,h,             

38



or n, the actual input data is 8-bit pixels. Only when a second filter pass is required                

(positions e,f,g,i,j,k,p,q,r) the actual input data is also 16-bit.

Two separate versions were created in order to take advantage of this fact.            

The first one, which is called during first filter pass, operates on 8-bit data and has a                

higher throughput than the second one, which operates on 16-bit data and is called             

during second filter pass. Horizontal filtering needs only the first version since it’s            

always applied first, while Vertical filtering needs both.

3) Coefficient data analysis

i. Our motivation behind this analysis is that multiplications are costly, so special            

care has to be taken in order to avoid them.

i -3 -2 -1 0 1 2 3 4

(¼) q[i] -1 4 -10 58 17 -5 1 0

(½) h[i] -1 4 -11 40 40 -11 4 -1

(¾) c[i] 0 1 -5 17 58 -10 4 -1

Fig. 35 Coefficient vectors

By observing the coefficient vectors for each position we can simplify the code and             

save clock cycles.

For example the following line, which requires 2 muls + 1 add

q[­3] * line[­3] + q[­2] * line[­2]
can be transformed into

(line[­2]<<2) ­ line[­3]
which requires 1 shift and 1 sub and thus saving clock cycles.

The quarter pixel position calculation can be rearranged like this:

res = ((row[­2] ­ row[2])<<2)  ­ row[2]  + row[3] ­ row[­3]
­10*row[­1]  + 58*row[0]  + 17*row[1]
(q[4] is 0 which means we don’t need to load the last line)

39



For the half pixel position we have the following simplification:

res = ((row[­2] + row[3])<<2) ­ (row[­3] + row[4])
­ 11*(row[­1] + row[2]) + 40*(row[0] + row[1])

The ¾ pixel position vector is the ¼ vector reflected.

ii. Next, we noticed that despite the fact that coefficient data is stored in 16 bit shorts,                

the actual data doesn’t need more than 8bits. For example, the largest filter            

coefficient is +58 and can be represented with only 7 bits. The sum of all the               

coefficients is always +64 which needs 8 bits. This means that a total of 16 bits are                

needed to represent the final result and although SSE2 instructions operate on 16-bit            

input data, the output can also be 16-bit. Thus, we maintain the throughput that a              

128-bit SSE2 register can provide for 16-bit data, which is 8.

iii. Finally, we eliminated function parameters such as coefficient arrays and          

booleans, which were passed between functions in an unnecessary fashion. We          

created global structures, that contained the coefficient data, and further stored          

them in aligned memory to accelerate loading from memory to registers.

Each optimized luma filter now has 3 separate versions, one for each position            

(quarter pixel, half pixel, ¾ pixel). No alteration was needed for the Chroma filters.             

In total we have: (both Horizontal and Vertical filters have the same           

version-structure)

40



Fig. 36 Different versions of the final optimized code according to PB width and sample              

position. For example parallel version 1q calculates ¼ positions for PB widths of 4 and              

12. Serial refers to the original version.

Profiling Results

We profiled the available test streams and the result showed speedups from           

3.5x up to 5.6x. Detailed results follow.

41



Fig. 37 Profiling results for the Interpolation filter class

42



Optimized Deblocking filter (DBF)

Introduction

The DBF consists of two steps and operates only on 8x8 blocks as follows. For              

each four-pixel long boundary (there are 8 such boundaries in a 8x8 block) a decision              

must be made about the strength of the applied filter (fig. 38), making this the              

decision-making step. After that, filtering is applied to a 4x8 area (4 rows of 4 pixels               

left and right from the boundary) for vertical edges or to an 8x4 area (4 columns of 4                 

pixels above and below the boundary) for horizontal edges. Depending on the chosen            

strength, different amount of pixels are altered (fig. 39). Zero filter strength means            

no filtering is required. A filter strength of 1 means the filter alters two of the 8                

pixels involved but if further conditions are met, the total amount of pixels affected             

can be 3,4 or 6 (strong filtering).

Fig 38. Vertical edge filter strength decision making - only the dashed lines are used for               

decision making. Filtering is applied to all four lines.

43



Fig 39.Types of applied filtering (pixels of the same color are processed in           

parallel)

Normal: 2 pixels (p0,q0)  per line

2ndP: 3 pixels (p0,q0,p1) per line

2ndQ : 3 pixels (p0,q0,q1) per line

Strong : 6 pixels (p2,p1,p0,q0,q1,q2) per line

Optimizations

The DBF decision-making part is heavily control-based so it’s hard to          

parallelize for multiple boundaries. On the other hand the filter application step is            

more suitable, thus we concentrated on that.

Horizontal Edge Filtering

Horizontal edge filtering resembles Vertical interpolation filtering from the        

previous section, which means we can use the same approach, modifying it for 4             

lines accordingly. In order to minimize the heavily control logic code we created a             

separate function for each filter strength, combined with function pointers to call           

the appropriate function as needed. Fig. 39 above shows how pixels of the same color              

can be processed in parallel.

44



Vertical Edge Filtering

On the other hand, the Vertical Edge filter, is not parallel-friendly because the            

calculations are specific for each line. To deal with this we transpose each 8x4 block              

to a 4x8 one, apply Horizontal edge filtering, and then transpose it back.

Fig. 40 Optimized Vertical Edge filtering

Finally, the 4x8 area of the filter application hinders the potential processing           

of 8 samples per round of calculations, that can be achieved with SSE2 instructions.             

We tackle this by applying the filter on a combined 8x8 block whenever two             

subsequent boundaries require the same filter strength.

Results

Profiling shows a small overall speedup, emphasizing that heavy control logic          

in the code is the actual bottleneck.

45



Fig. 41 Profiling results for the Deblocking filter class

46



Further optimizations

Misc functions

Profiling the HM decoder again, as optimized with the Interpolation and          

Deblocking results presented earlier, revealed new hotspots: functions that deal with          

embarrassingly parallel workload and take a small, but considerable nonetheless,         

piece of the CPU computational pie.

Fig 42: Profile result after interpolation and deblocking optimizations

TComYuv::addClipCluma, TComYuv::addClipChroma, are used for clipping     

pixel values in their legal values (usually [0,255] for 8-bit video) after all pixel             

processing is concluded. TComYuv::addAvg computes the average of two pictures         

(Y[x] = (srcA[x] + srcB[x])/2) while partialButterflyInverse32 is used for the              

inverse Transform stage. This function basically implements matrix multiplication.

Microsoft Visual Studio

Finally we tweaked some Visual Studio configuration parameters which        

provided a further decrease in execution time. First, we switched from 32-bit           

architecture to 64-bit. This is known to produce better results, since it allows for             

double the number of available registers to the compiler. We also configured the            

linker to eliminate data or functions that are never referenced from the final            

47



executable, mainly because the HM code contained inline functions. The graph below           

shows the added gain from these optimizations.

Fig 43: Result with new Visual Studio parameters after optimizing functions

TComYuv::addClipCluma, TComYuv::addClipChroma,

 TComYuv::addAvg  partialButterflyInverse32

Final Results

We compare the optimized HM 10.0 decoder with the original one and show a             

total speedup of up to 2.15x, thus enabling most of the reference bitstreams to be              

decoded in real time. While the original decoder achieved RT decoding for 7, our             

optimized version achieves RT for 17 out of the 20 official bitstreams.

48



Fig. 44 Profiling of the optimized HM 10.0 decoder

49



Fig. 45 Speedup gained from the optimized HM 10.0 decoder

Future work

832x480 is an ideal resolution for mobile devices. We plan to further test the             

optimized decoder on Android platforms and compare the gained speedups. To          

achieve that we plan to replace SSE2 instructions with their NEON counterparts,           

make key parts of the code multi-threaded and finally use a renderer.

The ground has been set as we cross-compiled our optimized code to the            

Android x86 platform using the Android NDK standalone toolchain with SSE2          

support. We also cross-compiled the original code to Android with ARM architecture.

50



Summary - Conclusions

Use of codecs in the industry is major, as explained by a recent study, which              

states that 53% of the Internet’s traffic is video. Available HM reference source codes             

(HM versions 1.0 through 13.0) allow studying and optimizing a complex software           

engineering product - a video codec- , which is interesting for two reasons: First, in              

an academic way, because it combines elements of different fields such as Signals &             

Systems, Computer architecture, High performance computing (HPC) and finally C         

programming. Secondly because it’s considered a hot topic both industry and          

research-wise and results show that HEVC is here to stay.

However, understanding the HM reference code, although well written,        

requires a solid background in video encoding and C/C++ programming. The HM’s           

developers used C++ which aids code-readability since mapping different video         

components is more intuitive with object oriented programming. Furthermore, C         

programmers without any C++ experience can easily understand the code but will           

need deeper C++ knowledge, should optimizations need to be made. Documentation          

is sufficient.

Coping with such a complex and large project is impossible without the use of             

IDE tools, debugger and profiler. Tools such as Microsoft Visual Studio and Intel            

Vtune Amplifier besides offering increased productivity, aided (if not allowed)         

debugging and optimizing the source code.

In terms of optimization techniques for the HM 10.0 decoder, or a video codec             

in general, data parallelism should be the method of choice, since algorithms benefit            

from it greatly and both hardware and software support for SIMD instructions exists            

in any platform. Specifically, Intel’s C++ intrinsics, which provide wrappers for all           

versions (1,2,3 and 4) of SSE assembly instructions, are a great tool for software             

developers. Multi-tasking and C/C++ -specific code modifications should be the follow          

up approaches for codec optimization. All these techniques combined guarantee a          

decrease in execution time.

51



References

[1] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview

of the High Efficiency Video Coding (HEVC) Standard, IEEE Transactions on Circuits

and Systems for Video Technology, December 2012

[2] Frank Bossen, Member, Benjamin Bross, Karsten Suhring and David Flynn. HEVC

Complexity and Implementation Analysis, IEEE Transactions on Circuits and Systems

for Video Technology, December 2012

[3] Hao Lv, Ronggang Wang, Jie Wan, Huizhu Jia, Xiaodong Xie and Wen Gao

An Efficient NEON-based Quarter-pel Interpolation Method for HEVC

[4] Andrey Norkin, Gisle Bjøntegaard, Arild Fuldseth, Matthias Narroschke, Masaru

Ikeda, Kenneth Andersson, Minhua Zhou, and Geert Van der Auwera. HEVC

Deblocking Filter,  IEEE Transactions on Circuits and Systems for Video Technology,

December 2012

[5] Leju Yan, Yizhou Duan, Jun Sun, Zongming Guo. Implementation of the HEVC            

decoder on x86 processors with SIMD optimization.

[6] Chi Ching Chi · Mauricio Alvarez-Mesa · Jan Lucas · Ben Juurlink · Thomas Schierl.

Parallel HEVC Decoding on Multi- and Many-core Architectures A Power and          

Performance Analysis

[7] ITU-T H.265 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (04/2013)        

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS Infrastructure of audiovisual        

services – Coding of moving video

[8]  http://forum.doom9.org/showthread.php?t=167081 Hardware codec genius

[9] Intel® C++ Intrinsic Reference Document Number: 312482-003US

52

http://www.google.com/url?q=http%3A%2F%2Fforum.doom9.org%2Fshowthread.php%3Ft%3D167081&sa=D&sntz=1&usg=AFQjCNFbcJgsid42IZmzIhpVeHTwcK1-lw


[10] Athanasios Leontaris, Alexis M. Tourapis. Weighted prediction methods for         

improved motion compensation

53


