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Περίληψη 
 

Όσο η γεωμτρία των κυκλωμάτων γίνεται πιο πυκνή και η συχνότητα λειτουργίας αυξάνεται, 
τα on-chip φαινόμενα επαγωγής γίνονται ολοένα και πιο σημαντικά στην ανάλυση χρονισμού και 
θορύβου των ολοκληρωμένων κυκλωμάτων VLSI. Η  μέθοδος PEEC (The Partial Element 
Equivalent Circuit) έχει ευρέως χρησιμοποιηθεί για να μοντελοποιήσει τα φαινόμενα επαγωγής. 
Ωστόσο, ο πίνακας επαγωγών    που προκύτπει είναι μεγάλος και πυκνός, καθιστώντας την 
προσομοίωση του κυκλώματος ασύμφορη λόγω των μεγάλων απαιτήσεων σε μνήμη και χρόνο. 
Έχει παρατηρηθεί ότι ο αντίστροφος πίνακας επαγωγών        μπορεί να θεωρηθεί 
προσεγγιστικά αραιός. Συνεπώς, το να θεωρήσουμε τον πίνακα   αραιό μπορεί να κάνει το 
πρόβλημα της προσομοίωσης της αμοιβαίας επαγωγής των κυκλωμάτων διαχειρίσιμο.  

Στην παρούσα διπλωματική εργασία μελετάμε διάφορες μεθόδους αραιής και προσεγγιστικής 
αντιστροφής του πίνακα L προκειμένου να επιτύχουμε γρήγορη και ακριβή προσομοίωση των 
φαινομένων αμοιβαίας επαγαγωγής. Επιπλέον προτείνουμε έναν εναλλακτικό αλγόριθμο ο οποίος 
προσεγγιστικά υπολογίζει κάποιες προδιαγεγραμμένες θέσεις του αντιστρόφου ενός πίνακα. 
Ακόμη, τροποποιούμε την ανάλυση κόμβων ώστε να γίνεται χρήση του αραιού προσεγγιστικού 
πίνακα   ̃αντί του    στη μεταβατική ανάλυση κυκλωμάτων. Τέλος, παρουσιάζουμε πειραματικά 
αποτελέσματα απο συγκεκριμμένες γεωμετρίες κυκλωμάτων προκείμενου να δείξουμε την 
επιτάχυνση και την ακρίβεια που επιτυγχάνεται όταν κάθε μία μέθοδος προσεγγιστικής και αραίης 
αντιστροφής εφαρμόζεται στον εκάστοτε πίνακα επαγωγών. 
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Abstract 
 

As technology shrinks further and clock speed increases, on-chip inductance effects become 
more significant in timing and noise analysis of VLSI circuits. The Partial Element Equivalent Circuit 
(PEEC) method has been widely used to model on-chip inductance effects. However, the resulting 
inductance matrix   is large and dense which makes the simulation impractical due to the 
enormous demands on computational time and memory.  It has been recognized that the reluctance 
or susceptance matrix      , the inverse of the inductance matrix, is approximately sparse. 
Consequently, sparsification of the reluctance matrix can be applied to make the problem of the 
simulation of the inductance effects tractable.  

In this thesis, we explore several techniques for approximate sparsification of the   matrix at 
the simulation level so as to achieve fast and accurate inductance simulation. Furthermore, we 
propose an alternative algorithm which approximately captures selected entries of the inverse of a 
matrix. Moreover, the nodal analysis formulation is modified in order to make use of the sparse 
approximate matrix  ̃ instead of   in transient analysis. Finally, results from specific cases are given 
to demonstrate the efficiency and accuracy achieved by each approximate sparsification method. 
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1  
 

Introduction 
 

1.1 Problem Description 

 

With the aggressive scaling of VLSI technology, the accurate modeling of inductance effects has 
become a problem of crucial importance. The inductive coupling effect becomes more important 
because of higher frequency signal content, denser geometries, more metal layers and the reduction 
of resistance by copper and capacitance by low-k dielectric. Inductance effect is present not only in 
IC but also in on-chip interconnects such as power grids, clock nets and bus structures. It causes 
signal overshoot, undershoot, oscillations and aggravates crosstalk and power-grid noises.  

The major problem of inductance modeling is the uncertainty of return paths. Since inductance 
is a function of a closed loop, the return path is difficult to predict in advance before simulation. The 
partial equivalent elements circuit (PEEC) method based on partial inductances was proposed to 
overcome the difficulty in finding complete current loops in a real chip environment. In this 
approach, each conductor is segmented and for high frequencies, further subdivided into filaments. 
Each filament is represented by a resistor and a self-inductor in series and a capacitor to ground. 
Mutual inductors and capacitors are inserted as necessary for accurate modeling. The partial self 
and mutual inductances are defined with the assumption of infinite return paths (see section 2.2). 
However, the PEEC model results in a huge number of circuit elements and the partial inductance 
matrix   is large and dense. Consequently, direct simulation of the full   matrix is usually 
impractical , owning to the enormous demands it places on computation time and memory.  

To effectively reduce the mutual inductance terms and speedup the simulation, sparsification is 
crucial. Many approaches sparsify either the inductance matrix   or its inverse      , which is 
called  susceptance or reluctance matrix. The mutual susceptance terms drop off much faster with 
distance than the corresponding mutual inductance terms. As a consequence, the reluctance matrix 
can be considered approximately sparse. However,       needs to be computed first, which is 
prohibitively expensive. In order to avoid full inversion, several techniques have been developed to 
obtain an approximate value for the nonzero entries in   matrix and are presented in this thesis. 

 

1.2 Literature Overview 
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In this section, we briefly review existing methods that tackle the problem of unrealistic 
demands on both simulation time and memory, which stems from the large and full inductance 
matrix  . The obvious approach is that of the direct truncation of  , i.e., setting to zero off-diagonal 
entries that are smaller in magnitude than a threshold parameter. However, this approach can lead 
to unstable simulation, since the truncated   may not be symmetric and positive definite (SPD, see 
section 4.2). An alternative approach, which is based on the sparsification of   and guarantees the 
positive definiteness of the truncated   matrix, was proposed in [33]. However, this approach can 
lead to a high degree of inaccuracy. In [21], it was shown that the off-diagonal entries in the 
susceptance or reluctance matrix       diminish much faster than those in   and the 
sparsification of   was proposed. The simplest technique is that of direct truncation, where   is 
inverted and the small off-diagonal terms are truncated. In [21], a highly effective sparsification 
method of the   matrix at the extraction level, the  -method, was proposed: a small inductance 
sub-matrix of wires strongly coupled to the wire of interest is extracted and then inverted, and the 
corresponding row (or column) of the wire in the inverse forms the significant entries in the 
approximate inverse matrix denoted by  ̃ (see section 3.1).  In [26], the mathematical foundation of 
the  -method is offered. Moreover, in order for the  -method to be applicable, a sparsity pattern of 
 , i.e., a coupling window of each wire, should be a priori known. In [34], a systematic approach for 
determining the coupling window and an incremental computation method of  ̃ is proposed. Since 
commercial simulation tools do not support the use of the reluctance matrix  , a double inversion 
method is proposed in [31], [20]. Specifically, once the sparse approximation of   is obtained, it is 
inverted. The resulting inductance  ̃ contains far fewer significant entries than the original matrix 
 , hence it is much easier to sparsify. To preserve positive definiteness of  ̃, the magnitude of 
canceled off-diagonals should be added to the corresponding diagonal element.  However, this 
technique requires a large matrix inversion which can be expensive. Furthermore, the significant 
entries of  ̃ and   can be significantly different resulting in a loss of simulation accuracy. 

While the sparsification of the reluctance matrix   offers better simulation accuracy compared 
to those achieved by the truncation of the inductance matrix, the stability of this approximation  is 
not guaranteed either, i.e., the sparse approximate reluctance matrix  ̃ may not be SPD. The 
stability of the K-method was proved in [22] based on the diagonal dominance of the reluctance 
matrix   and the fact that it has positive diagonal entries (7.2.3). The diagonal dominance property 
is derived from the assumption that       ,    .  However, if the targeting circuit presents 

irregular geometry, positive off-diagonal entries may occur. Therefore, there is no guarantee that 
the   matrix is diagonally dominant and the sparsification of   may lead to unstable simulation. In 
[23], it was noted that the reluctance matrix   is diagonally dominant when all conductors are 
sufficiently discretized and a reluctance extractor and simulator was proposed. Furthermore, it is 
considered that the reluctance elements     can be directly extracted by setting unit magnetic flux 

on conductor   and zero to others (see sections 2.2, 2.3 for more details). However, the extraction of 
  elements is not supported by current commercial inductance extraction tools. In [27], an 
approximate sparsification technique of    , which preserves the SPD property of the approximate 
sparse reluctance matrix when the reluctance matrix   can be adequately approximated by a 
banded matrix, was proposed. Specifically, it is proved that the approximate sparse reluctance 
matrix  ̃   ̃   is SPD, the band entries of  ̃ matrix match the corresponding entries of   and  ̃ can 
be entirely constructed using only these band entries. The work in [28] constitutes a generalization 
of [27] where the sparse approximate reluctance matrix  ̃ is considered a multi-banded matrix. As 
a consequence, this method is applicable to 3D- interconnect structures. However, the previously 
mentioned techniques may not yield acceptable simulation accuracy when the conductors appear in 
irregular geometry and the corresponding reluctance matrix presents arbitrary sparsity pattern.  
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1.3 Thesis Contribution 

 

Several window-based approaches have been developed to approximate  ̃ at the extraction 
level [34], [22], [20]. These approaches focus on determining the coupling window to be considered 
or, equivalently, the entries of the reluctance matrix  ̃ that should be approximated. However, all 
these techniques, given the coupling window of each conductor, perform a small sub-matrix 
inversion to obtain the entries of the corresponding column of  ̃, as it had already been proposed in 
the  -method [21]. Consequently, the point of interest was to determine which entries should be 
approximated rather than how to get their approximate value. Furthermore, if there are    nonzero 
entries in the     column of the     reluctance  ̃  matrix, the overall computation of  ̃ 
costs ∑   

  
   . For small window sizes, i.e., the constant    is small and the  ̃ presents a high sparsity 

ratio   (  
         

        
),  -method turns out to be extremely fast and has complexity  ( ). 

However, when large-sized inductance matrices are considered, in order to adequately capture the 
inductance effect a larger window, i.e., a greater   , should be used hence  -method can become 
expensive.  

In this thesis, we first demonstrate the need for larger inductance windows in order to provide 
accuracy comparable to what is obtained when the full and exact   matrix is used, when the 
targeting matrix is large. Furthermore, we explore alternative approximate inverse techniques 
which can become more efficient and accurate compared to the  -method when larger window 
sizes are used so as to preserve a high degree of accuracy. We should note that we exploit the 
sparsity of   at the simulation level, as it was proposed in [29]. To this purpose, we review and 
incorporate into the simulation tool preconditioning techniques based on sparse approximate 
inverses [1], [2], [7], [8], [16] to obtain the sparse approximate matrix  ̃ which is subsequently 
used into the transient analysis (see section 4.3). Furthermore, we note that several approaches 
have been developed to obtain an approximation of the diagonal of the inverse of a matrix [9], [10], 
[13], [14], [15]. We observe that the method described in [9] can be extended in order to 
approximate not only the diagonal but also arbitrary entries of the inverse of the matrix. 
Consequently, we develop an algorithm which constitutes a selected approximate matrix inversion, 
the PBAPINV method, which turns out to be highly accurate compared to the  -method and more 
efficient when the matrix  ̃ is less sparse or large enough so that a small window size is inadequate 
to provide high degree of accuracy. Moreover, we develop a reluctance simulator, the GKC-
simulator, which utilizes the nodal analysis formulation so that the computations are done with 
conductance, reluctance and the capacitance matrices. 

 

1.4 Thesis Outline and Overview 

 

In Chapter 2, we provide the theoretical background of the inductive properties of electric 
circuits, the concept of the partial inductance is described and the definition, the physical meaning 
and the properties of the reluctance matrix   are presented. In Chapter 3, we review the sparse 
approximate inverse methods. Specifically, the mathematical background of the  -method is 
extensively described in Section 3.1 while in Section 3.4 the PBAPINV method is developed. In 
Chapter 4, the fundamentals of circuit simulation are briefly described (see [17] for more details) 
while in Section 4.4 the details of the GKC-simulator are presented. In Chapter 5, we demonstrate 
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the experimental results when each of the approximate inverse methods of Chapter 2, are used into 
the simulation tool and a comparison in terms of accuracy and runtime is given. Furthermore, in 
Appendix 7.1 we offer selected code segments of the simulator and the implementation of PBAPINV 
in C. In Appendix 7.2, some supplementary mathematical proofs are given. Finally, Chapter 6 
presents our conclusion and further research avenues. 
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2  
 

Background 
 

2.1 Inductive Properties of Electric Circuits 

 

 Inductance represents the capability of a circuit to store energy in the form of a magnetic field 
and is defined on current loops. In this section, a general  -loop system is considered with currents 
  ,   ,  ,   ,  ,   ,  ,    which are uniformly distributed on the cross section of each loop. The 

magnetic field  , induced by each current, is interrelated with the electric field   and current as 
determined by Maxwell’s equations: 

      (2.1.1)     

      (2.1.2) 

       
  

  
 (2.1.3) 

      
  

  
 (2.1.4) 

      (2.1.5) 

      (2.1.6) 

      (2.1.7) 

          

The magnetic field   can also be expressed as       where   is the magnetic vector 
potential, which is not unique because         where   a scalar potential. The second term in 
(2.1.3) corresponds to the displacement current, which is considered negligible compared to the 

actual current flowing in the conductor, hence 
  

  
  . Moreover, using the Coulomb gauge      

and substituting into (2.1.3) we obtain the Poisson’s equation for the magnetic field 
potential        . Considering the boundary condition lim    ( )   , this equation has 

unique solution: 
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  ( )  
 

  
∫

 (  )

|    |
   

 

 

 (2.1.8)     

 

A set of     inductances is defined for a system of   loops as 

     
   

  
  for    =0 if     (2.1.9)     

 

, where     represents the magnetic flux in loop   due to current   :  

 
    ∬    

 

  

   (2.1.10)     

 

, where    is a smooth surface bounded by the loop  ,    is the magnetic field created by the current 

in the loop  , and   is a unit vector normal to the surface element   .Two isolated current loops   

and   are shown in Figure 2.1. In the special case where two circuit loops are the same, the 
coefficient in (2.1.9) is referred to as a loop self- inductance; otherwise, it is referred to as a mutual 
inductance. 

Substituting        and using Stoke’s Theorem, the loop flux is expressed as: 

 
    ∬(    )   

 

  

   ∮  

 

  

   (2.1.11)     

 

, where    is vector potential created by the current   .The magnetic vector potential of loop   using 

(2.1.8) is 

 
  ( )   

 

  
∫

  ( 
 )

|    | 
   

 

  

   
 

  
∮

   

|    |

 

  

 (2.1.12)     

 

, where        is the distance between the loop element     and the point of interest  . Substituting 

(2.1.12) into (2.1.11) yields: 
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Figure 2.1: Two isolated complete Current Loops i and j 

 

 
      

 

  
∮ ∮

      

|    |

 

  

 

  

 (2.1.13)     

 

      
 

  
∮ ∮

      

|    |
  

 

  

 (2.1.14)     

 

Note that the integration in (2.1.11), (2.1.12), (2.1.13) and (2.1.14) is performed in the 
direction of current flow. Furthermore, we note that the finite cross-sectional dimensions of the 
conductors are neglected in the transition between the general volume integral to a more 
constrained but simpler contour integral in (2.1.12). Thus, the loop conductor is confined to an 
infinitely thin filament. The thin filament approximation is acceptable only when the cross-sectional 
dimensions of the conductors are much smaller compared to the distance |    | between any loop 

points. As a consequence, this approach cannot be used to determine the self-inductance. To 
account for the finite cross-sectional dimensions of the conductors, both (2.1.11) and (2.1.12) are 
amended to include an explicit integration over the conductor cross-sectional area  , 

 
    

 

  
∮ ∫      

 

  

 

  

       (2.1.15) 

 

 
  ( )  

 

  
∮ ∫

        

|    |

 

  

 

  

     (2.1.16) 
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, where    and    are the cross sections of the segments,    and    ,    and     are the differential 

elements of the respective cross sections,    and    are the current density distributions over the 

wire cross section    and    respectively such that          and    ∫      
 

  
. The only 

constrained imposed by the above formulations is that the current flow has the same direction 
across the areas    and   . These formulas can be further simplified assuming a uniform current 

distribution (i.e.,     ). Then, the magnetic flux is transformed into 

 
    

 

  

  

    
∮ ∮ ∫ ∫

      

|    |

 

  

 

  

 

  

 

  

           (2.1.17) 

 

Finally,  

 
    

 

  

 

    
∮ ∮ ∫ ∫

      

|    |

 

  

 

  

 

  

 

  

          (2.1.18) 

  

From (2.1.18), for     we obtain the mutual inductance while for     we obtain the self 
inductance. 

 

2.2 Partial Inductance 

 

For integrated circuits associated with rather complicated on-chip structures where not 
deliberately designed inductors may appear (parasitic inductance), it is difficult to correctly 
estimate the current loop, therefore the concept of partial inductance is developed, which is defined 
on wire segments rather than current loops. 

The loop inductance, as defined in (2.1.18), can be deconstructed into more basic elements if 
the two loops are broken into segments, as shown in Figure 2.2. The loop   is broken into    
segments   ,   ,  ,    

 and loop   into    segments    
 ,   

 ,  ,    

 . The definition of the loop 

inductance can be rewritten as: 
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Figure 2.2: Two complete Current Loops broken into Segments 

 

 

    
 

  

 

    
∑∑ ∫ ∫ ∫ ∫

      

|    |

 

  

 

  

 

  
 

 

  

  

   

   

   

      

 

    (2.1.19) 

 

The integration along segments    and   
   in (2.1.19) is performed in the direction of current flow. 

Partial inductance is defined as the argument of the double summation in (2.1.19) for the 
conductor segments: 
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    (2.1.20) 

 

The partial inductances are denoted by     in order to distinguish them from the loop 

inductances    . Then (2.1.19) is written as 

 
    

 

  

 

    
∑∑      

  

   

   

   

 

 

    (2.1.21) 

, where        is the sign of the scalar product       , which depends on the direction of current 

flow in the conductor segments. 

It is vital for the understanding of the concept of partial inductances their relation to the 
magnetic flux to be established. Specifically, partial inductance     is associated with the magnetic 
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flux created by the current of the segment    through the virtual loop which the segment    forms 

through infinity, as it is shown in Figure 2.3. 

 

 

 

Figure 2.3: Loop Definition of Partial Inductance 

 

In other words,  

 
    

 

  
∫     

 

   

 (2.1.22)     

 

, where     is the area bounded at the ends by the conductor segment    and infinity, and on the 

sides by two straight lines which go through the end points    and    of segment    and are normal 

to the line connecting the end points    and    of segment   .  For simplicity, we assume infinitely 
thin segments. Hence, (2.1.20) becomes  

 
    

 

  
∫ ∫

|      |

|    |
    

 

 

(2.1.23) 

 

and 

   ( )    
 

  
∫

   

|    |
  

 (2.1.24) 
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Using Stoke’s Theorem, 

 
∫     

 

   

   
 

  
 ∮ ∫

      

|    |

 

  

 

   

 (2.1.25)     

 

The path     can be restricted to the portion from    to   , i.e.,   , because magnetic vector 

potential    is zero at infinity and normal to    on the two perpendicular paths, since it is in the 

direction of   . 

By defining each segment as forming its own return loop with infinity, partial inductances can 
be used without a priori knowledge of the actual current loops. Moreover, the partial inductance 
model contains all the magnetic interactions which were contained in the loop inductance values, as 
it can be derived from (2.1.21). 

 

2.3 Circuit Element K 

 

2.3.1 Definition of the Reluctance matrix K 

As we have already seen in the previous section, each element ( ,  ) in the partial inductance 
matrix is given by 

 

    
 

  

 

    
∫ ∫ ∫ ∫

      

   
     

 

  

 

  

 

  

 

  

 

 

(2.3.1)     

 

, where   ,    are cross-sections of segments   and  , and     is the distance between two points in 

segments   and   (we consider that the sign is incorporated into the definition of the partial  
inductance). For a     partial inductance matrix the following linear system equation can be 
derived: 

 [

      

      

    

    

  
      

 
    

] [

  
  
 
  

]  [

  

  

 
  

] (2.3.2)     

 

, where    is the current running along conductor segment  , and    is the total flux flowing through 
the virtual loop from segment   to infinity. The inverse of the system can be written as: 
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] [

  

  

 
  

]  [

  
  
 
  

] (2.3.3)     
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, where      , the inverse of the inductance matrix, which is called susceptance or reluctance 
matrix. From (2.3.3) the physical meaning of     can be derived:     is the induced current along 

conductor   when the total magnetic flux for the conductor   is equal to one and those for all other 
conductors are set to zero. For example, as shown in Figure 2.4, to obtain the fourth column of  , 
we apply unit flux to conductor 4 and set zero to all others. The induced currents other than the 
fourth are the off-diagonal terms in the fourth column of  . Moreover,     is positive if the current 

direction along the conductor   and the flux of the conductor   follow the right-hand rule; it is zero 
otherwise. 

 

Figure 2.4: Layout Example with 8 Parallel Conductors 

 

2.3.2 Properties of the Reluctance matrix K 

First of all, the reluctance matrix   is SPD as the inverse of an SPD matrix. Furthermore, the off-
diagonal elements of   exhibit a much faster decrease compared to the decrease of the off-diagonal 
values into the   matrix. 

The following is a small example of an 8 conductor bus to demonstrate the idea of how off-
diagonal elements in   decrease much faster than that of the partial inductance matrix. The 
parameters for this example are as follows: width and height for each conductor is 2um, length is 
40um, spacing is 5um, sigma is 3.77e7. We calculate the partial inductance matrix using 
FastHenry[24]. The extracted inductance matrix is as follows: 
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and the corresponding reluctance matrix   is 
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As we could see, the off-diagonal term     in   matrix is 0.94/11.4 or 8.2% of the partial self- 
inductance    , while       in   matrix is only 1.63/103.39 or 1.6% of self-reluctance term    . The 
reason of this fast decay of off-diagonal values stems from the physical meaning of the reluctance 
matrix.  

Suppose that the magnetic flux of the     conductor is set to one while the magnetic flux along 
all the other conductors is set to zero. As already mentioned, the induced current along the     
conductor yields the value    . Therefore, the activated conductor   must carry positive current 

while, in order for the magnetic flux of all the other conductors to remain at zero, they must carry 
current at the opposite direction. Specifically, as it is shown in Figure 2.5, the neighbor conductors 
will carry an opposite current that cancels the magnetic field induced by the current along the     
conductor. Furthermore, the magnetic field generated by each neighbor cancels part of the 
magnetic field induced on the aggressor line  . In other words, the current along the (   )   
neighbor segment will also induce current in the (   )   conductor. As a consequence, the 
induced current by the (   )   conductor shields the induced current by the     conductor in 
(   )   segment to go further. As depicted in Figure 2.5, the (   )   conductor results in a 
shorter arrow, accounting for the overall effect (not a signal active line).  That is the physical 
explanation of the locality property and shielding effect of   matrix. A more detailed explanation of 
this fundamental property of the reluctance matrix can be found in [30]. 

 

 

Figure 2.5: An Example to explain the Locality Property of   matrix 

 

From the previous discussion, one may derive that       and      ,    . However, this is 

not the general case where each conductor may be divided into segments or filaments and the 
conductors may have irregular geometry or unequal dimensions. In such cases, in the previous 
example the coupling effect between conductors (   ) and (j+2) may be much stronger than the 



 

26 
 

coupling effect between   and (   ). Consequently, the overall effect causes conductor     to 
carry positive current and     ,   .  

Based on the locality property of   matrix, the faraway mutual reluctances can be truncated 
without sacrificing accuracy, compared to truncation techniques applied to   matrix, yielding a 
sparse version of   matrix. The use of a sparse version of   matrix can greatly speedup the 
transient simulation of a circuit as we will see in the next sections. 

 Furthermore, positive definiteness of the resulting sparse   matrix should be guaranteed for 
stable circuit simulation. In [22], a proof for the diagonal dominance property of   matrix, based on 
the assumption that         ,  ,    , is given. A reluctance matrix    which is diagonally 

dominant with positive diagonal elements is also SPD (7.2.3). In that case, the arbitrary truncation 
of any off-diagonal entry results in an SPD sparse matrix and stability is ensured. However, as we 
have already mentioned, positive off-diagonal values may occur. In [23], it has been proven that 
under sufficiently fine discretization of the conductors stability can be ensured. However, the 
sparsification of the  -matrix is constrained at the extraction level while the finer discretization 
may lead to a   matrix of greater size. In [25], SPD-remedy techniques under insufficient 
discretization by enforcing the positive definiteness, either directly or indirectly by enforcing the 
diagonal dominance, of the   matrix are proposed. The combination of an accurate and effective 
sparse approximate inversion method and an accurate SPD- remedy technique may lead to the 
adoption of the reluctance element   by the commercial circuit simulation tools. 
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3  
 

Sparse Approximate Inversion Methods 
 

3.1 Approximate Inversion via small matrix inversions 

 

First, we provide two theorems as the basis of this approximate inversion method. 
 

Theorem 3.1.Suppose   is a     non-singular matrix, and   is the inverse of    .     is a minor of   
with order    formed by rows   ,   ,  ,    and columns   ,   ,  ,   .      is the matrix remained in 
matrix   after deleting columns   ,   ,  ,    and rows   ,   ,  ,   . Then, 

        
(   )∑(      ) 

    
            (3.1.1) 

         

Proof: 

We first consider the special case that       (      ). Thus,     is the top left corner of   and 
     is at the right bottom corner of  . In block format: 

   [
      

      
]  ,     [

      

      
]      

 

, where      and     are     matrices;     and     are (   )  (   ) matrices. Suppose     
is invertible, hence [7.2.1] 

                      
          (3.1.2)   

          

Moreover, according to (7.2.2) 

       
 

           
      

   (3.1.3)   

 

Therefore,  

       
     

   
   (3.1.4)   
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If        , then       should also be zero. Otherwise, if        , since         , following 

similar step, we can also argue that       
     

   
  , a contradiction. So        

     

   
 for all cases.  

Now we extend the conclusion to general case. By making  (    )  (    )    (    )  

(          )  
 (   )

 
  successive interchanges of adjacent rows using the permutation 

matrix    and, correspondingly  (    )  (    )    (    )  (          )  
 (   )

 
 

column interchanges using the permutation matrix   , the resulting matrix is    ̃       
  

and  ̃      
    

 . The relative positions of elements in    and      are preserved, so we have 

 ̃      and  ̃        . Furthermore,  | ̃|  (  )                       (   )    .  Hence, 

 

        | ̃  |  
| ̃  |

| ̃|
 

(  )∑(     )

   
        

 
Theorem 3.2Suppose   is a      nonsingular matrix, and   is the inverse of  . For the     row of 
  matrix, only the entries at columns   ,   ,  ,     are non-zero, the rest are zeroes. Let     be the 
sub-matrix of   formed by rows    ,   ,  ,    and columns    ,   ,  ,   . If there exists   ,       
such that     , then the     row of the inverse of      is equal to the     row of   (omitting the 
zero entries in the latter): 
   

  ( , : )   ( , : )   
  
Similar conclusion holds for the columns of  . 

Proof: 

Using Cramer’s law we have: 

   
  ( ,  )  

(  )   

    
|  ( , )|  ,      (3.1.5) 

 

, where    ( , ) is the matrix that is obtained by deleting row   and column   from the sub-

matrix   . 

Using theorem 3.1 we have: 

 |  ( , )|   
(  )∑       ∑       

   
               (3.1.6) 

 

, where         refers to the sub-matrix of   formed by deleting columns 
  ,   ,  ,     ,  ,     ,  ,    and rows   ,   ,  ,     ,  ,     ,  ,   . 

Using theorem 3.1 we also have: 

      
(  )∑(     )

   
       (3.1.7) 

 

, where      refers to the sub-matrix of   formed by deleting columns   ,  ,    and rows   ,  ,   . 
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The (  (   ))
  

 row of         comes from the     row of   and there is only one nonzero 

element in it. It is the (  (   ),    (   )) entry (or the ( ,   ) entry of    ). Using Laplace 

Expansion on this row we get: 

          (  )  (   )    (   ) ( ,   )       (3.1.8) 

 

Combining (3.1.5), (3.1.6), (3.1.7), (3.1.8) and the fact that     , we obtain    
  ( ,  )   ( ,   ) . 

Theorem 3.2 provides the basis for a matrix inversion algorithm of an     invertible matrix   
when its inverse       exhibits a priori known sparsity pattern. Specifically, we consider      , 
    and we apply the theorem 3.2 for every row  ,        . The application of the theorem 
to a row   of   is depicted in Figure 3.1. The predetermined positions of nonzero entries in row   
are denoted by    ,   ,  ,   . These nonzero entries can be computed exactly from the     row of the 
inverse of a sub-matrix of    , formed by the intersection of the rows    ,   ,  ,    and the arbitrarily 
selected columns   ,   ,  ,   ,  ,    where  ,       such that     . Consequently, only a 

subset of the entries of the   matrix, rather than the entire   matrix, can be used to compute its 
whole exact inverse. When the diagonal of the inverse of the matrix is nonzero then       for some  

 ,       hence we can consider         ,      . 

If   (the number of nonzero entries in     row   ) is a small constant, compared to the size of 
the matrix  , for every row  ,        of   the above mentioned algorithm becomes very efficient 
and has complexity  ( ). However, it remains efficient only for high sparsity ratios of  . 

If    is not exactly sparse, but it exhibits a decay property, i.e., many of the entries of   are small, 
it can be considered approximately sparse. The positions   ,   , . . ,     in row   are expected to 
contain the   largest entries of the     row of  while the other entries are considered 
approximately zero. Hence, the      row of the inverse of the sub-matrix which corresponds to the 
    row, does not  contain the exact values of the inverse’s      row but an approximation of it. 

 

 

Figure 3.1: Inversion of a Matrix via small Matrix Inversions 

 

3.2 Approximate Inversion via Frobenius Norm Minimization 
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This method constitutes a commonly used explicit preconditioning technique ([1], [2]) which 
tries to compute a preconditioner    such that              (or            ) in 
some sense and the number of nonzero entries in   are much less than those in  . Although a 
sparse inverse does not always exist, it often occurs that most entries in     are relatively small, 
hence they can be cut off. 

Specifically, the approximate inversion can be reduced to an optimization problem, as follows:   

                                                    .                  .  
 
 

Of course, if no restriction is placed on  , the exact inverse will be found. Thus a sparsity pattern 
for   is prescribed. 

If Frobenius norm is used as a matrix norm, fast convergence is ensured and inherent 
parallelism emerges. Remember that the Frobenius norm of a     matrix is defined as: 

      ∑ ∑ |   |
    

   
   
   . Consequently, 

       
  ∑  (    )    

 

   

   

           ( , , , , , , )  (3.2.1) 

 

The solution of (3.2.1) decouples into   independent least square problems: 

min
  

         ,      , , ,     (3.2.2) 

 

Thus, we can solve (3.2.2) in parallel with each least square problem computing a column of  .  

Let    be a vector indexing the nonzero entries of   . Then 

            (: ,   )  (  )       (3.2.3) 
 

Depending on the sparsity of  , some of the rows of  (: ,   ) may be zero. Let    be a vector 
indexing the nonzero rows of  (: ,   ). Then  

            (  ,   )  (  )       (3.2.4) 
 

Consequently, the least square problem in (3.2.2) can be reduced to the one in (3.2.4) with matrix 
 (  ,   )  which has size            . 

The difficulty lies in determining a sparsity pattern   of the underlying approximate inverse 
which allows a good approximation of    .  Sparsity can be achieved either statically, on the basis 
of the positions, or dynamically, on the basis of values, of the fill-ins. In [2], SPAI algorithm is 
introduced, which offers a method to dynamically capture the sparsity structure of the approximate 
inverse. However, such adaptive methods tend to be expensive. Research has also been done on the 
selection of a sparsity pattern, based on the sparsity pattern   of  , in a preprocessing step, so that 
a sparse approximate inverse can be computed directly by minimizing (3.2.1) ([3], [4]).  

If matrix   has too many entries, to be used as a basis of the sparsity pattern of  , sparsification 
should be applied to   as well e.g using a thresholding technique ([5], [6]). Below, we represent 
some of the proposed heuristics, where the sparsified version of    is denoted by  ̃ and the sparsity 
structure of    by  . 
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1.  ̃        if |   |    max      , where    ( , ) is a threshold parameter. 

2. For a fixed positive integer  , with    , find the   largest entries in each column of  . 
Then   is the set of positions ( ,  ) of the resulting     entries.  

3. For each column, find the row indices of the   largest entries. Then for each row index   
found, the same search is performed on column  . The new row indices found, are added 
to the previous ones to determine the nonzero pattern of the column. This heuristic is 
called the neighbours of neighbours and can be easily extended by performing several 
iterations instead of one. 

4.  ̃       if |   |    max{   } and     , where    ( , ) is a threshold parameter and 

   indexes the   largest elements in     column of  . Thus in each column we retain the   

largest entries on the condition that they are above the threshold. 

The 1 and 2 heuristics are the simplest but the first one does not strictly limit the number of fill-
ins of  ̃ , hence it can lead to expensive approximate inversion. Heuristic 4 is a combination of 1 and 
2. The threshold   is useful from a computational point of view even when a column contains more 
than   elements larger than the threshold, because it reduces the number of elements to be sorted 
in order to find the   largest. A disadvantage common to all above mentioned heuristics is the need 
to specify good values of the parameters involved. 

When   is obtained, we can simply consider    , where   is the sparsity structure of     or 
we can apply   to approximate sparsity pattern techniques so as to acquire  . 

 

3.3 Approximate Inversion via AINV algorithm 

 

The AINV algorithm [7] constitutes an approximate inverse preconditioning technique, as well. 
The difference is that AINV results in a factorized form of the approximate inverse rather than a 
single matrix. Moreover, the AINV method does not require that the sparsity pattern be known in 
advance. Its basic idea is the construction of a preconditioner by means of incomplete conjugate 
Gram-Schmidt (or   orthogonalization) process.  

 

Definition 3.1.Two nonzero vectors   ,   are A-orthogonal or conjugate with respect to A, where A is 
a symmetric positive definite matrix, if  〈 ,  〉   , where 〈 ,  〉  〈  ,  〉  〈 ,    〉  〈 ,   〉  
    . 

 

Theorem 3.3.If    is a     SPD matrix,     ,   ,  ,      a set of    conjugate directions and   
[  ,   ,  ,   ], i.e., the     column of    is   , then  

        [

   
   

  
  

  
  

  
   

]             
     (3.3.1)     

 

It follows that 

           
 (3.3.2)     
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, hence a factorization of      is obtained. As a consequence, the approximate inversion reduces to 
the construction of a set of   conjugate vectors which can be structured by means of conjugate 
Gram-Schmidt process applied to any set of linearly independent vectors   ,   ,  ,   . The resulting 
matrix   is unit upper triangular in order to satisfy the root-free Cholesky decomposition of  : 
       and      . 

 

Gramm-Schmidt Conjugation. Given a set of    linearly independent vectors   ,   ,  ,      and a 
    SPD matrix  , a set of    A-orthogonal vectors   ,   ,  ,    is constructed by subtracting from 
   any components that are not A-orthogonal to   ,  ,     . Hence, 

       ∑      

   

   

             , ,  ,   (3.3.3)     

 

To find the constants      for     , , ,   and    , , ,      in (3.3.3), we have: 

 

  
       

     ∑     
    

   

   

   
          

      

     
  

    

  
    

  

(3.3.4)     

  

Denoting the     row of   by   
  and considering       for computational convenience, the inverse 

factorization algorithm can be written as follows: 

 

1. Input:      ,   an SPD matrix. 

2. Output:   [  ,   ,  ,   ]  and       (  ,   ,  ,   )  such that 

           

3.   
              ( )  

4. for     , , ,   

5.        for     ,    , ,   

6.                          
      

   
    

7.        end 

8.        if     go to 13. 

9.        for      , ,       

10.                           
    

    
    

  
      

    

11.        end  

12.   end 

13.        
   ,      

   ,    ( )  

14.   return   ,        ( )  

Algorithm 1: the Inverse Factorization Algorithm 
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The sparsity in   factor can be preserved following three different approaches: 

1. Using a drop tolerance, in order to determine whether an entry of   should be preserved 

or removed at step 10 of the algorithm. This fact means that the sparisity structure of   

dynamically changes at each step of the algorithm. 

2. Dropping all newly added fill-in elements outside of a preset sparsity pattern. 

3. Skipping some  -vector updates at step 10 of the algorithm when the coefficient  

  
      

     is in some sense “small”. 

Strategy 1 is suggested since it offers better numerical results. 

If the incomplete inverse fractorization process is successfully completed, one obtains a unit upper 

triangular matrix  ̃ and a diagonal matrix  ̃ with positive diagonal entries such that, according to 

(3.3.2),  ̃ ̃ ̃      which is an SPD matrix as well. It is shown in [7] that an incomplete inverse 

factorization of     exists, in exact arithmetic, for arbitrary values of the drop tolerance and for any 

choice of the sparsity pattern of  ̃ when   is an  -matrix. 

Definition 3.2.A matrix    [   ] is an  -matrix if   ̂ matrix, where  

    ̂   {
 |   |               

    |   |               
  

, has eigenvalues with positive real parts. 

An SPD diagonally dominant matrix is an  -matrix. However, for general (non- ) matrices a zero 
or negative pivot     may occur at step 6 of the algorithm, which leads to  INV’s breakdown.  

Algorithmic modifications can be implemented in order to avoid breakdown for general SPD 
matrices so as to restore the SPD property of the approximate inverse. Specifically, when some 
pivot    is too small or negative, it is replaced by: 

      max  √  ,       

, where  

     , machine precision 

      . , a relaxation parameter 

     max             
     

        
        

However, there is no guarantee that a good approximate inverse will be produced. 

 

3.4 Selected Approximate Inversion via Probing Technique 

 

In this section, an alternative method to capture selected entries of the inverse of a matrix is 
presented, which constitutes an extension of [9] where an estimator for the diagonal of   the matrix 
inverse is described. 
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3.4.1 Basic Idea 

Let      ,  and      ,  . Then: 
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(3.4.1) 

 

, where      
  is the     row of     ,   (    

 )  [
(  ,   )  

  

 
 

  (  ,   )
] and    (    

 ) the inverse of 

  (    
 ), assuming that (  ,   )    for    ( ) . 

Hence, from (3.4.1), we have: 

         

∑     (  ,   )
 
   
   

(  ,   )
  ,  ,    ( )  

                     (3.4.2)     

 

If we set      , the equation (3.4.2) holds, of course, only if     and the matrix    
[  ,   ,  ,   ] has   orthogonal columns   ,   ,  ,   . 

Given a set of matrix index pairs   ,     ( ,  )    , , ,      , , ,    where     , , we 

define matrix  ( )  [ ̂  ]    ,  as follows: 

  ̂   {
            ( ,  )     

           ( ,  )     
,  ,    ( )       
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Furthermore, we assume that the matrix   exhibits sparse structure which is denoted 
by     ( ,  )    , , ,      , , ,   . Then, considering      equation (3.4.2) leads to the 
following proposition: 

 

Proposition 3.1.Let    [   ]    ,  and      ,  be of full rank with    . Then, the equation 

  ( )   (     
 )   (    

 ) (3.4.3)     
         

holds if       row of      is orthogonal to the     row for every l such that ( ,  )     and every j such 
that ( ,  )     for i=1(1)n. In other words: 

  ( )   (     
 )   (    

 )    

  ( ,  )      ( ,  )    : (  ,   )      

 

When      ( ,  ),    ( )   , i.e.,  ( )   ( ), proposition 3.1 reduces to the following one: 

 

Proposition 3.2.Let    [   ]    ,  and      ,  be of full rank with    . Then, the equation 

  ( )   (     
 )   (    

 ) (3.4.4) 
 

holds if     row of     is orthogonal to all those rows   of     for which      . 

Proposition 3.1 suggests that if the sparsity structure of matrix   is a priori known, then the   
columns of    can be selected in such a way such that each element  ̂   of matrix  ( ) has no 

contributions from elements of matrix   except for the element     or equivalently    

∑     (  ,   )
 
   
   

 (  ,   )     in (3.4.2). 

 Moreover, the above mentioned proposition offers a way to compress matrix    . Note that the   

columns of     which satisfy proposition 3.1 are not necessarily orthogonal ((  ,   )     ( ,  ),   

 ), which implies that    .  Consequently we can construct a matrix     with    , where the 

value of   depends on    and    as we will see later. 

Furthermore, proposition 3.1 suggests a way to estimate arbitrary entries of a matrix  , i.e. 
,  ( ), based on the action of the matrix on the columns   ,   ,  ,    of   . In fact, computing in 
some way the matrix        where    a matrix which satisfies proposition 3.1, leads to the 
computation of  ( ) according to (3.4.3). 

Finally, it is clear that when matrix   is dense, preposition 3.1 is satisfied only when     and 
matrix    is fully orthogonal. However, if the elements of   exhibit a certain decay property, then 
matrix   can be considered approximately sparse and equation (3.4.3) results in the following: 

  ( )̃   ( ̃)   (     
 )   (    

 ) (3.4.5) 

, where  ̃ is a sparsified version of   and  ( )̃ the approximation of  ( ). Approximate sparsity 
pattern techniques can be used so as to acquire a prescribed sparsity structure   ̃ of  ̃. Then,   ̃ and 
  can be applied directly to proposition 3.1 to approximate  ( ).  
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3.4.2 Construction of the Probing Vectors 

Once the pattern of the sparsified matrix  ̃ is prescribed, we proceed to the construction of a set 
of probing vectors which form the, henceforth called, probing matrix   . To this purpose, a modified 
adjacency graph associated with    and   ̃ is constructed according to Algorithm 2: 

 

1. Input:   ,   ̃,  . 

2. Output:  the modified adjacency graph  ( ,  ). 

3.     , , ,    

4.        

5. for     , , ,   

6.         for each  ( ,  )      do     

7.                for each ( ,  )    ̃ do 

8.                            ( ,  ) 

9.                end 

10.        end 

11.  end 

Algorithm 2: Construction of the Modified Adjacency Graph 

 

As it can be seen, a set of edges is added to the graph   of   vertexes in order to preserve each 
element ( ,  )    . If      ( ,  ),    ( )   then the graph   reduces to the adjacency graph of  ̃. 
Note that the elements ( ,  )      may add many common edges. Furthermore, the outer loop is 
inherently capable of parallel execution by concatenating the sub-graph that corresponds to each 
row    of  ( ̃) at the end.  

Subsequently, the graph is colored so that no adjacent vertices have the same color. Ideally, we 
want to color the graph with the smallest number of colors, but this is known to be a NP-hard 
problem. Therefore, we rely on heuristic techniques to find a coloring with an acceptably small 
number of colors. Algorithm 3 presents a well-known greedy algorithm for this task: 

 

1. Input:  the modified adjacency graph   ( ,  ) corresponding to a     

matrix. 

2. Output:  colors of the vertices of the graph. 

3. for     , , ,   

4.        set      ( )    

5. end 

6. for     , , . . ,   

7.       set      ( )  min            ( )  ( ,  )     

8. end 

               Algorithm 3: Greedy Coloring Algorithm 

 

After coloring the vertices of the modified adjacency graph that corresponds to    and   ̃, the 
probing matrix    can be constructed as follows: 
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 (  )   {
          ( )   
                  

 (3.4.6) 

 

As a result, the number of colors of the graph is equal to   and according to (3.4.6) each row of    
contains exactly one nonzero entry, yielding  (    

 )     (    
 )   . Therefore, (3.4.5) becomes: 

  ( )̃   ( ̃)   (     
 ) (3.4.7) 

 

In addition, the constructed probing matrix    satisfies the conditions of proposition 3.1. 

 

Proposition 3.3.Suppose that the vertices of the modified adjacency graph  ( ,  )corresponding to 
   and   ̃ are colored by Algorithm 3. Let    be constructed according to (3.4.6).Then 

 
(  ,   )                       ( ,  )      ( ,  )    ̃ 

 
(3.4.8) 

  

Proof 

If an index   such that ( ,  )      ( ,  )    ̃ exists, then according to Algorithm 2 there is an edge 
( ,  ) in graph  , i.e., ( ,  )   . Consequently, according to Algorithm 3,      ( )       ( ). 
Furthermore, the    and     row of    consist of zeros except for the      ( )   and      ( )   entry 
respectively. Hence, the two rows are orthogonal, and the proposition follows immediately. 

 

Example. Let     ,  be a matrix whose entries    are to be approximated and  ̃ a sparse version 
of  . The left part of Figure 3.2depicts    ̃ and   . The right part of  Figure 3.2 depicts the adjacency 
matrix of the corresponding graph constructed by Algorithm 2 and the color of each vertex 
obtained according to Algorithm 3. The number of colors required is    .  Using equation (3.4.6), 
the probing matrix    is given by 

   

[
 
 
 
 
 
 
 
  
  
  
  

  
  
  
  

  
  
  
  

  
  
  
  ]

 
 
 
 
 
 
 

 

 

                   

, while the matrices          and     
  are given by  
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We observe that another coloring algorithm could swap the colors of the    and     vertexes, 
assigning the same color to the vertexes   and 8. Consequently, the probing method presented here 
differs from the standard probing techniques known in the literature [12], [11], where two vertexes 
  and   can have the same color only if the     and    columns of  ̃ have no nonzero entries in the 
same row positions. 

   

 

Figure 3.2: Construction and Coloring of the Modified Adjacency Graph 

        

3.4.3 Selected Approximate Matrix Inversion 

Let us assume that     ,  ,       and we want to approximate some prescribed entries    
of the inverse matrix  . We also consider that    ̃ , where  ̃ is a sparse matrix with sparsity 
pattern denoted by   ̃ . We apply (3.4.7) for    . The only thing left is to compute the 
matrix       

 .  By observing that                       , it follows that: 

If     [  ,   ,  ,   ],    [  ,   ,  ,   ] and        , the columns of     can be obtained by 
solving the linear systems       ,    , ,  ,  . 

When    , the computation of    , and, as a consequence, of  ( )̃, is much less expensive than 
solving the full sequence of   linear systems to obtain the whole and exact inverse   by a 
straightforward use of equations. The sequence of linear systems can be solved by a direct or 
iterative method depending on the dimension and the condition of the matrix. 

Finally, from  ( )̃   ( ̃)   (    
 ), it can be easily seen that the element ( ,  ) of  ( )̃ can be 

extracted from    as follows: 

  ( )̃( ,  )    ( ,      ( ))  
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, where the probing matrix    is constructed according to (3.4.6). 

The resulting algorithm of the method is presented below. 

 

1. Input:     , ,   ,   ̃ . 

2. Output:   ( )̃    , . 
3. Construct the modified adjacency graph  ( ,  ) corresponding to    

and    from Algorithm 2. 
4. Color graph  ( ,  ) according to Algorithm 3. 
5. Set                   . 
6. Construct the probing matrix    [  ,   ,  ,   ] from (3.4.6) 
7. for    , , ,   
8.         Solve        
9. end 
10.    [  ,   ,  ,   ] 
11. for each ( ,  )     

12.         ( )̃( ,  )    ( ,      ( )) 
13. end 

Algorithm 4: Selected Approximate Inversion via Probing Technique 

 

As it can be seen, solving the sequence of   linear systems is the computationally most 
demanding step in the algorithm. However, the probing method can be parallelized by solving the 
sequence of the linear systems in parallel. 

Finally, it should be mentioned that the accuracy of  ( )̃ depends on the prescribed   ̃ and the 
degree of the decreasing trend of the elements in  . 
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4  
 

GKC-Simulation 
 

4.1 MNA formulation 

 

Given a circuit, let     , , ,      be a set of   nodes or vertices (representing the circuit as 
a directed graph), where the reference node is denoted by the integer  , and      ,   ,  ,   } a 
set of   edges or branches of the circuit. The adjacency matrix,       , , which represents the 
connectivity of the circuit, can be determined from the directed graph  ( ,  ) by the following rule: 

     {
   ,                                    
  ,                                      
    ,                                                         

      

 

If   ( )  [  ( ),  . ,   ( )]  and  ( )  [  ( ), ,   ( )]  are the vectors of branch voltages and 

currents respectively,  ( )  [  ( ),  ,     ( ) ] 
  is the vector of the node voltages, then the 

Kirchhoff’s law can be expressed as follows: 

Kirchhoff’s Voltage Law (KVL): 

  ( )     ( ) (4.1.1)     
 

Kirchhoff’s Current Law (KCL): 

   ( )    (4.1.2)     
       

The   elements of the circuit can be partitioned into two groups: 

1. The elements whose I-V relationship can be written in the form   ( )      ( )  

  
   ( )

  
   ( ) (capacitances, independent current voltages and resistors whose 

branch current is to be eliminated are included). 
2. The elements whose I-V relationship cannot be written in the above mentioned form or 

the elements whose branch current is not eliminated. 

Let   and    be the number of the elements of the first and the second group respectively. 
Then, the adjacency matrix, the branch voltage vector and the current voltage vector can be 
partitioned into these forms: 
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   [      ],        ,  ,        ,  
      

  ( )  [  ( )
    ( )

 ]   

  ( )  [  ( )
    ( )

  ]  

 

Then, the I-V relationships of the two element groups can be written in matrix form: 

   ( )     ( )   
   ( )

  
   ( )  (4.1.3)     

 

 , where   the conductance matrix,   the capacitance matrix and    the independent current source 

vector. The matrices   and   are diagonal. 

   ( )     ( )   
   ( )

  
   ( ) (4.1.4)     

 

, where    the resistance matrix (for resistor branches whose current is computed during the 
simulation),    the inductance matrix and   ( ) the independent voltage source vector. The matrix   

is diagonal while the inductance matrix   turns out a dense and SPD matrix. 

Furthermore, (4.1.1) and (4.1.2) can be written as follows: 

  ( )     ( )  {
  ( )    

  ( )  

  ( )    
  ( )    

(4.1.5)     

     ( )      ( )    (4.1.6) 

                                                                               

Substituting the first equation of (4.1.5) into (4.1.3) and the resulting equation into (4.1.6), we 
have: 

      
  ( )       

 
  ( )

  
     ( )       ( ) (4.1.7)     

 

Moreover, substituting the second equation of (4.1.5) into (4.1.3), we get: 

   
  ( )     ( )   

   ( )

  
   ( ) (4.1.8)     

      

The combination of (4.1.7) and (4.1.8) yields the following [(   )    ]  [(   )    ] 
linear system of first order differential equations, which is called MNA (Modified Nodal Analysis) 
system: 

 
 ̃   ̃ ̇    (4.1.9) 

     

 ̃  [
     

   

  
    

] ,  ̃  [     
  

   
] ,   [

 ( )

  ( )
] ,  ̇  

  

  
 ,   [

     ( )

  ( )
] 

  

The linear system in (4.1.9) can be formulated using element stamps, i.e., the contributions of each 
element to the matrix equation. Figures 4. 1- 4. 2 depict the element stamps in order to construct 
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matrix  ̃ in (4.1.9). In matrix  ̃ the capacitance branches are replaced by open circuit while the 
inductance branches are replaced by short circuit. Figure 4.5 shows the contribution of a 
capacitance branch into matrix  ̃ in (4.1.9). Finally, the diagonal elements of matrix   are the values 
of self-inductances, and the off-diagonal terms are mutual inductances. 
 

  

Figure 4.1: Element Stamp for a Resistor in Group 1 

 

  

Figure 4.2: Element Stamp for a Resistor in Group 2 
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Figure 4.3: Element Stamp for an Independent Voltage Source 

 

 

Figure 4.4: Element Stamp for an independent Current Source 

 

 

Figure 4.5: Element Stamp for a Capacitance 
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4.2 Solution of SPD Linear Systems 

 

We remind that a matrix     ,  is SPD (Symmetric Positive Definite) if and only if    is 
symmetric and              ,   .  Equivalently, a symmetric matrix is SPD if and only if all 

its eigenvalues are strictly positive.  As a consequence, the matrix is nonsingular (it has no zero 
eigenvalue) and its inverse is also an SPD matrix. Finally, recall that if matrix   is strictly diagonally 
dominant and all the diagonal elements are positive, then it is also SPD (7.2.3).   

A network meets the consistency requirements if the network graph does not contain any current 
source cutsets and any voltage source loops. Remember that a cutset in a connected graph is a set of 
edges which, if removed, would cause the graph to become disconnected. It can be proved that, 
given the consistency constraints, if the network is connected and the group 2 elements do not form 
a cutset, the matrices  ̇       

  and  ̇       
   are SPD. Finally, the inductance matrix   is SPD 

but not strictly diagonally dominant. 
An SPD linear system      can be solved directly using Cholesky decomposition or iteratively 

using Preconditioned Conjugate Gradient method. The two methods are described briefly below. 

 

Cholesky Decomposition 

 

An equivalent definition of the SPD property is the following: A matrix     ,  is SPD if and only if 
there exists a nonsingular, lower triangular matrix     ,  with strictly positive diagonal entries 
such that      . This decomposition is unique. Subsequently, the linear system can be solved 
implementing backward and forward substitution. The algorithm, which computes the   factor is 
presented below.   

 

1. Input:     ,   an SPD matrix. 
2. Output:     ,  such that       and      ,    ( ) . 
3. for     , , ,   

4.             √    ∑    
    

    

5.        for       , ,   

6.                    
    ∑        

   
   

   
 

7.        end 
8. end 

               Algorithm 5: Cholesky Decomposition 

 

Preconditioned Conjugate Gradient(CG) 

 

The Conjugate Gradient method is based on the minimization of the function  ( )  
 

 
      

   . The gradient of   equals        , therefore the solution    of the linear system      is 

the unique minimizer of  . Specifically, in each iteration   a new search direction  ( ) is discovered 
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such that it is A-orthogonal to the previous search direction   (   ) while the current approximation 

 ( ) (and the residual  ( )      ( )  as well) moves in the direction  ( )   (   )   α  
( )  where 

   such that the function  ( ( ))  is minimized. Finally, preconditioning is used to replace the 

original system         with    (    )     so that the condition number  (    ) gets 

smaller than  ( ). The preconditioned conjugate gradient method takes the following form: 

  

1. Input:     ,   an SPD matrix and     . 
2. Output:  the solution    of the linear system     . 
3.  = initial guess 

4.         

5.        
6. while (             ) 

7.                            
8.                Solve      

9.                        

10.                if   (       ) 
11.                                   

12.                else 
13.                                             
14.                                          

15.                end 
16.                         
17.                     

18.                          (   )  

19.                            

20.                            

21. end 

               Algorithm 6: Preconditioned Conjugate Gradient Method 

 

4.3 Transient Analysis 

 

Transient Analysis computes the response of the system as a function of time in the 
interval   [  ,   ]. The linear system of (4.1.8) can be solved by discretization of the time interval 
into   time points,   replacing the time derivative operator with a discrete time operator and 
solving the resulting finite difference equations one time point at a time starting from some initial 
condition. The particular discrete approximation method is referred to as the integration method. 
As integration methods Backward-Euler or Trapezoidal Rule can be used. Below the approximation 

of  
  ( )

  
 in each case is given and it is applied to (4.1.9) so as to get the discretized form of the MNA 

system.  

 

Backward Euler: 
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  (  )

  
 

 

 
[ (  )   (    )]        

(  ̃  
 

 
 ̃)  (  )   (  )  

 

 
 ̃ (    )      , , ,   (4.3.1) 

 

 

Trapezoidal Rule: 

 

 

 
[
  (  )

  
 

  (    )

  
]  

 

 
[ (  )   (    )]      

( ̃  
 

 
 ̃)  (  )   (  )   (    )  ( ̃  

 

 
 ̃)  (    )      , , . . ,   (4.3.2) 

 

, where          and   
     

 
. 

 

4.4 Nodal Analysis for linear circuits 

 

The MNA approach works only for the full inductance matrix    or ordinary sparse partial 
inductance approximations, but not for the reluctance matrix       . Furthermore, the 
introduction of extra current variables can make the system matrix non-positive definite, which is 
crucially necessary for the efficiency of the direct method (Cholesky decomposition takes only half 
of multiplications and memory references than the LU decomposition and there is no need for 
permutation or pivoting) and the fast convergence of the iterative method. 

In this section, it is shown that the NA approach is feasible for sparse reluctance matrices and 
equations (4.3.1) and (4.3.2) are converted in order to make use of the reluctance matrix instead of 
the inductance matrix. Finally, we eliminate branch currents except those running through 
inductors and we assume that there are no independent voltage sources in the circuit. Therefore, 
matrix   ̃ , vector   and vector   become respectively:  

 

  ̃  [
     

   

  
   

],     [
     ( )

 
] ,   [

 ( )

  ( )
]      

 
Backward Euler: 

 

([
     

   

  
  

]  
 

 
[     

  
   

]) [
 (  )

  (  )
]  [

     (  )

 
]  

 

 
[     

  
   

] [
 (    )

  (    )
]       

     
  (  )      (  )  

 

 
     

  (  )       (  )  
 

 
      

  (    ) (4.4.1) 

  
  (  )  

 

 
   (  )   

 

 
   (    )    (  )      

  (  )    (    ) (4.4.2) 
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By substituting (4.4.2) into (4.4.1) we obtain: 

(     
  

 

 
     

         
 )  (  )       (  )  

 

 
      

  (    )      (    ) 

 
 

Using the approximate sparse version  ̃ of  , we just get: 

   (  )       (  )  
 

 
      

  (    )      (    ) 
(4.4.3.a) 

        
  

 

 
     

       ̃  
  (4.4.3.b) 

   (  )    ̃  
  (  )    (    ) (4.4.3.c) 

 

Given that   is not only SPD but also strictly diagonally dominant with positive diagonal entries, 
matrix  ̃  is also strictly diagonally dominant with positive diagonal entries, consequently the SPD 
property is preserved with the sparse approximate inversion of  . The admittance matrix   is also 
SPD since   :   (   ̃  

 )  (  
  ) ̃(   )     ̃     with     

    and the matrices      
  , 

     
  are also SPD. Therefore, the Cholesky Decomposition   or the Preconditioned Conjugate 

Gradient iterative method is applicable to the NA formulation.  

 
Trapezoidal Rule:  

 

([
     

   

  
  

]  
 

 
[     

  
   

]) [
 (  )

  (  )
]    

 

[
     (  )

 
]  [

     (    )

 
]  ([

     
   

  
   

]  
 

 
[     

  
   

]) [
 (    )

  (    )
]    

 

(     
  

 

 
     

 )  (  )      (  )    

 

(      
  

 

 
     

 )  (    )      (    )    (  (  )    (    ))                                         

 

(4.4.4) 

  
  (  )  

 

 
   (  )     

  (    )  
 

 
   (    )    

 

  (  )  
 

 
   

 ( (  )   (    ))    (    )    

(4.4.5) 

 
By substituting (4.4.5) into (4.4.4) we get: 

(     
  

 

 
     

  
 

 
     

 )  (  )                                                                                                                    

 (      
  

 

 
     

  
 

 
     

 )  (    )       (    )    (  (  )    (    )) 

 

Using the sparsified version  ̃ of  , we just get: 
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  (  )   

(      
  

 

 
     

  
 

 
   ̃  

 ) (    )       (    )    (  (  )    (    ))   
(4.4.6.a) 

       
  

 

 
     

  
 

 
   ̃  

  (4.4.6.b) 

  (  )  
 

 
 ̃  

 ( (  )   (    ))    (    ) (4.4.6.c) 

 

Assuming that  ̃   is SPD, the admittance matrix     is also SPD, therefore the Cholesky 
decomposition   or the preconditioned conjugate gradient iterative method is applicable to the NA 
formulation. 

 

  
Figure 4.6: Voltage Source Transformation and Norton equivalent Circuit 

 
In case there are independent voltages sources in the circuit, extra current variables should be 

added. Hence, they are transformed into Norton equivalent circuits, as shown in Figure 4.6. If the 
voltage source is connected to   or   element, which have Norton equivalent circuit, this 
transformation can be easily implemented. However, this transformation is inapplicable for   
elements.  Using frequency domain analysis, the following current-voltage equations are derived: 

    
   

 
(     )  

   

 
        

    
   

 
(     )  

   

 
    

 

These two equations can be rewritten as 

    
   

 
   

   

 
   

   

 
        

    
   

 
   

   

 
   

   

 
    

  

which can be represented as the circuit shown in Figure 4.7. The voltage source is replaced by 
current sources. Since conductance ( ), capacitance ( ) and reluctance ( ) are all admittances, 
they share similarities in equivalent circuit transformation. Thus, it can be applied to the NA 
analysis. 
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Figure 4.7: Norton equivalent Transformation for Reluctance Element 
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5  

 

Experimental Results 
 

We demonstrate the sparse approximate inverse methods presented in this thesis on a bus 

structure with 256 and 1024 signals for different sparsity ratios   (  
          

        
)       while 

the wires are divided into   segments yielding inductance matrices of size            , 
           and            respectively. The first structure consists of two 128-wire blocks. In 
the second case, a     interconnect structure consisting of   layers with two 128-wire blocks in 
each layer is considered. The inductance matrices are obtained using FastHenry [24] for 
conductivity        .    (aluminum). The wire length is taken     , the cross-section 
is       . The separation distance between wires of the same block is      while the separation 
distance between two bus blocks or layers is considered     . The driver resistance of each line 
is        and the load capacitance is      . A          ramp voltage source input is applied to the 
first signal of the lowest plane, and the rest are quiet. A time step of       is taken and the 
simulation is performed over       (or equivalently     time steps). The sparsity structure of the 
inductance matrix  , which is obtained selecting the   largest entries of each column, is considered 
as the sparsity pattern of the corresponding sparse approximate reluctance matrix  ̃. All 
experiments were run on an Intel Core i7 at 2.2 GHz with 4 cores and 8 GB main memory. A 
comprehensive comparison in terms of accuracy and runtime is presented in the next sections. 

 

5.1 Accuracy Comparison 

 

The following figures depict the voltage response at the far end of some selected lines using the 
sparse approximate inverse methods described in Chapter 3, which are applied to the inductance 
matrix   of size          . Specifically, in Figures 5.1-5.6 results from the K-method as described 
in section 3.1 are shown for different sparsity ratios  . We can observe that a less sparse reluctance 
matrix   improves the accuracy especially on the remote quiet lines since the waveform converges 
to what is obtained when the full and exact reluctance matrix   is used. Similarly, in Figures 5.7-
5.12 the simulation results using the probing technique in order to approximate selected entries of 
the reluctance matrix are depicted while in Figures 5.13-5.18 the voltage responses are shown 
when the reluctance matrix  ̃ which minimizes the    ̃      given the prescribed sparsity 
pattern is used. Finally, the waveforms obtained when the AINV algorithm is applied to the 
inductance matrix   are given in Figures 5.19-5.25. The AINV algorithm dynamically captures the 
nonzero elements using a drop tolerance       , yielding a less sparse reluctance matrix of 
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sparsity ratio     .   . The use of higher drop tolerance leads to  INV’s breakdown and a poor 
and not even sparse approximation of   is obtained.  

 
Figure 5.1: 2048X2048-SIAPINV-Voltage 

Response at far end of Active Line 
 

 
Figure 5.2: 2048X2048-SIAPINV- Voltage 

Response at far end of Line 2 
 

 

 
Figure 5.3: 2048X2048-SIAPINV- Voltage 

Response at far end of Line 3 
. 

 
Figure 5.4: 2048X2048-SIAPINV- Voltage 

Response at far end of Line 15 
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Figure 5.5: 2048X2048-SIAPINV- Voltage 

Response at far end of Line 20 

 
Figure 5.6: 2048X2048-SIAPINV- Voltage 

Response at far end of Line 25 
 

 
Figure 5.7: 2048X2048- PBAPINV- Voltage 

Response at far end of Active Line 
 

 
Figure 5.8: 2048X2048-PBAPINV- Voltage 

Response at far end of Line 2 
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Figure 5.9: 2048X2048-PBAPINV- Voltage 

Response at far end of Line 3 

 
Figure 5.10: 2048X2048-PBAPINV- Voltage 

Response at far end of Line 15 
 

 
Figure 5.11: 2048X2048-PBAPINV- Voltage 

Response at far end of Line 20 

 
Figure 5.12: 2048X2048-PBAPINV- Voltage 

Response at far end of Line 25 
 

 
Figure 5.13: 2048X2048-FMAPINV- Voltage 

Response at far end of Active Line 

 
Figure 5.14: 2048X2048-FMAPINV- Voltage 

Response at far end of Line 2 
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Figure 5.15: 2048X2048-FMAPINV- Voltage 

Response at far end of Line 3 

 
Figure 5.16: 2048X2048-FMAPINV- Voltage 

Response at far end of Line 15 
 

 
Figure 5.17: 2048X2048-FMAPINV- Voltage 

Response at far end of Line 20 

 
Figure 5.18: 2048X2048-FMAPINV- Voltage 

Response at far end of Line 25 
 

 
Figure 5.19: 2048X2048-AINV-Voltage 

Response at far end of Active Line 

 
Figure 5.20: 2048X2048-AINV- Voltage 

Response at far end of Line 2 
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Figure 5.21: 2048X2048-AINV- Voltage 

Response at far end of Line 3 

 
Figure 5.22: 2048X2048-AINV- Voltage 

Response at far end of Line 15 
 

 
Figure 5.23: 2048X2048-AINV- Voltage 

Response at far end of Line 20 

 
Figure 5.24: 2048X2048-AINV- Voltage 

Response at far end of Line 25 
 

In the next tables, we also provide numerical results in order to measure the approximation 
errors involved. The voltage at the far end in     wire obtained by the full and exact   matrix is 
denoted by    while the     voltage obtained by the approximation methods is denoted by  ̃ . Define 
relative mean square error (RMSE) and average error ratio (AER) for the     wire as: 

      
∑ | ̃    |

 
 

∑      

   

 
    

∑    ̃      

∑      

 

 

 

, while for all wires 
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∑ ∑ | ̃    |

 
  

∑ ∑     
 

  

  

 
    

∑ ∑    ̃       

∑ ∑       

 

 

 

 

SIAPINV 
RMSE 

Active 
Line 

Line 2 Line 3 Line 15 Line 20 Line 25 All 

ε  .    
43e-01 

3.036944
e-05 

3.576216
e-02 

5.570589
e-02 

3.605437
e-01 

4.790277
e-01 

6.059697
e-01 

1.105955
e-02 

ε  .    
18e-01 

2.201243
e-05 

2.539602
e-02 

3.852820
e-02 

3.017467
e-01 

3.823853
e-01 

4.412011
e-01 

1.037395
e-02 

ε  .    
08e-01 

2.245933
e-05 

2.608806
e-02 

3.975907
e-02 

2.789697
e-01 

3.769884
e-01 

4.801728
e-01 

1.061554
e-02  

ε  .    
12e-01 

2.300971
e-05 

2.681154
e-02 

4.096418
e-02 

2.762627
e-01 

3.649315
e-01 

4.627475
e-01 

1.086631
e-02 

ε  .    
83e-01 

1.460141
e-05 

1.670067
e-02 

2.528371
e-02 

1.639839
e-01 

2.155728
e-01 

2.670607
e-01 

9.118349
e-03 

ε  .    
03e-01 

1.352611
e-05 

1.543163
e-02 

2.334371
e-02 

1.526012
e-01 

1.996600
e-01 

2.456598
e-01 

8.995759
e-03 

ε  .    
20e-01 

1.265333
e-05 

1.440396
e-02 

2.176256
e-02 

1.427184
e-01 

1.860410
e-01 

2.274609
e-01 

8.894306
e-03 

ε  .    
32e-01 

1.194173
e-05 

1.356971
e-02 

2.047839
e-02 

1.343552
e-01 

1.744875
e-01 

2.122227
e-01 

8.810593
e-03 

Table 1: 2048X2048- SIAPINV-RMSE 

 

SIAPINV 
AER 

Active 
Line 

Line 2 Line 3 Line 15 Line 20 Line 25 All 

ε  .    
43e-01 

4.563572
e-03 

4.495964
e-01 

5.087662
e-01 

8.161832
e-01 

8.737638
e-01 

9.670518
e-01 

5.367691
e-01 

ε  .    
18e-01 

4.008922
e-03 

3.906328
e-01 

4.384428
e-01 

7.495390
e-01 

7.935443
e-01 

8.380581
e-01 

5.147417
e-01 

ε  .    
08e-01 

4.010210
e-03 

3.922126
e-01 

4.417317
e-01 

7.423047
e-01 

8.051426
e-01 

8.765094
e-01 

5.238150
e-01 

ε  .    
12e-01 

4.058893
e-03 

3.976765
e-01 

4.485671
e-01 

7.488693
e-01 

8.037312
e-01 

8.704739
e-01 

5.331940
e-01 

ε  .    
83e-01 

3.292822
e-03 

3.197420
e-01 

3.580709
e-01 

5.631057
e-01 

6.044620
e-01 

6.471088
e-01 

4.674041
e-01 

ε  .    
03e-01 

3.162194
e-03 

3.063737
e-01 

3.428963
e-01 

5.432858
e-01 

5.812840
e-01 

6.204878
e-01 

4.613163
e-01 

ε  .    
20e-01 

3.053511
e-03 

2.951368
e-01 

3.301075
e-01 

5.250931
e-01 

5.603593
e-01 

5.965964
e-01 

4.559147
e-01 

ε  .    
32e-01 

2.960593
e-03 

2.856870
e-01 

3.193152
e-01 

5.087999
e-01 

5.417205
e-01 

5.755338
e-01 

4.511952
e-01 

Table 2: 2048X2048-SIAPINV-AER 
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PBAPINV 
RMSE 

Active 
Line 

Line 2 Line 3 Line 15 Line 20 Line 25 All 

ε  .    
43e-01 

3.632719
e-05 

4.743120
e-02 

7.621948
e-02 

4.487163
e-01 

7.742496
e-01 

1.040291
e+00 

1.619646
e-02 

ε  .    
18e-01 

1.854166
e-05 

2.248250
e-02 

3.537868
e-02 

2.004875
e-01 

2.426797
e-01 

3.079974
e-01 

1.227308
e-02 

ε  .    
08e-01 

1.459244
e-05 

1.726390
e-02 

2.676449
e-02  

1.749815
e-01 

2.074733
e-01 

2.310265
e-01 

9.979212
e-03 

ε  .    
12e-01 

1.153570
e-05 

1.349770
e-02 

2.075695
e-02 

1.390448
e-01 

1.718290
e-01  

1.980254
e-01 

9.013429
e-03 

ε  .    
83e-01 

1.330167
e-05 

1.528041
e-02 

2.311502
e-02 

1.463133
e-01 

1.897151
e-01 

2.322801
e-01 

8.593885
e-03 

ε  .    
03e-01 

1.248727
e-05 

1.437002
e-02 

2.179182
e-02 

1.406837
e-01 

1.815414
e-01 

2.208686
e-01 

8.510533
e-03 

ε  .    
20e-01 

1.135130
e-05 

1.304557
e-02 

1.977660
e-02 

1.285689
e-01 

1.651975
e-01 

1.994036
e-01 

8.345323
e-03 

ε  .    
32e-01 

1.001345
e-05 

1.147873
e-02 

1.737454
e-02 

1.124174
e-01 

1.438914
e-01 

1.723368
e-01 

8.276617
e-03 

Table 3: 2048X2048-PBAPINV-RMSE 

 

PBAPINV 
AER 

Active 
Line 

Line 2 Line 3 Line 15 Line 20 Line 25 All 

ε  .    
43e-01 

4.665669
e-03 

4.748595
e-01 

5.434199
e-01 

8.789037
e-01 

1.026704
e+00 

1.098721
e+00 

6.320885
e-01 

ε  .    
18e-01 

3.752458
e-03 

3.759406
e-01 

4.293547
e-01 

6.322776
e-01 

6.620473
e-01 

7.133118
e-01 

5.780999
e-01 

ε  .    
08e-01 

3.438104
e-03 

3.420509
e-01 

3.892145
e-01 

6.029309
e-01 

6.063024
e-01 

6.132938
e-01 

5.316651
e-01 

ε  .    
12e-01 

2.968350
e-03 

2.940233
e-01 

3.335979
e-01 

5.250916
e-01 

5.362587
e-01 

5.451274
e-01 

4.998827
e-01 

ε  .    
83e-01 

3.154733
e-03 

3.081100
e-01 

3.456689
e-01 

5.348186
e-01 

5.660567
e-01 

6.026896
e-01 

4.561597
e-01 

ε  .    
03e-01 

3.026716
e-03 

2.957211
e-01 

3.325650
e-01 

5.237899
e-01 

5.565792
e-01 

5.906181
e-01 

4.539446
e-01 

ε  .    
20e-01 

2.874477
e-03 

2.808875
e-01 

3.160333
e-01 

5.022039
e-01 

5.302273
e-01 

5.605201
e-01 

4.493597
e-01 

ε  .    
32e-01 

2.699713
e-03 

2.635634
e-01 

2.961726
e-01 

4.697004
e-01 

4.958046
e-01 

5.212302
e-01 

4.414794
e-01 

Table 4: 2048X2048-PBAPINV-AER 

 

FMAPINV 
RMSE 

Active 
Line 

Line 2 Line 3 Line 15 Line 20 Line 25 All 

ε  .    
43e-01 

1.390027
e-04 

5.567958
e-02 

7.790279
e-02 

5.800737
e-01 

7.321860
e-01 

9.300583
e-01 

1.368296
e-02 

ε  .    
18e-01 

6.208195
e-05  

2.465078
e-02 

3.448354
e-02 

2.456430
e-01 

3.840173
e-01 

4.350385
e-01 

9.971555
e-03 
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ε  .    
08e-01 

3.727437
e-05 

1.677082
e-02 

2.480195
e-02 

1.589464
e-01 

2.151520
e-01 

2.860479
e-01 

9.571917
e-03 

ε  .    
12e-01 

2.567091
e-05 

1.341187
e-02 

2.083310
e-02 

1.414948
e-01 

1.756095
e-01 

2.168678
e-01 

9.675919
e-03 

ε  .    
83e-01 

3.408929
e-05 

1.899437
e-02 

2.580210
e-02 

1.316269
e-01 

1.723002
e-01 

2.043942
e-01 

8.765922
e-03 

ε  .    
03e-01 

3.153978
e-05 

1.722643
e-02 

2.325826
e-02 

1.228047
e-01 

1.634918
e-01 

1.976523
e-01 

8.699042
e-03 

ε  .    
20e-01 

2.947895
e-05 

1.611989
e-02 

2.168835
e-02 

1.146350
e-01 

1.549165
e-01 

1.900467
e-01 

8.641071
e-03 

ε  .    
32e-01 

2.779084
e-05 

1.537354
e-02 

2.068458
e-02 

1.104444
e-01 

1.472017
e-01 

1.830657
e-01 

8.592041
e-03 

Table 5: 2048X2048-FMAPINV-RMSE 

 

FMAPINV 
AER 

Active 
Line 

Line 2 Line 3 Line 15 Line 20 Line 25 All 

ε  .    
43e-01 

8.135088
e-03 

5.622129
e-01 

6.138007
e-01 

1.076745
e+00 

1.125677
e+00 

1.228295
e+00 

6.259280
e-01 

ε  .    
18e-01 

6.105304
e-03 

4.048609
e-01 

4.328292
e-01 

7.059326
e-01 

8.232973
e-01 

8.497204
e-01 

5.082938
e-01 

ε  .    
08e-01 

4.957271
e-03 

3.241334
e-01 

3.556107
e-01 

5.642984
e-01 

6.124922
e-01 

6.893882
e-01 

4.835810
e-01 

ε  .    
12e-01 

4.207687
e-03 

2.815072
e-01 

3.176883
e-01 

5.430052
e-01 

5.624433
e-01 

6.038944
e-01 

4.810140
e-01 

ε  .    
83e-01 

4.012481
e-03 

3.194234
e-01 

3.492766
e-01 

5.214196
e-01 

5.541736
e-01 

5.775397
e-01 

4.853048
e-01 

ε  .    
03e-01 

3.918986
e-03 

3.092119
e-01 

3.369382
e-01 

5.037337
e-01 

5.393295
e-01 

5.671982
e-01 

4.817028
e-01 

ε  .    
20e-01 

3.835425
e-03 

3.019792
e-01 

3.280559
e-01 

4.840859
e-01 

5.227518
e-01 

5.541190
e-01 

4.780100
e-01 

ε  .    
32e-01 

3.760577
e-03 

2.964306
e-01 

3.216818
e-01 

4.731816
e-01 

5.054494
e-01 

5.402189
e-01 

4.743792
e-01 

Table 6: 2048X2048-FMAPINV-AER 
 
AINV Active 

Line 
Line 2 Line 3 Line 15 Line 20 Line 25 All 

RMSE 3.108489
e-04 

1.935032
e-01 

3.457808
e-01 

8.494478
e-01 

1.004666
e+00 

1.283734
e+00 

1.616782
e-02 

AER 9.191743
e-03 

7.525569
e-01 

8.721943
e-01 

9.987274
e-01 

1.001242
e+00 

1.207149
e+00 

6.135792
e-01 

Table 7: 2048X2048-AINV-Numerical Results 

 

In the second experiment, we consider a larger inductance matrix of size          . In this 
case, in order to preserve acceptable approximation accuracy, especially on the far “victim” 
conductors, a larger value of   when determining the sparsity structure of   should be considered. 
This fact leads to the inversion of sub-matrices of greater size and to the solution of more linear 
systems in the   method and probing technique respectively. However, as we will see in the next 



 

59 
 

section, the speedup achieved, compared to the full inversion of the inductance matrix, using the 
probing technique remains relatively constant and independent of the size of the inductance matrix 
for a fixed sparsity ratio  . In contrast, the simulation time required when applying the  -method is 
strongly correlated to the size of sub-matrices involved rather than the sparisity ratio  . 
Consequently, when a large value of   is to be used so as to provide accuracy comparable to what is 
obtained when the exact reluctance matrix    is used,  -method can become highly time 
demanding.  

 

 
Figure 5.25: 8192X8192-SIAPINV- Voltage 

Response at far end of Active Line 

 
Figure 5.26: 8192X8192-SIAPINV- Voltage 

Response at far end of Line 2 
 

 
Figure 5.27: 8192X8192-SIAPINV- Voltage 

Response at far end of Line 3 

 
Figure 5.28: 8192X8192-SIAPINV- Voltage 

Response at far end of Line 30 
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Figure 5.29: 8192X8192-SIAPINV- Voltage 

Response at far end of Line 35 

 
Figure 5.30: 8192X8192-SIAPINV- Voltage 

Response at far end of Line 40 
 

 
Figure 5.31: 8192X8192-PBAPINV- Voltage 

Response at far end of Active Line 

 
Figure 5.32:  8192X8192-PBAPINV- Voltage 

Response at far end of Line 2 
 

 
Figure 5.33: 8192X8192-PBAPINV- Voltage 

Response at far end of Line 3 

 
Figure 5.34: 8192X8192-PBAPINV- Voltage 

Response at far end of Line 30 
 



 

61 
 

 

 
Figure 5.35: 8192X8192-PBAPINV- Voltage 

Response at far end of Line 35 

 
Figure 5.36: 8192X8192-PBAPINV- Voltage 

Response at far end of Line 40 
 

5.2 Runtime Comparison 

 

Tables 8-11 show runtime information of different sparse approximate inverse methods. 
Furthermore, we should mention that all the approximate inverse methods except for the AINV 
demand roughly the same time for the transient analysis as they enjoy the same sparsity into the 
reluctance matrix. 

 

 ε  
9.9089
43e-
01 

ε= 
9.816
818e-
01 

ε  
9.7285
08e-
01 

ε  
9.644
012e-
01 

ε  
9.5518
83e-
01 

ε  
9.507
303e-
01 

ε  
9.4632
20e-
01 

ε  
9.419
632e-
01 

ε  
8.4107
45e-
01 

ε  
0.0000
00e-
00 

SIAPI
NV 

0.0900
00 

0.590
000 

1.8000
00 

4.130
000 

7.6800
00 

10.23
0000 

13.050
000 

16.54
0000 

- - 

PBAPI
NV 

8.0800
00 

8.270
000 

8.6800
00 

8.920
000 

9.7100
00 

10.09
0000 

10.140
000 

10.66
0000 

- - 

FMAPI
NV 

10.490
000 

- - - - - - - - - 

AINV - - - - - - - - 1.7100
00 

 

FULL 
INV 

- - - - - - - - - 40.720
000 

Table 8: 2048X2048- Run time usage for the construction of sparse approximate reluctance 
matrix  ̃ using different sparse approximate inverse methods 
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 ε  
9.9089
43e-01 

ε= 
9.8168
18e-01 

ε  
9.7285
08e-01 

ε  
9.6440
12e-01 

ε  
9.5518
83e-01 

ε  
9.5073
03e-01 

ε  
9.4632
20e-01 

ε  
9.4196
32e-01 

ε  
0.0000
00e-00 

Transient 
Analysis 
Time 

3.2600
00 

5.9100
00 

7.2200
00 

8.2900
00 

19.610
000 

21.940
000 

22.190
000 

22.500
000 

125.23
0000 

Table 9: 2048X2048- Run time usage for Transient Analysis for various sparsity ratios 

 

 ε  
9.937570
e-01 

ε  
9.879134
e-01 

ε  
9.762595
e-01 

ε  
9.642504
e-01 

ε  
9.556999e-
01 

ε  
9.485752
e-01 

ε  
0.000000e-
00 

SIAPIN
V 

5.670000 63.74000
0 

277.3800
00  

922.1400
00 
 

1734.2300
00 

- - 

PBAPIN
V 

507.8600
00 

530.8000
00 

565.6800
00 

632.6700
00  

690.56000
0  

718.9400
00 

- 

FULL 
INV 

- - - - - - 2489.4600
00 

Table 10: 8192X8192- Run time usage for the construction of sparse approximate reluctance 
matrix  ̃ using different sparse approximate inverse methods 

 

 ε  
9.937570
e-01 

ε  
9.879134
e-01 

ε  
9.762595
e-01 

ε  
9.642504
e-01 

ε  
9.556999
e-01 

ε  
9.485752
e-01 

ε  
0.000000
e-00 

Transient 
Analysis 
Time 

82.70000
0 

156.1000
00 

527.9100
00 

924.6700
00 

1051.170
000 

1185.150
000 

5461.540
000 

Table 11: 8192X8192- Transient Analysis Time for various sparsity ratios 
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6  

 

Conclusions and Future Research 
 

First, we conclude that the use of a sparse reluctance matrix offers increased computational 
saving in the transient analysis while the sparse approximate inversion methods achieve significant 
speedup, compared to the full inversion of a matrix, with acceptable approximation accuracy. As 
already mentioned, the sparse approximate inversion via small inversions is extremely fast when 
the size of the sub-matrix corresponding to each column is small and the sparse approximate 
inverse exhibits high sparsity ratio. However, as the number of entries of a column to be captured 
becomes greater, this approach becomes expensive and inaccurate. This method can be applied to 
the inductance matrix   to obtain the reluctance matrix      , either at the extraction level (K-
method) or at the simulation level. Moreover, there is a trade-off between coupling-window size, or 
equivalently the sparsity ratio of the sparse reluctance matrix  ̃, and accuracy. As a consequence, 
when a less sparse reluctance matrix  ̃ should be approximated, other approximate inverse 
techniques can be applied to obtain an accurate approximation of the   matrix in reasonable time. 
The approximate inversion, via the minimization of    ̃      , yields satisfactory numerical 
results while the SPAI algorithm [2] can be used, so that an a priori sparsity pattern is not required. 
However, it becomes expensive when it is applied directly to the dense inductance matrix  . One 
solution to this problem would be to sparsify the inductance matrix   as well, which is expected to 
yield a less accurate approximation. The AINV algorithm is adequately fast and does not require an 
a priori sparsity pattern. However, since the inductance matrix is not diagonally dominant, there is 
no guarantee that a sparse and accurate approximate inverse will be produced. The PBAPINV offers 
high degree of accuracy and a satisfactory speedup compared to the full inversion of the inductance 
matrix. 

All the presented methods are driven by the sparsification of  , owning to better simulation 
accuracy. However, the stability of these approximate sparsification techniques has not been 
established since the  ̃ may not be positive definite. As a consequence, further SPD-remedy 
techniques should be applied to the sparse  ̃ in order for stable circuit simulation to be ensured. 
The development of methods for generating stable reluctance matrices, which can be applied to   
irregular geometry cases and incur small errors, constitutes an open research issue. 
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7  
 

Appendix 
 

7.1 Implementation Code 

 

In this appendix, we provide some selected code segments, written in C, of the simulation code 
developed in this thesis. The CSPARSE (a Concise Sparse Matrix Package in C) library was used in 
order to handle sparse matrix structures. We remind that a sparse matrix can be stored either in 
triplet form, which lists all the nonzero entries in arbitrary order or in compressed-column form. In 
both cases, the matrix can be represented by three vectors  ,   and  . In triplet form, vector   
contains column indices, vector   contains row indices and vector   contains the value of the 
corresponding entry. In compressed column form of a      matrix, row indices of entries in 
column  are stored in  [ [ ]] through  [ [    ]   ], the corresponding numerical values are 
stored in the same locations in  . Vector   has size    ,  [ ]   , the value of   [ ] is such that 
 [   ]   [ ] is the number of nonzero entries in column   and  [ ] holds the number of nonzero 
entries in the matrix. 

 Code snippets 1-4 implement ordinary matrix operations where the one matrix operand is 
sparse and the other is dense so as to form the linear system involved into the simulation. We also 
offer the implementation of the partial matrix inversion using the probing technique as described in 
section 3.4. Specifically, Code Snippet 5 implements the Algorithm 2 where the corresponding 
graph is returned as a sparse matrix in compressed-column form. Code Snippet 6 implements the 
Algorithm 3 which colors the graph in order to construct the probing matrix while Code Snippet 7 
implements Algorithm 4. Code Snippet 8 contains the interface of a library for the solution of dense 
linear systems. Code Snippets 9-12 contain the implementation for dynamic sparse matrices. 
Finally,  

Code Snippet 13  implements the incomplete version of Algorithm 1 (AINV algorithm). For the 
complete simulation code, the implementation of the other approximate inverse methods or the 
inductance matrices, please contact me at ifaposto@inf.uth.gr or at ifiaposto@gmail.com.  

 

 

 

 

 

mailto:ifaposto@inf.uth.gr
mailto:ifiaposto@gmail.com
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/** 
 *  Function that scales a sparse matrix, multiplies by a vector, then adds another vector. 
 *  @param A the sparse matrix. 
 *  @param alpha the scaling factor of A. 
 *  @param v the first vector. 
 *  @param u the second vector. 
 *  @param w the vector of the result,w=alpha*A*v+beta*u. 
 *  @return on success 1 on error 0 
 */ 
int ssmxvpsv(cs *A,double alpha,double *v,double *u,double beta,double *w); 

int ssmxvpsv(cs *A,double alpha,double *v,double *u,double beta,double *w) 
{ 
  int j,p; 
  if (!CS_CSC(A)||!v||!w||!u) 
   return 0; 
  int n=A->n; 
  int m=A->m; 
  int *Ap=A->p; 
  int *Ai=A->i; 
  double *Ax=A->x; 
   
   
  for(j=0;j<m;j++) 
   w[j]=beta*u[j]; 
    
  for(j=0;j<n;j++) 
   for(p=Ap[j];p<Ap[j+1];p++) 
    w[Ai[p]]+=Ax[p]*alpha*v[j]; 
 
  return 1; 
   
} 
 

 

Code Snippet 1 
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/** 
 * Function that forms the transpose of a matrix. 
 * @param A the matrix. 
 * @param m the number of rows of A. 
 * @param n the number of columns of A. 
 * @return the transpose of A or NULL on error. 
 */ 
double **trans (double **A,int m,int n); 
/** 
 *  Function that scales a sparse matrix, multiplies by a vector, then adds another vector. 
 *  @param A the sparse matrix. 
 *  @param alpha the scaling factor of A. 
 *  @param v,u the vectors. 
 *  @param w the vector of the result,w=alpha*A*v+u. 
 */ 
void ssmxvpv(cs *A,double alpha,double *v,double *u,double *w); 
/** 
 *  Function that multiplies a sparse matrix by a dense matrix, and scales by a constant. 
 *  @param A the sparse multiplicand matrix. 
 *  @param B the dense multiplier matrix. 
 *  @param p the number of columns of B. 
 *  @param alpha the scaling factor . 
 *  @return the matrix of the result alpha*A*B or NULL on error. 
 */ 
double **smxdmxs (cs *A,double **B,int p,double alpha); 

double **smxdmxs (cs *A,double **B,int p,double alpha) 

{ 
 int i,j; 
 if(! CS_CSC(A)||!B) 
  return NULL; 
 int m=A->m; 
  int n=A->n; 
  
 double **C=(double **)malloc(sizeof(double *)*m); 
 if(!C) 
  return NULL; 
 for(i=0;i<m;i++){ 
  C[i]=(double *)malloc(sizeof(double)*p); 
  if(!C[i]) 
   return NULL; 
 } 
  
 double *v=(double *)malloc(sizeof(double)*m); 
 double **Bt=trans(B,n,p); 
 if(!Bt) 
  return NULL; 
  
 for(i=0;i<p;i++){ 
  ssmxvpv(A,alpha,Bt[i],NULL,v); 
  for(j=0;j<m;j++) 
   C[j][i]=v[j]; 
   
 } 
 free(v); 
 for(i=0;i<p;i++) 
  free(Bt[i]); 
 free(Bt); 
 return C; 
} 
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Code Snippet 2 

 

 

/** 
 *  Function that multiplies a dense matrix by a sparse matrix, and scales by a constant. 
 *  @param A the dense multiplicand matrix. 
 *  @param m the number of rows of A. 
 *  @param B the sparse multiplier matrix. 
 *  @param alpha the scaling factor .  
 *  @return the matrix of the result alpha*A*B or NULL on error. 
 */ 
double ** dmxsmxs (double **A,int m,cs *B,double alpha); 

double ** dmxsmxs (double **A,int m,cs *B,double alpha) 
{ 
 int p,i,j; 
 if(!CS_CSC(B)||!A) 
  return NULL; 
 int n=B->n; 
 int *Bi=B->i; 
 int *Bp=B->p; 
 double *Bx=B->x; 
  
 double **C=(double **)malloc(sizeof(double *)*m); 
 if(!C) 
  return NULL; 
 for(i=0;i<m;i++){ 
  C[i]=(double *)calloc(n,sizeof(double)); 
  if(!C[i]) return NULL; 
 } 
  
 for(p=0;p<m;p++) 
  for(i=0;i<n;i++) 
   for(j=0;j<(Bp[i+1]-Bp[i]);j++) 
    C[p][i]+=alpha*A[p][Bi[Bp[i]+j]]*Bx[Bp[i]+j]; 
      
 return C; 
}  

 

Code Snippet 3 
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/** 
 * Function that adds a sparse matrix scaled by a constant with a dense matrix scaled by a 
constant. 
 * @param A tha sparse matrix. 
 * @param B the dense matrix. 
 * @param alpha the scaling factor of A. 
 * @param beta the scaling factor of B. 
 * @param C the matrix of the result C=alpha*A+beta*B. 
 * @return 1 if successful and 0 in case of error. 
 */ 
int ssmpsdm(cs *A,double alpha,double**B,double beta,double **C); 
 
int ssmpsdm(cs *A,double alpha,double**B,double beta,double **C) 
{ 
 int i,j; 
  
 if(!CS_CSC(A)||!B||!C) 
  return 0; 
  
 int n=A->n; 
 int m=A->m; 
 int *Ai=A->i; 
 int *Ap=A->p; 
 double *Ax=A->x; 
  
 for(i=0;i<m;i++) 
  for(j=0;j<n;j++) 
   C[i][j]=beta*B[i][j]; 
  
  
 for(i=0;i<n;i++){ 
    
  for(j=0;j<(Ap[i+1]-Ap[i]);j++) 
   C[Ai[Ap[i]+j]][i]+=Ax[Ap[i]+j]*alpha; 
   
 } 
  
 return 1; 
  
} 

 

Code Snippet 4 
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/** Function that computes the modified adjacency graph of a sparse and square matrix.  
 * @param csp1 the elements of the inverse to be approximated in compressed-row form. 
 * @param csp2 the sparisity pattern of the inverse in compressed-row form 
 * @return the adjacency graph in compressed-column form. 
 */ 
extern cs *magcstr(cs *csp1,cs *csp2); 
 
cs *magcstr(cs *csp1,cs *csp2){ 
 
 int n1=csp1->n; 
 int m1=csp1->m; 
 int *p1=csp1->p; 
 int *i1=csp1->i; 
  
 int *p2=csp2->p; 
 int *i2=csp2->i; 
 
 int *p=(int *)malloc(n1*sizeof(int)); 
 int *i=(int *)malloc(n1*sizeof(int)); 
  
 char **g=(char **)malloc(sizeof(char *)*n1); 
  
 int nzmax; 
 int k,l,j; 
  
 for(k=0;k<n1;k++) 
  g[k]=(char *)calloc(n1,sizeof(char)); 
  
 nzmax=0; 
 for(k=0;k<n1;k++){ 
    
         /* preserve element (k,i1[j]) */ 
  for(j=p1[k];j<p1[k+1];j++){ 
     
   for(l=p2[k];l<p2[k+1];l++){ 
      
    /* add the edge (i2[l],i1[j]) */ 
    if(i2[l]!=i1[j]){ 
      
     if (!g[i2[l]][i1[j]]){ 
      g[i2[l]][i1[j]]=1; 
      p[nzmax]=i2[l]; 
      i[nzmax++]=i1[j]; 
      if(!(nzmax % n1)){  
        
       p=(int *)realloc(p,(nzmax+n1)*sizeof(int)); 
       i=(int *)realloc(i,(nzmax+n1)*sizeof(int)); 
      } 
         
     } 
      
     if(!g[i1[j]][i2[l]]){ 
      g[i1[j]][i2[l]]=1; 
      p[nzmax]=i1[j]; 
      i[nzmax++]=i2[l]; 
      if(!(nzmax % n1)){  
         
       p=(int *)realloc(p,(nzmax+n1)*sizeof(int)); 
       i=(int *)realloc(i,(nzmax+n1)*sizeof(int)); 
      } 
     } 
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    } 
   } 
 
  } 
 } 
   
 for(k=0;k<n1;k++) 
  free(g[k]); 
 free(g); 
  
 p=(int *)realloc(p,nzmax*sizeof(int)); 
 i=(int *)realloc(i,nzmax*sizeof(int)); 
  
 cs *t=cs_spalloc(m1,n1,nzmax,0,1); 
 memmove(t->p,p,nzmax*sizeof(int)); 
 free(p); 
 memmove(t->i,i,nzmax*sizeof(int)); 
 free(i); 
 t->nz=nzmax; 
 cs *cs_g=cs_compress(t); 
 cs_spfree(t); 
  
 return(cs_g); 
 
} 

 
 

Code Snippet 5 

/** Function that colours a graph. 
 * @param g the modified adjaceny graph in  compressed-column form. 
 * @param c the colour of each node. 
 * @return the number of colours used. 
 */ 
extern int gcolor(cs *g,int **c); 
 
int gcolor(cs *g,int **c){ 
 int n=g->n; 
 int *i=g->i; 
 int *p=g->p; 
  
 int j,k,l; 
 int cn=0; 
         
 *c=(int *)calloc(n,sizeof(int)); 
  
 for(j=0;j<n;j++){ 
  for(k=1;;k++){ 
     
     for(l=p[j];l<p[j+1] && !((*c)[i[l]]==k);l++); 
 
     if(l==p[j+1]){ 
        
      (*c)[j]=k; 
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      cn=(cn<k)? k:cn; 
      break; 
     } 
  } 
 } 
        return cn; 
} 

 

Code Snippet 6 

/**  
 * Function that approximates entries of the inverse of a matrix,using probing technique. 
 * @param Î‘ the matrix. 
 * @param csp1 the elements of A^-1 to be approximated in compressed row form. 
 * @param csp2 the sparisity pattern of A^-1 in compressed row form. 
 * @param options the linear system solution method to be used. 
 * @return fills the entries of cps1(the field x of csp1) in compressed column form. 
 */ 
extern void pbapinv(double **A,cs *csp1,cs *csp2,lssm_options *options); 

void pbapinv(double **A,cs *csp1,cs *csp2,lssm_options *options){ 
 
    cs *g; 
 int *c; 
 int cn; 
 int *Vs; 
 double **Xs; 
 double **vs;  
 int k,j; 
  
 
 int n=csp1->n; 
  
 /* construct the modified adjacency graph of the inverse */ 
 g=magcstr(csp1,csp2); 
  
        /* color the modified adjacency graph of the inverse */ 
 cn=gcolor(g,&c); 
 cs_spfree(g); 
 
  /* construct Xs and probing vectors */ 
  Xs=(double **)malloc(sizeof(double *)*cn); 
  vs=(double **)malloc(sizeof(double *)*cn); 
 
  for(j=0;j<cn;j++) 
  vs[j]=(double *)calloc(n,sizeof(double)); 
   
  /* create the probing vectors */ 
  Vs=(int *)malloc(sizeof(int)*n); 
  for(j=0;j<n;j++){ 
     
  Vs[j]=c[j]-1; 
  vs[c[j]-1][j]=1; 
  } 
  free(c); 
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        /* solve the cn linear systems to create Xs */ 
 if(options->lssm==ITERATIVE) 
  options->method.iter->x0= ( double* ) calloc (n, sizeof(double) ); 
  
 ls_state *ls=ls_init(A,options,n); 
 
 for(j=0;j<cn;j++){ 
  Xs[j] =ls_solve(vs[j],ls,options); 
  free(vs[j]); 
 } 
  
 if(options->lssm==ITERATIVE) 
  free(options->method.iter->x0); 
 ls_term(ls); 
 free(vs); 
  
 /* extract the elements */ 
 int *p=csp1->p; 
 int *i=csp1->i; 
 double *x=csp1->x; 
 
 for(k=0;k<n;k++) 
  /* extract element (k,i[j]) */ 
  for(j=p[k];j<p[k+1];j++) 
   x[j]=Xs[Vs[i[j]]][k]; 
  
  
 for(j=0;j<cn;j++) 
  free(Xs[j]);  
  
 free(Xs); 
 free(Vs); 
  
 
} 
 

 

Code Snippet 7 

typedef struct _iter_options    /*options of the iterative method */ 
{ 
 unsigned char iterm;         /* the iterative method to be used */ 
 double ITOL;                 /* the convergence tolerance*/ 
 double *x0;                  /* the initial guess */ 
 preconstruct conp;        /*the function to be used in order to construct the 
preconditioner */ 
 cs_preconstruct cs_conp;  /*the function to be used in order to construct the 
preconditioner for sparse matrix */ 
 presolve solp;            /*the function to be used in order to solve a linear system 
                                   with the preconditioner as coefficient matrix.*/ 
 pretsolve solpt;         /*the function to be used in order to solve a linear system 
                                   with trans(M) as coefficient matrix.*/ 
} 
iter_options; 
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typedef struct _dir_options /*options of the direct method */ 
{ 
   unsigned char dirm;    /* the direct method to be used */ 
 double ITOL;           /* the convergence tolerance*/ 
     
} 
dir_options; 

 
typedef struct _lssm_options /*options of the linear system's solution  method */ 
{ 
    unsigned char  lssm;         /*the linear system solution method to be used*/ 
    union 
    { 
     iter_options *iter;  /*the options of the iterative method to be used*/ 
        dir_options *dir;     /*the options of the iterative method to be used*/ 
 } 
 method; 
} 
lssm_options; 

typedef struct _ls_state /* the state of a linear system with dense coefficient matrix */ 
{ 
 double **A;      /* the coefficient matrix */ 
 double **L;      /* the decomposition of A */ 
 unsigned int *P; /* the permutation matrix of lu decomposition of A */ 
 double *M;       /* the preconditioner matrix of A */ 
 int n;           /* the dimension of the linear system */ 
} 
ls_state; 

/** 
 *  Function that initializes the linear system with dense coefficient matrix A. 
 *  According to the options either computes the lu factorization or the 
 *  preconditioner matrix of A. 
 *  @param A the coefficient matrix. 
 *  @param options the method to be used and further options of that method. 
 *  @param n the size of the system. 
 *  @return the state of the linear system. 
 */ 
extern ls_state *ls_init(double **A,lssm_options *options,int n); 
 
/** 
 *  Function that solves a dense linear system specified by state 
 *  with rhs b,according to options. 
 *  @param b the rhs. 
 *  @param state the initialied coeffcient matrix. 
 *  @param options the method to be used and further options of that method.. 
 *  @return the solution. 
 */ 
extern double * ls_solve(double *b,ls_state *state,lssm_options *options); 
 
/** 
 *  Function that destroys the state of a dense linear system. 
 *  @param state the state of the linear system. 
 */ 
extern void ls_term(ls_state *state); 

 

Code Snippet 8 
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/******************************************************************************** 
 *                                                                              * 
 *                       DATA STRUCTURES DEFINITIONS                            * 
 *                                                                              * 
 ********************************************************************************/ 
 
 
typedef struct csd_row 
{ 
 double x;   /* numerical value of the element */ 
 int k;      /* row indice */ 
 struct csd_row *nxt;  /* next row */ 
}csdr; 
 
 
 
typedef struct csd_col 
{ 
 int nzp;  /* number of elements of the column */ 
 csdr *i;  /* the rows of the column */ 
 
} csdc; 
 
 
 
typedef struct csd_sparse /* dynamic sparse matrix */ 
{ 
 int m;   /* number of rows */ 
 int n;   /* number of columns */ 
 csdc *p; /* the columns of the matrix */ 
 int nz;  /* # of nonzero elements */ 
} csd; 

 

 

Code Snippet 9 



 

75 
 

  

/** 
 *  Function for allocating the appropriate memory space for a dynamic sparse matrix. 
 *  @param m Number of rows. 
 *  @param n Number of columns. 
 *  @return Pointer to the struct describing the matrix in case of success and NULL otherwise. 
 */ 
extern csd *csd_spalloc(int m, int n); 

csd *csd_spalloc(int m, int n) { 
   
 csd *A=(csd *)malloc(sizeof(csd)); 
  
 if(!A)  
  return NULL; 
 A->m=m; 
 A->n=n; 
 A->nz=0; 
  
 A->p=(csdc *)malloc(sizeof(csdc)*n); 
 if(!A->p)  
  return NULL; 
 int i; 
 for(i=0;i<n;i++){ 
  A->p[i].nzp=0; 
  A->p[i].i=NULL; 
 } 
  
 return A; 
} 

 

 

Code Snippet 10 
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/** 
 *  Function for deallocating the allocated memory space for a dynamic sparse matrix . 
 *  @param A Pointer to the matrix. 
 *  @return NULL. 
 */ 
extern csd *csd_spfree(csd *A); 

csd *csd_spfree(csd *A){ 
  
   
 if(!A || !A->p)  
  return NULL; 
 int n=A->n; 
  
 int i; 
  
 for(i=0;i<n;i++){ 
     csdr *r; 
  while(A->p[i].i){ 
   r=A->p[i].i; 
   A->p[i].i=r->nxt; 
   free(r); 
  } 
 } 
        return NULL; 
} 

 

 

Code Snippet 11 
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/** 
 * Function that converts a dynamic sparse matrix to a static sparse matrix in compressed-
column form.  
 * @param A Pointer to the dynamic matrix. 
 * @return Pointer to the static sparse matrix in case of success and NULL otherwise. 
 */ 
extern cs *csd_static(csd *A); 

cs *csd_static(csd *A){ 
   
  if(!A) 
  return NULL; 
  int m=A->m; 
  int n=A->n; 
   
  cs *B=cs_spalloc(m,n,A->nz,1,0); 
  int *Bp=B->p; 
  int *Bi=B->i; 
  double *Bx=B->x; 
   
  csdc *Ap=A->p; 
  if(!Ap) 
  return NULL; 
   
  int i; 
  int nz=0; 
  for(i=0;i<n;i++){ 
         Bp[i]=nz; 
   
  csdr *r; 
  for(r=Ap[i].i;r;r=r->nxt){ 
   Bx[nz]=r->x; 
   Bi[nz++]=r->k; 
  } 
  } 
  Bp[n]=nz; 
   
  return B; 
} 

 

 

Code Snippet 12 
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cs *ainv(double ** A,int n,double tol,double lamda){ 
  
 int i,j; 
  
 /* D=diag(p1,p2,..,pn ) */ 
 cs *D=cs_spalloc(n,n,n,1,0); 
 int *Dp=D->p; 
 int *Di=D->i; 
 double *Dx=D->x; 
 for(i=0;i<n;i++){ 
  Dp[i]=i; 
  Di[i]=i; 
 } 
 Dp[n]=n; 
 memset(Dx,0,sizeof(double)*n); 
      
 /* Z=[z1,z2, ,zn] */ 
 csd *Z=csd_spalloc(n,n); 
 csdc *Zp=Z->p; 
 /* zi=ei i=0(1)n-1 */ 
 for(i=0;i<n;i++){ 
  Z->nz++; 
  Zp[i].nzp++; 
  Zp[i].i=(csdr *)malloc(sizeof(csdr)); 
  Zp[i].i->x=1.0; 
  Zp[i].i->k=i; 
  Zp[i].i->nxt=NULL; 
 } 
  
 for(i=0;i<n;i++){ 
 
  /* update pivots */ 
  for(j=i;j<n;j++){ 
        
      /* pj=(Ai,zj) j=i(1)n */ 
   csdr *r;  
   Dx[j]=0.0; 
   for(r=Zp[j].i;r;r=r->nxt) 
    Dx[j]+=r->x * A[i][r->k]; 
  } 
 
  if(Dx[i]<=0){ 
   /* ainv breaks down */ 
   /* sigma=max{pk},k=i(1)n-1 */ 
   double sigma=Dx[i]; 
   int l; 
   for(l=i+1;l<n-1;l++)   
    sigma=(sigma < Dx[l]) ? Dx[l]: sigma; 
    
   /* theta=||zi||oo */ 
   double theta=Zp[i].i ? fabs(Zp[i].i->x) :0.0; 
   csdr *ri; 
   for(ri=Zp[i].i;ri;ri=ri->nxt) 
    theta=(theta < fabs(ri->x)) ? fabs(ri->x) :theta; 
   double zeta=lamda*sigma*theta; 
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   /* pi=max(sqrt(eps),zeta) */ 
   Dx[i]=(SQRT_EPS>zeta) ? SQRT_EPS :zeta; 
  } 
 
  /* update conjugate directions zj */ 
  for(j=i+1;j<n;j++){ 
    
   /* zj=zj-(pj/pi)*zi j=i+1(1)n*/ 
   double p=Dx[j]/Dx[i]; 
   csdr *ri; 
   for(ri=Zp[i].i;ri;ri=ri->nxt){ 
 
    int k=ri->k; 
    csdr *rjp,*rj; 
    for(rjp=NULL,rj=Zp[j].i;rj && rj->k<k;rjp=rj,rj=rj->nxt); 
    double z=-p*ri->x+((rj && rj->k==k) ? rj-> x: 0.0); 
 
    if(rj && rj->k==k){  
 
     /* element (k,j) already exists in Z */ 
     if(fabs(z)<=tol){ 
        
      /* drop element (k,j) */ 
      if(rjp) 
       rjp->nxt=rj->nxt;  
      else 
       Zp[j].i=rj->nxt; 
      free(rj); 
      Z->nz--; 
      Zp[j].nzp--; 
     } 
     else 
      /* update value */ 
      rj->x=z; 
    } 
    else{ 
     /* element (k,j) does not exist in Z */ 
     if(fabs(z)>tol){ 
        
      /* add element (k,j) */ 
      csdr *r=(csdr *)malloc(sizeof(csdr)); 
      r->x=z; 
      r->k=k; 
      r->nxt=rj; 
      if(rjp) 
       rjp->nxt=r; 
      else 
       Zp[j].i=r; 
      Z->nz++; 
      Zp[j].nzp++; 
     }   
    } 
   } 
 
  } 
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 } 
  
 cs *Z_cs=csd_static(Z); 
 csd_spfree(Z); 
 for(i=0;i<n;i++) 
    Dx[i]=1/Dx[i]; 
 cs *T=cs_multiply(Z_cs,D); 
 cs_spfree(D); 
 cs *Z_cs_t=cs_transpose(Z_cs,1); 
 cs_spfree(Z_cs); 
 cs *B=cs_multiply(T,Z_cs_t); 
 cs_spfree(T); 
 cs_spfree(Z_cs_t); 
  
 return B;   
} 
 

 

 

Code Snippet 13 
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7.2 Mathematical Proofs 

7.2.1 

 hen   is invertible, then |
  
  

|               .  

Proof: 

The block matrix can be factored as 
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7.2.2 

Consider a pair  ,   of      matrices, partitioned as    [
      

      
] ,   [

      

      
]   where    , 

    are      matrices. If      ,      are nonsingular and       then  
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Proof: 

Firstly, we remark that the conditions        ,         are sufficient for the nonsingularity of A, 
but in general, not necessary.  In case of a positive definite A, these conditions are also necessary .If 
       then  
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]  [

    ,   

    ,     
]      

 

 Equivalently, we need to solve four matrix equations: 

                  ( )   
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                           ,   (   ) 

                         (  ) 
 

It follows from (  )  and (   )  that 
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82 
 

So that ( ) and (  )  become  

(          
     )         

     (          
     )           

  

Hence, 

    (          
     )

  
   

    (          
     )

    
 

Substituting these solutions in ( ) and (  ) it follows that  

        
     (          
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     (          
     )

    
     

7.2.3 

If matrix     ,  is strictly diagonally dominant and has positive diagonally elements then it is 
SPD. 

 

Proof: 

This is an immediate consequence of the Gersgorin Circle theorem, by which every eigenvalue    of 

a square matrix   is located in one of the   disks in the complex plane defined by{  :         

 ∑    
 
   
   

} ,    ( ) . Obviously, if the matrix is strictly diagonally dominant with positive diagonal 

elements, then all Gersgorin disks lie entirely in the positive semi-plane and thus all eigenvalues 
have positive real parts.  

 

 

 

 

 

 

 

 

 

 

 



 

83 
 

Bibliography 
 

[1] E. Chow and Y. Saad, Parallel approximate inverse preconditioners, PPSC 8, 1997. 
[2] M. Grote and T.Huckle, Parallel Preconditioning with sparse approximate inverses, SIAM J. Sci. 

Comput. 18, 1997. 
[3] E. Chow, A Priori Sparsity Patterns For Parallel Sparse Approximate Inverse 

Preoconditioners, SIAM J. Sci. Comput. 21, 2000. 
[4] T. Huckle, Approximate sparsity patterns for the inverse of a matrix and preconditioning, 

Applied Numerical Mathematics 30, 1999. 
[5] M. Benzi, L. Giraud and G. Alleon, Sparse Approximate Inverse Preconditioning For Dense 

Linear Systems In Computational Electromagnetic, Numerical Algorithms 16, 1997. 
[6] M. Ganesh and S. C. Hawkins, Sparse approximate inverse preconditioners for 

electromagnetic surface scattering simulations, ANZIAM J. 49, 2007. 
[7] M. Benzi, C. D. Meyer, M. Tuma, Miroslav and T. Uma, A Sparse Approximate Inverse 

Preconditioner For The Conjugate Gradient Method, SIAM J. Sci. Comput. 17, 1996. 
[8] M. Benzi and M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear 

systems, SIAM J.Sci Comput. 19, 1998. 
[9] J. Tang and Y. Saad, A Probing Method for Computing the Diagonal of the Matrix Inverse, 

Numerical Linear Algebra with Applications Vol. 19, 2010. 
[10] C. Bekas, E. Kokiopoulou and Y. Saad, An Estimator for the Diagonal of a Matrix, Applied 

Numerical Mathematics Vol. 57, 2007. 
[11] T. Huckle and A. Kallischko, Frobenius Norm Minimization and Probing for Preconditioning, 

IJCM 84, 2007. 
[12] C. Siefert and E. Sturler, Probing Methods for Saddle-Point Problems, Electronic Transactions 

on Numerical Analysis 22, 2006. 
[13] J. Freericks, M. Rigol, T. El-Ghazawi and Y. Saad, Diagonal of inverse of real symmetric and 

complex diagonal matrices using Lanczos, Notes by Piere Carrier(CSE/I. Minesota), 2010. 
[14] Y. Saad and R. Sidje, Rational approximation to the Fermi-Dirac function with applications in 

Density Functional Theory, Numerical Algorithms Vol. 56, 2009. 
[15] L. Lin, J. LU, L. Ying, R. Car and W. E, Fast algorithm for extracting the diagonal of the inverse 

matrix with application to the electronic structure analysis of metallic systems, 
Communications in Mathematical Sciences Vol. 7, 2009. 

[16] M. Benzi, Preconditioning techniques for large linear systems: A survey, Journal of 
Computational Physics, 2002. 

[17] F. N. Najim, Circuit Simulation, Wiley & Sons Publications, New Jersey, 2010. 
[18] M. W. Beattie and L. T. Pileggi, Inductance 101: Modeling and Extraction, Proc. Design 

Automation Conf., 2001. 
[19] K. Gala, D. Blaauw, J. Wang, V. Zolotov and M. Zhao, Inductance 101: Analysis and Design 

Issues, Proc. Design Automation Conf., 2001. 
[20] M. W. Beattie and L. T. Pileggi, Modeling Magnetic Coupling for On-Chip Interconnect, Proc. 

Design Automation Conf., 2001. 
[21] A. Devgan, H. Ji and W. Dai, How to Efficiently Capture On-Chip Inductance Effects: 

Introducing a New Circuit Element K, Proc. Int. Conf. on Computer Aided Design, 2000. 
[22] A. Devgan, H. Ji and W. Dai, KSIM: a Stable and Efficient RKC Simulator for Capturing On-Chip 

Inductance Effects,  Proc. of the ASP-DAC, 2001. 
[23] T-H. Chen, C. Luk and C. C-P. Chen, INDUCTWISE: Inductance-Wise Interconnect Simulator 

and Extractor, Proc. Int. Conf. on Computer Aided Design, 2002. 



 

84 
 

[24] M. Kamon, M.J. Tsuk and J.K. white, FASTHENRY: A Multipole-Accelerated 3-D Inductance 
Extraction Program, Proc. Design Automation Con., 1993. 

[25] Y. Tanji, T. Watanabe and H. Asai, Generating Stable and Sparse Reluctance/Inductance 
Matrix under Insufficient Conditions, Proc. of the ASP-DAC, 2008. 

[26] G. Zhong, C.-K.  Koh and K.Roy, On-chip Interconnect Modeling by Wire Duplication, Proc. Int. 
Conf. on Computer Aided Design, 2002. 

[27] H. Li, V. Balakrishnan and C.-K. Koh, Compact and Stable Modeling of Partial Inductance and 
Reluctance Matrices, Proc. of the ASP-DAC, 2005. 

[28] H. Li, V. Balakrishnan and C.-K. Koh, Stable and Compact Inductance Modeling of 3-D 
interconnect structures, Proc. Int. Conf. on Computer Aided Design, 2006. 

[29] J. Jain, C.-K. Koh and V. Balakrishnana, Fast Simulation of VLSI Interconnects, Proc. Int. Conf. 
on Computer Aided Design, 2004. 

[30] Hui Zheng, B. Krauter, M. Beattie and L. Pileggi, Window-based susceptance models for large-
scale RLC circuit analysis, Proc. Design Automation and Test in Europe, 2002. 

[31] M. Beattie and L. Pileggi, Efficient inductance Extraction via Windowing, Proc. Design 
Automation and Test in Europe, 2001. 

[32] Hui Zheng, B. Krauter, M. Beattie and L. Pileggi, Window-based susceptance models for large-
scale RLC circuit analyses, Proc. Design Automation and Test in Europe, 2002. 

[33] Z. He, M. Celik and L. T. Pileggi, SPIE: Sparse partial inductance extraction, Proc. Design 
Automation Con., 1997. 

[34] G. Zhong, C.-K.  Koh, V.  Balakrishnan  and K.Roy, An Adaptive Window-Based Susceptance 
Extraction and its Efficient Emplementation, DAC, 2003. 
 


