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llepAnym

Voo n yewutpia twv KUKAwUdTwV yIVETAL MO TUKVI] Kat 1] oUYVOTNTA AEITOUpYlas avéaveral,
Ta on-chip avoueva emaywynis ylvovtal 0loEva Kat mo onuavTikda otnv avalvon YpoviououU Kat
Bopufov twv odordnpwusévwv kvklwudtwv VLSI. H uédodos PEEC (The Partial Element
Equivalent Circuit) £yet eupéwg ypnowomombsi yia va [LOVTEAOTIOUJOEL TA PAIVOUEVA ETAYWYIS.
Notéoo, 0 mivarkag emaywydVv L mov mpokUTTEl elval ueydlog kat mukvos, kabBlotavras tnv
TPOCOUOIWOT) TOU KUKAWDUATOS AoUUPOPN A0Yw TwV UEYAAWY ATAUTIIOEWY OE UVIIUN KAl YPOVO.
Eyst mapatnpnbel 6Tt o avriotpogos mivakas emaywydv K = L' umopsl va Bewpnbel
TIPOCEYYIOTIKG apaids. LVvemds, 1o va Bewpricovus tov mivaka K apaid umopel va kaver to
TPOLANUA TNS TIPOTOUOIWOTNS TINS AUOLBAIAS ETAYWYIIS TWV KUKAWUATWY Stayelpiouo.

2NV mapovoa SIMAWUATIKI] EQYATIA UEAETAUE SIAPOPES HEOOSOVS apailis Kal TPOTEYYITTIKIS
avTIoTPOPIS TOV Tiivaka L TPOKEWEVOD va ETITUYOUUE YpITyopn Kal akoif mpooouoiwon twv
pavousvwy auolfaias srayaywyris. Emmiéov mpotelvovue évav svallaxtiko alydptBuo o omoiog
TIPOCEYVIOTIKG VTOAOYISEL KATIOIES TIPOSIAYEYPAUUEVES BETEIS TOU QVTIOTPOPOU EVOS TIVAKQ.
Arxoun, tpomomotovue ™y avalvon KouUfwv ote va yIVETAL Yp1ion TOU apaioy TTPOOEYYVIOTIKOU
nivaxa Kavti tov L oty perafarici avdlvon kvidwudtwv. TElos, mapovotd{ovue mepauatind
AMOTEAEOUATA ATIO OUVYKEKPUIUEVES VEWUETPIES KUKAWUATWYV TPOKEUEVOV va Ogifovus Tnv
EMITAYVVON KAl TNV aKp{BEL TTOV ETUTVYYAVETAL 0TV KAOE i HEOOS0§ TIPOTEYYITTIKIIS Kal apaing
AVTIOTPOPIIS EQAPUOLETAL OTOV EKAOTOTE TTIVAKA ETTAYWYWDV.
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Abstract

As technology shrinks further and clock speed increases, on-chip inductance eftects become
more significant in timing and noise analysis of VLSI circuits. The Partial Element Equivalent Circuit
(PEEC) method has been widely used to model on-chip inductance eftects. However, the resulting
inductance matrixL is large and dense which makes the simulation impractical due to the
enormous demands on computational time and memory. It has been recognized that the reluctance
or susceptance matrixK = L™, the inverse of the inductance matrix, is approximately sparse.
Consequently, sparsification of the reluctance matrix can be applied to make the problem of the
simulation of the inductance effects tractable.

In this thesis, we explore several techniques for approximate sparsification of the K matrix at
the simulation level so as to achieve fast and accurate inductance simulation. Furthermore, we
propose an alternative algorithm which approximately captures selected entries of the inverse of a
matrix. Moreover, the nodal analysis formulation is modified in order to make use of the sparse
approximate matrix K instead ofL in transient analysis. Finally, results from specific cases are given
to demonstrate the efficiency and accuracy achieved by each approximate sparsification method.
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Introduction

1.1 Problem Description

With the aggressive scaling of VLSI technology, the accurate modeling of inductance effects has
become a problem of crucial importance. The inductive coupling effect becomes more important
because of higher frequency signal content, denser geometries, more metal layers and the reduction
of resistance by copper and capacitance by low-k dielectric. Inductance effect is present not only in
IC but also in on-chip interconnects such as power grids, clock nets and bus structures. It causes
signal overshoot, undershoot, oscillations and aggravates crosstalk and power-grid noises.

The major problem of inductance modeling is the uncertainty of return paths. Since inductance
is a function of a closed loop, the return path is difficult to predict in advance before simulation. The
partial equivalent elements circuit (PEEC) method based on partial inductances was proposed to
overcome the difficulty in finding complete current loops in a real chip environment. In this
approach, each conductor is segmented and for high frequencies, further subdivided into filaments.
Each filament is represented by a resistor and a self-inductor in series and a capacitor to ground.
Mutual inductors and capacitors are inserted as necessary for accurate modeling. The partial self
and mutual inductances are defined with the assumption of infinite return paths (see section 2.2).
However, the PEEC model results in a huge number of circuit elements and the partial inductance
matrix L is large and dense. Consequently, direct simulation of the full L matrix is usually
impractical , owning to the enormous demands it places on computation time and memory.

To effectively reduce the mutual inductance terms and speedup the simulation, sparsification is
crucial. Many approaches sparsify either the inductance matrix L or its inverse K = L™1, which is
called susceptance or reluctance matrix. The mutual susceptance terms drop off much faster with
distance than the corresponding mutual inductance terms. As a consequence, the reluctance matrix
can be considered approximately sparse. However, K = L™ needs to be computed first, which is
prohibitively expensive. In order to avoid full inversion, several techniques have been developed to
obtain an approximate value for the nonzero entries in K matrix and are presented in this thesis.

1.2 Literature Overview

13



In this section, we briefly review existing methods that tackle the problem of unrealistic
demands on both simulation time and memory, which stems from the large and full inductance
matrix L. The obvious approach is that of the direct truncation of L, i.e., setting to zero off-diagonal
entries that are smaller in magnitude than a threshold parameter. However, this approach can lead
to unstable simulation, since the truncated L may not be symmetric and positive definite (SPD, see
section 4.2). An alternative approach, which is based on the sparsification of L and guarantees the
positive definiteness of the truncated L matrix, was proposed in [33]. However, this approach can
lead to a high degree of inaccuracy. In [21], it was shown that the off-diagonal entries in the
susceptance or reluctance matrix K = L™! diminish much faster than those in L and the
sparsification of K was proposed. The simplest technique is that of direct truncation, where L is
inverted and the small off-diagonal terms are truncated. In [21], a highly effective sparsification
method of the K matrix at the extraction level, the K-method, was proposed: a small inductance
sub-matrix of wires strongly coupled to the wire of interest is extracted and then inverted, and the
corresponding row (or column) of the wire in the inverse forms the significant entries in the
approximate inverse matrix denoted by K (see section 3.1). In [26], the mathematical foundation of
the K-method is offered. Moreover, in order for the K-method to be applicable, a sparsity pattern of
K, i.e., a coupling window of each wire, should be a priori known. In [34], a systematic approach for
determining the coupling window and an incremental computation method of K is proposed. Since
commercial simulation tools do not support the use of the reluctance matrix K, a double inversion
method is proposed in [31], [20]. Specifically, once the sparse approximation of K is obtained, it is
inverted. The resulting inductance L contains far fewer significant entries than the original matrix
L, hence it is much easier to sparsify. To preserve positive definiteness of I, the magnitude of
canceled off-diagonals should be added to the corresponding diagonal element. However, this
technique requires a large matrix inversion which can be expensive. Furthermore, the significant
entries of L and L can be significantly different resulting in a loss of simulation accuracy.

While the sparsification of the reluctance matrix K offers better simulation accuracy compared
to those achieved by the truncation of the inductance matrix, the stability of this approximation is
not guaranteed either, i.e., the sparse approximate reluctance matrix K may not be SPD. The
stability of the K-method was proved in [22] based on the diagonal dominance of the reluctance
matrix K and the fact that it has positive diagonal entries (7.2.3). The diagonal dominance property
is derived from the assumption thatK;; <0,i #j. However, if the targeting circuit presents
irregular geometry, positive off-diagonal entries may occur. Therefore, there is no guarantee that
the K matrix is diagonally dominant and the sparsification of K may lead to unstable simulation. In
[23], it was noted that the reluctance matrix K is diagonally dominant when all conductors are
sufficiently discretized and a reluctance extractor and simulator was proposed. Furthermore, it is
considered that the reluctance elements K;; can be directly extracted by setting unit magnetic flux
on conductor i and zero to others (see sections 2.2, 2.3 for more details). However, the extraction of
K elements is not supported by current commercial inductance extraction tools. In [27], an
approximate sparsification technique of L™, which preserves the SPD property of the approximate
sparse reluctance matrix when the reluctance matrix K can be adequately approximated by a
banded matrix, was proposed. Specifically, it is proved that the approximate sparse reluctance
matrix K = L' is SPD, the band entries of L matrix match the corresponding entries of L and L can
be entirely constructed using only these band entries. The work in [28] constitutes a generalization
of [27] where the sparse approximate reluctance matrix K is considered a multi-banded matrix. As
a consequence, this method is applicable to 3D- interconnect structures. However, the previously
mentioned techniques may not yield acceptable simulation accuracy when the conductors appear in
irregular geometry and the corresponding reluctance matrix presents arbitrary sparsity pattern.

14



1.3 Thesis Contribution

Several window-based approaches have been developed to approximate K at the extraction
level [34], [22], [20]. These approaches focus on determining the coupling window to be considered
or, equivalently, the entries of the reluctance matrix K that should be approximated. However, all
these techniques, given the coupling window of each conductor, perform a small sub-matrix
inversion to obtain the entries of the corresponding column of K, as it had already been proposed in
the K-method [21]. Consequently, the point of interest was to determine which entries should be
approximated rather than how to get their approximate value. Furthermore, if there are c; nonzero
entries in the it" column of the n X n reluctance K matrix, the overall computation of K
costs ¥, c3. For small window sizes, i.e., the constant c; is small and the K presents a high sparsity

. #nonzeros
ratio € = (1 —

#entries
However, when large-sized inductance matrices are considered, in order to adequately capture the
inductance effect a larger window, i.e., a greater c;, should be used hence K-method can become
expensive.

), K-method turns out to be extremely fast and has complexity O(n).

In this thesis, we first demonstrate the need for larger inductance windows in order to provide
accuracy comparable to what is obtained when the full and exact K matrix is used, when the
targeting matrix is large. Furthermore, we explore alternative approximate inverse techniques
which can become more efficient and accurate compared to the K-method when larger window
sizes are used so as to preserve a high degree of accuracy. We should note that we exploit the
sparsity of K at the simulation level, as it was proposed in [29]. To this purpose, we review and
incorporate into the simulation tool preconditioning techniques based on sparse approximate
inverses [1], [2], [7], [8], [16] to obtain the sparse approximate matrix K which is subsequently
used into the transient analysis (see section 4.3). Furthermore, we note that several approaches
have been developed to obtain an approximation of the diagonal of the inverse of a matrix [9], [10],
[13], [14], [15]- We observe that the method described in [9] can be extended in order to
approximate not only the diagonal but also arbitrary entries of the inverse of the matrix.
Consequently, we develop an algorithm which constitutes a selected approximate matrix inversion,
the PBAPINV method, which turns out to be highly accurate compared to the K-method and more
efficient when the matrix K is less sparse or large enough so that a small window size is inadequate
to provide high degree of accuracy. Moreover, we develop a reluctance simulator, the GKC-
simulator, which utilizes the nodal analysis formulation so that the computations are done with
conductance, reluctance and the capacitance matrices.

1.4 Thesis Outline and Overview

In Chapter 2, we provide the theoretical background of the inductive properties of electric
circuits, the concept of the partial inductance is described and the definition, the physical meaning
and the properties of the reluctance matrix K are presented. In Chapter 3, we review the sparse
approximate inverse methods. Specifically, the mathematical background of the K-method is
extensively described in Section 3.1 while in Section 3.4 the PBAPINV method is developed. In
Chapter 4, the fundamentals of circuit simulation are briefly described (see [17] for more details)
while in Section 4.4 the details of the GKC-simulator are presented. In Chapter 5, we demonstrate
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the experimental results when each of the approximate inverse methods of Chapter 2, are used into
the simulation tool and a comparison in terms of accuracy and runtime is given. Furthermore, in
Appendix 7.1 we offer selected code segments of the simulator and the implementation of PBAPINV

in C. In Appendix 7.2, some supplementary mathematical proofs are given. Finally, Chapter 6
presents our conclusion and further research avenues.
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Background

2.1 Inductive Properties of Electric Circuits

Inductance represents the capability of a circuit to store energy in the form of a magnetic field
and is defined on current loops. In this section, a general N-loop system is considered with currents
L,y iy Ly Iy which are uniformly distributed on the cross section of each loop. The
magnetic field B, induced by each current, is interrelated with the electric field E and current as
determined by Maxwell’s equations:

VD =p (2.1.1)
VB = (2.1.2)
— 213
vaxHE —l—+ ét EZ 1 4;
= ot o

D =¢E (2.1.5)
B=uH (2.1.6)

] =0k (2.1.7)

The magnetic field B can also be expressed as B =V X A where Ais the magnetic vector
potential, which is not unique because A’ = A + V¢ where ¢ a scalar potential. The second term in
(2.1.3) corresponds to the displacement current, which is considered negligible compared to the

. . oD .
actual current flowing in the conductor, hence yrla 0. Moreover, using the Coulomb gauge VA = 0

and substituting into (2.1.3) we obtain the Poisson’s equation for the magnetic field
potential V24 = —uJ. Considering the boundary condition lim,_., A(r) = 0, this equation has

unique solution:

17



A(r) =1 %dt’ (21.8)
4
A set of N? inductances is defined for a system of N loops as
Lij = d;—]' for I,=0ifk # j (2.1.9)
, where @;; represents the magnetic flux in loop i due to current [;:
bij = ff Bj-nds (2.1.10)
Si

, where §; is a smooth surface bounded by the loop i, B; is the magnetic field created by the current
in the loop j, and n is a unit vector normal to the surface element ds.Two isolated current loops i
and j are shown in Figure 2.1. In the special case where two circuit loops are the same, the
coefficient in (2.1.9) is referred to as a loop self- inductance; otherwise, it is referred to as a mutual
inductance.

Substituting B; = V X A;and using Stoke’s Theorem, the loop flux is expressed as:

Py = ff(V XAj) nds = 554,- dl (2.1.11)
Si

L

, where A; is vector potential created by the current I;.The magnetic vector potential of loop j using
(2.1.8)is
L dl’
A - A [ -
Vij b

(2.1.12)

, where |r — r'| is the distance between the loop element dl’ and the point of interest r. Substituting
(2.1.12) into (2.1.11) yields:

18



Figure 2.1: Two isolated complete Current Loops 7and

o 1§ faLdl
U= Yar |r—r’| (2.1.13)
Ly = -
L..—iﬁ.%dl'dl’ (2.1.14)
ij _47'[ |r_r’| PP
Ly - -

Note that the integration in (2.1.11), (2.1.12), (2.1.13) and (2.1.14) is performed in the
direction of current flow. Furthermore, we note that the finite cross-sectional dimensions of the
conductors are neglected in the transition between the general volume integral to a more
constrained but simpler contour integral in (2.1.12). Thus, the loop conductor is confined to an
infinitely thin filament. The thin filament approximation is acceptable only when the cross-sectional
dimensions of the conductors are much smaller compared to the distance |£ - £’| between any loop
points. As a consequence, this approach cannot be used to determine the self-inductance. To
account for the finite cross-sectional dimensions of the conductors, both (2.1.11) and (2.1.12) are
amended to include an explicit integration over the conductor cross-sectional area a,

1
@, :I—jg féj]idlda (2.1.15)
lli [24]
U J;dl'da’
Aj(r) =—
4;(@) 4”% |K_f’| (2.1.16)
lj aj
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, where a; and a;j are the cross sections of the segments, dl and dl’, da and da’ are the differential
elements of the respective cross sections, J; and J; are the current density distributions over the
wire cross section q; and a; respectively such that d = Jdlda and [; = fai]i da. The only
constrained imposed by the above formulations is that the current flow has the same direction
across the areas a; and a;. These formulas can be further simplified assuming a uniform current
distribution (i.e.,, I = aJ). Then, the magnetic flux is transformed into

dl-dl' ,
Py = 4na a] T dada (2.1.17)
li lj a; aj
Finally,
f}gjgffdl dl’d p
Lij = 47.[“ a; J |r —r | ada’ (2.1.18)
li lj a; aj

From (2.1.18), fori # j we obtain the mutual inductance while fori = jwe obtain the self
inductance.

2.2 Partial Inductance

For integrated circuits associated with rather complicated on-chip structures where not
deliberately designed inductors may appear (parasitic inductance), it is difficult to correctly
estimate the current loop, therefore the concept of partial inductance is developed, which is defined
on wire segments rather than current loops.

The loop inductance, as defined in (2.1.18), can be deconstructed into more basic elements if
the two loops are broken into segments, as shown in Figure 2.2. The loopiis broken into N;
segments Sy, S5, ...,Sy, and loop j into N; segments Sy, S;, ...,S,’Vj. The definition of the loop

inductance can be rewritten as:
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Figure 2.2: Two complete Current Loops broken into Segments

dl al’
———dada’
r—r | (2.1.19)

Lij =

47‘[0((1]
i=1j= 1515 a; aj

The integration along segments S; and Sj’ in (2.1.19) is performed in the direction of current flow.

Partial inductance is defined as the argument of the double summation in (2.1.19) for the
conductor segments:

|dl dl'| ,
dada
Ir=r] (2.1.20)

Lij =

4710( i
Si 5 a; aj

The partial inductances are denoted by L;; in order to distinguish them from the loop
inductances L;;. Then (2.1.19) is written as

N; N]

=i ma}zz%ﬁu (2.1.21)

i=1j=

, where S;; = 1 is the sign of the scalar product d! - dl', which depends on the direction of current
flow in the conductor segments.

It is vital for the understanding of the concept of partial inductances their relation to the
magnetic flux to be established. Specifically, partial inductance £j; is associated with the magnetic
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flux created by the current of the segment §; through the virtual loop which the segment S; forms
through infinity, as it is shown in Figure 2.3.

Figure 2.3: Loop Definition of Partial Inductance

In other words,

1
L=+ fﬁi‘dé (2.1.22)

, where a;; is the area bounded at the ends by the conductor segment §; and infinity, and on the
sides by two straight lines which go through the end points x; and y; of segment S; and are normal
to the line connecting the end points x; and y; of segment S;. For simplicity, we assume infinitely
thin segments. Hence, (2.1.20) becomes

f JdL-ar|
r=r| (2.1.23)
S; S
and
u dl’
Ai(r) = Il-gj—h 1 (2.1.24)
Si
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Using Stoke’s Theorem,

fB dl-dl’
Bi-ds = 14” =1 (2.1.25)

o
Y lij S

The path [;; can be restricted to the portion from x; to y;, i.e,S;, because magnetic vector
potential 4; is zero at infinity and normal to dl on the two perpendicular paths, since it is in the
direction of I;.

By defining each segment as forming its own return loop with infinity, partial inductances can
be used without a priori knowledge of the actual current loops. Moreover, the partial inductance
model contains all the magnetic interactions which were contained in the loop inductance values, as
it can be derived from (2.1.21).

2.3 (Circuit Element K

2.3.1 Definition of the Reluctance matrix K
As we have already seen in the previous section, each element (i, j) in the partial inductance
matrix is given by

dl-dl'
dada’

Ly =

47Ta i (2.3.1)

li lj a; aj

, where a;, a; are cross-sections of segments i and j, and r;; is the distance between two points in
segments i and j (we consider that the sign is incorporated into the definition of the partial
inductance). For an X n partial inductance matrix the following linear system equation can be

derived:
Ln Lna

, where [; is the current running along conductor segment i, and @; is the total flux flowing through
the virtual loop from segment i to infinity. The inverse of the system can be written as:

Kll K12 Kln (pl Il
K21 KZZ KZTL d)z — 12 (2 3 3)
Kni Knz oo Kpnl L@ Iy
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, where K = L7, the inverse of the inductance matrix, which is called susceptance or reluctance
matrix. From (2.3.3) the physical meaning of K;; can be derived: K;; is the induced current along
conductor i when the total magnetic flux for the conductor j is equal to one and those for all other
conductors are set to zero. For example, as shown in Figure 2.4, to obtain the fourth column of K,
we apply unit flux to conductor 4 and set zero to all others. The induced currents other than the
fourth are the off-diagonal terms in the fourth column of K. Moreover, K;; is positive if the current
direction along the conductor i and the flux of the conductor j follow the right-hand rule; it is zero
otherwise.

Figure 2.4: Layout Example with 8 Parallel Conductors

2.3.2 Properties of the Reluctance matrix K

First of all, the reluctance matrix K is SPD as the inverse of an SPD matrix. Furthermore, the off-
diagonal elements of K exhibit a much faster decrease compared to the decrease of the off-diagonal
values into the £ matrix.

The following is a small example of an 8 conductor bus to demonstrate the idea of how off-
diagonal elements in K decrease much faster than that of the partial inductance matrix. The
parameters for this example are as follows: width and height for each conductor is 2um, length is
40um, spacing is 5um, sigma is 3.77e7. We calculate the partial inductance matrix using
FastHenry[24]. The extracted inductance matrix is as follows:

L=
r11.4 426 254 1.79 1.38 1.11 0.94 0.817

426 114 426 254 179 138 1.11 094
254 426 114 426 254 179 138 1.11

1.79 254 426 114 426 254 179 1.38
1.38 1.79 254 426 114 4.26 254 179

1.11 138 1.79 254 426 114 426 2.54
094 111 138 179 254 426 114 4.26

0.81 094 1.11 138 1.79 254 426 114

DPH

and the corresponding reluctance matrix K is
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r103.39 —-33.91 —-7.60 —3.96 —26 —-195 -163 -184
—3391 11448 -31.45 —6.33 -3.16 -2.03 -1.55 -1.63
-7.60 -3145 11501 -31.19 -6.18 -—-3.07 -2.03 -1.94

-396 -6.34 —-31.19 115.13 -31.14 -6.18 -3.16 -2.60
—-2.60 -316 -6.18 -31.14 115.13 -31.19 -633 -3.96

-195 -2.03 -3.08 -—6.18 —-31.19 115.01 -3145 -7.60
-1.63 -155 —-2.03 -3.16 —6.33 —3145 11448 -33091
L —-185 -1.63 -—-195 -2.60 -396 -7.60 —3391 103.39-
x 10° H™1

As we could see, the off-diagonal term £;, in £ matrix is 0.94/11.4 or 8.2% of the partial self-
inductance £, while |K; | in K matrix is only 1.63/103.39 or 1.6% of self-reluctance term K;;. The
reason of this fast decay of off-diagonal values stems from the physical meaning of the reluctance
matrix.

Suppose that the magnetic flux of the j'* conductor is set to one while the magnetic flux along
all the other conductors is set to zero. As already mentioned, the induced current along the it"
conductor yields the value K;;. Therefore, the activated conductor j must carry positive current
while, in order for the magnetic flux of all the other conductors to remain at zero, they must carry
current at the opposite direction. Specifically, as it is shown in Figure 2.5, the neighbor conductors
will carry an opposite current that cancels the magnetic field induced by the current along the jt*
conductor. Furthermore, the magnetic field generated by each neighbor cancels part of the
magnetic field induced on the aggressor line j. In other words, the current along the (j + 1)t"
neighbor segment will also induce current in the (j + 2)** conductor. As a consequence, the
induced current by the (j + 1) conductor shields the induced current by the j* conductor in
(j + 2)t" segment to go further. As depicted in Figure 2.5, the (j + 2)*" conductor results in a
shorter arrow, accounting for the overall effect (not a signal active line). That is the physical
explanation of the locality property and shielding effect of K matrix. A more detailed explanation of
this fundamental property of the reluctance matrix can be found in [30].

Figure 2.5: An Example to explain the Locality Property of K matrix

From the previous discussion, one may derive that K;; > 0 and K;; < 0,i # j. However, this is
not the general case where each conductor may be divided into segments or filaments and the
conductors may have irregular geometry or unequal dimensions. In such cases, in the previous
example the coupling effect between conductors (j + 1) and (j+2) may be much stronger than the
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coupling effect between j and (j + 2). Consequently, the overall effect causes conductor j + 2 to
carry positive current and Kj, j > 0.

Based on the locality property of K matrix, the faraway mutual reluctances can be truncated
without sacrificing accuracy, compared to truncation techniques applied to £ matrix, yielding a
sparse version of K matrix. The use of a sparse version of K matrix can greatly speedup the
transient simulation of a circuit as we will see in the next sections.

Furthermore, positive definiteness of the resulting sparse K matrix should be guaranteed for
stable circuit simulation. In [22], a proof for the diagonal dominance property of K matrix, based on
the assumption thatK;; <0Vi,j,i #j, is given. A reluctance matrix K which is diagonally
dominant with positive diagonal elements is also SPD (7.2.3). In that case, the arbitrary truncation
of any off-diagonal entry results in an SPD sparse matrix and stability is ensured. However, as we
have already mentioned, positive off-diagonal values may occur. In [23], it has been proven that
under sufficiently fine discretization of the conductors stability can be ensured. However, the
sparsification of the K-matrix is constrained at the extraction level while the finer discretization
may lead to a K matrix of greater size. In [25], SPD-remedy techniques under insufficient
discretization by enforcing the positive definiteness, either directly or indirectly by enforcing the
diagonal dominance, of the K matrix are proposed. The combination of an accurate and effective
sparse approximate inversion method and an accurate SPD- remedy technique may lead to the
adoption of the reluctance element K by the commercial circuit simulation tools.
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Sparse Approximate Inversion Methods

3.1 Approximate Inversion via small matrix inversions

First, we provide two theorems as the basis of this approximate inversion method.

Theorem 3.1.Suppose A is an X n non-singular matrix, and B is the inverse of A. A, is a minor ofA
with order m formed by rowsiy, i,, ..., i, and columns jy,js, ..., jm- Bn—m IS the matrix remained in
matrix B after deleting columnsiy, i, ..., i, and rowsji,j, ..., jm. Then,

(—1)ZUk+]k)

A 3.11

|Bn—m| =
Proof:

We first consider the special case that iy, = j, (1 <k < m). Thus, 4,, is the top left corner of 4 and
B,,_, is at the right bottom corner of B. In block format:

A A B B
A:[ll 12],32[11 12]
A1 Ay Bz1 By

, where A;; and B4 are m X m matrices; 4, and B,, are (n —m) X (n —m) matrices. Suppose A4
is invertible, hence [7.2.1]

|A| = |A11|| Az —A21AI11A12| (3-1-2)

Moreover, according to (7.2.2)
1
|A22 — A21A71 Ars|

|B22| = (3.1.3)

Therefore,

|A11]

B,,| = ——
1Bl =10

(3.1.4)
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If|A;;| = 0, then |B,,|should also be zero. Otherwise, if |B,,| # 0,since A =B~!, following
|Bz2 | [A11]
|B| |4l

similar step, we can also argue that |A| = # 0, a contradiction. So |B,;| = for all cases.

Now we extend the conclusion to general case. By making (i1 —1) + (i, —2) + -+ (i, —m) =
(il + iz + b + lm) - m(m+1)

successive interchanges of adjacent rows using the permutation
m(m+1)

matrix P; and, correspondingly (j; — 1)+ (,—2)+ 4+ (m—m) =G +j2+ -+ j,) — >
column interchanges using the permutation matrix P,, the resulting matrix is A = P;APJ

and B~ = P,A™'P]. The relative positions of elements in 4,, and B,,_,, are preserved, so we have
Ay; = Ay and By, = B,_p, . Furthermore, |4| = (—1)itiztHmtitiat+jm=mm+)| 4| | Hence,

B A (—1) 20+

Theorem 3.2Suppose A is a n X n nonsingular matrix, and B is the inverse ofA. For ther" row of
A matrix, only the entries at columnsi,,i,, ..., i,, are non-zero, the rest are zeroes. Let By, be the
sub-matrix of B formed by rows iy, i, ..., i, and columns jy,j,, ..., jm. If there existsp,1 <p <m
such thatj, = r, then thept™ row of the inverse of B,, is equal to ther'™ row ofA (omitting the
zero entries in the latter):

Bn'(p,:) = A(r,:)
Similar conclusion holds for the columns of 4.
Proof:

Using Cramer’s law we have:

—1)Pta

(-1)
—||Bm(q,p)| 1<qg<m (3.1.5)

m

, where By, (4 p)is the matrix that is obtained by deleting row q and column p from the sub-
matrix By,.

Using theorem 3.1 we have:

(— 1)Zk¢q ik+Xk=p Jk

|Bm(q.p)| = 4] |[An—m+1l (3.1.6)
,  where Ap_my1 refers to the sub-matrix of A formed by deleting columns
U1,02) s bgets s Lg41s o0 I and rows jq, j, e Jp=1r s Jpt1s s JT
Using theorem 3.1 we also have:
(_1)2(ik+jk)
|Bp| = ———|Ap_ml (3.1.7)

Al

, where A,,_,, refers to the sub-matrix of A formed by deleting columns iy, ..., i, and rows j, ..., ju.
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The (r —(p- 1))th row of A,_,,_; comes from the r*" row of A and there is only one nonzero
element in it. It is the (r —(p—-D,ig—(@q— 1)) entry (or the (7,i;) entry of A). Using Laplace
Expansion on this row we get:

[An-ms1l = (=DM @DA(r 1) Ay (3.18)

Combining (3.1.5), (3.1.6), (3.1.7), (3.1.8) and the fact that j,, = 7, we obtain Ay'(p,q) = A(r,ig) .

Theorem 3.2 provides the basis for a matrix inversion algorithm of an n X n invertible matrix L
when its inverse K = L™! exhibits a priori known sparsity pattern. Specifically, we consider 4 = K,
B = L and we apply the theorem 3.2 for every rowr,0 < r < n — 1. The application of the theorem
to a row r of L is depicted in Figure 3.1. The predetermined positions of nonzero entries in row r
are denoted by iy, i,, ..., i,,. These nonzero entries can be computed exactly from the pt" row of the
inverse of a sub-matrix of A, formed by the intersection of the rows i;,i,, ..., i, and the arbitrarily
selected columns jy, jy, ..., jp, -, jm Where p, 1 <p < m such that j, =r. Consequently, only a
subset of the entries of the L matrix, rather than the entire L matrix, can be used to compute its
whole exact inverse. When the diagonal of the inverse of the matrix is nonzero then i, = r for some
p, 1 < p < mhence we can consider j, =i, Vk,1 < k < m.

If m (the number of nonzero entries in 7" row K ) is a small constant, compared to the size of

the matrix n, for everyrowr,1 < r < n of K the above mentioned algorithm becomes very efficient
and has complexity O(n). However, it remains efficient only for high sparsity ratios of K.

If K is not exactly sparse, but it exhibits a decay property, i.e., many of the entries of K are small,
it can be considered approximately sparse. The positions iy, i,,..,i;, in rowr are expected to
contain the m largest entries of the r®" row of Kwhile the other entries are considered
approximately zero. Hence, the pt" row of the inverse of the sub-matrix which corresponds to the
rt" row, does not contain the exact values of the inverse’s r" row but an approximation of it.

Figure 3.1: Inversion of a Matrix via small Matrix Inversions

3.2 Approximate Inversion via Frobenius Norm Minimization
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This method constitutes a commonly used explicit preconditioning technique ([1], [2]) which
tries to compute a preconditioner M such that M * A ' © AM ~1 (orM ~ A" ' & MA=~1)in
some sense and the number of nonzero entries in M are much less than those in A. Although a
sparse inverse does not always exist, it often occurs that most entries in A~ are relatively small,
hence they can be cut off.

Specifically, the approximate inversion can be reduced to an optimization problem, as follows:

Find the matrix M which minimizes the || AM — I || where | .| is a matrix norm.

Of course, if no restriction is placed on M, the exact inverse will be found. Thus a sparsity pattern
for M is prescribed.

If Frobenius norm is used as a matrix norm, fast convergence is ensured and inherent
parallelism emerges. Remember that the Frobenius norm of an X n matrix is defined as:
A llp= X0 Z?;Ol|aij|2. Consequently,

n-1
| AM — 1 ||2= Z | (AM — Dey I3 where e, = (0, ...,0,1,0, ...,0)T (3.2.1)
k=0

The solution of (3.2.1) decouples into n independent least square problems:

r?rgl? Il Amy —ex ll,, k=01,..,n—1 (3.2.2)

Thus, we can solve (3.2.2) in parallel with each least square problem computing a column of M.
Let S, be a vector indexing the nonzero entries of my. Then
Il Amy — eg =1 AG, Sp)my (Si) — e 2 (3.2.3)

Depending on the sparsity of 4, some of the rows of A(:,S;) may be zero. Let T be a vector
indexing the nonzero rows of A(:, Si). Then

I Amy. — epe =11 A(Ty, Se)my (Sk) — ex Il (3.2.4)

Consequently, the least square problem in (3.2.2) can be reduced to the one in (3.2.4) with matrix
A(Ty, Si) which has size |Ty| X |Sk| -

The difficulty lies in determining a sparsity pattern G of the underlying approximate inverse
which allows a good approximation of A~1. Sparsity can be achieved either statically, on the basis
of the positions, or dynamically, on the basis of values, of the fill-ins. In [2], SPAI algorithm is
introduced, which offers a method to dynamically capture the sparsity structure of the approximate
inverse. However, such adaptive methods tend to be expensive. Research has also been done on the
selection of a sparsity pattern, based on the sparsity pattern S of 4, in a preprocessing step, so that
a sparse approximate inverse can be computed directly by minimizing (3.2.1) ([3], [4])-

If matrix A has too many entries, to be used as a basis of the sparsity pattern of M, sparsification
should be applied to 4 as well e.g using a thresholding technique ([5], [6]). Below, we represent
some of the proposed heuristics, where the sparsified version of A is denoted by 4 and the sparsity
structure of A by S.
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1. a;; =aq if |al-j| >t X max{a;;}, where 7 € (0,1) is a threshold parameter.

2. For a fixed positive integer k, with k < n, find the k largest entries in each column of A.
Then S is the set of positions (i, j) of the resulting k X n entries.

3. For each column, find the row indices of the k largest entries. Then for each row index i
found, the same search is performed on column i. The new row indices found, are added
to the previous ones to determine the nonzero pattern of the column. This heuristic is
called the neighbours of neighbours and can be easily extended by performing several
iterations instead of one.

4. a; = a;jif |aij| > T X max{aij} and i € V;, where t € (0,1) is a threshold parameter and
V; indexes the k largest elements in j*" column of A. Thus in each column we retain the k
largest entries on the condition that they are above the threshold.

The 1 and 2 heuristics are the simplest but the first one does not strictly limit the number of fill-
ins of A, hence it can lead to expensive approximate inversion. Heuristic 4 is a combination of 1 and
2. The threshold 7 is useful from a computational point of view even when a column contains more
than k elements larger than the threshold, because it reduces the number of elements to be sorted
in order to find the k largest. A disadvantage common to all above mentioned heuristics is the need
to specify good values of the parameters involved.

When S is obtained, we can simply consider G = S, where G is the sparsity structure of A"t or
we can apply S to approximate sparsity pattern techniques so as to acquire G.

3.3 Approximate Inversion via AINV algorithm

The AINV algorithm [7] constitutes an approximate inverse preconditioning technique, as well.
The difference is that AINV results in a factorized form of the approximate inverse rather than a
single matrix. Moreover, the AINV method does not require that the sparsity pattern be known in
advance. Its basic idea is the construction of a preconditioner by means of incomplete conjugate
Gram-Schmidt (or A —orthogonalization) process.

Definition 3.1.7wo nonzero vectors u,v are A-orthogonal or conjugate with respect to A, where A is

a symmetric positive definite matrix, if (u,v), = 0, where (u,v), = (Au,v) = (u,ATv) = (u, Av) =
T

u' Av.

Theorem 3.3./f A is an X n SPD matrix, {z,,2,,..,2,} a set of n conjugate directions andZ =
(21,23, .., 2y, L&, the it column of 7 is z;, then

pr 0 .. 0
ZTAZ =D = 0: P O \wherep; = 27 4z, (3.3.1)
0 0 . DPn
It follows that
A"l =zp-1z7 (3.3.2)
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, hence a factorization of A™! is obtained. As a consequence, the approximate inversion reduces to
the construction of a set of n conjugate vectors which can be structured by means of conjugate
Gram-Schmidt process applied to any set of linearly independent vectors u4, u,, ..., ;. The resulting
matrix Z is unit upper triangular in order to satisfy the root-free Cholesky decomposition of A:
A=LDL"andZ =LT.

Gramm-Schmidt Conjugation. Given a set of n linearly independent vectorsugy,uy, ..., U,_1 and a
n X n SPD matrix A, a set of n A-orthogonal vectorsz,, z,, ..., z, is constructed by subtracting from
u; any components that are not A-orthogonal to zy, ..., z;_,. Hence,

zZ; =u; — CixZx fori=12,..,n (3.3.3)

To find the constantscy, fori =1,2,..,nandk =0,1,...,i — 1 in (3.3.3), we have:

i-1
zl Az, = ul Az — Z cikz,fAzj =ul Az — cjzf Az, = 0
j=1 (3.34)
u’erZk
S Cp = —
"zl Az

Denoting the i*" row of A by a! and considering u; = e; for computational convenience, the inverse
factorization algorithm can be written as follows:

1. Input: A € R™" an SPD matrix.

2. OQutput: Z = [z4,2,,..,2,] and D =diag(py,p2, -, Pn) such that
At =zDp 7"
3. 2=¢ i=1(n
4, fori=12,..,n
5. for j=i,i+1,..,n
6. pit=alz™!
7. end
8. ifi =ngoto13.
0. forj=i+1,..,n
., . i-1 .
10. zj = z]-‘_1 - % z}7t
11. end
12. end

13. z;=z"Yp;=p L i=1(1n
14. returnz;,p; i =1(1)n

Algorithm 1: the Inverse Factorization Algorithm
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The sparsity in Z factor can be preserved following three different approaches:

1. Using a drop tolerance, in order to determine whether an entry of Z should be preserved
or removed at step 10 of the algorithm. This fact means that the sparisity structure of Z
dynamically changes at each step of the algorithm.

2. Dropping all newly added fill-in elements outside of a preset sparsity pattern.

3. Skipping some z-vector updates at step 10 of the algorithm when the coefficient

p]i-_l/pii_1 is in some sense “small”.
Strategy 1 is suggested since it offers better numerical results.

If the incomplete inverse fractorization process is successfully completed, one obtains a unit upper
triangular matrix Z and a diagonal matrix D with positive diagonal entries such that, according to
(3.3.2),ZDZ" ~ A~! which is an SPD matrix as well. It is shown in [7] that an incomplete inverse
factorization of A~! exists, in exact arithmetic, for arbitrary values of the drop tolerance and for any
choice of the sparsity pattern of Z when 4 is an H-matrix.

Definition 3.2.4 matrix A = [a;;] is an H -matrix if A matrix, where
R —|aij| wheni # j
a;; =
Y |aij| wheni=j
, has eigenvalues with positive real parts.

An SPD diagonally dominant matrix is an H-matrix. However, for general (non-H) matrices a zero
or negative pivot p; may occur at step 6 of the algorithm, which leads to AINV’s breakdown.

Algorithmic modifications can be implemented in order to avoid breakdown for general SPD
matrices so as to restore the SPD property of the approximate inverse. Specifically, when some
pivot p; is too small or negative, it is replaced by:

pi = max{yéy, ot}
, where
&y, machine precision
1 = 0.1, arelaxation parameter
0 = maxgsksn-1y{ Pk 1)
0 =Iz"1l,#0

However, there is no guarantee that a good approximate inverse will be produced.

3.4 Selected Approximate Inversion via Probing Technique

In this section, an alternative method to capture selected entries of the inverse of a matrix is
presented, which constitutes an extension of [9] where an estimator for the diagonal of the matrix
inverse is described.
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3.4.1 Basic Idea
Let A € C™" and V; € R™ . Then:

M = (AVV") x DT (Vi) =

M1 - Mij v Myy
miq ml-j Min | =
_mn1 s mnj s mnnJ
ra e Qg
1 1j Q1in Uyp  Ug2 Usps Uy Upq Ung
: : U1 Upp Uzs Uy Upp oo o Upy
Aip e Qi e ain X | | e I : | X
: : : ' Us U u
[Ap1 e Anj e annJ lunl Upy e Upg J 1s 2s ns

DT (VgVs) =

myq My Min]
: P
my; mi; Min | =
Mnp1 Trin] mnnJ
asy ayj } [(7"1'7"1) v (umy) (7”1'7”11)] (3.4.1)
ai a;j am | ) . (Mr) e (51 [x DTN (VsvsT)
an1 Anj annJ (Tn,rl) (TnJTj) e (M)
(r, 1)
, where r; = u! is the i*"* row of V,, D(V,V;T) = and D~1(VLV,I) the inverse of
(T, )

D(V,V;I), assuming that (r;,1;) # 0 fori = 1(1)n.
Hence, from (3.4.1), we have:
Z?:; aij (7”1»7”1')

G .

If we set M = A, the equation (3.4.2) holds, of course, only ifs =nand the matrixV; =
[v1, Vg, ..., vy ] has n orthogonal columns vy, vy, ..., Uy,.

Given a set of matrix index pairs Ly, Ly = {(i,j)} € {1,2, ...,n} X {1,2, ...,n} where A € C™", we
define matrix L(4) = [&i}-] € C™™" as follows:
. _{0 if (i,j) €Ly
ij

“lay if Gpet,s TR
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Furthermore, we assume that the matrix A exhibits sparse structure which is denoted
by S, = {(i,))} € {1,2,...,n} X {1,2,...,n}. Then, consideringM = A equation (3.4.2) leads to the
following proposition:

Proposition 3.1.Let A = [a;;] € C™" andV; € R®™ be of full rank with s < n. Then, the equation

L(4) = LAV,VD)D™ (V) (3.4.3)

holds if 1" row of V is orthogonal to the j** row for every I such that (i,1) € S, and every j such
that(i,j) € Ly fori=1(1)n. In other words:

L(A) = LAAVVHD (LW <
V(i,j) € Ly AV(, 1) € Su: (1,77) = 0

When L, = { (i,i),i = 1(1)n},i.e, L(A) = D(A), proposition 3.1 reduces to the following one:

Proposition 3.2.Let A = [a;;] € C™" andV; € R®" be of full rank with s < n. Then, the equation
D(A) = D(AV,V," D™ (VsV") (3:4.4)

holds if i*" row of V,is orthogonal to all those rows j of V; for which a; i # 0.

Proposition 3.1 suggests that if the sparsity structure of matrix A is a priori known, then the s
columns of V5 can be selected in such a way such that each element @;; of matrix L(A4) has no
contributions from elements of matrix A except for the element a;; or equivalently

Yi=1ay (7”1,7}') /(13,1;) = 0 in (3.4.2).
1#j

Moreover, the above mentioned proposition offers a way to compress matrix V; . Note that the
columns of V; which satisfy proposition 3.1 are not necessarily orthogonal ((rl,rj) =0V )L+

j), which implies thats = n. Consequently we can construct a matrix V; with s < n, where the

value of s depends on L, and S, as we will see later.

Furthermore, proposition 3.1 suggests a way to estimate arbitrary entries of a matrix 4, i.e.
, L(A), based on the action of the matrix on the columns v;, v,, ..., v, of Vs. In fact, computing in
some way the matrix X; = AV; where I/; a matrix which satisfies proposition 3.1, leads to the
computation of L(A) according to (3.4.3).

Finally, it is clear that when matrix A is dense, preposition 3.1 is satisfied only when s = n and
matrix V; is fully orthogonal. However, if the elements of A exhibit a certain decay property, then
matrix A can be considered approximately sparse and equation (3.4.3) results in the following:

L(A) = L(A) ~ LAV)D 1 (V) (34.5)
, where A is a sparsified version of A and L(A) the approximation of L(A). Approximate sparsity
pattern techniques can be used so as to acquire a prescribed sparsity structure Sz of A. Then, Sz and
L,can be applied directly to proposition 3.1 to approximate L(A).
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3.4.2 Construction of the Probing Vectors

Once the pattern of the sparsified matrix 4 is prescribed, we proceed to the construction of a set
of probing vectors which form the, henceforth called, probing matrix V. To this purpose, a modified
adjacency graph associated with L4 and Sy is constructed according to Algorithm 2:

1. Input: Ly, Sz, n.

2. Output: the modified adjacency graph G(V, E).
3. V={12,..,n}

4. E={}

5 fori=12,..,n

6. foreach (i,j) € L, do
7. for each (i,1) € S; do
8. E=EuU(,))

9. end

10. end

11. end

Algorithm 2: Construction of the Modified Adjacency Graph

As it can be seen, a set of edges is added to the graph G of n vertexes in order to preserve each
element (i,j) € L,. If L, = { (i,i), i = 1(1)n} then the graph G reduces to the adjacency graph of A.
Note that the elements (i,j) € L, may add many common edges. Furthermore, the outer loop is
inherently capable of parallel execution by concatenating the sub-graph that corresponds to each
row i of L(A) at the end.

Subsequently, the graph is colored so that no adjacent vertices have the same color. Ideally, we
want to color the graph with the smallest number of colors, but this is known to be a NP-hard
problem. Therefore, we rely on heuristic techniques to find a coloring with an acceptably small
number of colors. Algorithm 3 presents a well-known greedy algorithm for this task:

1. Input: the modified adjacency graph G(V,E) corresponding to an Xn
matrix.

2. Qutput: colors of the vertices of the graph.

3. fori=12..,n

4. set color(i) =0

5. end

6. fori=1,2,..,n

7 set color(i) = min{k > 0|k # color()) V(l,i) € E}
8. end

Algorithm 3: Greedy Coloring Algorithm

After coloring the vertices of the modified adjacency graph that corresponds to L, and Sz, the
probing matrix V; can be constructed as follows:
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1 color(j) =k

3.4.6
0 otherwise ( )

(Vo) jie ={

As a result, the number of colors of the graph is equal to s and according to (3.4.6) each row of Vs
contains exactly one nonzero entry, yielding D(V,V,l) = D"*(\,V.') = I. Therefore, (3.4.5) becomes:

L(A) = L(A) ~ LAV (3.4.7)

In addition, the constructed probing matrix V satisfies the conditions of proposition 3.1.

Proposition 3.3.Suppose that the vertices of the modified adjacency graph G (V, E) corresponding to
L4 and Sy are colored by Algorithm 3. Let Vg be constructed according to (3.4.6).Then

(r;,m) = 0Vj VL : 3isuch that (i,j) € Ly A1) € Sz (3.4.8)

Proof

If an index i such that (i,j) € Ly A (i,1) € S; exists, then according to Algorithm 2 there is an edge
(L,j) in graph G, ie, (I,j) € E. Consequently, according to Algorithm 3, color(l) # color(j).
Furthermore, the [**and j* row of V; consist of zeros except for the color(1)t" and color(j)" entry
respectively. Hence, the two rows are orthogonal, and the proposition follows immediately.

Example. LetA € C®8 be a matrix whose entries L, are to be approximated and A a sparse version
of A. The left part of Figure 3.2depicts Sz andL,. The right part of Figure 3.2 depicts the adjacency
matrix of the corresponding graph constructed by Algorithm 2 and the color of each vertex
obtained according to Algorithm 3. The number of colors required iss = 4. Using equation (3.4.6),
the probing matrixV; is given by

cocorocor o
orroocococo
Roco oo oo O

CoCOoOR RO R

, while the matrices X, = AV, andX,V] are given by

oo o1 ®  ® 7 Qoo @1 ® ® ® ® B O]

Ao a1 ® & Qo G117 ® B G ® ® ®

a, ® ® O ® ® ap ® ® ® & ®

. =|®B3 G ® @, r [ © O a3 a3 © O O
A e ® YT T ® ® an a ® ®
® © ass ® ® ® ® ® ® a; ® O

® © 4 67 ® ® ® ® ® ® s 4

® ® ap azy L ® ® ® ® ® ® ap agp
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We observe that another coloring algorithm could swap the colors of the 7*"and 8" vertexes,
assigning the same color to the vertexes 6 and 8. Consequently, the probing method presented here
differs from the standard probing techniques known in the literature [12], [11], where two vertexes
k andl can have the same color only if the k*" and I*" columns of A have no nonzero entries in the
same row positions.

Figure 3.2: Construction and Coloring of the Modified Adjacency Graph

3.4.3 Selected Approximate Matrix Inversion

Let us assume that L € R™", K = L~! and we want to approximate some prescribed entries Ly
of the inverse matrix K. We also consider that K ~ K, where K is a sparse matrix with sparsity
pattern denoted by Sp. We apply (3.4.7) for A = K. The only thing left is to compute the
matrix X; = KV,. By observing that X; = KV, & K~ 1X, =V, & LX, =V, it follows that:

If Xg = [x1, %5, 0, X5), Vs = [V1, V3, ..., V5] and Xs = KV, , the columns of X; can be obtained by
solving the linear systemsLx; = v;, i = 1,2, ...,s.

When s « n, the computation of X; , and, as a consequence, of L(K), is much less expensive than
solving the full sequence ofnlinear systems to obtain the whole and exact inverse K by a
straightforward use of equations. The sequence of linear systems can be solved by a direct or
iterative method depending on the dimension and the condition of the matrix.

Finally, from L(K) = L(I?) ~ L(X,V.D), it can be easily seen that the element (i, j) of L(K) can be
extracted from X, as follows:

LK) (i, j) = Xs(i, color(j))
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, where the probing matrix V; is constructed according to (3.4.6).

The resulting algorithm of the method is presented below.

1. Input: L € C™", Ly, Sk .

2. Output: L(K) € C™".

3. Construct the modified adjacency graph G (V, E) corresponding to Lg
and Sk from Algorithm 2.

4. Color graph G(V, E) according to Algorithm 3.

5. Sets = number of colors.

6. Construct the probing matrix V; = [v4, v, ..., vs] from (3.4.6)

7. fori=1,2,..,s

8. Solve Lx; = v;

9. end

10. X5 = [xq, X2, .r, Xs]

11. foreach (i,j) € Lg

12. LK) (i, ) = X,(i, color(j))

13. end

Algorithm 4: Selected Approximate Inversion via Probing Technique

As it can be seen, solving the sequence of slinear systems is the computationally most
demanding step in the algorithm. However, the probing method can be parallelized by solving the
sequence of the linear systems in parallel.

Finally, it should be mentioned that the accuracy of L(K) depends on the prescribed Sz and the
degree of the decreasing trend of the elements in K.
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GKC-Simulation

4.1 MNA formulation

Given a circuit, letV = {0,1, ..., n — 1} be a set of n nodes or vertices (representing the circuit as
a directed graph), where the reference node is denoted by the integer 0, and E = {eq, e, ..., ez} @
set of m edges or branches of the circuit. The adjacency matrix, A € R"~ 1™, which represents the
connectivity of the circuit, can be determined from the directed graph G (V, E) by the following rule:

+1,if node i is the source of branch j
Ajj =4 —1,if node i is the sink of branch j
0,otherwise

If u(t) = [uy(8), oo, U ()17 and i(t) = [iy(¢), ..., iy (£)]T are the vectors of branch voltages and
currents respectively, v(t) = [v,(t), ..., v,—1(t) ] T is the vector of the node voltages, then the
Kirchhoff's law can be expressed as follows:

Kirchhoff’s Voltage Law (KVL):

u(t) = ATy(t) (4.1.1)

Kirchhoff’s Current Law (KCL):
Adi(t)=0 (41.2)

The m elements of the circuit can be partitioned into two groups:

1. The elements whose I-V relationship can be written in the form i, (t) = gpu,(t) +
dug(t)
Ck =
branch current is to be eliminated are included).
2. The elements whose I-V relationship cannot be written in the above mentioned form or

the elements whose branch current is not eliminated.

+ 5, (t) (capacitances, independent current voltages and resistors whose

Let m;and m, be the number of the elements of the first and the second group respectively.
Then, the adjacency matrix, the branch voltage vector and the current voltage vector can be
partitioned into these forms:

40



A=[A; Ay], A, eRVIML 4, e Rn-im2
u(®) = [ ()7 up (O]
i) =[O i, (O]

Then, the I-V relationships of the two element groups can be written in matrix form:
du (t)
dt

() =6u ) +C +51(8) (4.1.3)

, Wwhere G the conductance matrix, C the capacitance matrix and s; the independent current source
vector. The matrices G and C are diagonal.

i (0)

di
U, (t) = Rip(t) + L—=— -+ AG) (4.1.4)

, where R the resistance matrix (for resistor branches whose current is computed during the
simulation), L the inductance matrix and s, (t) the independent voltage source vector. The matrix R

is diagonal while the inductance matrix L turns out a dense and SPD matrix.
Furthermore, (4.1.1) and (4.1.2) can be written as follows:
uy(t) = ATv(t)
u, (t) = AJv(t)
A () + Azl_z(t) =0 (4.1.6)

u®t) = ATv(t) & (4.1.5)

Substituting the first equation of (4.1.5) into (4.1.3) and the resulting equation into (4.1.6), we
have:

dv(t)

AGATv(t) + A CAT —— T

+ Aziy(t) = —A1s1(8) (4.1.7)

Moreover, substituting the second equation of (4.1.5) into (4.1.3), we get:

ip(t)
dt

ALu(t) — Riy(t) — L8 = 5,(0) (4.1.8)

The combination of (4.1.7) and (4.1.8) yields the following [(n — 1) + m,] X [(n — 1) + m,]
linear system of first order differential equations, which is called MNA (Modified Nodal Analysis)
system:

Gx+Cx=b (4.1.9)
—A
G AlGTAf Ay ’C~=[A1€A{ o], v(t) g,b: 151(t)
A;  -R 0 —LI'T |®O]= dt’'= $2(t)

The linear system in (4.1.9) can be formulated using element stamps, i.e., the contributions of each
element to the matrix equation. Figures 4. 1- 4. 2 depict the element stamps in order to construct
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matrix G in (4.1.9). In matrix G the capacitance branches are replaced by open circuit while the
inductance branches are replaced by short circuit. Figure 4.5 shows the contribution of a
capacitance branch into matrix C in (4.1.9). Finally, the diagonal elements of matrix L are the values
of self-inductances, and the off-diagonal terms are mutual inductances.

Figure 4.1: Element Stamp for a Resistor in Group 1

Figure 4.2: Element Stamp for a Resistor in Group 2
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Figure 4.3: Element Stamp for an Independent Voltage Source

Figure 4.4: Element Stamp for an independent Current Source

Figure 4.5: Element Stamp for a Capacitance
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4.2 Solution of SPD Linear Systems

We remind that a matrix A € R™"is SPD (Symmetric Positive Definite) if and only if Ais
symmetric and xTAx > 0 Vx € R™" # 0. Equivalently, a symmetric matrix is SPD if and only if all
its eigenvalues are strictly positive. As a consequence, the matrix is nonsingular (it has no zero
eigenvalue) and its inverse is also an SPD matrix. Finally, recall that if matrix 4 is strictly diagonally
dominant and all the diagonal elements are positive, then it is also SPD (7.2.3).

A network meets the consistency requirements if the network graph does not contain any current
source cutsets and any voltage source loops. Remember that a cutset in a connected graph is a set of
edges which, if removed, would cause the graph to become disconnected. It can be proved that,
given the consistency constraints, if the network is connected and the group 2 elements do not form
a cutset, the matrices G = A;GA} and C = A;CAT are SPD. Finally, the inductance matrix L is SPD
but not strictly diagonally dominant.

An SPD linear system Ax = b can be solved directly using Cholesky decomposition or iteratively
using Preconditioned Conjugate Gradient method. The two methods are described briefly below.

Cholesky Decomposition

An equivalent definition of the SPD property is the following: A matrix A € R™" is SPD if and only if
there exists a nonsingular, lower triangular matrix L € R™™" with strictly positive diagonal entries
such that A = LLT. This decomposition is unique. Subsequently, the linear system can be solved
implementing backward and forward substitution. The algorithm, which computes the L factor is
presented below.

Input: A € R™" an SPD matrix.
Output: L € R™" suchthatA = LLT and L;; > 0, i = 1(1)n.
for k =1,2,..,n

1
2
3
4. Lk = \/Akk —- XKLL
5
6
7

fori=k+1,..,n

Ly = A=Y LijLi
. end

8. end

Lkk

Algorithm 5: Cholesky Decomposition

Preconditioned Conjugate Gradient(CG)

The Conjugate Gradient method is based on the minimization of the function f(g) = %ETA x —

bTx. The gradient of f equals Vf = Ax — b, therefore the solution x* of the linear system Ax = b is
the unique minimizer of f. Specifically, in each iteration i a new search direction p® is discovered
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such that it is A-orthogonal to the previous search direction p@~") while the current approximation
x® (and the residual r® = b — Ax® as well) moves in the direction x® =D 4 (xig(i) where
a; such that the function f(g(i)) is minimized. Finally, preconditioning is used to replace the
original system Ax — b = 0 with M‘l(Ag - Q) =0 so that the condition number x(M~1A) gets
smaller than x(A4). The preconditioned conjugate gradient method takes the following form:

1. Input: A € R™" an SPD matrixand b € R™.
2. Output: the solution x* of the linear system Ax = b.
3. x=initial guess

4. r=b-Ax

5. iter=0

6. while (Il 7 II/Il b 1> itol)

7. iter = iter +1

8. Solve Mz =1

9. rho=1"z

10. if (iter ==1)

11. p=z

12. else

13. beta = rho/rhol
14. p=2z+betaxp
15. end

16. rhol =rho

17. q=Ap

18. alpha =rho/(p" q)

19. x =x+alpha xp

20. r=r—alphaxq

21. end

Algorithm 6: Preconditioned Conjugate Gradient Method

4.3 Transient Analysis

Transient Analysis computes the response of the system as a function of time in the
interval t € [ty,t1]. The linear system of (4.1.8) can be solved by discretization of the time interval
into m time points, replacing the time derivative operator with a discrete time operator and
solving the resulting finite difference equations one time point at a time starting from some initial
condition. The particular discrete approximation method is referred to as the integration method.

As integration methods Backward-Euler or Trapezoidal Rule can be used. Below the approximation
of dx(t)
dt
system.

in each case is given and it is applied to (4.1.9) so as to get the discretized form of the MNA

Backward Euler:
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d 1
E;:k) = n [E(tk) - K(tk—ﬂ]

_ 1.
Q£a0=ga@+ﬁcg%ﬂ)k=1zw”m

—
o
S|

Trapezoidal Rule:

1
~ E [&(tk) - E(tk—l)]

1[dx(ty) +d£(tk—1)
2| dt dt

(G+36)(t)—ba)+ba )—(G—EC)(t ) k=12
h X(lg) = b1k D\lk—1 h X(lg-1 =L4..,m

, where t;, = t; + khand h = 2=

4.4 Nodal Analysis for linear circuits

The MNA approach works only for the full inductance matrix L or ordinary sparse partial
inductance approximations, but not for the reluctance matrix K = L71.
introduction of extra current variables can make the system matrix non-positive definite, which is
crucially necessary for the efficiency of the direct method (Cholesky decomposition takes only half
of multiplications and memory references than the LU decomposition and there is no need for
permutation or pivoting) and the fast convergence of the iterative method.

In this section, it is shown that the NA approach is feasible for sparse reluctance matrices and
equations (4.3.1) and (4.3.2) are converted in order to make use of the reluctance matrix instead of
the inductance matrix. Finally, we eliminate branch currents except those running through
inductors and we assume that there are no independent voltage sources in the circuit. Therefore,

matrix G , vector b and vector x become respectively:

v(t)
i (6)

Q= A1GAT Ay b= [_Als_l(t)] X
A} 0] ~ 0 =

Backward Euler:

AGAT  A,| | 114a,caT o 1\ [2@) ] [—Aisi(t)] | 1[A,CAT
<[A§ 0]+ﬁ[101 —J)Lﬁ%ﬁ_[ 0 ]+5[101

1 1
Ajv(ty) — ELi_L(tk) = _ELi_L(tk—l) & iy (ty) = hKAv(ty) + iy (te-1)
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(4.3.2)

Furthermore, the

V(tg-1)
i, (tk-1)

1 1
A1GATY (1) + Apiy (ti) + 7 A CATV(8) = —As1(6i) + 7 A1 CATD(te1)



By substituting (4.4.2) into (4.4.1) we obtain:

1 1
(41647 + 24, CAT + 1 4K AT ) w(6) = —Ars1(6) + 3 A CATR(Er) = Aoty (tr)

Using the approximate sparse version K of K, we just get:

1 . 44.3.a
Vu(te) = —Aysy(6) +3 ACATV() — Agiy (b))
1 ~
Y = A,GAT + EAchI + h A,KAY (4.4.3.b)
iy (t) = hKAZv(ty) + iy (tg—1) (4.4.3.0)

Given that K is not only SPD but also strictly diagonally dominant with positive diagonal entries,
matrix K is also strictly diagonally dominant with positive diagonal entries, consequently the SPD
property is preserved with the sparse approximate inversion of K. The admittance matrix Y is also
SPD since Vz: zT (A,KAY)z = (A52)K(A,z) = wTKw > 0 withw = ATz and the matrices 4,GAT,
A,CAT are also SPD. Therefore, the Cholesky Decomposition or the Preconditioned Conjugate
Gradient iterative method is applicable to the NA formulation.

Trapezoidal Rule:

<[A1(;A{ A2]+3[AICA{ 0])[z(tk) B
AL o) rl oo Ll [@]

—A15, (k) —A151 (tk-1) A1GAT Ayl 274,cAT 0O U(te-1)
[ 0 ]+[ 0 ]_([ AT 0]_5[ o —L])[i_L(tk—l) <

2 .
(41GAT +2A,CAT) v(te) + Aziy(t) =

4.4.4
(—A1GAI + %A1CAI) V(tg-1) — Azip (tx-1) — Ay (5_1(tk) + S_1(tk—1)> ( )

ABv(te) = = Liy () = —AFv(tee) — 2 Liy (te—g) &
(4.4.5)
iy (t) = 5 KAL (v(t) + v(teer) ) + iy (ter)

By substituting (4.4.5) into (4.4.4) we get:

2 h
<A1GAI + EAchI + EAZKAg) v(t) =

2 h .
(—ALGAT +2 4,CAT —2 4,KAT) v(ti—y) — 2451, (tr—) — Ay (i(tk) + s_l(tk_l))
Using the sparsified version K of K, we just get:
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Yv(t) =

2 h, = . 4.4.6.a
(=4:6AT + 24,047 2 4,RA5) w(ty 1) = 24500 (1) = A (51060 + 516 (44.62)
2 h
Y = A,GAT + EAch{ + EAZKAQ (4.4.6.b)
. h .
i (t) = 5 RAZ (v(6) + vt ) + in(B-r) (44.6.0)

Assuming that K is SPD, the admittance matrix Y is also SPD, therefore the Cholesky
decomposition or the preconditioned conjugate gradient iterative method is applicable to the NA
formulation.

Figure 4.6: Voltage Source Transformation and Norton equivalent Circuit

In case there are independent voltages sources in the circuit, extra current variables should be
added. Hence, they are transformed into Norton equivalent circuits, as shown in Figure 4.6. If the
voltage source is connected to R or C element, which have Norton equivalent circuit, this
transformation can be easily implemented. However, this transformation is inapplicable for L
elements. Using frequency domain analysis, the following current-voltage equations are derived:

Kll K12
I = T(Vl - Vs) +TV2

KlZ K22
I, = T(Vl - Vs) +TV2

These two equations can be rewritten as

L=ty + 2y, -y,
1 KS 1 KS 2 I(S N
I —%Vl +%V2 — 2y

which can be represented as the circuit shown in Figure 4.7. The voltage source is replaced by
current sources. Since conductance (G), capacitance (C) and reluctance (K) are all admittances,
they share similarities in equivalent circuit transformation. Thus, it can be applied to the NA
analysis.
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Figure 4.7: Norton equivalent Transformation for Reluctance Element
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Experimental Results

We demonstrate the sparse approximate inverse methods presented in this thesis on a bus
#nonzeros .
—_— )x 100 while
#entries

the wires are divided into 8 segments yielding inductance matrices of size 1024 X 1024,
2048 x 2048 and 8192 x 8192 respectively. The first structure consists of two 128-wire blocks. In
the second case, a 3D interconnect structure consisting of 4 layers with two 128-wire blocks in
each layer is considered. The inductance matrices are obtained using FastHenry [24] for
conductivity sigma = 3.77e7 (aluminum). The wire length is taken 1 mm, the cross-section
is 1 X 1 um. The separation distance between wires of the same block is 1 um while the separation
distance between two bus blocks or layers is considered 2 um. The driver resistance of each line
is 30 Ohm and the load capacitance is 20 fF. A 1V 20 ps ramp voltage source input is applied to the
first signal of the lowest plane, and the rest are quiet. A time step of 1psis taken and the
simulation is performed over 700ps (or equivalently 700 time steps). The sparsity structure of the
inductance matrix L, which is obtained selecting the k largest entries of each column, is considered
as the sparsity pattern of the corresponding sparse approximate reluctance matrix K. All
experiments were run on an Intel Core i7 at 2.2 GHz with 4 cores and 8 GB main memory. A
comprehensive comparison in terms of accuracy and runtime is presented in the next sections.

structure with 256 and 1024 signals for different sparsity ratios ¢ = (1 -

5.1 Accuracy Comparison

The following figures depict the voltage response at the far end of some selected lines using the
sparse approximate inverse methods described in Chapter 3, which are applied to the inductance
matrix L of size 2048 x 2048. Specifically, in Figures 5.1-5.6 results from the K-method as described
in section 3.1 are shown for different sparsity ratios €. We can observe that a less sparse reluctance
matrix K improves the accuracy especially on the remote quiet lines since the waveform converges
to what is obtained when the full and exact reluctance matrix K is used. Similarly, in Figures 5.7-
5.12 the simulation results using the probing technique in order to approximate selected entries of
the reluctance matrix are depicted while in Figures 5.13-5.18 the voltage responses are shown
when the reluctance matrix K which minimizes the || LK — I || given the prescribed sparsity
pattern is used. Finally, the waveforms obtained when the AINV algorithm is applied to the
inductance matrix L are given in Figures 5.19-5.25. The AINV algorithm dynamically captures the
nonzero elements using a drop tolerance = 1e — 1, yielding a less sparse reluctance matrix of
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sparsity ratio € = 84.11%. The use of higher drop tolerance leads to AINV’s breakdown and a poor
and not even sparse approximation of K is obtained.

Figure 5.1: 2048X2048-SIAPINV-Voltage Figure 5.2: 2048X2048-SIAPINV- Voltage
Response at far end of Active Line Response at far end of Line 2

Figure 5.3: 2048X2048-SIAPINV- Voltage Figure 5.4: 2048X2048-SIAPINV- Voltage
Response at far end of Line 3 Response at far end of Line 15
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Figure 5.5: 2048X2048-SIAPINV- Voltage Figure 5.6: 2048X2048-SIAPINV- Voltage
Response at far end of Line 20 Response at far end of Line 25

Figure 5.7: 2048X2048- PBAPINV- Voltage Figure 5.8: 2048X2048-PBAPINV- Voltage
Response at far end of Active Line Response at far end of Line 2
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Figure 5.9: 2048X2048-PBAPINV- Voltage Figure 5.10: 2048X2048-PBAPINV- Voltage
Response at far end of Line 3 Response at far end of Line 15

Figure 5.11: 2048X2048-PBAPINV- Voltage Figure 5.12: 2048X2048-PBAPINV- Voltage
Response at far end of Line 20 Response at far end of Line 25

Figure 5.13: 2048X2048-FMAPINV- Voltage Figure 5.14: 2048X2048-FMAPINV- Voltage
Response at far end of Active Line Response at far end of Line 2
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Figure 5.15: 2048X2048-FMAPINV- Voltage Figure 5.16: 2048X2048-FMAPINV- Voltage
Response at far end of Line 3 Response at far end of Line 15

Figure 5.17: 2048X2048-FMAPINV- Voltage Figure 5.18: 2048X2048-FMAPINV- Voltage
Response at far end of Line 20 Response at far end of Line 25

Figure 5.19:  2048X2048-AINV-Voltage Figure 5.20: 2048X2048-AINV- Voltage
Response at far end of Active Line Response at far end of Line 2
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Figure 5.21: 2048X2048-AINV- Voltage Figure 5.22: 2048X2048-AINV- Voltage
Response at far end of Line 3 Response at far end of Line 15

Figure 5.23: 2048X2048-AINV- Voltage Figure 5.24: 2048X2048-AINV- Voltage
Response at far end of Line 20 Response at far end of Line 25

In the next tables, we also provide numerical results in order to measure the approximation
errors involved. The voltage at the far end in i*" wire obtained by the full and exact K matrix is
denoted by V; while the i*" voltage obtained by the approximation methods is denoted by V;. Define
relative mean square error (RMSE) and average error ratio (AER) for the i*" wire as:

~ 2
V.-V
rusi = 2" =Vl 2‘|
2 Vil
V.-V
pr = 2t V=Vl
X Vil

, while for all wires
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Y X V- Vi|2

RMSE =
X X IVil?
AER = i Xe | Vi—Vi
i 2 il

SIAPINV Active Line 2 Line 3 Line 15 Line 20 Line 25 All
RMSE Line
€=9.9089 | 3.036944 3.576216 5.570589 3.605437 4.790277 6.059697 1.105955
43e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-02
€=9.8168 | 2.201243 2.539602 3.852820 3.017467 3.823853 4.412011 1.037395
18e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-02
£=9.7285 | 2.245933 2.608806 3.975907 2.789697 3.769884 4.801728 1.061554
08e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-02
€=9.6440 | 2.300971 2.681154 4.096418 2.762627 3.649315 4.627475 1.086631
12e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-02
€=9.5518 | 1.460141 1.670067 2.528371 1.639839 2.155728 2.670607 9.118349
83e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.5073 | 1.352611 1.543163 2.334371 1.526012 1.996600 2.456598 8.995759
03e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
£€=9.4632 | 1.265333 1.440396 2.176256 1.427184 1.860410 2.274609 8.894306
20e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.4196 | 1.194173 1.356971 2.047839 1.343552 1.744875 2.122227 8.810593
32e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
Table 1: 2048X2048- SIAPINV-RMSE
SIAPINV Active Line 2 Line 3 Line 15 Line 20 Line 25 All
AER Line
£€=9.9089 | 4.563572 4.495964 5.087662 8.161832 8.737638 9.670518 5.367691
43e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.8168 | 4.008922 3.906328 4.384428 7.495390 7.935443 8.380581 5.147417
18e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.7285 | 4.010210 3.922126 4.417317 7.423047 8.051426 8.765094 5.238150
08e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.6440 | 4.058893 3.976765 4.485671 7.488693 8.037312 8.704739 5.331940
12e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.5518 | 3.292822 3.197420 3.580709 5.631057 6.044620 6.471088 4.674041
83e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.5073 | 3.162194 3.063737 3.428963 5432858 5.812840 6.204878 4.613163
03e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.4632 | 3.053511 2.951368 3.301075 5.250931 5.603593 5.965964 4.559147
20e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.4196 | 2960593 2.856870 3.193152 5.087999 5.417205 5.755338 4.511952
32e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01

Table 2: 2048X2048-SIAPINV-AER
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PBAPINV  Active Line 2 Line 3 Line 15 Line 20 Line 25 All

RMSE Line

€=99089 | 3.632719 4.743120 7.621948 4.487163 7.742496 1.040291 1.619646
43e-01 e-05 e-02 e-02 e-01 e-01 e+00 e-02
€=9.8168 | 1.854166 2.248250 3.537868 2.004875 2.426797 3.079974 1.227308
18e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-02
€=9.7285 | 1.459244 1.726390 2.676449 1.749815 2.074733 2.310265 9.979212
08e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.6440 | 1.153570 1.349770 2.075695 1.390448 1.718290 1.980254 9.013429
12e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9,5518 | 1.330167 1.528041 2.311502 1.463133 1.897151 2.322801 8.593885
83e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.5073 | 1.248727 1.437002 2.179182 1.406837 1.815414 2.208686 8.510533
03e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.4632 | 1.135130 1.304557 1977660 1.285689 1.651975 1.994036 8.345323
20e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.4196 | 1.001345 1.147873 1.737454 1.124174 1.438914 1.723368 8.276617
32e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
Table 3: 2048X2048-PBAPINV-RMSE

PBAPINV  Active Line 2 Line 3 Line 15 Line 20 Line 25 All

AER Line

£€=9.9089 | 4.665669 4.748595 5.434199 8.789037 1.026704 1.098721 6.320885
43e-01 e-03 e-01 e-01 e-01 e+00 e+00 e-01
€=9.8168 | 3.752458 3.759406 4.293547 6.322776 6.620473 7.133118 5.780999
18e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.7285 | 3.438104 3.420509 3.892145 6.029309 6.063024 6.132938 5.316651
08e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.6440 | 2968350 2.940233 3.335979 5.250916 5.362587 5.451274 4.998827
12e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.5518 | 3.154733 3.081100 3.456689 5.348186 5.660567 6.026896 4.561597
83e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.5073 | 3.026716 2.957211 3.325650 5.237899 5.565792 5.906181 4.539446
03e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.4632 | 2.874477 2.808875 3.160333 5.022039 5.302273 5.605201 4.493597
20e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.4196 | 2.699713 2.635634 2961726 4.697004 4.958046 5.212302 4.414794
32e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
Table 4: 2048X2048-PBAPINV-AER

FMAPINV  Active Line 2 Line 3 Line 15 Line 20 Line 25 All

RMSE Line

€=9.9089 | 1.390027 5.567958 7.790279 5.800737 7.321860 9.300583 1.368296
43e-01 e-04 e-02 e-02 e-01 e-01 e-01 e-02
€=9.8168 | 6.208195 2.465078 3.448354 2.456430 3.840173 4.350385 9.971555
18e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
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€=9.7285 | 3.727437 1.677082 2.480195 1.589464 2.151520 2.860479 9.571917
08e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.6440 | 2.567091 1.341187 2.083310 1.414948 1.756095 2.168678 9.675919
12e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.5518 | 3.408929 1.899437 2.580210 1.316269 1.723002 2.043942 8.765922
83e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.5073 | 3.153978 1.722643 2.325826 1.228047 1.634918 1.976523 8.699042
03e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.4632 | 2947895 1.611989 2.168835 1.146350 1.549165 1.900467 8.641071
20e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03
€=9.4196 | 2.779084 1.537354 2.068458 1.104444 1.472017 1.830657 8.592041
32e-01 e-05 e-02 e-02 e-01 e-01 e-01 e-03

Table 5: 2048X2048-FMAPINV-RMSE

FMAPINV  Active Line 2 Line 3 Line 15 Line 20 Line 25 All

AER Line

€=9.9089 | 8.135088 5.622129 6.138007 1.076745 1.125677 1.228295 6.259280
43e-01 e-03 e-01 e-01 e+00 e+00 e+00 e-01
€=9.8168 | 6.105304 4.048609 4.328292 7.059326 8.232973 8.497204 5.082938
18e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.7285 | 4957271 3.241334 3.556107 5.642984 6.124922 6.893882 4.835810
08e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.6440 | 4.207687 2.815072 3.176883 5.430052 5.624433 6.038944 4.810140
12e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.5518 | 4.012481 3.194234 3.492766 5.214196 5.541736 5.775397 4.853048
83e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.5073 | 3.918986 3.092119 3.369382 5.037337 5.393295 5.671982 4.817028
03e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
£=9.4632 | 3.835425 3.019792 3.280559 4.840859 5.227518 5.541190 4.780100
20e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01
€=9.4196 | 3.760577 2.964306 3.216818 4.731816 5.054494 5.402189 4.743792
32e-01 e-03 e-01 e-01 e-01 e-01 e-01 e-01

Table 6: 2048X2048-FMAPINV-AER

AINV Active Line 2 Line 3 Line 15 Line 20 Line 25 All
Line

RMSE 3.108489 1935032 3.457808 8.494478 1.004666 1.283734 1.616782
e-04 e-01 e-01 e-01 e+00 e+00 e-02

AER 9.191743 7.525569 8.721943 9987274 1.001242 1.207149 6.135792
e-03 e-01 e-01 e-01 e+00 e+00 e-01

Table 7: 2048X2048-AINV-Numerical Results

In the second experiment, we consider a larger inductance matrix of size 8192 x 8192. In this
case, in order to preserve acceptable approximation accuracy, especially on the far “victim”
conductors, a larger value of k when determining the sparsity structure of K should be considered.
This fact leads to the inversion of sub-matrices of greater size and to the solution of more linear
systems in the K —method and probing technique respectively. However, as we will see in the next
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section, the speedup achieved, compared to the full inversion of the inductance matrix, using the
probing technique remains relatively constant and independent of the size of the inductance matrix
for a fixed sparsity ratio €. In contrast, the simulation time required when applying the K-method is
strongly correlated to the size of sub-matrices involved rather than the sparisity ratio e.
Consequently, when a large value of k is to be used so as to provide accuracy comparable to what is
obtained when the exact reluctance matrix K is used, K-method can become highly time
demanding.

Figure 5.25: 8192X8192-SIAPINV- Voltage Figure 5.26: 8192X8192-SIAPINV- Voltage
Response at far end of Active Line Response at far end of Line 2

Figure 5.27: 8192X8192-SIAPINV- Voltage Figure 5.28: 8192X8192-SIAPINV- Voltage
Response at far end of Line 3 Response at far end of Line 30
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Figure 5.29: 8192X8192-SIAPINV- Voltage Figure 5.30: 8192X8192-SIAPINV- Voltage
Response at far end of Line 35 Response at far end of Line 40

Figure 5.31: 8192X8192-PBAPINV- Voltage Figure 5.32: 8192X8192-PBAPINV- Voltage
Response at far end of Active Line Response at far end of Line 2

Figure 5.33: 8192X8192-PBAPINV- Voltage Figure 5.34: 8192X8192-PBAPINV- Voltage
Response at far end of Line 3 Response at far end of Line 30
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Figure 5.35: 8192X8192-PBAPINV- Voltage Figure 5.36: 8192X8192-PBAPINV- Voltage
Response at far end of Line 35 Response at far end of Line 40

5.2 Runtime Comparison

Tables 8-11 show runtime information of different sparse approximate inverse methods.
Furthermore, we should mention that all the approximate inverse methods except for the AINV
demand roughly the same time for the transient analysis as they enjoy the same sparsity into the
reluctance matrix.

€= €= €= £= £= €= £= €= €= £=
9.9089 9.816 9.7285 9.644 95518 9.507 9.4632 9.419 8.4107 0.0000
43e- 818e- 08e- 012e- 83e- 303e- 20e- 632e- 45e- 00e-

01 01 01 01 01 01 01 01 01 00
SIAPI | 0.0900 0.590 1.8000 4.130 7.6800 10.23 13.050 16.54 - =
NV 00 000 00 000 00 0000 000 0000
PBAPI | 8.0800 8.270 8.6800 8.920 9.7100 10.09 10.140 10.66 - -
NV 00 000 00 000 00 0000 000 0000
FMAPI [ 10.490 - = = = = = = = =
NV 000
AINV | - - - - - - - - 1.7100

00

FULL |- - - = = = = = = 40.720
INV 000

Table 8: 2048X2048- Run time usage for the construction of sparse approximate reluctance
matrix K using different sparse approximate inverse methods
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&=

&=

eE=

eE=

&=

&=

eE=

eE=

&=

9.9089 9.8168 9.7285 9.6440 9.5518 9.5073 9.4632 9.4196 0.0000
43e-01 18e-01 08e-01 12e-01 83e-01 03e-01 20e-01 32e-01 00e-00
Transient | 3.2600 5.9100 7.2200 8.2900 19.610 21.940 22.190 22.500 125.23
Analysis | 00 00 00 00 000 000 000 000 0000
Time
Table 9: 2048X2048- Run time usage for Transient Analysis for various sparsity ratios
€= €= £= e= e= £= e=
9.937570 9.879134 9.762595 9.642504 9.556999e- 9.485752 0.000000e-
e-01 e-01 e-01 e-01 01 e-01 00
SIAPIN | 5.670000 63.74000 277.3800 922.1400 1734.2300 - -
\Y 0 00 00 00
PBAPIN | 507.8600 530.8000 565.6800 632.6700 690.56000 718.9400 -
\Y 00 00 00 00 0 00
FULL - - - - - - 2489.4600
INV 00

Table 10: 8192X8192- Run time usage for the construction of sparse approximate reluctance
matrix K using different sparse approximate inverse methods

&=

&=

&=

&=

&=

&=

&=

9.937570 9.879134 9.762595 9.642504 9.556999 9.485752 0.000000

e-01 e-01 e-01 e-01 e-01 e-01 e-00
Transient | 82.70000 156.1000 527.9100 924.6700 1051.170 1185.150 5461.540
Analysis 0 00 00 00 000 000 000
Time

Table 11: 8192X8192- Transient Analysis Time for various sparsity ratios
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Conclusions and Future Research

First, we conclude that the use of a sparse reluctance matrix offers increased computational
saving in the transient analysis while the sparse approximate inversion methods achieve significant
speedup, compared to the full inversion of a matrix, with acceptable approximation accuracy. As
already mentioned, the sparse approximate inversion via small inversions is extremely fast when
the size of the sub-matrix corresponding to each column is small and the sparse approximate
inverse exhibits high sparsity ratio. However, as the number of entries of a column to be captured
becomes greater, this approach becomes expensive and inaccurate. This method can be applied to
the inductance matrix L to obtain the reluctance matrix K = L™1, either at the extraction level (K-
method) or at the simulation level. Moreover, there is a trade-off between coupling-window size, or
equivalently the sparsity ratio of the sparse reluctance matrix K, and accuracy. As a consequence,
when a less sparse reluctance matrix K should be approximated, other approximate inverse
techniques can be applied to obtain an accurate approximation of the K matrix in reasonable time.
The approximate inversion, via the minimization of | LK — I llp, yields satisfactory numerical
results while the SPAI algorithm [2] can be used, so that an a priori sparsity pattern is not required.
However, it becomes expensive when it is applied directly to the dense inductance matrix L. One
solution to this problem would be to sparsify the inductance matrix L as well, which is expected to
yield a less accurate approximation. The AINV algorithm is adequately fast and does not require an
a priori sparsity pattern. However, since the inductance matrix is not diagonally dominant, there is
no guarantee that a sparse and accurate approximate inverse will be produced. The PBAPINV offers
high degree of accuracy and a satisfactory speedup compared to the full inversion of the inductance
matrix.

All the presented methods are driven by the sparsification of K, owning to better simulation
accuracy. However, the stability of these approximate sparsification techniques has not been
established since the K may not be positive definite. As a consequence, further SPD-remedy
techniques should be applied to the sparse K in order for stable circuit simulation to be ensured.
The development of methods for generating stable reluctance matrices, which can be applied to
irregular geometry cases and incur small errors, constitutes an open research issue.
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Appendix

7.1 Implementation Code

In this appendix, we provide some selected code segments, written in C, of the simulation code
developed in this thesis. The CSPARSE (a Concise Sparse Matrix Package in C) library was used in
order to handle sparse matrix structures. We remind that a sparse matrix can be stored either in
triplet form, which lists all the nonzero entries in arbitrary order or in compressed-column form. In
both cases, the matrix can be represented by three vectors p,iand x. In triplet form, vector p
contains column indices, vector i contains row indices and vector x contains the value of the
corresponding entry. In compressed column form of am X n matrix, row indices of entries in
column jare stored in i[p[j]] through i[p[j + 1] — 1], the corresponding numerical values are
stored in the same locations in x. Vector p has size n + 1, p[0] = 0, the value of p[j]is such that
plj + 1] — p[j] is the number of nonzero entries in column j and p[n] holds the number of nonzero
entries in the matrix.

Code snippets 1-4 implement ordinary matrix operations where the one matrix operand is
sparse and the other is dense so as to form the linear system involved into the simulation. We also
offer the implementation of the partial matrix inversion using the probing technique as described in
section 3.4. Specifically, Code Snippet 5 implements the Algorithm 2 where the corresponding
graph is returned as a sparse matrix in compressed-column form. Code Snippet 6 implements the
Algorithm 3 which colors the graph in order to construct the probing matrix while Code Snippet 7
implements Algorithm 4. Code Snippet 8 contains the interface of a library for the solution of dense
linear systems. Code Snippets 9-12 contain the implementation for dynamic sparse matrices.
Finally,

Code Snippet 13 implements the incomplete version of Algorithm 1 (AINV algorithm). For the
complete simulation code, the implementation of the other approximate inverse methods or the

inductance matrices, please contact me at ifaposto@inf.uth.gr or at ifiaposto@gmail.com.
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Function that scales a sparse matrix, multiplies by a vector, then adds another vector.
@param A the sparse matrix.

@param alpha the scaling factor of A.

@param v the first vector.

@param u the second vector.

@param w the vector of the result,w=alpha*A*v+beta*u.

@return on success 1 on error 0

S~
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
*

int ssmxvpsv(cs *A,double alpha,double *v,double *u,double beta,double *w);
int ssmxvpsv(cs *A,double alpha,double *v,double *u,double beta,double *w)

int j,p;

if (les_cscA) | tv] | tw]]tu)
return 0;

int n=A->n;

int m=A->m;

int *Ap=A->p;

int *Ai=A->i;

double *Ax=A->Xx;

for(j=0;j<m;j++)
w[j]=beta*u[j];
for(j=0;7j<n;j++)

for(p=Ap[j];p<Ap[j+1];p++)
w[Ai[p]]+=Ax[p]*alpha*v[j];

return 1;

Code Snippet 1
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/**
* Function that forms the transpose of a matrix.
* @param A the matrix.
* @param m the number of rows of A.
* @param n the number of columns of A.
* @return the transpose of A or NULL on error.
*/
double **trans (double **A,int m,int n);
/**
* Function that scales a sparse matrix, multiplies by a vector, then adds another vector.
@param A the sparse matrix.
@param alpha the scaling factor of A.
@param v,u the vectors.
@param w the vector of the result,w=alpha*A*v+u.

¥ ¥ ¥ %

*/
void ssmxvpv(cs *A,double alpha,double *v,double *u,double *w);
/**
*  Function that multiplies a sparse matrix by a dense matrix, and scales by a constant.

* @param A the sparse multiplicand matrix.

* @param B the dense multiplier matrix.

* @param p the number of columns of B.

* (@param alpha the scaling factor .

*  @return the matrix of the result alpha*A*B or NULL on error.
*/

double **smxdmxs (cs *A,double **B,int p,double alpha);

double **smxdmxs (cs *A,double **B,int p,double alpha)

{
int i,j;
if(! CS_CSC(A)||!B)
return NULL;
int m=A->m;
int n=A->n;

double **C=(double **)malloc(sizeof(double *)*m);
if(1C)
return NULL;
for(i=0;i<m;i++){
C[i]=(double *)malloc(sizeof(double)*p);
if(!Cc[i])
return NULL;
¥

double *v=(double *)malloc(sizeof(double)*m);
double **Bt=trans(B,n,p);
if(!Bt)

return NULL;

for(i=0;i<p;i++){
ssmxvpv (A, alpha,Bt[i],NULL,V);
for(j=0;j<m;j++)
Cl310i1=vlil;

}

free(v);

for(i=0;i<p;i++)
free(Bt[i]);

free(Bt);

return C;
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Code Snippet 2

/**

* Function that multiplies a dense matrix by a sparse matrix, and scales by a constant.
* (@param A the dense multiplicand matrix.

* @param m the number of rows of A.

* @param B the sparse multiplier matrix.

* @param alpha the scaling factor .

*  @return the matrix of the result alpha*A*B or NULL on error.

*/

double ** dmxsmxs (double **A,int m,cs *B,double alpha);

double ** dmxsmxs (double **A,int m,cs *B,double alpha)
{

int p,i,3;

if(!Cs_csc(B)||!A)

return NULL;

int n=B->n;

int *Bi=B->i;

int *Bp=B->p;

double *Bx=B->x;

double **C=(double **)malloc(sizeof(double *)*m);
if(!1C)
return NULL;
for(i=0;i<m;i++){
C[i]=(double *)calloc(n,sizeof(double));
if(!C[i]) return NULL;
}

for(p=0;p<m;p++)
for(i=0;i<n;i++)
for(j=6;j<(Bp[i+1]-Bp[i]);j++)
Clpl[il+=alpha*A[p][Bi[Bp[i]+j]1*Bx[Bp[i]+]];

return C;

Code Snippet 3
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/**

* Function that adds a sparse matrix scaled by a constant with a dense matrix scaled by a
constant.

* @param A tha sparse matrix.

* @param B the dense matrix.

* @param alpha the scaling factor of A.

* @param beta the scaling factor of B.

* @param C the matrix of the result C=alpha*A+beta*B.

* @return 1 if successful and @ in case of error.

*/
int ssmpsdm(cs *A,double alpha,double**B,double beta,double **C);

int ssmpsdm(cs *A,double alpha,double**B,double beta,double **C)
{

int i,7;

if(!Ccs_csc(A)||!B]]!cC)
return 0;

int n=A->n;

int m=A->m;

int *Ai=A->i;

int *Ap=A->p;

double *Ax=A->Xx;

for(i=0;i<m;i++)

for(j=0;j<n;j++)
C[i][j]=beta*B[i][j];

for(i=0;i<n;i++){

for(j=0;j<(Ap[i+1]-Ap[i]);j++)
C[Ai[Ap[i]+3]1]1[i]+=Ax[Ap[i]+]j]*alpha;

}

return 1;

Code Snippet 4
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/** Function that computes the modified adjacency graph of a sparse and square matrix.
* @param cspl the elements of the inverse to be approximated in compressed-row form.
* @param csp2 the sparisity pattern of the inverse in compressed-row form
* @return the adjacency graph in compressed-column form.

*/

extern cs *magcstr(cs *cspl,cs *csp2);

cs *magcstr(cs *cspl,cs *csp2){

int
int
int
int

int
int
int
int

nl=cspl->n;
ml=cspl->m;
*pl=cspl->p;
*il=cspl->i;

*p2=csp2->p;
*i2=csp2->i;

*p=(int *)malloc(nl*sizeof(int));
*i=(int *)malloc(nl*sizeof(int));

char **g=(char **)malloc(sizeof(char *)*nl);

int nzmax;
int k,1,7;

for(k=0;k<nl; k++)

glk]=(char *)calloc(nl,sizeof(char));

nzmax=0;
for(k=0;k<nl;k++){

/* preserve element (k,il[j]) */
for(j=p1[k];j<pl[k+1];3++){

for(1l=p2[k];1<p2[k+1];1++){

/* add the edge (i2[1],i1[]j]) */
if(i2[1]!'=11[j1){

if (tgli2[1]]1[i1[31D{
g[i2[1]][i1[]]]=1;
p[nzmax]=i2[1];
i[nzmax++]=i1[7j];
if(!(nzmax % n1)){

p=(int *)realloc(p, (nzmax+nl)*sizeof(int));
i=(int *)realloc(i, (nzmax+nl)*sizeof(int));

}

if(lg[i1[311042[1]1D){
gli1[j1][i2[1]]=1;
p[nzmax]=i1[j];
i[nzmax++]=i2[1];
if(!(nzmax % nl)){

p=(int *)realloc(p, (nzmax+nl)*sizeof(int));
i=(int *)realloc(i, (nzmax+nl)*sizeof(int));
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}

for(k=0; k<nl;k++)
free(g[kl);
free(g);

p=(int *)realloc(p,nzmax*sizeof(int));
i=(int *)realloc(i,nzmax*sizeof(int));

cs *t=cs_spalloc(ml,nl,nzmax,0,1);
memmove (t->p,p,nzmax*sizeof(int));
free(p);

memmove (t->i,1,nzmax*sizeof(int));
free(i);

t->nz=nzmax;

cs *cs_g=cs_compress(t);
cs_spfree(t);

return(cs_g);

Code Snippet 5

/** Function that colours a graph.
* @param g the modified adjaceny graph in compressed-column form.
* @param c the colour of each node.
* @return the number of colours used.
*/
extern int gcolor(cs *g,int **c);
int gcolor(cs *g,int **c){
int n=g->n;
int *i=g->i;
int *p=g->p;

int j,k,1;
int cn=0;

*c=(int *)calloc(n,sizeof(int));

for(3=0;j<n;j++){
for(k=1; ;k++){

for(1=p[j]l;1<p[J+1] && 1((*c)[i[1]]==k);1++);
if(1==p[j+1]){

(*c)[31=k;
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cn=(cn<k)? k:cn;

break;
}
}

}

return cn;
}

Code Snippet 6

/**

* Function that approximates entries of the inverse of a matrix,using probing technique.
* @param I° the matrix.

* @param cspl the elements of A*-1 to be approximated in compressed row form.

* @param csp2 the sparisity pattern of A*-1 in compressed row form.

* @param options the linear system solution method to be used.

* @return fills the entries of cpsl(the field x of cspl) in compressed column form.

=

extern void pbapinv(double **A,cs *cspl,cs *csp2,lssm_options *options);

void pbapinv(double **A,cs *cspl,cs *csp2,lssm_options *options){

cs *g;
int *c;
int cn;
int *Vs;
double **Xs;
double **vs;
int k,J;

int n=cspl->n;

/* construct the modified adjacency graph of the inverse */
g=magcstr(cspl,csp2);

/* color the modified adjacency graph of the inverse */
cn=gcolor(g,&c);
cs_spfree(g);

/* construct Xs and probing vectors */
Xs=(double **)malloc(sizeof(double *)*cn);
vs=(double **)malloc(sizeof(double *)*cn);

for(j=0;j<cn;j++)
vs[j]=(double *)calloc(n,sizeof(double));

/* create the probing vectors */
Vs=(int *)malloc(sizeof(int)*n);
for(j=0;j<n;j++){

Vs[jl=c[J]-1;
vs[c[j]-11[3]1=1;

free(c);
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/* solve the cn linear systems to create Xs */
if(options->1ssm==ITERATIVE)
options->method.iter->x0= ( double* ) calloc (n, sizeof(double) );

1s_state *1s=1s_init(A,options,n);

for(j=0;j<cn;j++){
Xs[j] =1s_solve(vs[j],1ls,options);
free(vs[j]);

¥

if(options->1ssm==ITERATIVE)
free(options->method.iter->x0);

1s_term(ls);

free(vs);

/* extract the elements */
int *p=cspl->p;

int *i=cspl->i;

double *x=cspl->x;

for(k=0;k<n;k++)
/* extract element (k,i[j]) */
for(j=p[k];j<p[k+1];j++)
x[31=Xs[Vs[i[j111[k];

for(j=0;j<cn;j++)

free(Xs[j]);

free(Xs);
free(Vs);

}

Code Snippet 7

typedef struct _iter_options /*options of the iterative method */

{
unsigned char iterm; /* the iterative method to be used */
double ITOL; /* the convergence tolerance*/
double *xo0; /* the initial guess */
preconstruct conp; /*the function to be used in order to construct the

preconditioner */

cs_preconstruct cs_conp; /*the function to be used in order to construct the

preconditioner for sparse matrix */

}

presolve solp; /*the function to be used in order to solve a linear system
with the preconditioner as coefficient matrix.*/
pretsolve solpt; /*the function to be used in order to solve a linear system

with trans(M) as coefficient matrix.*/

iter_options;
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typedef struct _dir_options /*options of the direct method */
{

unsigned char dirm; /* the direct method to be used */
double ITOL; /* the convergence tolerance*/

}

dir_options;

typedef struct _lssm_options /*options of the linear system's solution method */

{

unsigned char 1lssm; /*the linear system solution method to be used*/
union
{
iter_options *iter; /*the options of the iterative method to be used*/
dir_options *dir; /*the options of the iterative method to be used*/
}
method;

}

1ssm_options;

typedef struct _ls _state /* the state of a linear system with dense coefficient matrix */
{

double **A; /* the coefficient matrix */

double **L; /* the decomposition of A */

unsigned int *P; /* the permutation matrix of lu decomposition of A */

double *M; /* the preconditioner matrix of A */

int n; /* the dimension of the linear system */

}

1s_state;
/ *
Function that initializes the linear system with dense coefficient matrix A.
According to the options either computes the lu factorization or the
preconditioner matrix of A.
@param A the coefficient matrix.
@param options the method to be used and further options of that method.
@param n the size of the system.
@return the state of the linear system.

¥ ¥ ¥ ¥ ¥ ¥ ¥ *

*/
extern 1ls_state *1s_init(double **A,lssm _options *options,int n);
/ *

Function that solves a dense linear system specified by state

with rhs b,according to options.

@param b the rhs.

@param state the initialied coeffcient matrix.

@param options the method to be used and further options of that method..

@return the solution.

* X X X ¥ ¥ *

*/
extern double * 1s_solve(double *b,ls state *state,lssm_options *options);

Jx*
* Function that destroys the state of a dense linear system.
* @param state the state of the linear system.

*/
extern void 1s_term(ls_state *state);

Code Snippet 8

73
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* *
& DATA STRUCTURES DEFINITIONS o
* *

********************************************************************************/

typedef struct csd_row

{
double x; /* numerical value of the element */
int k; /* row indice */
struct csd_row *nxt; /* next row */

}csdr;

typedef struct csd_col
{

int nzp; /* number of elements of the column */
csdr *i; /* the rows of the column */

} csdc;

typedef struct csd_sparse /* dynamic sparse matrix */

{
int m; /* number of rows */
int n; /* number of columns */
csdc *p; /* the columns of the matrix */
int nz; /* # of nonzero elements */
} csd;

Code Snippet 9
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/**

* Function for allocating the appropriate memory space for a dynamic sparse matrix.

*  @param m Number of rows.

* @param n Number of columns.

* @return Pointer to the struct describing the matrix in case of success and NULL otherwise.
*/
extern csd *csd_spalloc(int m, int n);

csd *csd_spalloc(int m, int n) {
csd *A=(csd *)malloc(sizeof(csd));

if(!A)
return NULL;
A->m=m;
A->n=n;
A->nz=0;

A->p=(csdc *)malloc(sizeof(csdc)*n);
if(!A->p)
return NULL;
int i;
for(i=0;i<n;i++){
A->p[i].nzp=0;
A->p[i].i=NULL;
}

return A;

Code Snippet 10
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Jx*
*  Function for deallocating the allocated memory space for a dynamic sparse matrix .
* @param A Pointer to the matrix.
* @return NULL.

*/
extern csd *csd_spfree(csd *A);

csd *csd_spfree(csd *A){

if(!'A || !A->p)
return NULL;
int n=A->n;

int i;

for(i=0;i<n;i++){
csdr *r;
while(A->p[i].1i){
r=A->p[i].i;
A->p[i].i=r->nxt;
free(r);
}
}
return NULL;

Code Snippet 11
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JX**

* Function that converts a dynamic sparse matrix to a static sparse matrix in compressed-
column form.

* @param A Pointer to the dynamic matrix.

* @return Pointer to the static sparse matrix in case of success and NULL otherwise.

*/
extern cs *csd_static(csd *A);

cs *csd_static(csd *A){

if(IA)

return NULL;
int m=A->m;
int n=A->n;

c¢s *B=cs_spalloc(m,n,A->nz,1,0);
int *Bp=B->p;

int *Bi=B->i;

double *Bx=B->x;

csdc *Ap=A->p;
if(!Ap)
return NULL;

int i;

int nz=0;

for(i=0;i<n;i++){
Bp[i]=nz;

csdr *r;
for(r=Ap[i].i;r;r=r->nxt){
Bx[nz]=r->x;

Bi[nz++]=r->k;
}

}
Bp[n]=nz;

return B;

Code Snippet 12
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cs *ainv(double ** A,int n,double tol,double lamda){
int i,3;

/* D=diag(pl,p2,..,pn ) */
cs *D=cs_spalloc(n,n,n,1,0);
int *Dp=D->p;

int *Di=D->i;

double *Dx=D->x;
for(i=0;i<n;i++){

Dp[i]=i;
Di[i]=i;
}
Dp[n]=n;

memset (Dx,0,sizeof(double)*n);

/* Z=[21)22) )Zn] */

csd *Z=csd_spalloc(n,n);

csdc *Zp=Z->p;

/* zi=ei i=0(1)n-1 */

for(i=0;i<n;i++){
Z->NZ++;
Zp[i].nzp++;
Zp[i].i=(csdr *)malloc(sizeof(csdr));
Zp[i].i->x=1.0;
Zp[i].i->k=1i;
Zp[i].i->nxt=NULL;

}

for(i=0;i<n;i++){

/* update pivots */
for(j=1i;j<n;j++){

/* pj=(Ai,zj) j=i(1)n */
csdr *r;
Dx[j]=0.0;
for(r=Zp[j].i;r;r=r->nxt)
Dx[j]+=r->x * A[i][r->k];
}

if(Dx[1]<=0){
/* ainv breaks down */
/* sigma=max{pk},k=i(1)n-1 */
double sigma=Dx[i];
int 1;
for(l=i+1;1<n-1;1++)
sigma=(sigma < Dx[1]) ? Dx[1l]: sigma;

/* theta=||zi||oo */
double theta=Zp[i].i ? fabs(Zp[i].i->x) :0.0;
csdr *ri;
for(ri=zp[i].i;ri;ri=ri->nxt)
theta=(theta < fabs(ri->x)) ? fabs(ri->x) :theta;
double zeta=lamda*sigma*theta;
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/* pi=max(sqrt(eps),zeta) */
Dx[1]=(SQRT_EPS>zeta) ? SQRT_EPS :zeta;

/* update conjugate directions zj */
for(j=i+1;j<n;j++){

/* zj=zj-(pj/pi)*zi j=i+1(1)n*/
double p=Dx[j]/Dx[i];

csdr *ri;
for(ri=zp[i].i;ri;ri=ri->nxt){

int k=ri->k;

csdr *rjp,*rj;

for(rjp=NULL,rj=Zp[j].i;rj && rj->k<k;rjp=rj,rj=rj->nxt);
double z=-p*ri->x+((rj && rj->k==k) ? rj-> x: 0.0);

if(rj && rj->k==k){

/* element (k,j) already exists in z */
if(fabs(z)<=tol){

/* drop element (k,j) */
if(rjp)
rjp->nxt=rj->nxt;

else
Zp[j].i=rj->nxt;
free(rj);
Z->nz--;
Zp[j].nzp--;
}
else
/* update value */
rj->x=z;
}
else{
/* element (k,j) does not exist in Z */
if(fabs(z)>tol){
/* add element (k,j) */
csdr *r=(csdr *)malloc(sizeof(csdr));
r->x=z;
r->k=k;
r->nxt=rj;
if(rjp)
rjp->nxt=r;
else
Zp[j].i=r;
Z->nz++;
Zp[j].nzp++;
}
}
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}

cs *Z_cs=csd_static(Z);

csd_spfree(Z);

for(i=0;i<n;i++)
Dx[i]=1/Dx[i];

cs *T=cs_multiply(Z_cs,D);

cs_spfree(D);

cs *Z _cs_t=cs_transpose(Z cs,1);

cs_spfree(Z cs);

cs *B=cs_multiply(T,Z cs_t);

cs_spfree(T);

cs_spfree(Z_cs_t);

return B;

Code Snippet 13
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7.2 Mathematical Proofs

7.2.1
o A B|_ .
When A is invertible, then |C D| = |A||D — CA™'B]|.

Proof:

The block matrix can be factored as

A Bl _ 01[1 A™1B
C D _[C 1”0 D—CA—lB]

Hence,
A B:|A 0111 —A"1B _
C D C Illo0 D-CcA™'B
(ANIDAINID = CAT'B]) = |A||D — CA™'B]|
7.2.2

A B B
12],3 =[ 1 12] where A4,

Consider a pair 4, B of n X n matrices, partitioned as 4 = [311 A B B
21 Az22 21 D22
B;; are k X k matrices.If A;;,A,, are nonsingular and B = A~ then
By = (A1 — A2433421) 7"
Byz = (Azz — Az AT A1) ™"
Bip = —A11A12(Az, — A31AT1 Arp) ™!
By1 = —A7;A21(A11 — A1pA33 A50) 7"

Proof:

Firstly, we remark that the conditions |A;4| # 0, |4,,| # 0 are sufficient for the nonsingularity of A,
but in general, not necessary. In case of a positive definite A, these conditions are also necessary .If
A =B"1 then

_ [A11B11 + A12B21 Aq1B12 +A12322] _ [ I Ok,n—k]
—|o

AB =
Az1B11 + AzB31 Az1Bip + AyBy, n-kk  In—k

Equivalently, we need to solve four matrix equations:

A11B11 + A12Byy = I )

A11B1z + A12B33 = O i (i)
A21B11 + A22B21 = Ok (iii)
Az1Biy + AzpBoy = I (iv)

It follows from (ii) and (iii) that

By, = —A1{A1,By, v)
By = —A521A21B11 (vi)
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So that (i) and (iv) become

(A1 — A12A521A21)B11 =1I
(Azz — Az1411 A12)Bzz =In_g

Hence,

By; = (Ayq — A12A73 A1) 7t
By = (A — Ay ATi A1) ™1

Substituting these solutions in (v) and (vi) it follows that

By, = —A11A15(Ay; — A21AI§A12)_1
By = —A33 A1 (A1 — A1 A55A51) 71

7.2.3

If matrix A € R™" is strictly diagonally dominant and has positive diagonally elements then it is
SPD.

Proof:

This is an immediate consequence of the Gersgorin Circle theorem, by which every eigenvalue 4; of

a square matrix 4 is located in one of the n disks in the complex plane defined byj z: |z — a;;| <

Z?zl a;j(,i = 1(1)n. Obviously, if the matrix is strictly diagonally dominant with positive diagonal
J#i

elements, then all Gersgorin disks lie entirely in the positive semi-plane and thus all eigenvalues
have positive real parts.
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