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ABSTRACT OF THE DISSERTATION

Optimization and game theory techniques for energy-constrained networked
systems and the smart grid

by

Lazaros Gkatzikis

Doctor of Philosophy, Graduate Program in Electrical and Computer Engineering

University of Thessaly, March 2014

Prof. Leandros Tassiulas, Chairperson

The energy needs of all sectors of our modern societies are constantly increasing. Indicatively,

annual worldwide demand for electricity has increased ten-fold within the last 50 years. Thus, energy

efficiency has become a major target of the research community. The ongoing research efforts are fo-

cused on two main threads, i) optimizing efficiency and reliability of the power grid and ii) improving

energy efficiency of individual devices / systems. In this thesis we explore the use of optimization

and game theory techniques towards both goals.

Stable and economic operation of the power grid calls for electricity demand to be uniformly dis-

tributed across a day. Currently, the price of electricity is fixed throughout a day for most users. Given

also the highly correlated daily schedules of users, this leads to unbalanced distribution of demand.

However, the recent development of low-cost smart meters enables bidirectional communication be-

tween the electricity operator and each user, and hence introduces the option of dynamic pricing and

demand adaptation (a.k.a. Demand Response - DR). Dynamic pricing motivates home users to modify

their electricity consumption profile so as to reduce their electricity bill. Eventually, users by moving

demand out of peak consumption periods lead to a more balanced total demand pattern and a more

stable grid.

A DR scheme has to balance the contradictory interests of the utility operator and the users.

On the one hand, the operator wants to minimize electricity generation cost. On the other hand,

each user aims to maximize a utility function that captures the trade-off between timely execution

of demands and financial savings. In this thesis we focus on designing efficient DR schemes for the

residential sector. Initially, we introduce a realistic model of user’s response to time-varying prices

and identify the operating constraints of home appliances that make optimal demand scheduling NP-

Hard. Thus, we devise an optimization-based dynamic pricing mechanism and demonstrate how it

can be implemented as a day-ahead DR market. Our numerical results underline the potential of

residential DR and verify that our scheme exploits DR benefits more efficiently compared to existing

ones.

The large number of home users though and the fact that the utility operator generally lacks the
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know-how of designing and applying dynamic pricing at such a large scale introduce the need for

a new market entity. Aggregators act as intermediaries that coordinate home users to shift or even

curtail their demands and then resell this service to the utility operator. In this direction, we introduce

a three-level hierarchical model for the smart grid market and we devise the corresponding pricing

mechanism for each level. The operator seeks to minimize the smart grid operational cost and offers

rewards to aggregators toward this goal. Aggregators are profit-maximizing entities that compete

to sell DR services to the operator. Finally, end-users are also self-interested and seek to optimize

the tradeoff between earnings and discomfort. Based on realistic demand traces we demonstrate the

dominant role of the utility operator and how its strategy affects the actual DR benefits. Although the

proposed scheme guarantees significant financial benefits for each market entity, interestingly users

that are extremely willing to modify their consumption pattern do not derive the maximum financial

benefit.

In parallel to optimizing the power grid itself, per device energy economy has become a goal of

utmost performance. Contemporary mobile devices are battery powered and hence characterized by

limited processing and energy resources. In addition, the latest mobile applications are particularly

demanding and hence cannot be executed locally. Instead, a mobile device can outsource its com-

putationally intensive tasks to the cloud over its wireless access interface, so as to maximize both

its lifetime and performance. In this thesis, we explore task offloading and Virtual Machine (VM)

migration mechanisms for the mobile cloud computing paradigm that minimize energy consumption

and execution time. We identify that in order to decide whether offloading is beneficial, a mobile

has also to consider the delay and energy cost of data transfer from/to the cloud. On the other hand,

the challenge for the cloud is to optimally allocate the arising VMs to its servers so as to minimize

its operating cost without sacrificing performance though. Providing quality of service guarantees is

particularly challenging in the dynamic cloud environment, due to the time-varying bandwidth of the

access links, the ever changing available processing capacity at each server and the time-varying data

volume of each VM. Thus, we propose a mobile cloud architecture that brings the cloud closer to

the user and online VM migration policies spanning fully uncoordinated ones, in which each user or

server autonomously makes its migration decisions, up to cloud-wide ones.

Nevertheless, the transceiver is one of the most power consuming components of a mobile wireless

device. Since the medium access layer controls when a transmission takes place, it has significant

impact on overall energy consumption and consequently on the lifetime of a device. In this direction,

we investigate the potential of sleep modes when several wireless devices compete for medium access.

In order to characterize the resulting energy-throughput tradeoff, we calculate the optimal throughput

under energy constraints and we model contention for wireless medium as a non-cooperative game.

The strategy of each user consists of its access probability and its sleep mode schedule. We show

that the resulting game has a unique Nash Equilibrium Point and that energy constraints reduce the

negative impact of selfish behaviour, leading to bounded price of anarchy. We devise also a modified

medium access scheme, where the state of the medium can be sampled in the beginning of each frame

and show that it leads to improved exploitation of the medium without any explicit cooperation.

xii
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Finally, we move to a scenario where concurrent transmissions over the same channel are not de-

structive but lead to reduced performance due to interference. In this context, we consider the problem

of joint relay assignment and power control. We develop interference-aware sum-rate maximization

algorithms that make use of a bipartite maximum weight matching formulation of the problem and

geometric programming and are amenable to distributed implementation. We also identify the impor-

tance of interference for cell-edge users in cellular networks and demonstrate that our schemes bring

together two main features of 4G systems, namely interference management and relaying.
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Chapter 1

Introduction

1.1 Motivation

In the last decades, the energy needs of all sectors of our modern societies have risen significantly.

Indicatively, annual worldwide demand for electricity has increased ten-fold within the last 50 years

and has almost doubled in the last decade [1]. Thus, energy efficiency has become a major concern

of the research community. The ongoing research efforts are classified into two main threads, i)

optimizing the efficiency and reliability of the power grid and ii) improving energy efficiency of

individual devices or systems per se.

1.1.1 Efficiency of the power grid

Electricity market is about to undergo a paradigm shift. From a centralized model of operation,

where all the decision making is performed by the utility operator, we are moving towards a complex

market structure. Traditionally, the utility operator has been responsible for generation, transmission

and distribution of electric power as well as pricing of consumed electricity to the end-users. The

recent deregulation trend though promotes the separation of these activities. Typically, distribution

and transmission are undertaken by non-profit operators, whereas generation and retailing are left in

the hands of free market. The structure of the electricity market is depicted in Fig. 1.1.

The role of the utility operator (a.k.a. Independent System Operator - ISO) has been reduced to

selecting and utilizing the least expensive resources to meet energy demand, a principle referred to as

economic dispatch. Utility is responsible for predicting the total consumption for each period of the

following day and conducts a day-ahead wholesale auction where a number of competing generators

offer their electricity output. Each generator makes a bid indicating the amount of energy that it can

provide at each given time period and the corresponding price. The best offers that meet predicted

demand are accepted. Generally, the market clearing price is the one of the highest bid accepted, in an

attempt to guarantee fairness among the generators. Evidently, since electricity supply and demand

have to be constantly balanced, higher demand calls for additional and more expensive powerplants

to be activated.
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Figure 1.1: The operation of the electricity market.

The latest advancements in the electricity market though, such as market liberalization and avail-

ability of low-cost smart meters, introduced the alternative option of dynamic demand adaptation. In

this direction, demand response (DR) programs provide incentives to the users, usually in the form

of dynamic pricing, to reduce their electricity consumption in peak demand periods. Compared to

activating additional power plants, DR can take place in a much faster timescale, almost in real time,

and leads to a more stable power grid system, significantly lower electricity generation cost and re-

duced CO2 emissions. In general, DR programs pursue the win-win situation where end-users enjoy

a reduced electricity bill, while the operator enjoys reduced operating cost.

Although DR has been successfully applied in the industry, its application in the residential sector

is limited. According to a recent report [2] the main forces constraining rapid growth of residential DR

market are consumer backlash to smart meters, the cost of delivering demand response to residential

customers, and the lack of knowledge and time from the users’ side to respond to dynamic prices.

On the other hand, compared to large industries, small residential loads can provide more reliable

and faster response and are spatially distributed. Given also that the residential sector accounts for a

significant portion of the total electricity consumption (31% in UK), DR mechanisms for the home

hold enormous potential. Currently, most homes are enrolled in static pricing programs (> 98%) and

schedule their demands for the most convenient time. Given the highly correlated daily schedules of

home users, this leads to unbalanced electricity demand throughout the day (Fig. 1.2).

This thesis aims to design and implement efficient DR mechanisms that will pass residential

demand response from the realm of theory to practice. In particular, we focus on DR market models

that exploit dynamic pricing to incentivize users either to shift their demands out of peak consumption

periods or even to curtail their total consumption. The ultimate objective is to devise realistic DR

models that capture the particularities of residential demands and efficient pricing schemes that lead to
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Figure 1.2: Daily demand distribution for a typical winter / summer day in UK.

a more balanced demand pattern. Based on the derived models we quantify the potential of residential

DR in terms of financial savings for both the home-users and the operator.

1.1.2 Energy efficiency of networked systems

Apart from optimizing the operation of the power grid itself, minimizing energy consumption of

mobile devices and networked systems is an active area of research [3]. Currently, Information and

Communications Technologies (ICT) account for almost 5% of worldwide electricity consumption,

with communication networks and datacenters being the major electricity consumers (Fig. 1.3). To

counteract this, industry has devoted its efforts on designing energy-efficient hardware, either in the

form of low-consumption mobile devices or efficient datacenters [6].

Figure 1.3: Worldwide electricity consumption of ICT (source:[4]).
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Figure 1.4: Annual energy consumption broken down into the components of the wireless cloud

ecosystem in 2012 and two projections (low and high) for 2015 (source:[7])

Recently though, the authors of [7] showed that wireless access is responsible for 90% of total

energy consumption of the wireless cloud (Fig. 1.4). Based on the emerging trend of cloud services

being accessed via wireless communication networks such as WiFi and 4G LTE, they suggest that

energy efficiency of wireless access networks should be pursued instead. In this thesis, we explore

energy efficiency at the level of mobile device, wireless access and cloud infrastructure.

Energy efficiency can be viewed as a problem of maximizing the performance of a wireless sys-

tem under a given energy budget. Mobile devices are battery powered and hence are characterized by

limited energy capabilities. Thus, designing communication protocols and resource allocation mecha-

nisms that take full advantage of the available energy is a goal of utmost importance. In this direction,

we attempt a characterization of the energy-performance tradeoff in wireless access networks. In par-

ticular, we consider scenarios ranging from Mobile Cloud Computing, where energy-constrained mo-

bile devices offload their tasks to the cloud, up to wireless access scenarios, where we investigate how

contention for the shared wireless medium and energy constraints affect the achievable throughput.

Contention for the medium may be realized in any of the following forms. In case of probabilistic

medium access, two concurrent transmissions to a single receiver lead to a collision and hence energy

gets wasted. On the other hand, concurrent transmissions between remote communication pairs over

the same frequency band are generally non-destructive, but cause interference to each other and hence

lead to reduced performance. In this thesis we explore both cases and show that some form of explicit

or implicit coordination of transmissions has to be enforced, so as to optimally exploit the available

energy.
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1.2 Synopsis

In this thesis we propose game theoretic models and optimization-based mechanisms for the smart

grid and for energy-constrained systems. The common ground of the investigated scenarios is the

autonomous nature of the participating entities. Each user acts independently towards maximizing her

own utility, a strategy that generally does not coincide with the social optimum. Thus, we investigate

mechanisms that align the interests of the involved entities and lead the system to more efficient

operating points.

In Chapter 2 we provide an introduction to demand response and overview the structure of a

smart grid market. Then, we introduce a novel DR model, where the operator sets the prices and mul-

tiple home users respond by scheduling their demands. The objective of the operator is to minimize

electricity generation cost, whereas each user maximizes a utility function that captures the trade-off

between timely execution of demands and financial savings. We show that optimal demand schedul-

ing is an NP-hard problem and derive an efficient price setting strategy that results to more balanced

demand throughout the day. We exploit price discrimination to further improve user utility and use

per appliance demand traces to demonstrate that our scheme aligns the interests of the operator and

the home users.

In Chapter 3 we extend our DR market model in order to capture the role of the aggregators that

act as intermediaries between the utility operator and the home users. In the proposed market, the

operator seeks to minimize the smart grid operational cost and offers rewards to aggregators toward

this goal. Profit-maximizing aggregators compete to sell DR services to the operator and provide

compensation to end-users in order to persuade them to modify their preferable consumption pattern.

Finally, end-users seek to optimize the tradeoff between earnings received from the aggregator and

discomfort from having to modify their demand pattern. Initially, we investigate a benchmark sce-

nario where all the decision making is performed by the operator under full information. Next, we

present how the proposed model could be realised in the form of a hierarchical DR market and inves-

tigate the required information exchange. We also use daily demand traces to quantify the benefits

arising from the proposed scheme.

Next, we focus on per device energy economy and investigate the throughput-energy tradeoff.

In particular, Chapter 4 is devoted to efficient VM (Virtual Machine) migration mechanisms for the

mobile cloud computing paradigm, where mobile devices outsource their computationally intensive

tasks to the cloud in order to minimize their energy consumption. On the other hand, the challenge for

the cloud provider is to minimize task execution and data download time to the user, whose location

changes due to mobility. In this direction, we model interaction of tasks / VMs within the cloud and

propose migration mechanisms that capture the interaction of co-located tasks. We also demonstrate

how VM migrations may lead to a more energy-efficient cloud and we verify numerically the arising

performance benefits.

In Chapter 5 we consider the problem of probabilistic medium access for devices that support

sleep modes, i.e. turning off electronic compartments for energy saving. Due to hardware limitations,

sleep mode transitions cannot occur at the medium access timescale, but only at a slower timescale.
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Each terminal can choose when to turn on/off and its probability to transmit on an arbitrary slot.

Thus, we develop a two level model, consisting of a fast timescale for transmission scheduling and a

slower timescale for the sleep mode transitions. We take a game theoretic approach to model the user

interactions and show that the energy constraints modify the medium access problem significantly.

Interestingly, energy constraints lead to bounded price of anarchy and hence introduce some form

of coordination. Our results give valuable insights on the energy–throughput tradeoff for contention

based systems.

In Chapter 6 we consider an interference-limited wireless network, where multiple source-

destination pairs compete for the same pool of relay nodes. In an attempt to maximize the sum-rate

performance of the system, we address the joint problem of relay assignment and power control.

Initially, we study the autonomous scenario, where each source greedily selects the strategy (trans-

mission power and relay) that maximizes its individual rate, leading to a simple one-shot algorithm of

linear complexity. Then, we propose a more sophisticated algorithm of polynomial complexity that

is amenable to distributed implementation through appropriate message passing.

Finally, in Chapter 7 we summarize the findings of our work, we provide guidelines for the

design of practical energy-efficient systems and we discuss open research problems in the area.
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Chapter 2

Energy Efficiency in the Smart Grid -
Part I: The Impact of Shiftable Demands
on Demand Response

In this chapter, we explore the potential of demand response (DR) towards a more stable power grid.

Most existing DR programs are tailored specifically to the needs of industrial and commercial clients.

Residential appliances though are characterized by significantly different and diverse operating con-

straints. A major differentiating factor is the shiftable nature of residential demands that introduces

the need for a novel DR approach. In this direction, we introduce a model for the day-ahead electric-

ity market, where the operator sets the prices and multiple home users respond by scheduling their

demands. The objective of the operator is to minimize electricity generation cost, whereas each user

maximizes her utility function, which captures the trade-off between timely execution of demands

and financial savings.

We propose a DR model that captures the diverse energy characteristics of different home ap-

pliances and derive an efficient price setting strategy that leads to a more balanced demand pattern

throughout the day. We exploit price discrimination to further improve user utility and use per appli-

ance demand traces to demonstrate that our scheme aligns the interests of the operator and the home

users. Since most home users lack the knowledge and time to respond to dynamic prices, automated

DR schemes will be eventually developed. Any such scheme though would rely on an estimation of

the actual user utility. In this direction, we quantify the impact of estimation accuracy on the DR

benefits of each market entity.

2.1 Introduction to Demand Response

For the proper operation of the power grid, electricity supply and demand have to be constantly

balanced. Currently, this is achieved by activating additional powerplants to increase available supply

and meet the arising demand. The latest advancements in the electricity market though, such as
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market liberalization and increased availability of smart meters, introduced the alternative option of

dynamic demand adaptation. In this direction, demand response (DR) programs provide incentives

to the users, usually in the form of dynamic pricing, to reduce their electricity consumption in peak

demand periods. Compared to activating additional power plants, DR can take place in a much faster

timescale, almost in real time, and leads to significantly lower electricity generation cost and reduced

CO2 emissions.

Although DR has been successfully applied in the industry, its application in the residential sector

is limited. Compared to the large industrial loads, small residential ones can provide more reliable

and faster response and are spatially distributed. Given also that the residential sector accounts for

a significant portion of the total electricity consumption (31% in UK) DR mechanisms for the home

have enormous potential. Currently, most homes are enrolled in static pricing programs and schedule

their demands for the most convenient time. Given the highly correlated daily schedules of home

users, this leads to unbalanced electricity demand throughout the day.

Dynamic pricing motivates home users to change their electricity consumption behavior and

spread demand throughout the day. A more balanced demand distribution can lead to significant

benefits for all the involved entities. In particular, the gain for the operator is twofold, namely a more

stable electricity network and reduced generation cost, since only the least expensive power plants

have to be used to cover demand. Home users on the other hand can shift their demands to low price

periods and reduce their electricity bill. However, this shifting usually causes inconvenience to the

user as it calls for changes in her daily schedule. Given the day–ahead prices, each user has to balance

inconvenience and financial savings and schedule her demands towards maximizing net utility.

However, the broader market penetration of residential DR is hampered by the lack of knowledge

and time of the users to respond to dynamic prices [20]. Indicatively, the authors of [8] studied the

behaviour of home users charged by hourly time-varying prices and identified that most exhibit an

inherent discomfort in observing the price evolution throughout the day and adjusting their energy

consumption profile correspondingly. To counteract this, we propose an automated DR mechanism

that requires minimal human intervention. In the home side, an estimation of the appliances to be

operated the following day and the exact time of activation is performed based on historical data.

As we show, the accuracy of this estimation is of crucial importance for the market operation. We

introduce parametric utility functions to capture the fact that each user evaluates the inconvenience/-

cost tradeoff in a different way and that different types of demand (appliances) exhibit different price

elasticity. The smart meter negotiates the following day’s schedule with the operator and proposes a

schedule to the user. In the end, it is the user that decides whether to follow the proposed schedule

partially or totally.

An important building block of any DR scheme is also the strategy of the price setting entity,

namely the utility operator. Most currently applied pricing schemes are either based on fixed time-

of-use rates, and hence are not sufficiently adaptive, or simply expose users to the wholesale market

prices, causing thus extreme price volatility and uncertainty. Instead, we propose a negotiation mech-

anism that takes place in advance (day-ahead). Hence, the home users are not only aware of the exact
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pricing pattern for the following day but also of the exact cost of the proposed schedules.

In this chapter, we investigate the interaction between an operator, multiple competing generators

and a set of price taking home users in a day–ahead market. Our contributions can be summarized as

follows,

• we introduce a realistic electricity DR model that captures the diverse set of home appliances,

• we identify the conditions that turn optimal demand scheduling into an NP-Hard problem. We

show that this is the case for most types of residential demand, in contrast to the simplifying

assumption of totally splittable demands generally made,

• we propose a price–setting mechanism that converges within a small number of iterations and

aligns the interests of the operator and the home users,

• we show that price discrimination can be used to improve the total utility of the home users,

• we quantify the impact of inaccurate estimation of user utilities on the performance of demand

response.

The rest of the chapter is organized as follows. Section 2.2 provides an overview of the related

work. In Section 2.3 we introduce our DR model and show that optimal demand scheduling is NP-

hard. Section 2.4 describes the operation of a day–ahead market that coordinates demands through

dynamic pricing. In Section 2.5 we perform a classification of home appliances and use demand

traces to evaluate the benefits arising from the proposed DR scheme. Section 2.6 concludes our study.

2.2 DR Related Work

In a series of works the problem of demand response is mapped to the well investigated problem of

selfish routing over parallel links, with each link corresponding to a timeslot. The authors of [22, 26]

consider a set of users that schedule demands within a finite horizon of several slots. Each user

receives some utility per unit of energy consumed and pays the corresponding electricity cost to the

operator. The difference of the two is the net utility, that the user wants to maximize by controlling

the amount of power allocated at each timeslot. The price setting entity on the other hand aims at

maximizing the social welfare of the system. Under convexity assumptions, they derive convergent

distributed algorithms based on auction mechanisms and dual decomposition methods respectively.

In a similar framework, a two time scale wholesale electricity market is considered in [11], where

renewable sources provide electricity at zero cost, while additional power may be purchased either

through a day-ahead market or in real-time. For the case of deterministic demands and social welfare

maximization the optimal strategy is to set prices equal to the marginal cost. Under the assumption

that consumers respond by adjusting their demand schedule, the system converges to the social opti-

mum. A simplified market model is considered in [18], where indicative utility functions for different

types of appliances are proposed. In place of deterministic knowledge of prices, [20] proposes a

prediction mechanism that uses historical pricing data.

9
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All the above works [11, 18, 20, 22, 26] share the simplifying assumptions that power is a contin-

uous control variable that can be arbitrarily allocated at the slots and the utility is a concave function

of the consumed power. However, this would require appliances that can operate at any power level.

In this work we show that the problem of optimal demand scheduling becomes NP-hard once a re-

alistic model for the demands is introduced. Besides, the scenario of maximizing social welfare,

though tractable since the optimal pricing comes directly from the fundamental theorem of welfare

economics, it does not capture the main objective of the operator i.e.,a balanced consumption pat-

tern throughout the day. To the best of our knowledge, [10] is the only work that adopts a model of

shiftable demands similar to ours; it neglects though the reciprocal interaction of pricing and demand

scheduling that is inherent in any DR scheme. Here, we consider also the DR benefits at the user side,

we introduce price discrimination as a means to improve the total utility of the users, and investigate

the market operation under inaccurate estimation of the user utility functions.

Currently only a small percentage of households have enrolled into dynamic pricing programs,

where prices are set according to the day-ahead wholesale market. However, as market penetration

increases, the stability of electricity markets becomes doubtful. The authors of [25] show that making

the cost minimizing individuals aware of the real-time prices may lead to an unstable closed loop

feedback system and consequently to extreme price volatility. Thus, they proposed in [24] a pricing

mechanism that charges electricity usage beyond the predicted one by some a posteriori calculated

price. Such an approach cannot be easily applied in practice though, since home users need to know

the price per unit of consumed energy in advance. Instead, we propose a negotiation-based mechanism

that provides incentives to the end-users to enroll to DR programs, but also avoids instability.

In order to quantify the benefits of any DR mechanism a realistic model of the home energy

consumption is required. In this direction, the authors of [9] derive a continuous time k-state Marko-

vian model for the total consumption of a house based on real life measurements. They derived 12

reference models, each corresponding to a different period of the day and a different type of house.

A detailed model that generates per appliance daily consumption traces was derived also in [23],

based on a survey conducted in United Kingdom in 2000. The model was successfully tested against

actual consumption data from 22 houses, yielding similar results. In our work we make use of an

extended version of this model, where we have incorporated parametric utility functions that capture

the elasticity of different appliances.

2.3 DR Model and Problem Formulation

We consider an electricity market consisting of a set of home users and a single operator. The operator

applies dynamic pricing by dividing the day ahead into T equal time slots. The timeslot duration

determines the market granularity. For example, a coarse-grained market would consist of T = 24

hourly intervals, whereas in a fine-grained one the price could change even in a minute timescale. The

goal of the operator is to minimize electricity generation cost by balancing electricity consumption

throughout the day, while the users attempt to maximize their utility.
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Figure 2.1: Optimal washing machine schedule for a cost minimizing user under the shiftable (solid

blue) and the splittable (dashed red) models

2.3.1 Motivation behind the DR model of shiftable demands

Initially, we motivate why a new, realistic model for demand response is required. Most home ap-

pliances are characterized by a specific consumption pattern, consisting of cycles of operation that

have to be executed with a specific order and without any interruption. For example the solid blue

curve of Fig. 2.1 corresponds to the typical consumption pattern of a washing machine. In this work,

we propose that most home demands are of shiftable nature i.e.,users respond to dynamic prices by

shifting their demands to an earlier or a later time. In contrast, most works [18, 20, 22, 26] in the field

of demand response are based on the simplifying assumption of splittable demands, where electricity

consumption per timeslot is the control variable. If this were true, at each timeslot we would be able

to operate the washing machine at any power level. Such a model of splittable demands violates two

basic constraints though; first, that most appliances do not support a continuous range of operating

power levels and, second, that they cannot be preempted. These are hard constraints imposed by the

operation of the appliance and hence any DR schedule that violates them is infeasible.

Although we showed that the splittable assumption leads to infeasible schedules, one may claim

that it provides a close approximation of the actual case of shiftable demands. We depict in Fig. 2.1

the best response of a cost minimizing user for her washing machine under both models. The dotted

line represents the evolution of price throughout the day. In the shiftable case the cost minimizing shift

is selected, leading to the rightmost solid blue demand curve. The splittable approach is depicted with

the dashed red line, where the appliance is activated within the lowest price timeslots. Although the

total energy consumption is the same, the resulting demand pattern differs significantly. Concluding,

the splittable approximation is neither realistic nor accurate, at least for the user side.
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2.3.2 Scheduling of residential demands under dynamic pricing

We consider a set N of N residential users issuing a set of demands D for the following day. Each

demand would be ideally (under flat pricing) scheduled according to the most convenient schedule.

Hence, demand i ∈ D is characterized by a power consumption profile, represented as a sequence of

power levels wi,t ≥ 0 and a total power requirement of Wi =∑T
t=1 wi,t . Such a profile can be constructed

either by explicit user input or automated measurement-based approaches [10]. Dynamic pricing

motivates users to move demand out of peak consumption periods. We categorize demands into

shiftable that cannot be interrupted and splittable ones that support a continuous range of operating

levels up to a maximum of Wmax.

For shiftable demand i, we denote with ai ∈ {1,2, . . . ,T} the most convenient starting time and

ei the corresponding ending timeslot. We assume that only specific shifts are feasible, e.g., the dishes

have to be washed by dinner time. Let Fi ⊆ [−ai+1,T −ei] denote the set of integer feasible shifts δi

for demand i. Each demand is a price-taker that individually responds to price vector ppp = {pt}1≤t≤T

with the shift δ ∗
i ∈ Fi that maximizes net utility, namely a function of the amount of shift and the

electricity cost:

Response of shiftable demand i (max net payoff):

max
δi∈Fi

(1−θi)Ui(δi)−θi

ei

∑
t=ai

wi,t pt+δi (2.1)

The first term, Ui(δi), captures the satisfaction received from the timely execution of demand i and

is generally decreasing in |δi|, since the larger the shift the higher the inconvenience caused to the

user. The second term corresponds to electricity cost. The net utility of timely execution less the

associated electricity cost is represented by the difference of these two terms. The trade-off between

them is modeled by parameter θi, which depends on both user behavior and type of demand. A high

value of θ represents either a user that mainly cares about minimizing cost as opposed to maximizing

her utility (convenience) or shift-insensitive types of demand, such as the laundry machine, that yield

the same utility irrespective of the time of day. As a result, parameter θi is indicative of the ”elasticity”

of each demand. In this work, we introduce also feasibility related parameter βi ∈ [0,1] and define

the feasible shift space as the integer subset Fi ⊆ βi × [−ai + 1,T − ei]. A low value of β captures

demands of tight activation constraints.

For each splittable demand i, we have to find the optimal portion of demand xi,t of timeslot t, i.e.,:

Response of splittable demand i (minimize inconvenience + cost):

minimize
{xi,t :1≤t≤T}

(1−θi)
T

∑
t=1

Vit(xi,t)+θi

T

∑
t=1

xi,t pt (2.2)

s.t. 0 ≤ xi,t ≤Wmax ∀t ∈ {1, . . .T}, (2.3)

T

∑
t=1

xi,t =Wi, (2.4)
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where the disutility function V (·) captures the dissatisfaction caused to the user whenever modifying

her most convenient schedule. In general, V (·) is a convex function of demand since the differen-

tial dissatisfaction of a user increases as the distance from the most convenient schedule increases.

Indicatively, we may use the absolute distance from the ideal consumption level of timeslot t x0
i,t to

capture dissatisfaction, i.e.,:

Vit(xit) = (xi,t − x0
i,t)

2 (2.5)

2.3.3 The role of the utility operator as the price setting entity

The operator aims at minimizing electricity generation cost, which for each timeslot t is an increasing

and convex function ct : R+ →R
+ of total demand [18]. Its exact form is determined by the operating

cost of the power plants that have to be activated to meet demand. We perform an estimation of the

generation cost as a function of the demand in Section 2.5 based on publicly available price/demand

data.

Although the operator has no control over the demands of the individuals, it affects indirectly

their distribution within a day by applying dynamic pricing. If pflat denotes the price of the default

flat pricing scheme, each day the operator has to solve the following optimization problem:

Operator’s problem (min operational cost):

min
ppp

T

∑
t=1

ct (χt(ppp)) (2.6)

s.t. 0 ≤ p̄ ≤ pflat ∀i ∈ D,

where χt is the total demand allocated at timeslot t for price vector ppp. The constraint implies that the

average price p̄ of any dynamic pricing program has to be at most equal to that of flat pricing, so as

to attract users to enroll. In addition, this constraint ensures a fair comparison setting for different

dynamic pricing schemes.

Without loss of generality we consider an average price bound normalized to unity (pflat = 1),

since we are only interested in the distribution of the prices throughout the day and not on their exact

values.

Remark 2.3.1. Although a user’s demand scheduling affects the pricing strategy of the operator, its

impact on the resulting prices is negligible, since each residential user controls only a tiny percentage

of the total demand. This justifies our assumption of price-taking users, who simply respond to the

announced prices.

2.3.4 What makes optimal demand scheduling NP-Hard?

Several works derive optimal polynomial algorithms for demand scheduling under certain assump-

tions. Here, we identify the characteristics of home appliances that turn cost minimization under

dynamic pricing into an NP-hard problem. Consider the simplified version of our problem where
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the operator has direct control over demands, i.e.,it can shift each demand at will. For rectangular

demands of arbitrary duration but equal power requirements, this is an NP-hard bin packing instance

[16]. Here, we generalize to demands of arbitrary pattern and consider the impact of pricing on

complexity.

Consider demands of single slot duration, but arbitrary power requirements. Without loss of gen-

erality, we can relax the feasibility constraint δi ∈Fi by assuming that each demand can be scheduled

throughout the horizon T . This can be directly mapped to the multiprocessor scheduling problem

(a.k.a. minimum makespan scheduling), where a set of jobs have to be scheduled on a set of identical

machines, so as to minimize the maximum load, i.e.,the sum of the processing times of jobs assigned

to each machine. This has been shown in [13] to be NP-Hard (by a partition reduction).

In our case, the T identical machines correspond to the T timeslots and the jobs are the demands

of different power requirements. Our objective is the minimization of generation cost, which is a

convex and increasing function of the total demand within a timeslot. Thus, the optimal scheduling is

the one that minimizes the maximum power consumption within a timeslot. This equivalence proves

the NP-Hardness of our problem for demands that can be preempted arbitrarily, leading to demand

quanta of single slot duration.

We showed that scheduling single slot demands of arbitrary power or arbitrarily long demands

of equal power [16] is NP-Hard. Next, we consider the special case of arbitrarily shaped demands

that can be split in both dimensions, time and power. If all the demands support the same range of

power levels (discrete or continuous) and preemptive scheduling, the problem can be mapped to the

load balancing one of [15], which for convex cost functions can be solved optimally in polynomial

time. Thus, we deduce that polynomial complexity holds only for demands that can be split across

both time and power. Otherwise, the non-splittable nature of demands makes demand scheduling

NP-hard.

Finally, we introduce pricing. If the utility function of each user is invertible and known to the

operator we have that there exists a price vector that leads to any feasible shift k, i.e.,:

∃pppi : δi
∗ = k, ∀k ∈ Fi (2.7)

In this case, by setting a different price to each user, the problem becomes equivalent to controlling the

demands directly. Thus, under complete information, optimal pricing can be cast as the previously

desribed demand scheduling problem. Since the utility functions is private information that is not

disclosed, we propose a DR scheme that is based only on the aggregate demand pattern.

2.4 A Novel Electricity Market for Efficient Demand Response

In this section, we investigate how an automated DR mechanism can be incorporated into the elec-

tricity market. We assume that each user is price taking and autonomously selects her strategy. We

initially focus on the usual scenario of nondiscriminatory pricing that guarantees fairness across the

users. However, later we relax this assumption.
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Figure 2.2: The operation of the proposed market

2.4.1 Operation of the proposed market

The envisioned market consists of an operator, multiple competing generators and a set of end-users

that have enrolled to a dynamic pricing program. It takes place within two consecutive days, the

previous and the actual day, and its operation is depicted in Fig. 2.2. Initially, the operator deduces

the ideal daily consumption pattern of each household, by announcing a flat price for the following

day. The smart meter of each home, based on locally available historical data, estimates the demands

to be scheduled for the next day and communicates its total demand pattern to the operator. The day

ahead estimation of demand is beyond the scope of this work. The interested reader may refer to [10].

Next, a negotiation phase starts, where the operator calculates the estimated aggregate demand of

all the homes, updates its pricing strategy by solving (2.6) and announces the new day-ahead prices.

Each smart meter in turn responds by calculating the optimal demand schedule to the announced

prices through (2.1). For this purpose the smart meter has to be aware of the utility function of each

demand. This could be provided either directly through user input during the installation phase or

through a training process. The negotiation phase takes place before the actual day and is repeated

until convergence.

In the end, the operator has at its disposal an estimation of the total demand for the following day.

Based on this day ahead prediction a wholesale auction is conducted, where a number of competing

generators offer their electricity output. Each generator makes a bid indicating the amount of energy

that it can provide at a given time period and the corresponding price. The best offers are accepted

to meet the predicted demand. Generally, the market clearing price is the one of the highest bid

accepted, in an attempt to guarantee fairness among the generators.
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In the house premises, the smart meter proposes the optimal schedule to the user for the actual

day. It is at her discretion though, whether to follow it totally, partially or even not at all. Generally,

this depends on the accuracy of the estimation of the day ahead demands and of the utility of the

user. A perfect prediction would lead to an equilibrium where all the users would follow the proposed

schedule exactly, since any deviation from it would reduce their utility. In a real system though, due

to imperfect prediction of demand, a deficit of energy may appear within specific timeslots of the

actual day. This deficit has to be covered from the real-time market, generally at a higher cost. In

Section 2.5, we quantify the impact of prediction accuracy on market operation.

2.4.2 Day-ahead DR negotiation mechanism

The operator applies day–ahead dynamic pricing to minimize electricity generation cost, which for a

given timeslot is a convex and increasing function of the total demand. If we assume that the same cost

function holds for each timeslot, the optimal price vector is the one that leads to the most balanced

demand for the given constraints of the users. Ideally, the total demand would be χ∗
t = μ = 1

T ∑i∈DWi

at every timeslot.

Obviously, χt is a decreasing function of the corresponding price pt , but increasing in the price of

any other slot. Thus, χt is a function of the whole vector ppp, and the exact dependence is determined

by the utility functions of the users. Since the operator is unaware of the utility functions, it cannot

deduce the exact impact of a price increase/decrease on demand distribution. Such information can

only be deduced by observing user response to the announced prices. For this purpose, we propose

the day–ahead negotiation phase of Algorithm 1. For notational simplicity we have discarded the

function arguments.

Generally, when the gradient of the objective function is unknown or cannot be calculated, ran-

domized pattern search methods are used [17]. Such methods perform steps of random size in random

search directions in an attempt to find a local optimum. In contrast, we follow a deterministic search

direction and adjust only the step size. The strategy of the operator is to increase price at the peak de-

mand periods and reduce it at the off-peak periods. Thus, although the actual gradient is not available,

we use the total demand vector χχχ as an estimator of the gradient.

The operator orders slots according to their total demand (L5,L6) and decreases price by an ad-

justable step size ε at the lowest demand slots (L8), while price is equally increased in the highest

ones (L9). L4 ensures that prices do not become negative. However, by discarding L4 and the last

condition of L7 we may enable this option. L11-L13 correspond to the best response strategy of the

users. Each user responds by adjusting demand through (2.1), which for arbitrary prices and demand

patterns requires a search over the feasible horizon and through (2.2) for its splittable demands which

is of waterfilling nature.

Operator’s strategy extends to lines L14-L18. In order to ensure convergence, we apply a pattern

search like approach for the adaptation of step size. A price update is adopted (L15) only if it leads to

a reduction of the objective function, i.e.,the generation cost. Otherwise, the algorithm backtracks and

the step size ε is reduced (L17). Obviously, the rate of convergence depends on the step size related
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Algorithm 1 The negotiation phase of our electricity market

Input: ε: step size, q < 1: step adaptation parameter

1: μ ← 1
T ∑i∈DWi // average consumption per slot

2: ppp ← 111 // start from flat pricing

3: repeat // iteration k
4: rrr ← min{ε, ppp(k)} // the operator updates prices

5: Gmin = {timeslot indices ordered in increasing χ(k−1)
t }

6: Gmax = {timeslot indices ordered in decreasing χ(k−1)
t }

7: for all t ∈ Gmin ∩{t : χ(k−1)
t < μ}∩{t : p(k−1)

t > 0} do
8: yt ← p(k)t − rt

9: yt̃ ← p(k)t + rt // t̃ the corresponding index of Gmax
10: end for
11: for all i ∈ D do // each demand responds

12: calculate δ (k)
i from (2.1) or {xi,t} from (2.2)

13: end for
14: if Δc ← c(k)− c(k−1) < 0 then // adopt solution

15: pppk ← yyy
16: else // decrease step size

17: ε ← qε
18: end if
19: until Δc � 0 // convergence check

parameters q and ε . Small enough values of q reduce the number of iterations required for conver-

gence, but may lead to inefficient local minima. Nevertheless, our extensive simulations indicate that

generally less than 50 iterations are sufficient.

This approach requires no knowledge of market parameters, such as the utility functions and the

types of demands. All the decision making is performed based only on the total demand pattern,

information that is communicated to the operator during the negotiation phase. Notice that in case of

time varying generation cost, the resulting generation cost vector should serve as the gradient instead.

2.4.3 Discriminatory pricing as a means of improving users’ utility

Price discrimination has been used extensively by companies as a means of maximizing revenue

[27]. In the smart grid scenario, differentiated prices enable the operator to exploit the elasticity of

demands of the users more efficiently. In this work, we investigate how price discrimination can be

used to improve the utility of the system as a whole. Generally, in order to fully exploit the potential

of price discrimination, the operator has to be aware of the elasticity of each user, which is private

information though. However, the operator can estimate elasticity by observing the response of each

user to the announced prices during the negotiation phase.

Notice that updating the price according to L7-L9 of Algorithm 1 for a user that is irresponsive

to price changes leads to a decrease of the utility without offering any improvement to the generation

cost. Thus, we propose that once the operator detects that hhh(k)j = {h(k)j,t : 1 ≤ t ≤ T} ,the aggregate

demand of household j, remains unaltered at iteration k, household j should be removed from nego-

tiation. In order to identify whether the demand of a household has changed in iteration k, we define
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the similarity index I(k)j given by:

I(k)j =
hhh(k)j ·hhh(k−1)

j∣∣∣∣∣∣hhh(k)j

∣∣∣∣∣∣ ∣∣∣∣∣∣hhh(k−1)
j

∣∣∣∣∣∣ , (2.8)

where < · > is the inner product operator and
∣∣∣∣∣∣hhh(k)j

∣∣∣∣∣∣ =√∑T
t=1(h

(k)
j,t )

2 is the �2-norm. The resulting

similarity index ranges from −1 for opposite vectors up to 1 for aligned ones. We also define simi-

larity threshold γ > 0, a design parameter that determines the aggressiveness of price discrimination.

The conservative approach of a high value of γ maximizes the number of users participating in nego-

tiations and hence leads to limited discrimination. By replacing L15 of Algorithm 1 with Algorithm 2

we derive a price discriminatory strategy.

Algorithm 2 Discriminatory pricing strategy

Input: γ: similarity threshold
1: for all j ∈N do // user selection

2: if I(k)j < γ then

3: ppp(k)j ← yyy
4: else
5: discard user j from negotiation

6: end if
7: end for

Notice that due to price discrimination, the price for each user j at iteration k is different and is

denoted by ppp(k)j . In addition, since the search step size ε is decreasing, such a discriminatory strategy

does not harm the induced generation cost significantly.

2.4.4 A lower bound of the operator’s cost

For comparison purposes we consider the relaxed version of the original problem, where scheduling

of all demands is performed directly by the operator under the assumption of splittable demands. This

can be formally expressed as:

min
{xi,t}

T

∑
t=1

ct

(
∑
i∈D

xi,t

)
(2.9)

s.t. xi,t ≥ 0 ∀i ∈ D, t ∈ {1, . . .T}
ei+δi

∑
t=ai+δi

xi,t =Wi ∀i ∈ D,δi ∈ Fi

Since the cost function is convex, this is equivalent to the constrained load balancing problem of [15],

which can be solved in polynomial time. In particular, it leads to the most balanced scheduling of

demands and provides a lower bound of the actual generation cost. Notice that in practice due to the

non-splittable nature of demands this bound is generally not achievable.
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(a) Day–ahead prices as a function of demand
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(b) Real-time prices as a function of demand

Figure 2.3: Derivation of a generation cost function for Day-Ahead and Real-Time market

Notice that in practice due to the non-splittable nature of demands this bound is generally not

achievable. Besides, this centralized approach actually assumes that all the demand scheduling is

performed directly by the operator without considering the utilities of the users. Since this simplifying

assumption has been extensively used in the field of DR scheduling, we will use it as a performance

benchmark.

2.5 Numerical Results

The main performance metrics of any DR mechanism are the total utility of end users and electricity

generation cost. In order to estimate the latter, we use historical demand/price data from the New

England market. Next, we build a realistic DR dataset based on the per appliance demand traces of

[23] to quantify performance of proposed schemes. Since different appliances exhibit different elas-

ticity, we classify household appliances according to their DR behavior and show that most support

only two power states, ON and OFF, and cannot be interrupted, hence fall within the class of shiftable

demands.

2.5.1 Estimation of generation cost

In order to quantify the benefits of demand response we need a representative function for electricity

generation cost, which has to be a convex and increasing function of the total demand at each timeslot.

For this purpose, we perform curve fitting on historical price and the corresponding total demand data

from the day–ahead electricity market of New England [12] by using piecewise linear functions and

quadratic polynomials. In Fig. 2.3(a) we depict the data used and the derived cost functions. In order

to derive an expression of the electricity cost at the real-time market, we perform the same procedure

on the corresponding real-time price/demand data (Fig. 2.3(b)). In the following evaluations, we use
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Table 2.1: DR related characteristics of home appliances

Appliance Preemptive Power levels Elastic θ β Power(W)

Refrigerator � 2−∞ � 0.8 0.1 300

Hi-Fi, PC, TV X 2 X 0.1 0.1 100,150,150

Iron,Vacuum cleaner X 2 X 1 1 1000,2000

Printer X 2 X 0.5 1 300

Hob, Oven X 2 X 1 1 2200,2000

Microwave, Kettle X 2 X 1 0.1 1440,2000

Dishwasher, Washing machine X 2 X 1 1 1200,600

Tumble dryer, Washer dryer X 2 X 1 1 2800,800

Water heating X 2 X 0.3 1 4000

Electric space heating � 2−∞ � 1 - 2000

Lights X 2−∞ � 0.4 - 400

the derived quadratic expressions to estimate the generation cost for different values of demand:

cDA = 0.066χ2 −65χ +34967 (2.10)

cRT = 0.266χ2 −567χ +343645 (2.11)

Notice that, as expected, the cost per MWh is significantly higher in the real-time market.

2.5.2 DR behaviour of home appliances

Each household contains numerous appliances of diverse characteristics. We perform a classification

of demands based on three basic attributes related to demand response:

1. Preemptive vs. Non-preemptive scheduling: The former can be stalled arbitrarily many

times, whereas the latter can be scheduled only in consecutive timeslots.

2. Multiple vs. Single operating power level: Some appliances support multiple power levels of

operation, while others only two states, ON and OFF. A small number of appliances support a

continuous power range, but these are not broadly available at household.

3. Elastic vs. Inelastic total energy requirement: Some appliances may allow for partial ful-

fillment of their energy requirements. Our model can easily capture this case by using utility

functions that also depend on the amount of energy consumed.

In this work we consider the set of appliances of [23]. We classify them in the aforementioned

categories in Table 2.1. Additionally, in the last three columns we depict the ranges for the elasticity

related parameters θ and β that we used in our simulations and the typical power consumption for

each of the devices. Parameter θ captures the timely–execution/cost–saving tradeoff, whereas β
is indicative of how loose the deadline of each appliance is. The depicted values are the relative

maximum elasticity considered for each type of appliance. Thus, in order to capture the diverse

behavioral profile of different users, we perform uniform sampling in the range [0,θi] and [0,βi].
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Notice that the vast majority of home appliances is of shiftable nature. Only two types can be

preempted, and even these generally support a limited number of power levels. It was only recently

that heating appliances operating on a continuous power range became available to home users. In

order to capture this ongoing change, we assume that all houses are equipped with heating/cooling

appliances of inverter-type that issue splittable demands. The rest of the appliances are considered

shiftable.

Next, we quantify the performance of the proposed market and show that the widely used split-

table model leads to an overestimation of the benefits of demand response. For a fair comparison

with the flat pricing scenario, we do not consider any tasks of elastic total energy requirement. Thus,

independently of the pricing strategy applied, the total consumption within a day remains the same.

2.5.3 Quantifying the benefits of demand response

In order to evaluate performance of the proposed DR scheme, we consider also the proportional

pricing scheme of [21, 19], where day-ahead prices are set proportionally to total demand. For com-

parison purposes, in each figure we depict also the derived splittable lower bound that respects the

deadlines though.

In Fig. 2.4 we depict the distribution of total demand throughout a day for a system consisting of

200 households. In Fig. 2.4(a) we depict the case of flat pricing. Next, we demonstrate in Fig. 2.4(b)

that applying proportional pricing smooths demand distribution slightly. Fig. 2.4(c) depicts the de-

mand pattern resulting from our scheme and Fig. 2.4(d) corresponds to the centralized relaxation of

splittable demands. We notice that our approach leads to a much more balanced demand. The small

spikes observed come from the non-splittable nature of demands, and hence are not apparent in the

relaxed approximation.

(a) Flat pricing (b) Proportional pricing (c) Proposed pricing (d) Lower bound

Figure 2.4: Demand distribution throughout the day

In an attempt to quantify DR benefits, we depict in Fig. 2.5 the resulting generation cost for dif-

ferent values of demand elasticity parameters β and θ . Fig. 2.5(a) depicts the impact of the deadline–

related parameter β on generation cost for an average value of θ of 0.5. We observe that a small

deadline horizon (captured by small values of β ) is sufficient to guarantee most of the DR gains.

We notice that our scheme outperforms the proportional one significantly. Fig. 2.5(b) quantifies the
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Figure 2.5: Generation cost for different system settings
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Figure 2.6: System utility for different values of parameter θ

impact of balancing parameter θ on generation cost. Our scheme approaches the lower bound as elas-

ticity parameter θ increases, whereas the proportional scheme requires significantly more elasticity

in order to achieve some cost reduction.

Until now we focused on the benefits of the operator that due to its leading role in the market

may impose its cost minimizing strategy. However, transition from static to dynamic pricing would

require all the involved entities to derive some gain. Otherwise the end users would have no incentive

to enroll to such a program. Thus, we investigate the impact of the proposed market on the utility of

end-users. Fig. 2.6 depicts the total utility achieved for different values of θ . The depicted values have

been normalized, such that the utility of a cost minimizing user under flat pricing is zero. Although

dynamic pricing schemes generally improve the utility of the users, we observe that the proposed

scheme causes a degradation of the utility in the very low elasticity regime. This comes from the fact

that the same price vector is applied to all users and hence inelastic ones will experience increased

prices and consequently decreased utility. This motivates us to modify our scheme.
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In this direction we investigate the benefits of the proposed discriminatory scheme. In Fig. 2.6

we observe that our price discriminatory strategy improves the system utility significantly for the

cases of low elasticity, whereas our original approach tend to overcharge users without deriving any

significant benefits. But what is the impact on generation cost? From Fig. 2.5(b) we deduce that the

modified scheme performs identically in terms of generation cost and hence it could be adopted by a

cost-minimizing operator .
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Figure 2.7: Impact on performance of estimation noise uniformly distributed in (−ζ ,ζ )

Until now we assumed that the estimation of the user’s utility is perfectly accurate and conse-

quently that the user follows exactly the announced demand schedule. In practice though, the utility

function is estimated based on historical data of the user behaviour and hence can not be perfect. In

order to capture this phenomenon, we assume that the negotiation takes place according to a noisy

estimate θ̂ = θ + ζ of the actual elasticity parameter θ and demonstrate resulting performance in

Fig. 2.7. Under the assumption that the operator can buy the additional electricity required at the

day–ahead price, we show in Fig. 2.7(a) that the impact of noise ζ on generation cost is negligi-

ble. However, in reality this additional energy has to be purchased through the real-time market at

a significantly higher price, leading to increased generation cost. As we observe in Fig. 2.7(b), esti-

mation error causes also a significant decrease in the utility of the home users. Our results indicate

the importance of accurate utility estimation and that the significance of users following the aggreed

schedule.

2.6 Conclusions

Our analysis provides a better understanding of DR schemes and their role on the ongoing electricity

market restructuring. We investigated the price setting strategy of the operator and the best response

of home users. By using realistic demand traces, we showed that, compared to existing DR schemes,

the proposed one exploits more efficiently the DR benefits and leads to a win–win situation for all

involved entities.
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Given that not all users are similarly responsive to dynamic prices, we showed how price dis-

crimination can improve total user utility. Finally, we quantified the impact of inaccurate prediction

of user utility on the operation of the market. Interestingly, the erroneous estimation of utilities has

a negligible impact on generation cost, but leads to significantly reduced user utility. Notice that

although we mainly focused on the residential sector, most of the derived results hold in general.
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Chapter 3

Energy Efficiency in the Smart Grid -
Part II: The Role of Aggregators in
Demand Response Markets

In the previous chapter, we outlined the importance of further penetration of DR schemes in the resi-

dential sector. The design of efficient Demand Response (DR) mechanisms for the residential sector

though entails significant challenges, mainly due to the large number of home users and the negligible

impact of each of them on the market. To counteract this, we introduce in this chapter a hierarchical

market model for the smart grid where a set of competing aggregators act as intermediaries between

the utility operator and the home users. The operator seeks to minimize the smart grid operational

cost and offers rewards to aggregators toward this goal. Profit-maximizing aggregators compete to sell

DR services to the operator and provide compensation to end-users in order to modify their preferable

consumption pattern. Finally, end-users seek to optimize the tradeoff between earnings received from

the aggregator and discomfort from having to modify their pattern.

Based on this market model, we first address the benchmark scenario of a cost-minimizing oper-

ator that has full information about user demands. Then, we consider a DR market, where all entities

are self-interested and non-cooperative. The proposed market scheme captures the diverse objectives

of the involved entities and, compared to flat pricing, guarantees significant benefits for each. Using

realistic demand traces, we quantify the arising DR benefits. Interestingly, users that are extremely

willing to modify their consumption pattern do not derive maximum benefit.

3.1 Introduction to hierarchical DR markets

Recent advances in smart metering technology enable bidirectional communication between the util-

ity operator and the end-users and facilitate the option of dynamic load adaptation. In this direction,

demand-response (DR) programs provide incentives to major consumers of electricity, usually in the

form of monetary rewards, to reduce their electricity consumption in peak-demand periods. DR can
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take place at a very fast timescale, almost real-time, it leads to a more stable power grid system and it

significantly reduces electricity generation cost and CO2 emissions [8].

Although DR has been successfully applied in the industry sector [28], its application in the

residential sector is a more challenging task. First, if the existing DR schemes were applied in the

residential sector, the operator would derive most of the DR benefits for itself, since each individual

amounts to a small portion of the total demand and hence has limited negotiation power. Second, the

sheer number of home users introduces scalability issues. Third, the utility operator in general lacks

the know-how of designing and applying DR mechanisms at such a large scale.

Aggregators are new entities in the electricity market that act as mediators / brokers between

users and the utility operator. Aggregators possess the technology to perform DR and are responsible

for the installation of the communication and control devices (i.e. smart meters) at end-user premises.

Since each aggregator represents a significant amount of total demand in the DR market, it can nego-

tiate with the operator, on behalf of the home users, more efficiently. The current role of aggregators

amounts to paying a monthly fee to the contracted end-users (mainly industrial ones) in order to gain

direct control of their appliances [28, 29]. Thus, in case of a peak-demand emergency they can turn

off the energy-intensive appliances of the users, e.g. air-conditioning, for a short period.

In this work, we devise a hierarchical DR market model for the residential sector that captures the

interaction of home users, the utility operator, and several competing aggregators through a day-ahead

DR market. Our model enables efficient demand response in the presence of self-interested entities

and structures the DR market in three levels.

At the upper level, the utility operator provides monetary rewards to the aggregators for their DR

services. Its objective is to minimize its own operational cost. At the middle level, the aggregators

provide DR services to the operator by presenting a total demand profile that minimizes the cost of

the operator to support it. The aggregators seek to achieve this demand profile by providing monetary

incentives to home users to modify their demand pattern through a day-ahead market. The objective

of each aggregator is to maximize its own net profit, namely the income received from the operator

minus the compensation it provides to home users.

At the lower level, home users negotiate with the aggregators to receive monetary compensation

in order to modify their consumption pattern. Users trade off their inconvenience that arises from

deviation from their preferable or customary usage patterns for a lower electricity bill. Given the day-

ahead compensation, the objective of each user is to determine a consumption pattern that strikes an

optimal balance of this tradeoff by maximizing a net payoff function. We capture this tradeoff through

an inelasticity parameter that is proportional to the inconvenience caused. The market operation that

involves all three types of self-interested entities is summarized in Fig. 3.1.

The introduction of aggregators in the market introduces novel challenges on how the arising DR

benefits span the entire chain of utility operator, aggregators and end-users. To the best of our knowl-

edge very few recent works have considered the role of the aggregator in the future electricity market

e.g. [30],[31], but do not focus on the scenario of residential demands. Our proposed hierarchical

market and the corresponding DR mechanism guarantee that no deficit exists in the market and lead
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Figure 3.1: The operation of the proposed day ahead market.

to significant benefits for all market participants. Our contributions can be summarized as follows:

• We formulate the objectives of the utility operator, the competing aggregators and the home

users in a hierarchical DR market.

• We characterize the operation for the benchmark scenario of a DR market where the operator

has full information of all DR-related parameters.

• We devise a DR market scheme, where all entities execute non-cooperative strategies and show

the interaction of the entities, when each acts according to its own objective.

• Using realistic demand traces, we show that our hierarchical DR scheme guarantees a portion

of the DR benefits for each market entity. Thus, despite the dominant role of the operator, both

the aggregators and the end-users can achieve significant financial benefits through negotiation.

Interestingly, increasing the willingness of users to modify their consumption pattern (lower

inelasticity) reduces the grid operational cost, but is not always beneficial for the aggregators

and home users.

The rest of this chapter is organized as follows. Section 3.2 provides an overview of related

work. In Section 3.3 we introduce the hierarchical DR model and formulate the objectives of the

involved entities. Section 3.4 describes the benchmark scenario of a day–ahead market where all

the decision making is performed by the operator under full information about the demands of end-

users. In Section 3.5 we present how our model could be applied in a realistic hierarchical market and
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investigate the required information exchange. In Section 3.6 we use daily demand traces to quantify

the benefits arising from the proposed market structure. Section 3.7 concludes our study.

3.2 Related Work

Numerous works in the field of DR (e.g. [11, 22, 26]) assume a social-welfare maximizing operator

that communicates and negotiates directly with utility-maximizing end-users. In this case, according

to the fundamental theorem of welfare economics, the optimal strategy is to set prices equal to the

marginal cost of supply. However, this does not hold for our scenario, where a self-interested operator

seeks to minimize its operational cost. This has been considered lately in [32] that investigates the

problem of demand scheduling from the operator’s perspective. The authors devise a stochastic model

for demand requests which arrive according to a Poisson process, they have exponentially distributed

power requirements, and they need to be activated within a deadline. They derive a threshold-based

demand scheduling policy that is asymptotically optimal as the deadline expiration rate goes to zero.

In contrast to our work, [32] assumes that the operator has direct control over the demands and hence

they do not consider incentives for end-users. The DR scenario of a cost-minimizing operator that

incentivizes home users to shift their demands through dynamic pricing has been considered in [14].

In addition, several works cast the problem of demand response as a Walrasian auction, where

prices are set so as to match supply and demand, and use tatonnement mechanisms for its solution.

Indicatively, work [34] considers price-taking residential customers that schedule their consumption

throughout the day and a utility operator that sets prices to maximize social welfare. A similar taton-

nement process has been proposed in [35] for the stochastic version of this problem.

All the works mentioned above, require extensive message exchange between the operator and

the end-users. Hence, scalability issues may arise in a large scale deployment. Hierarchical market

structures, where aggregators serve as DR intermediates, appear as a promising approach to deal with

scalability issues. To the best of our knowledge only a few works have considered the role of the

aggregator in the future electricity market. Recently, [36] proposed that the aggregator should coordi-

nate electricity generation and demand response. Given a reference supply / demand imbalance signal

or an indirect signal in the form of time varying market price, the aggregator has to solve a convex

quadratic program for each time slot. The authors of [30] propose a simplified hierarchical market

mechanism, where the operator sets a target demand curtailment and the aggregator provides compen-

sation to the end-users to meet this target at minimum payment. Each consumer is a price-taker and

bids its supply function in order to minimize its disutility. In this setting, two bidding mechanisms are

proposed that converge to the optimum. Both these works do not consider the incentives that would

enable such a mechanism and consequently do not capture the interaction of competing aggregators.

To the best of our knowledge [31] is the only work that considers the interaction of several aggre-

gators, but for the microgrid scenario. A two stage market model is proposed, where in the first stage

the price paid by the operator and the electricity provided by each aggregator is decided through a

tatonnement process. For the lower stage a supply function bidding mechanism is proposed, where
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Figure 3.2: The hierarchical structure of the proposed day-ahead market: i) at the lower level the

users modify their demand pattern according to the compensation advertised by the aggregators, ii)
at the middle level the aggregators determine their compensation strategy so as to maximize their net

profit, given the rewards offered to them by the operator, iii) at the upper level the operator computes

the reward per unit of cost reduction for each aggregator so as to minimize its operational cost.

the microgrids bid their supply functions and the aggregator sets the price so as to maximize its

profit. While [31] focuses on microgrid generation within a particular time slot, here we focus on the

scheduling of residential demands across time.

The importance of DR in the residential sector was also quantified recently in [37], where it was

shown that a slight extension of 10% in the total operation time of residential demands may reduce

peak consumption by 125MW. Here, we consider a similar framework that captures the discomfort

caused to the users and the incentives required to achieve such DR benefits. In order to quantify the

benefits of a residential DR scheme, a realistic model of the home energy consumption is required.

For this purpose, we use the generator of per appliance consumption daily patterns of [23] and we

extend it by incorporating demand elasticity parameters.

3.3 Hierarchical System Model and Problem Formulation

We consider an electricity market consisting of an electric utility operator, a set of aggregators A =

{1,2, . . .J} and a set of residential users N = {1,2, . . .N}, as the one depicted in Fig. 3.2. All the

involved entities are self-interested and rational. Each user participates in the market through an a

priori determined aggregator on a contractual basis, i.e., users do not move between aggregators. We

focus on the day-ahead market and assume that the day is divided into T equal periods. We denote

with T = {1,2, . . .T} the corresponding set of time slots. Throughout the text, we use the terms

demand and load interchangeably.
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3.3.1 The role of the utility operator

In a day-ahead market, the ensemble of users issues a cumulative demand of W Watts. Under the

current practice of flat pricing, a fixed price q f is charged per Watt of consumption, independently of

the period of the day. Thus, within a day the operator derives a total income of q fW from the users

payments.

In order to meet demand, the operator has either to activate costly powerplants or to purchase

electricity from third parties. The cost of generating electricity power is generally assumed to vary

with time, due to the time-varying availability of supply, e.g. from renewable sources. However, for

any given time slot t cost is a strictly increasing and convex function ct(yt) of the corresponding total

load yt ≥ 0 [32].

The operator seeks to calculate the cumulative daily load profile vector yyy = {yt : t ∈ T } that

maximizes its revenue. If the operator could directly control the loads, its objective would be formally

expressed as:

max
yyy

q fW − ∑
t∈T

ct(yt) (3.1)

s.t. ∑
t∈T

yt =W.

Since the received income is fixed, (3.1) can be transformed into a convex cost minimization prob-

lem, which can be easily solved through convex optimization. Indicatively, for time-invariant cost

functions, the optimal solution is a perfectly balanced load across the day.

Since the operator has no means to exercise direct control over the user demands, alternative

means of indirect control such as dynamic pricing have been proposed, e.g. in [26, 11]. The large

number of home users and the fact that each of them has negligible impact on the total cost makes

such an approach challenging though. This challenge motivates the introduction of the aggregator as

an intermediary entity between the operator and the end users.

In our model, the operator provides monetary rewards λλλ = {λ j ≥ 0 : j ∈ A} to the aggregators

so that they perform DR on its behalf. Notice that in this case the load vector yyy is dependent on λλλ . In

particular, the operator is willing to provide a portion λ̂ = ∑ j∈A λ j of its DR gain to the aggregators.

The DR gain Δc is the reduction of the power generation cost that results from reward λλλ and is given

by

Δc
(
yyy(λλλ )

)
= ∑

t∈T
Δct
(
yt(λλλ )

)
= ∑

t∈T

[
c0

t − ct
(
yt(λλλ )

)]
, (3.2)

where c0
t is the power generation cost at timeslot t if no DR is applied.

Thus, in the presence of aggregators, problem (3.1) becomes:
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Operator’s problem (min operational cost):

min
λλλ

∑
t∈T

ct
(
yt(λλλ )

)
+ λ̂Δc

(
yyy(λλλ )

)
(3.3)

s.t. 0 ≤ λ̂ ≤ 1

λ j ≥ 0 ∀ j ∈ A.

The objective function of the operator captures all its expenses in a DR market, i.e. both power

generation cost and its reward to the aggregators for their services. Notice that the reward provided

to the aggregators depends only on the quality of their aggregate DR services. The exact way that

reward is allocated to the aggregators is addressed in Section 3.5.

3.3.2 The role of the aggregators

Since home users cannot negotiate directly with the operator, they enroll in DR programs provided

by an aggregator that aggregates several small residential DR assets into a larger unit, in order to

increase their negotiation power. Given that each user is assigned to an aggregator through a contract,

we denote with N j the corresponding set of users under aggregator j. The role of the aggregator is

twofold: i) to provide DR services to the operator and ii) to guarantee a reduced electricity bill to the

end-users.

Each aggregator tries to shape the load pattern of its users and receives compensation for the cost

savings incurred to the operator due to this shaping. We assume that an aggregator incentivizes users

to modify their power consumption profile through dynamic compensation per unit of power. The

strategy of aggregator j constitutes of the compensation vector ppp j = {p jt : t ∈ T }. Let ddd j = {d jt : t ∈
T } denote the cumulative load of aggregator j at time slot t, over all its users N j, that results from

compensation ppp j.

From aggregator’s j point of view, the DR gain Δc of (3.2) depends on its own compensation

strategy ppp j, but also on the compensation strategy of all aggregators other than j denoted by PPP− j =

(ppp1, . . . ppp j−1, ppp j+1, . . . pppJ). The same holds also for the actual reward received by aggregator j, since

power generation cost at time slot t is a function of the corresponding total load yt = ∑ j∈A d jt .

The objective of aggregator j is to maximize its net profit by solving the following optimization

problem:

Aggregator’s j problem (max net profit):

max
ppp j

λ jΔc(ppp j,PPP− j)− ∑
t∈T

p jtd jt(ppp j) (3.4)

s.t. p jt ≥ 0 ∀t ∈ T . (3.5)

The first term corresponds to the reward received from the operator, while the second term is the

compensation provided to the users.
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3.3.3 Residential demand scheduling

At the home premises, under the current model of flat pricing, users tend to use their appliances at

the most convenient time throughout the day, driven by their personal preference. For example, most

people activate cooling within the hottest period of a day, thus creating demand peaks. We define as

xxx0
i = {x0

it : t ∈ T } the reference consumption profile of user i that reflects its preferable (i.e. most

convenient) demand pattern in the absence of any DR incentives.

In our model, monetary compensation provided by the aggregators motivates users to move load

out of peak consumption periods. We assume that end-users are price-taking since they control a

negligible amount of demand and hence cannot affect the compensation strategy of the aggregator.

Each user is characterized by a total daily electricity requirement of Wi Watts that has to be scheduled

for the following day. We assume Wi to be fixed and independent of the provided rewards. This

enables a fair comparison with other pricing schemes, such as flat pricing, since the assumption of

curtailable demands further amplifies the benefits of any DR scheme. The operator charges a flat price

q f for each Watt of consumption, which incurs a fixed daily cost of q fWi for user i.

For each user i we define control xxxi = {xit : t ∈ T } capturing the power consumption pattern

of the following day. Clearly, for each aggregator j holds d jt = ∑i∈N j xit . Each user i ∈ N j aims

to maximize its net payoff, i.e. the compensation received by the aggregator minus the incurred

dissatisfaction, leading to the following problem of water-filling type:

User’s i problem (max net payoff):

max
xxxi

∑
t∈T

[xit p jt −Vit(xit)] (3.6)

s.t. xit ≥ 0, ∀t ∈ T (3.7)

∑
t∈T

xit =Wi, (3.8)

where the disutility function Vit(·) captures the dissatisfaction caused due to deviation from the ref-

erence consumption. Function Vit(·) may be taken to be convex, since the differential dissatisfaction

of a user increases as the amount of deviation from the reference power consumption increases. An

indicative example of such a function that we also use throughout this chapter is

Vit(xit) = vi(xit − x0
it)

2. (3.9)

We call vi ≥ 0 the inelasticity parameter of user i. Small enough values of vi indicate elastic users

that experience minimum dissatisfaction if their consumption pattern is modified. On the other hand,

a large value indicates a user that is sensitive in changes.
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3.4 A Benchmark Model for Utility-Aggregator-User Interaction

In this section, we consider a benchmark scenario of full information, where the utility operator has

global knowledge of the system parameters, namely the reference power consumption profiles xxxi,

the inelasticity parameters vi and the set of allocated users N j to each aggregator j. This scenario

captures the case where all the involved entities are willing to report their parameters to the operator.

This approach provides insight on how misaligned are the interests of the market entities and

whether disclosing this information to the operator is beneficial for the lower levels. It also serves as

a benchmark regarding the cost of the operator. We formulate the problem as a multilevel optimization

problem [33] and provide a characterization of the solution for the scenario where i) at the lower level

the users modify their demand pattern according to the compensation advertised by the aggregators,

ii) at the middle level the aggregators determine their compensation strategy so as to maximize their

net profit, given the rewards offered to them by the operator, and iii) at the upper level the operator

computes the reward per unit of cost reduction to provide to the aggregators so as to minimize its

operational cost.

3.4.1 Aggregator-user interaction

The aggregator would ideally like to control the user appliances directly, in order to impose the

consumption pattern that maximizes its net profit. However, each demand of a user participates

in demand response according to its own disutility function. Thus, the aggregator has to provide

incentives to its end-users in the form of compensation in order to motivate them to modify their

demand load pattern. In particular, for a given reward vector λλλ j from the operator, each aggregator

has to find its compensation strategy ppp j that solves (3.4).

The optimal strategy of aggregator j depends on the aggregate demand profile of its users through-

out the day, ddd j, which is directly affected by its compensation strategy ppp j through the user prob-

lem (3.6). In order to calculate its optimal response, the aggregator needs to know the analytical

form of d jt(ppp j) = ∑i∈N j xit(ppp j), which in our scenario is an increasing function of the correspond-

ing reward p jt , but it is decreasing in the reward provided for any other slot, i.e.
∂d jt(ppp j)

∂ p jt
≥ 0 and

∂d jt(ppp j)

∂ p jτ
≤ 0 ∀τ = t. This is expected since increasing compensation for a specific time slot motivates

users to move load there, whereas increasing compensation in any other slot motivates users to move

load out of it.

In the full information case, the aggregator is aware of the disutility functions of appliances and

hence can calculate from the Langrange optimality conditions the best response for each demand. For

a given reward vector ppp j, (3.6) is a convex optimization problem in xxxi. Under the condition that none

of the constraints (3.7) is active, we can derive an analytical expression for d jt(ppp j). The Langrangian

of user i is then given by:

L(xxxi,γi) = ∑
t∈T

[xit p jt −Vit(xit)]+ γi(∑
t∈T

xit −Wi), (3.10)
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where γi is the Lagrange multiplier corresponding to constraint (3.8). Notice that we have not included

the terms of (3.7), since the corresponding KKT multipliers are taken to be zero. Then, due to

convexity of the objective function, the KKT conditions are necessary and sufficient conditions for

optimality. Thus, we may derive the following T optimality conditions:

∂L(xxxi,γi)

∂xit
= 0 =⇒ p jt(xit ,γi) =

∂Vit(xit)

∂xit
− γi, ∀t ∈ T . (3.11)

From (3.11) we can calculate the demand portion xit of each user i at each time slot t as an expression

of ppp j and γi. Strict convexity of the disutility function guarantees that its partial derivative is strictly

increasing and hence invertible. Thus, for the disutility function in (3.9) we get:

xit(p jt ,γi) =
p jt + γi

2vi
+ x0

it , ∀t ∈ T . (3.12)

In addition, the equality constraint (3.8) needs to hold. By replacing xit from (3.12) to (3.8), the

aggregator can compute γi as an expression of ppp j as γi(ppp j) = − 1
T ∑t∈T p jt = −p̄ j, with p̄ j denoting

the average compensation provided by aggregator j over the day horizon T . By replacing this into

(3.12), we derive the actual distribution of demands as a function of the compensation vector:

xxxi(ppp j) =
1

2vi
(ppp j − p̄ j1)+ xxx0

i , (3.13)

with 1 denoting the column vector of ones of dimension T .

Then, since there is no coupling among users, each aggregator j can derive ppp j by replacing

d jt(ppp j) = ∑i∈N j xit(ppp j) into (3.4), i.e. by solving:

max
ppp j

λ j

T

∑
t=1

Δct
(

∑
i∈N j

xit(ppp j),PPP− j
)
−

T

∑
t=1

p jt ∑
i∈D j

xit(ppp j) (3.14)

s.t. (3.5), xit(ppp j)> 0, ∀i ∈N j, t ∈ T .

Although, for notational simplicity we have assumed that each aggregator provides the same compen-

sation to all its users, discriminatory compensation strategies can be easily captured by our model.

3.4.2 Operator-aggregator interaction

The operator has to find the monetary reward vector λλλ ∗
that minimizes its operational cost. However,

the exact impact of its rewards on demand distribution is difficult to quantify, since it involves also

the optimization problems of the lower two levels. In particular, the operator needs to know the

analytical expression of d jt(ppp j(λ j)). Notice that the reward strategy of the operator determines the

reward provided by the aggregator, which in turn determines the demands of the users.

This problem falls within the class of multi-level optimization problems, which are particularly

challenging to solve [33]. In the previous section, we showed how the lower two levels can be merged

into one optimization problem. However, the previously derived solution is a numerical one, while in
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order to characterize the DR solution from the operator’s point of view, we need an analytic expression

for the optimal solution of the problem of each aggregator. Since in general such an expression cannot

be derived, we calculate the reward strategy of the operator numerically and evaluate it in Section 3.6.

3.5 A non-cooperative market mechanism

In the previous section, we assumed that all the information about end-users (demand load and disu-

tility functions) and about the total demand load under each aggregator is available at the operator

side. We used this assumption to focus on the problem from the point of view of the utility operator.

Such a scenario of information exchange could be plausible in the case that such exchanges are part

of prior agreements between the involved entities.

In this section, we consider how the hierarchical market may function in a setting, where the

aforementioned assumption of information exchange is relaxed. We propose a top-down approach

where at the higher level the operator announces its reward strategy to the aggregators, while on the

lower level each aggregator presents monetary compensations to end-users and negotiates with them

about the DR services that they can provide for this compensation. Finally, each aggregator responds

to the operator with a cost reduction offer. All the required information exchange takes place during

the previous day, forming thus a day-ahead DR market.

Starting from the upper level, the operator has to find the monetary reward vector λλλ that minimizes

its operational cost given by (3.3). The total gain of the proposed DR market is captured by Δc from

(3.2), which is an increasing function of the provided reward λ̂ . Each aggregator receives a portion

λ jΔc of this gain and provides part of it to the end-users in order to incentivize them to modify their

consumption pattern. On the other hand the operator derives the remaining gain (1− λ̂ )Δc. However,

the exact impact of reward vector λλλ on the operational cost of the operator is unknown, due to the

involvement of the aggregators and the private disutility functions of the users. Thus, we propose a

repeated auction mechanism with iterative elimination at each iteration step, where the aggregators

compete with each other to sell their DR services.

At each iteration k, the operator announces the current total demand load yyyk = {yk
t ≥ 0 : t ∈ T }

and a scalar total reward λ̂ k. Then, it conducts a first price sealed-bid auction, where each aggregator

announces to the operator the DR service that it can provide for this reward. The operator accepts

the bid that guarantees the highest cost reduction, and this aggregator is removed from subsequent

auctions. Then, reward per unit of cost reduction is increased by the operator according to λ̂ k+1 =

λ̂ k +ξ , and a new auction is conducted with the remaining aggregators.

By increasing the provided reward, the operator enables the aggregators to provide even higher

compensation to the home users. Hence, the users get sufficient incentives to move even less elas-

tic load out of peak-demand periods. This process is repeated until either there are no remaining

aggregators, or the provided reward λ̂ k becomes larger than 1 which violates the constraint of the

operator.

In order to calculate its DR bid, the aggregator receives the modified consumption patterns of
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the users in response to the advertised compensation. Each aggregator would like to provide the

minimum compensation to end-users, in order to reap maximum benefit for itself. However, such

a strategy would reduce the quality of its DR services to the operator and consequently it would

lower the chances that its bid wins over the bids of other aggregators. Thus, the competition of the

aggregators is implicitly beneficial for the end-users.

Notice also that the seemingly plausible strategy of withdrawing from the first auction rounds

does not guarantee increased benefit for the aggregator. On the one hand, λ̂ k, the operator reward

per unit of generation cost reduction, increases across iterations. On the other hand, each accepted

bid leads to a more balanced total consumption pattern. Thus, later iterations provide only limited

opportunities for further balancing, which in turn may lead to reduced profit for the aggregator despite

the increasing reward.

At the lower level, the aggregator needs to know for each time slot t the analytical form of d jt(ppp j),

which by (3.11) is a function of
∂Vit(xit)

∂xit
, so as to calculate its optimal bid. Since the aggregator is

unaware of the user disutility functions, such information may only be deduced by observing user

responses to the announced compensation. For the single parameter disutility function (3.9) and

under the assumption that the aggregator is aware of the generic form of the disutility function, it can

deduce the inelasticity parameter through the following estimation phase. Each aggregator j selects an

arbitrary �∈ T and announces a unit compensation vector ppp�j, where p j� = 1 and p jt = 0,∀t ∈ T \{�}.

Through the modified load pattern xxxi(ppp�j), the aggregator can deduce the exact form of the utility

function of each user i, since it can calculate the corresponding vi parameters from (3.13). Notice that

this operation has to be performed only once.

At each iteration k, each aggregator j receives the total consumption vector yyyk
t and reward λ̂ k

from the operator. Thus, aggregator j can replace d jt(ppp jjj) into (3.4) and solve it similarly to the full

information case. The total load of aggregators other than j can be calculated as dk
− jt = yk

t −dk
jt .

The exact operation of the proposed day–ahead market is described in detail in Algorithm 3. For

notational simplicity we omit the function arguments. Notice that lines 1− 3 describe a required

initialization phase where the aggregators and the operator deduce the behaviour of users under flat

pricing. In this direction, the operator announces zero reward to the aggregators for the following

day, in order to deduce the reference consumption pattern of the residential users xxx0
i . Given the zero

reward from the operator to the aggregators, the latter have no incentive to provide any DR services

to the operator and hence announce zero compensation to the users. The end-users respond with the

reference consumption pattern that they prefer in the absence of incentives. Lines 4− 8 correspond

to the inelasticity estimation phase, where each aggregator calculates the inelasticity parameters of

the demands (appliances) of its users. Lines 9−18 constitute the main body of the proposed market,

where the operator increases the provided reward, while the aggregators compete with each other

through their bids.

Remark 3.5.1. A nonprofit operator that only cares for the total benefit of the system would set

λ̂ = 1. This would maximize the DR market gain Δc but it would also lead to operational cost c0,

which equals to that of flat pricing (i.e. no DR).
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Algorithm 3 The operation of the day-ahead DR market

Input: ξ : auction price increment step

1: λ 0 ← 0 // operator’s zero reward

2: ppp j ← 000 // aggregators’ zero compensation

3: c0 ← ∑t∈T ct(y0
t ) // resulting load pattern- no DR

4: for all j ∈ A do // estimation of inelasticity param. vi

5: aggregator j announces unit reward vector ppp�j
6: user i responds by xxxi

7: aggregator calculates vi from (3.13)

8: end for
9: repeat // iteration k

10: operator announces total demand vector yyyk−1

11: λ̂ k ← λ̂ k−1 +ξ // operator increases reward by ξ > 0

12: for all j ∈ A do // each agg calculates its response bid

13: aggregator j calculates compensation pppk
j from (3.14)

14: aggregator j responds by dddk
j to operator

15: end for
16: operator accepts the maximum bid

17: A=A\{ j} // accepted aggregator j is removed from negotiations

18: until λ̂ k ≥ 1 // termination condition

Remark 3.5.2. Given that the flat price q f is set so as to cover operator expenses, i.e. q f ∑iWi = c0

the proposed market has no deficit, since for any value of λ̂ always holds c(λ̂ )≤ c0.

3.6 Numerical Evaluation

In order to evaluate the performance of the proposed market, we rely on a realistic DR dataset based

on the per appliance demand generator of [23]. Our dataset captures the daily schedule of 33 types

of appliances of diverse characteristics that may exist in a residence. We assume that the disutility of

each user is given by the parametric disutility function (3.9) with vi uniformly distributed in [0,vmax],

with v = vmax/2 denoting the mean inelasticity value.

We consider a market of a single operator, J aggregators and N = 104 households equally divided

among the aggregators. In order to quantify the benefits of our DR scheme, we use the power gener-

ation cost function c(yt) = y2
t , which is a convex and increasing function of the corresponding total

demand yt at each timeslot t.

Fig. 3.3 and Fig. 3.4 depict the total consumption pattern across a day for the market approach of

Section 3.5 for scenarios of low and high mean inelasticity v respectively. Fig. 3.3(a) and Fig. 3.4(a)

correspond to the default case of flat pricing where no compensation is provided to the users. For

the case of low inelasticity, Fig. 3.3(b) and Fig. 3.3(c) show the evolution of the load pattern across a

day as the DR bids of the aggregators are accepted. The introduction of the aggregators’ DR services

smooths the load pattern significantly. In the end, the total demand is spread throughout the day. In-

stead, in the scenario of higher inelasticity depicted in Fig. 3.4(b) and Fig. 3.4(c), consumption is less

evenly distributed across the day. Thus, inelasticity of demands, captured by inelasticity parameter
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Figure 3.3: Demand distribution throughout the day for low mean inelasticity v.
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Figure 3.4: Demand distribution throughout the day for high mean inelasticity v.

vi, plays a central role on whether the resulting consumption load pattern will be smooth across the

day.

Next, we quantify the DR benefits for each of the participating entities, namely the net payoff

derived by the end-users given by (3.6), the net benefit of the aggregators given by (3.4) and the total

cost of the operator captured by (3.3). The actual reduction of the user’s electricity bill is at least as

much his net payoff, since the latter contains also the disutility term. Therefore, our findings in terms

of net payoff can be directly translated to monetary savings in the electricity bill of the user. For

comparison, remember that under flat pricing the cost of the operator is c0, while all the aggregators

and the users derive zero payoff.

First, we consider the impact of the reward strategy λ̂ of the operator on the market for the case of

a single aggregator (J = 1). In particular, we investigate how the total DR gain of our market, Δc, is

allocated to the market participants. In Fig. 3.5(a) we observe that the operational cost of the operator

is not monotonic in λ̂ , while electricity cost c is decreasing in λ̂ . We depict also the optimal solution

λ̂ ∗ that we derive from the benchmark case. In contrast, in Fig. 3.5(b) we see that the DR gain Δc is

an increasing function of λ̂ and the same holds for the total net profit of the aggregators and the net

payoff of home users. The actual share of the arising DR benefits is depicted in Fig.3.5(c). Notice

that for λ̂ < 0.15, the market derives zero DR gain. Hence, we depict the corresponding gains as

zeros. In the particular setting, the users generally derive almost double the gains of the aggregators.
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Figure 3.5: Impact of the operator reward strategy λ on the DR benefits of the market entities.

In addition, at λ̂ ∗ = 0.64, all participants derive a significant portion of the DR gains which is not true

for extreme values of λ̂ .

The exact amount of DR benefits that each entity receives, depends on the efficiency of the ap-

plied DR scheme and the inelasticity of user demands. In Fig. 3.6 we compare the performance of

the full information approach and the proposed market mechanism as the average inelasticity of de-

mands increases. In the following plots, the rightmost point of the x axis corresponds to the case

of extreme inelasticity which coincides with the solution of no compensation (i.e. flat pricing). We

observe that our approach sacrifices some of the operators’ gain for the sake of aggregators and users.

Thus, although the operational cost of the operator is in general comparable (except for low inelas-

ticity regime), our DR market provides a higher DR gain. This additional market gain is shared

unevenly between the aggregator and the corresponding end-users. Compared to flat pricing though,

the proposed DR market guarantees significant benefits for all the participating entities.

Next, we compare the performance of the proposed scheme of adaptive rewards λ̂ k with that

achieved when a nonprofit operator provides all the DR benefits to the lower levels through a constant
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Figure 3.6: Impact of full information availability on the benefit derived by each market entity for

different values of mean inelasticity v.

reward λ̂ = 1. For a scenario of J = 5 aggregators, we depict in Fig. 3.7 and Fig. 3.8 the impact of

inelasticity on the benefits of each entity. From Fig. 3.7(a) we observe that our DR scheme provides a

reduction in the total operational cost of up to 15% in comparison to the case of flat pricing. However,

the exact cost reduction depends strongly on the inherent inelasticity of the user demands. The same

holds for the power generation cost. Our scheme guarantees also that the aggregators and the users

generally derive comparable financial benefits.

Interestingly, the net payoff of the users and the net profit of the aggregators are not monotonic

in inelasticity parameter v. Instead the maximum is observed in the medium inelasticity regime. This

can be easily justified. In the high inelasticity regime, the aggregators spend most of the reward

provided by the operator in order to motivate end users to modify their demand pattern. This does not

lead to increased net payoff for the users though, since the compensation provided is counteracted by

the inconvenience caused. On the other end, low inelasticity leads to reduced negotiation power from

the user side and consequently reduced income.

Similar results are derived from the scenario of a nonprofit operator, depicted in Fig. 3.7(b).

However, here the total cost of the operator is constant, while small enough inelasticity enables the

aggregators to provide low compensation to the end-users in order to acquire their DR services and

hence exploit most of the DR benefits for themselves. By comparing the two approaches, we observe
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Figure 3.7: DR benefits for each market entity in a scenario of J = 5 aggregators.
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Figure 3.8: Percentage of DR gain derived by each entity in a scenario of J = 5 aggregators.

that although the benefits of the aggregators and the users increase in the case of a nonprofit operator,

the electricity cost and the market gain remain almost the same. This indicates that our adaptive

approach exploits most of the benefits arising from DR. However, as shown in Fig. 3.8 the portion of

DR gain received by each entity differs significantly in the two approaches.

3.7 Conclusions

The main objective of this work is to analytically formulate the role of aggregators in future smart

grid. We focused on a hierarchical market structure and investigated the interaction of end-users,

the utility operator, and several competing aggregators. Under the assumption of price-taking and

self-interested users, we characterized the optimal solution from the operator point of view that seeks

to minimize its operational cost. We also proposed a day-ahead DR market that leads to significant

benefits for all the involved entities. The proposed compensation strategy guarantees that compared
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to flat pricing no entity has a budget deficit. In addition, the benefits of DR are maximized when the

operator is nonprofit.

Based on realistic demand traces we demonstrated that access to user information enables the

operator to exploit most of the DR benefits for itself, while the proposed non-cooperative market

mechanism leads to a more fair allocation of the DR benefits. Interestingly, our numerical evaluation

indicates that the utility of the end-users in not a monotonously increasing function of elasticity. Here,

we assumed that the users truthfully respond to the announced compensation from the aggregators.

However, since additional benefits may arise through strategic misreporting, the investigation of such

user strategies and the derivation of mechanisms that guarantee truthfulness are interesting topics for

future study.
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Chapter 4

Dynamic Allocation and Migration of
Mobile Tasks in Cloud Computing
Systems

Previous chapters were devoted to our efforts on improving the operation of the power grid. Next, we

investigate ways to make energy-constrained communication systems more efficient. In this chapter,

we consider the scenario of mobile devices that, due to limited processing and energy resources,

outsource their computationally intensive tasks to the cloud. We propose a mobile cloud computing

architecture that consists of a local cloud, attached to wireless access infrastructure (e.g. LTE base

station), and a back-end cloud. Each task is hosted in a Virtual Machine (VM) and is associated with

an evolving volume of data.

The mobile aims to minimize energy consumption due to execution of the task. The challenge for

the cloud is to minimize task execution and data download time to the user, whose location changes

due to mobility. The key technique we propose is VM migration which enables efficient exploita-

tion of the geographically dispersed cloud resources. In general, a VM should migrate to the server

where it is expected to end faster, considering also the incurred migration delay. To account for all

arising causes of latency, we propose a model for virtualized servers that captures interaction of col-

located VMs and its impact on performance. This feature, along with accompanying data evolution

and user mobility (which determines access to the local cloud) affects the task migration decisions

significantly.

We propose three classes of online VM migration policies for the cloud, spanning fully unco-

ordinated ones, in which each user or server autonomously makes its migration decisions, up to

cloud-wide coordinated ones, where migration decisions are made by the cloud provider. We identify

when task offloading is beneficial for a mobile user in terms of energy consumption. Finally, we

demonstrate how VM migrations can be exploited towards a more energy-efficient cloud.
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Figure 4.1: Mobile Cloud Computing architecture

4.1 Introduction to Mobile Cloud Computing

Cloud computing is one of today’s most rapidly evolving technologies and it is increasingly adopted

by large companies to host various service platforms (e.g. iCloud by Apple, GoogleApps by Google,

EC2 by Amazon, etc). It facilitates rapid and flexible access to a shared pool of dynamically config-

ured resources, notably, storage capacity and computational power. The collection of these pooled

resources reside in geographically dispersed servers. All these would not have been possible with-

out the recent advances in virtualization technology that enable the agile consolidation and parallel

execution of diverse applications on the same physical machine (server), each hosted in a separate

Virtual Machine (VM).

Parallel to that, end-user mobility has become an essential feature of contemporary wireless net-

works. Applications that run on mobile devices (e.g. speech recognition, environmental sensing,

games) are now becoming more sophisticated than ever in terms of computing requirements and data

generation. Proliferation of wireless access technologies like 3G, LTE and WiMax provide ample

promise in taking cloud computing to the next level, where mobile devices can access the cloud to

offload computationally intensive tasks. The later asset has given rise to what is known as mobile

cloud computing. The problem we address in this work is how to best leverage cloud resources to

minimize execution time of mobile tasks. This goal is realized through task migration policies that

move the task/VM closer to the mobile user.

We consider the following architecture that brings into stage clouds together with mobile wireless

devices. Mobile devices access cloud facilities through readily available hubs like 4G/LTE base

stations or WiFi access points. There exists a back-end cloud facility whose servers are interconnected

through wire-line links while the access link from the mobile device-client to the cloud is wireless

(Fig. 4.1). In addition smaller sized cloud servers are attached to the points of wireless access, such

as 4G/LTE base stations, forming local clouds in order to avoid the additional communication delay

of the Internet. The local and the back-end cloud are interconnected and are both managed by a single

provider.
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The objective of the cloud provider is to efficiently handle application tasks that arise from cloud

clients, in our case from energy-constrained mobile devices. This oftentimes translates to executing

tasks as quickly as possible. Quicker task completion and data download time to the mobile user

enhances user quality of experience and positions the provider better in the market. Besides, cloud

resources become more often free and available for other tasks thus, increasing the available process-

ing capacity. On the other hand, a mobile user is also concerned about the energy required to execute

a task.

Efficient management of the cloud infrastructure is a challenging task due to the highly dynamic

and unpredictable nature of the system. First, the pattern of instantaneous resource demand varies

with time and location, since new task demands arise continually at various locations while others

complete service.

Second, the resource supply is also subject to continuous changes. The available processing

capacity of virtualized cloud servers changes due to the unpredictable interaction of tasks/VMs co-

existing on the same physical server. This coexistence unavoidably leads to contention for available

resources (e.g. CPU, caches, network, I/O) and an associated overhead that is often task-dependent

and difficult to model or predict. Thus, the true available computing resources change significantly

with time. Another source of variation of the processing capacity of cloud servers comes from the

execution of cloud management tasks in the background.

Third, tasks are usually accompanied with a time-varying data volume, that may be increasing,

decreasing or constant with time, corresponding to different types of applications that generate new

information, compress it as they evolve, or do not modify data respectively. The time required to

transfer a task to another server depends decisively on the pattern of data evolution.

The issues above motivate the need for task migration. In this direction the latest version of

vSphere, the virtualization platform of VMware that has a market share of 60% [39], incorporated

the capability of VM migration across distant servers [40]. In vMotion, the migration scheduler

of vSphere, migrations are performed so as to keep average CPU and memory utilization balanced

across servers. Instead, we propose that migrations should be performed according to the estimated

performance. A task should migrate from its current server if the anticipated total execution time at a

new server (including the migration and download delay) is less than the execution time at the current

one.

User mobility introduces additional challenges, since at each time instant the task can be directly

uploaded only to a certain subset of servers, notably those attached to the points of wireless access

in range of the mobile user. The same holds for downloading the results once the task has finished

execution. In general, a different cost can be assigned to each server, which captures the time delay

of uploading/downloading data to/from this server. Thus, migrations should be such that the task

follows the mobile user i.e. the server that executes the task should be ”close” to the user in terms of

delay.

For a simple motivating example, consider a CPU intensive task of 1010 CPU cycles and increas-

ing volume of accompanying data. Initially the user uploads the task for execution to a back-end
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cloud server of available CPU capacity 106 cycles/sec. Once the task has been completed by 50% the

user moves in range of a local-cloud/BS of double the available CPU capacity, 2×106 cycles/sec. If

the task stays on the initial server it will be completed after 5000 sec or 1.39 hours. Instead, given a

local-backend interconnection link of 10Mbps and a current data volume of 1010 bits a migration to

the local server will cost 1000 sec, and another 2500 sec for execution. Thus, the optimal strategy is

to migrate the task to the local server immediately, leading to a completion time of 3500 sec or 0.97

hours, i.e. an improvement by (1.39−0.97)/1.39×100% � 30%. This migration is also beneficial

regarding download time, since it avoids the additional communication delay over the Internet.

In this work we ask the question: what is the best way to perform migrations among the available

cloud servers to minimize the average completion and data download time of mobile tasks? In order

to adhere to a realistic scenario, we address the online version of the problem, in which information

about the dynamics above is not available a priori, but rather it is presented online, just before the

control decision is taken. For example, the rate of arrival of new tasks in each server is generally

unknown. To counteract this, we propose that from time to time the cloud facility has to be recon-

figured by properly reassigning some VMs to the cloud servers. We take a discrete time approach,

where at each decision epoch some tasks are selected to migrate to another server. We propose three

online task migration mechanisms that differ in complexity and required information exchange. The

key underlying idea is that a migration should occur only if it is beneficial for the processing time

of the task, including the transfer delay for accompanying data. In addition, we identify when task

offloading is beneficial for a mobile user in terms of energy consumption and we also demonstrate

how VM migrations can be exploited to reduce energy consumption of the cloud infrastructure itself.

The contributions of this work are as follows:

• Given that the problem of online scheduling with reassignment is NP-hard [13], we develop

lightweight task migration mechanisms that capture the following cloud scenarios: (a) an ex-

treme autonomic one, where each task selects its migration path individually, (b) an uncoordi-

nated setup where migration decisions are taken by each cloud server separately based only on

local information, (c) a fully coordinated setup where the cloud provider solves the global task

scheduling/migration problem from the cloud provider point of view.

• We explicitly model the coexistence of several VMs on the same cloud server through an as-

sociated overhead on actual performance. This overhead depends on the number and types of

coexisting tasks, is constantly measured and fed back to the entity that decides on task schedul-

ing.

• We capture migration cost by incorporating the time required for communicating accompany-

ing data to the new server in the decision making.

• We capture the impact of mobility on the migration strategy. The main idea is to migrate the

task closer to the user as execution approaches its end.

• We demonstrate how VM migrations can be used for energy efficiency purposes.
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The rest of this chapter is organized as follows. Initially, we provide an overview of related work

in Section 4.2. In Section 4.3 we model interaction of tasks/VMs within the cloud. Section 4.4 de-

scribes the proposed migration mechanisms that capture the interaction of collocated tasks. Numerical

results quantifying the performance of our schemes are presented in Section 4.5, while Section 4.6

concludes our study.

4.2 Related Work

Virtualization enables diverse tasks to run over a shared hardware platform. Each task is hosted on

its own VM, which provides an isolated execution environment. However, operation over the same

physical machine introduces significant contention for shared physical resources such as CPU, caches,

disks or network. The problem of noisy-neighbours, where collocated tenants cause significant and

unpredictable performance degradation, has been reported by several cloud customers [46, 47] and

has even led companies to get off of the cloud [48]. The authors of [49] analyzed the performance of

the Amazon Elastic Cloud Computing (EC2) facility and observed significant execution stalls due to

processor sharing among the collocated VMs and drastically unstable TCP/UDP throughput. Similar

performance limitations have been observed when computationally intensive scientific tasks were

executed on existing cloud facilities [50].

Several works attempt to perform analytical [51] or experimental [52],[53] estimation of the mul-

titenancy effect. The former though require a priori knowledge of the resource requirements(CPU,

Memory, I/O) of each task, while the latter perform extensive profiling of different types of cloud

tasks. However, [41] deduced from trace data from the Google cloud facility that significantly di-

verse tasks exist in the cloud and hence a characterization through profiling is impractical. Thus, we

propose that multitenancy effect has to be predicted through online measurements as tasks are being

executed. In this direction, [54] also investigates ways to provide predictable network performance to

tenants.

Migration mechanisms in the context of cloud computing have received significant research in-

terest mainly towards energy efficiency. However, migrations can be exploited also to improve cloud

performance. Indicatively, [55] provides an experimental evaluation of the performance benefits of

migrations. The most related work is [56] that applies max-weight inspired policies to maximize

throughput through VM allocation/migration in dynamic cloud computing systems. In contrast to our

work, the multitenancy effect, the evolving data footprint and the cost of migration that significantly

affect the actual execution time are not considered. In [57], the authors propose a system that moni-

tors resource usage and performs a migration whenever a Service Level Agreement (SLA) is violated

for a sustained period. In all these works, the VM assignment/migrations are performed according to

the required resources. Instead, we perform task migrations according to the actual performance of

the task as this is observed online and by considering also the impact of multitenancy.

Generally, the impact of mobility has been considered only in the simpler scenario where a single

task may migrate to a remote server, instead of being executed locally at the mobile terminal, a mech-

47

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 19:09:18 EEST - 3.143.22.156



anism generally known as offloading. The resulting energy and time savings have been considered

in [58], where a Markovian control framework is proposed. In a similar setting the authors of [59]

propose the CloneCloud system that enables smartphones to offload their tasks to cloud computing

facilities. Contrary to our model, these works do not take into account the interaction of multiple

tasks and assume a static cloud environment that is not affected by the decisions made.

4.3 Mobile Cloud Computing Model

4.3.1 Cloud architecture

We consider a cloud architecture that consists of a set K of K cloud servers. A subset of these servers

forms the back-end cloud, whereas the rest are attached to the wireless access infrastructure (Fig.

4.1). Such small scale local clouds provide processing resources that are closer to the mobile users,

in order to avoid the additional communication delay of the Internet. Each server i is characterized

by fixed processing capacity (speed) Ci flops/sec with the local cloud servers being of lower capac-

ity in general. The available processing capacity may be time-varying due to cloud management

background processes. A mobile task may be executed either at the local or at the back-end cloud.

At time t a mobile user is in the range of a wireless access technology, say a 4G base station (BS)

j, and hence has access to its local cloud. Let K j ⊆ K denote the set of servers of local cloud j and

γi j(t) the capacity of the time-varying wireless link between user i and local cloud j at timeslot t.

In addition, each local cloud is connected over the Internet with any back-end server k through an

overlay link of delay L jk. In order to simplify notation we may merge the two hop communication

user–BS–server into a single link that captures the end-to-end path. Thus, the delay per unit of data

between user i and server k through the corresponding BS j is 1
rik(t)

= 1
γi j(t)

+L jk.

The back-end infrastructure is connected through a fully mesh overlay network. We denote by

W�k(t) the available bandwidth (in bits/sec) of the overlay link that connects back-end servers � and

k. We assume the generic case of time-varying server interconnection link capacity.

4.3.2 Application tasks

Application tasks arise continually, generated by mobile users at various locations of the cloud. Task

i is characterized by its total processing burden Bi (in flops, or CPU cycles). Each task is also accom-

panied by an evolving volume of data in bits, di(·). This pattern may be increasing, decreasing or

constant, modeling different types of applications that may generate new data or compress it as they

evolve. We refer to this accompanying volume of data as the data footprint of the task.

A typical CPU-intensive task of decreasing footprint is video compression. Starting from an

initial raw video of several gigabytes we end up with a compressed video of hundreds megabytes.

As processing evolves, the part of the video that has been compressed becomes obsolete. On the

other hand, most complex scientific calculations that are uploaded for execution at the cloud are

characterized by increasing data footprint, since new data is continuously produced.
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4.3.3 Task lifetime

The task lifetime consists of the following stages:

(i) Task Upload: Once a new task is generated by a user, the source code and any input data

required for the initialization of the VM are uploaded to the cloud through the wireless link between

the user and the corresponding point of wireless access. Then, the task is either executed at the local

cloud, or its data are forwarded over the Internet to the back-end cloud, usually to the server that

provides the minimum estimated data upload plus execution time.

(ii) Execution / Migration: the actual processing within the cloud. The execution of the task

cannot be stalled, but the task may be transferred from its current server to a new one to continue

execution there. This process is known as task migration and may occur multiple times during task

execution.

(iii) Download: the mobile user retrieves the final results. We assume that once processing is

completed, the final data are immediately downloaded by the user through its current BS. If the host

server is not in range of the mobile user, data needs to be transferred to an accessible server.

We use the term task lifetime Ti to refer to the total time that task i spends in the cloud, including

the time required for download. Upon initial assignment to a server, the task starts execution and

accompanying data are generated. Each task i carries with it a so called progress indicator xi(t)∈ [0,1]

that evolves with time and denotes the percentage of completion. To understand the notation, for a

task i that is executed at server j, and that presumably uses its entire capacity Cj, it would take Bi/Cj

time to execute, and hence the progress indicator would evolve as xi(t) =min
{

1,
Cj
Bi

t
}

. The remaining

processing requirement for the task is given by bi(t) = Bi(1− xi(t)) while its data footprint evolution

is given by di(xi(t)).

4.3.4 Virtualization in cloud servers

A VM is a software segment that provides an isolated environment for the execution of a single

task. In general execution of a task may require several communicating VMs. However, due to

affinity constraints all the VMs comprising a task have to be scheduled on the same server. Thus,

for simplicity we assume that each task is running on a single VM and use terms VM and task

interchangeably. Upon migration of a task, a new virtual machine (VM) is created for this task on

the destination server and the execution starts, while the initial VM is stopped and removed from the

current server. A VM is also removed when the task finishes execution.

Although in theory an unlimited number of VMs can be collocated on the same server, the co-

existence of several VMs intuitively affects the performance experienced by each VM. The incurred

overhead leads to a graceful reduction in true available processing capacity, due to the inherent con-

tention of multiple VMs for resources and the utilization of a part of CPU for performing other

inter-VM management tasks. The term multitenancy is generally used for the coexistence of multiple

VMs on the same physical machine.

We model this VM interdependence as follows. Let A j(t) denote the set of active tasks of server
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j at time t. For any server j with processing capacity Cj and |A j| = n, we assume that an amount

of its service capacity ε(n) is lost due to cross-VM management and VM contention. To model the

impact of multi-tenancy, ε(n) is taken to be increasing in the number of VMs n on the server. We

assume that the remaining capacity is equally shared among collocated VMs. Hence, each task on

server j obtains a processing share:

Cn
j =

Cj

n
− ε(n) . (4.1)

The overhead ε(n) depends also on the type of coexisting tasks, in a way that is infeasible to

quantify through profiling due to the numerous and significantly diverse tasks running on the cloud

[41]. In order to circumvent this, the actual overhead is continually measured and fed back to the

entity that makes the task migration decisions. Fix attention to computing the overhead ε(n) due to

n coexisting VMs on the same server. Let Sn denote the subset of servers that host n VMs. At each

server j ∈ Sn and at each decision epoch τ , several sample values, say K, {Cj� : �= 1, . . . ,K} are

taken for the processing capacity that each hosted task enjoys. CPU consumption measurements are

possible by using off-the-shelf cloud monitoring tools like Ganeti [42]. This leads to sample values

ε j�(n) =
Cj
n −Cj�, : � ∈ {1 . . .K} of the multitenancy overhead at server j.

All the sample values collected by servers in Sn are passed to the hypervisor, the entity responsible

for management of cloud resources. The hypervisor then aggregates these values to a sample mean

estimate as follows:

ε̃(n) =
1

K|Sn| ∑
j∈Sn

K

∑
�=1

ε j�(n) (4.2)

This quantity serves as an estimate of the expected overhead for servers with n tasks, and it will

be used in migration decisions. In particular, since the actual value of processing share that each VM

enjoys is unknown (due to the unknown parameter ε(n)), all decision making regarding migrations is

performed based on the estimated share for a server j with n coexisting tasks, given by C̃n
j =

Cj
n − ε̃(n).

4.3.5 Migration

During its lifetime, a task may migrate to a new server. The task carries with it its progress indicator

and its associated data volume. Consider task i migrating from server k to k′ at time t0. In order

to resume execution at k′ from the point it was interrupted, the entire volume of accompanying data

needs to be moved to the new server. This data transfer will take place over the overlay link of capacity

Wkk′(t0) and incurs a communication cost (delay) equal to
di(xi(t0))
Wkk′ (t0)

. Note that migrations from or to a

local cloud experience the overlay link delay L. A task may migrate several times to different servers

during the course of execution. Typically, each migration incurs additional delay, namely the setup

time of the new VM. However, in contemporary cloud facilities this can be considered negligible.

The need for task migration arises from the continual evolution of the system. A migration should

be performed, whenever it improves execution time. At any time we consider a possible migration,

we need to compare two metrics:

(a) the anticipated execution time at the current server
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(b) the expected completion time at the new server plus the time required to transfer the data volume

from the current to the new server.

Suppose that task i resides and is executed at server k at decision time t0. Its residual processing

requirement is bi(t0) = Bi(1−xi(t0)) and the amount of accompanying data is di (xi(t0)). Let there be

nk active tasks on server k. This means that the true available processing capacity for the task Cnk
k is

given by (4.1). and the remaining processing time for the non-migration case (a) is:

Di(k) =
bi(t0)
Cnk

k
(4.3)

Next, we consider whether migrating to server k′ will lead to shorter task execution time (case

(b)). Let there be nk′ tasks on server k′. If task i moves there, it will receive a processing share of

C̃nk′+1

k′ =
Ck′

nk′+1
− ε̃(nk′ +1). Let Wkk′(t0) be the available bandwidth of the link between server k and

k′. The estimated execution time at k′ is:

D̂i(k,k′) =
di (xi(t0))
Wkk′(t0)

+
bi(t0)

C̃nk′+1

k′
(4.4)

The hat notation will be used to refer to migration case (b), e.g. D̂i(k,k′) is the expected execution

time of task i if it migrates from server k to k′. Notice that a migration is beneficial only if the new

server can provide significantly improved performance so as to make up for migration delay.

4.3.6 Mobility

In our setting, the mobility pattern of a user i can be represented as a sequence of pairs { ji(t),ri j(t)}.

For each timeslot t, the first element describes the current point of wireless access and the second one

is the achievable link rate between user i and local cloud j. In order to simplify notation, we assume

that each user generates one task and hence we use the same index i for both a user and his task.

As the user moves from one BS to another a different subset of servers is directly accessible, the

one comprising the local cloud of the corresponding BS. In addition, the delay to each server varies

with time due to the varying capacity of the wireless link. The state of communication links is not

known a priori, but only at each timeslot just before a migration decision is made. Intuitively, as the

task proceeds to completion, the migration strategy should favor the servers of local clouds within

range of the mobile user.

The link capacity affects the duration of the download phase. Since we are interested in the total

lifetime of a task, we extend our migration model to capture also the impact of mobility. A task is

completed once its data have been transferred to the mobile user. For this purpose, we need to include

in the previously defined metrics the additional term of the time required to move the final data from

the server to the user. For the no migration case (a) the remaining lifetime of task i at the current

server k becomes:

Ti(k) = Di(k)+
di (1)

rki(t0)
, (4.5)
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where Di(k) is given by (4.3) and di(1) is the volume of the accompanying data once the execution

is completed, i.e. for xi(t) = 1. Notice that for the calculation we use the instantaneous value of link

capacity, rki(t0).

In order to decide whether a migration to server k′ (may be either local or back-end) is beneficial,

we derive the following metric for migration case (b):

T̂i(k,k′) = D̂i(k,k′)+
di (1)

rk′i(t0)
(4.6)

where D̂i(k,k′) is given by (4.4).

4.3.7 Energy consumption

Besides reducing execution time, task offloading can also provide significant energy savings to mobile

devices. In order to execute task i at a remote server though, all the required data have to be uploaded

to the cloud through the corresponding BS, say j. The upload phase introduces an energy cost that

depends on the capacity γi j(t) of the time-varying wireless access link at timeslot t and the data

footprint di(t) of the task. The exact energy cost of the upload phase is Êi(t) = f (γi j(t),di(t)), where

f (·) is a function characteristic of the transceiver of the mobile device. Generally though, f (·) is

decreasing in channel capacity and increasing in the data footprint.

Let Ei denote the energy required for local execution of task i. Then, task i should be offloaded

at timeslot t if and only if Êi(t) < Ei. Given that a user is aware of the data footprint evolution of

his tasks and that the state of the wireless access link does not change within the time of interest, the

optimal offloading strategy for each task can be easily calculated based only on local information.

Notice that energy-aware offloading from mobile users does not affect the strategy of the cloud

provider. However, energy consumption of the cloud infrastructure itself and the resulting cost are

major concerns of any cloud provider. Generally, the energy consumption of a cloud server is an

increasing function of its load. In Fig. 4.2 we depict power draw as a function of load for a typical

cloud rack server. We observe that it can be accurately approximated by a linear function of slope

0 < α = ΔP
ΔL < 1 . In addition, power draw at idle state is 51 Watts, i.e 25% of that at maximum load.

Thus, the specific server is characterised by the following power draw function:

p(L) = 0.155L+50 (4.7)

Obviously, the amount of energy consumed by a single server within a period of t hours is given by:

E(L, t) = p(L) t. (4.8)
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ΔL

ΔP

Figure 4.2: Power consumption of a typical cloud rack server as a function of its load (source: [60])

4.4 Algorithms for Efficient Task Migration in the Cloud

Our objective is to derive the migration policy μ that minimizes the average lifetime of the active

tasks out of the set of available migrations M within a finite horizon H, i.e.

min
μ∈M

H

∑
t=0

∑
k∈K

∑
i∈Ak(t)

Ti(μ) (4.9)

However, the cloud is a dynamically changing environment, and its performance is dependent

on a number of uncontrollable and unpredictable parameters, such as task arrivals and completions,

wireless link capacity variations and the effect of multi-tenancy. Thus, deriving the optimal migration

strategy is NP-hard as a generalization of the online scheduling problem [13]. With this in mind, we

propose three online migration mechanisms of different philosophy.

We follow a discrete time approach, based on the assumption that our view of the system status

is updated once in each epoch period. A period of 5 minutes is typical in commercial virtualization

platforms [40]. At the beginning of each epoch, control messages are circulated within the cloud,

including the number of tasks running on each server and an estimate of the multi-tenancy overhead

parameter ε̃(n). Using this information the estimated processing share per task C̃nk
k at any server k

can be computed.

Initially, for ease of presentation we focus on what happens within the cloud premises, i.e. we

ignore the need for downloading the final results and propose online migration algorithms that reduce

the average task execution time. The algorithms are based on a greedy approach that provides the

best available solution for the current state of the system. Next, we enhance the proposed algorithms

to capture the impact of mobility.

53

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 19:09:18 EEST - 3.143.22.156



4.4.1 Cloud–wide task Migration

Consider the fully coordinated scenario, where the cloud provider has to solve (4.9) by deciding

which tasks to migrate. An important issue when scheduling multiple tasks on the cloud is that they

compete for the same resources. Consider a task under tentative migration from its current server to a

new one. The migration affects the performance of all tasks running at the current and the new server.

A migration should be considered only if it is beneficial for the system as a whole. In this direction,

we propose an online migration mechanism that considers the impact of a migration on all affected

tasks.

Under processor sharing, each task receives a portion of processing capacity inversely propor-

tional to the number of tasks running on the server. Thus, each migration improves the performance

of collocated tasks in the host server, since it reduces competition. Fewer tasks have to share the

available processing capacity, while the coexistence overhead also reduces. On the other hand, the

arrival of a new task at the destination server would lead to more tasks sharing the same process-

ing capacity, while the multi-tenancy overhead would also increase. Finally, the residual execution

time of the task under migration may increase or decrease, depending on the load at the host and the

destination server and the capacity of the interconnecting link.

At each decision epoch, all the active tasks located at any server are candidates for migration

to any other server. We focus on task i currently hosted by server k and consider the impact of its

migration to server k′. Initially, the remaining execution time of the involved tasks is calculated for

the case of no migration. This is given by:

Dtot(k,k′) = ∑
l∈Ak

Dl(k)+ ∑
l∈Ak′

Dl(k′). (4.10)

Both terms come from (4.3) and capture the execution time at each of the servers k,k′ if no migration

occurs.

Next, the remaining execution time is estimated for the case of migration to server k′:

D̂tot(i,k,k′) = ∑
l∈Ak\{i}

Dl(k)+ D̂i(k,k′)+ ∑
l∈Ak′

Dl(k′). (4.11)

The first term corresponds to the improved execution time at the host server and is given by (4.3)

for nk = nk −1 and the second one is the expected execution time of the migrating task described by

(4.4). The third term captures the degraded performance at the destination server k′ and is given by

(4.3) for nk = nk + 1. The difference in total execution time Dtot(k,k′)− D̂tot(i,k,k′) may be either

positive or negative. A positive value indicates that the migration of task i to server k′ is beneficial for

the system.

Since a migration to any other server is possible, this calculation is carried out for each possible

destination server k′. Finally, out of all the possible migrations the one of maximum positive gain is

performed. This process is repeated until no more migrations of positive gain can be found.

This online mechanism is executed in every epoch. Within an epoch new tasks arrive while others
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complete execution. In general, our algorithm picks tasks from overloaded servers and moves them

to underutilized ones. However, the selection of the task to migrate is performed according to the

following guidelines jointly:

• prioritize migrations of tasks of increasing data volume pattern, since the migration cost of any

such task increases as its processing evolves.

• migrate tasks of significant residual processing burden. The benefit of a migration is a function

of the remaining processing time of the task. For example migrating a task that is close to

completion, may not be beneficial even if the destination server is idle. On the other hand, a task

of substantial remaining processing time can exploit the available capacity at the destination

server more efficiently.

• preferably migrate tasks that experience significant multi-tenancy cost. Although this cost is

generally increasing in the number of collocated tasks, its exact impact depends also on the

type of collocated tasks.

Remark 4.4.1. Our approach requires the processing burden of each task to be known (see (4.3),(4.4)).

If such information is not available our model can be easily modified by replacing bi() = b̄, where b̄

is the average burden of tasks. In this case the second guideline would not be applicable.

4.4.2 Server-initiated task migration

The centralized nature and high complexity of the cloud-wide approach calls for distributed migration

mechanisms that require less information to be circulated throughout the system. In this direction,

we propose a server-initiated approach that enables each server to autonomously select which of its

active tasks should migrate and where. Each server periodically checks whether the execution time of

its active tasks can be improved through a migration to a new server. For this purpose, the anticipated

gain for each possible migration to any new server needs to be estimated. The anticipated performance

gain of migrating task i located at server k to server k′ is defined a:s

Dtot(k)− D̂tot(i,k,k′) = ∑
l∈Ak

Dl(k)− ∑
l∈Ak\{i}

Dl(k)− D̂i(k,k′)

In this case, we consider the total reduction of execution time of the tasks hosted by server k. The

first term is the total execution time for the case of no migration, while the second term captures the

execution time of the tasks remaining at k for nk = nk −1 and the third refers to the migrating task i.

Since migrations are initiated by the host server, the impact of the migration on the tasks located at

the destination server is unknown and hence not considered. In the end, the migration of maximum

gain is performed. This is repeated until no more migrations of positive estimated gain can be found.

The main characteristic of this algorithm is that it requires no synchronization among servers.

Each one decides autonomously when to check for beneficial migrations. This exploration phase
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Figure 4.3: Transition graph for the single task migrating within the cloud.

could be triggered whenever a server considers it is overloaded, compared e.g. to the average server

load.

4.4.3 Task-initiated migration

In contemporary cloud systems migration related decisions are made by the cloud provider. How-

ever, one could envision a scenario where each task/user autonomously decides its migration strategy

towards minimizing its own execution time. Thus, we consider the case where a user may offload its

task to one of multiple available cloud providers/servers, but is only aware of the advertised capacity

of each.

We follow a discrete time approach and assume that within each epoch of duration τ the system

state does not change. Due to multitenancy the actual capacity of each server k at timeslot t is a

random variable Ck(t) taking values in [0,Ck]. Since this randomness is uncontrollable, the actual ca-

pacity can be considered independent across servers, while for a given server it is generally correlated

across time. The actual capacity is only revealed once a task migrates to a server. In addition, each

migration from the current server introduces migration delay. The optimal migration strategy of the

user is the one that minimizes its own execution time. This problem falls within the class of restless

bandits with switching costs which has been shown to be PSPACE-Hard [43]. In our case, each arm

corresponds to a server, the corresponding reward at timeslot t is Ck(t) ∗ τ , while the switching cost

from arm k to k′ corresponds to the migration cost
di(xi(t))
Wkk′ (t)

.

However, under the assumption that the actual capacity of each server is i.i.d. across time, the

optimal migration strategy reduces to the following. At each timeslot t, task i may autonomously

check whether a tentative migration from its current server k to server k′ would decrease its estimated

execution time , i.e. whether D̂i(k,k′)< Di(k) and performs the migration of maximum gain.

Next, we consider the off-line deterministic case, where the exact capacities of servers and links

at each stage are known a priori. The solution to this problem provides a lower bound of the execution

time. The optimal migration strategy of a task is the sequence of servers that the task should traverse.

The state space of the problem is depicted in Fig. 4.3.
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Let each state denote the server that hosts the task of interest. The execution phase is divided into

decision stages (epochs). In each epoch the user needs to decide whether the task should remain at the

current server or a migration should be performed. We use dashed lines to denote the no–migration

case that incurs zero cost and solid lines for the actual migrations. At each stage t, if task i remains

at its current server k execution proceeds by Ck(t) ∗ τ , whereas in case of migration to a new server

k′ execution proceeds by Ck′(t) ∗ (τ − di(xi(t))
Wkk′ (t)

). The optimal migration strategy corresponds to the

shortest path and can be found through dynamic programming [44]. The search horizon is dictated

by the total processing burden Bi, i.e. the search is terminated once the shortest path that meets the

processing requirement is found.

Remark 4.4.2. The proposed approaches require the same information per task but the first one

requires a system wide view, while the second one cares only for the tasks running on the server and

the last refers to a single task.

4.4.4 The impact of mobility on migration decisions

Our analysis up to this point has been focused on reducing the execution time of tasks. In mobile

scenarios though, the time required to download the results from the cloud is a significant portion of

the task lifetime. Given also that the links between a server and a user are characterized by diverse and

time-varying capacity, bringing mobility in the migration selection strategy is of utmost importance.

In this direction, we modify the proposed algorithms so as to capture the incurred download cost,

by using the estimated task lifetime given by (4.5) and (4.6) in place of (4.3) and (4.4) respectively.

Hence, as a task moves towards completion (i.e. it has small remaining processing burden), it prefers

servers that are in range of the user, wherever the latter might be. For ease of presentation we have not

included the upload cost, since this has to be considered only once, namely in the initial assignment

of a task to a server. Subsequent migration decisions are not affected by upload time.

4.4.5 VM migration mechanisms for energy efficiency

The main objective of the proposed algorithms was to improve cloud performance. Here, we explore

an alternative use of VM migrations towards a more energy efficient cloud. In this direction, we

devise VM migration strategies that minimize both energy consumption of the cloud infrastructure

and the corresponding electricity cost.

We assume that energy consumption of each server is given by (4.7). In this case, it is straight-

forward to show that the most energy efficient strategy is to consolidate VMs in the fewest possible

servers and turn off the idle ones. Interestingly, this strategy is in contrast to the objective of minimiz-

ing execution time, since extreme consolidation introduces also the problem of multitenancy. In order

to deal with this tradeoff, we suggest that the cloud provider should consolidate VMs up to the point

that no performance SLA is violated. In particular, we propose a two timescale approach. At a slow

timescale, the operator makes a rough estimation on the number of servers that have to be activated
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based on historical data. At a faster timescale, VM migrations are exploited to counteract the effects

of multitenancy, according to one of the previously described algorithms.

Thus, the required number of active servers can be determined. Next, we attempt to answer

the question: which servers should be activated? Although all servers are equivalent in terms of

performance, electricity cost is not the same due to variation of electricity prices from place to place.

Given that cloud facilities consist of geographically distributed datacenters all over the world, VM

migrations can provide additional financial benefits by moving load to places of low cost. Given that

electricity prices for the following day are generally known, this problem can be easily solved in an

offline manner.

4.5 Numerical Evaluation

In order to compare the performance of the proposed schemes, we use an event driven simulator for a

cloud system of 50 servers, each of capacity C ∈ [0.1,2] Tera–flops, interconnected through wireline

communication links of mean available link capacity W ∈ [1,10] Mbps. The link and processing

capacities are assumed to be i.i.d. across different slots.

New tasks arrive at each server i according to an inhomogeneous arrival process of parameter

λi(t) arrivals/sec, given by a gaussian distribution of mean 0.05 and standard deviation 0.015. The

processing burden follows a heavy tailed pareto-like probability density function (pdf) with P[Bi >

x] = min{1,(1/x)1.25}, where x is in teraflops, which is typical for CPU intensive tasks [45].

We consider tasks of increasing or decreasing data footprint evolving according to the linear

model di(xi) = min{0,αxi + β} with α ∼ U(−10,10), β ∼ U(0,100) for the increasing and β ′ ∼
U(10,1000) for the decreasing ones (in MBytes). The multi-tenancy cost due to VMs consolidated

onto a single server is modeled as a gaussian random variable of mean μ = (k−1)
2k . For comparison

purposes, we depict also in each figure the performance of the no migration strategy and of a one-shot

placement scheme, in order to quantify the importance of migrations. Placement follows the logic of

our cloud wide approach, but now the server that will host the task is selected only once, when the

task arrives at the system. The depicted values are averages over 100 instances.

Initially, we investigate the population of tasks N hosted by each server, which indicates the

load balancing behaviour of each algorithm. Since N is a random variable, we depict in Fig. 4.4 its

cumulative distribution function (cdf), i.e. the probability P[N ≤ k] ∀k ∈ N for each algorithm. The

slopes of the curves indicate how balanced the cloud is. In the cloud-wide approach a server hosts

at most 3 VMs. Instead, the probability of having more than 3 VMs running on a server is 10% for

the server-initiated approach and 25% for the task-initiated one. In the latter case the probability of

having more than 20 tenants in a server is non-negligible (∼ 4%); compared to the no migration case

though the load is more balanced.

We depict in Fig. 4.5(a) the exact distribution of tasks on the servers through the probability mass

function of N. We see that the cloud-wide migration strategy leads to a more balanced network, where

in most of the cases the number of tasks N is from 1 to 3. Moving to the less coordinated strategies,
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Figure 4.5: Load balancing behaviour of the proposed algorithms

the pmfs broaden. For example, in the user–initiated scheme the probability that a server is empty is

significant, while even for N > 20 the probability is non-negligible.

Next, we consider how the distribution of tasks is affected by the link capacity of the cloud

interconnection links. Thus, we depict in Fig. 4.5(b) the pmf of the cloud wide approach for three

different scenarios, one where the cloud servers are interconnected by high/medium/low capacity

links. As the link capacity decreases the pmf broadens indicating that it is not always optimal to

perform a perfect load balancing. This is justified by the fact that in low link capacity regime, the

migration cost becomes significant and hence it is preferable to be slightly unbalanced.

In Fig. 4.6(a) we quantify the impact of per server processing capacity on the average lifetime of

the tasks. As expected the performance degrades as we move from the centralized approach that has

system–wide information to the decentralized ones that are based only on local information. Increas-
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Figure 4.6: The impact of system/task parameters on cloud performance

ing server capacity causes the performance gap of the proposed schemes to diminish, indicating that

careful migration decisions are most important when the cloud is overcommitted. Interestingly it is

only the task-initiated approach that performs worse than the cloud wide placement approach. In the

task-initiated approach we observed that although the average lifetime is not significantly better than

the no migration case, the individual gain of the tasks that migrate is significant.

In Fig. 4.6(b) we depict the impact of data footprint on the average lifetime of the tasks. As the

mean footprint increases the performance gap between the proposed algorithms decreases, since the

”heavier” the tasks the greater is the migration cost. Finally, we consider how often migrations are

performed by each algorithm in Fig. 4.6(c) for two different scenarios. For tasks of medium data

footprint we observe that significantly more migrations are performed, compared to a system serving

data-intensive tasks.

In order to stress the impact of mobility in migration decisions, we depict in Fig. 4.7 the lifetime

of a task that is initially uploaded to a local cloud by a mobile user through its 3G access. We consider

a task of increasing data footprint that can be executed either at the local (L) or the back-end cloud

(B). We depict the task lifetime for the case of a) no migration, b) a strategy that does not consider
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Figure 4.7: The lifetime of a mobile task under different migration strategies

migration cost and download time and c) the proposed task-initiated migration strategy that is mobility

aware. We denote with shadow the closest to the user cloud facility in terms of communication

delay. The no-migration strategy executes the task at the local cloud and hence exhibits the worst

performance. Initially, the migration cost is negligible since the data footprint of the task is small.

Thus, as long as the user is in range of the local cloud and migrations are costless, the other two

migration strategies perform identically. Once the user moves out of range of the BS hosting the local

cloud to a place that is closer to the back-end (WiFi access), the mobility-aware approach moves the

task there. In contrast, the load-aware one performs several migrations to the least loaded server, in

an attempt to exploit the best option in terms of available processing capacity, without considering

though the increasing cost of each migration and the additional cost of downloading the final data

from a distant server. Hence, it is outperformed by the mobility aware one.

4.6 Conclusion

In this chapter, we investigated the option of task offloading as a means of improving processing

capabilities and lifetime of a mobile device. To this end, we developed migration policies that oppor-

tunistically exploit available processing capacity at cloud servers. Our techniques explicitly take into

account user mobility by considering the download time of the data emanated from task execution.

This essentially biases the migration decision in favor of servers within range of the mobile user.

In contrast to the migration policies currently applied in commercial virtualization platforms like

vSphere [40], we demonstrate that migrations should be performed according to the estimated perfor-

mance and not based on the estimated resource demands of each task/VM. Our performance analysis

verifies the benefits arising from migration schemes that consider both migration cost and mobility of

users in decision making.
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Chapter 5

Energy Efficiency at the Wireless Device
Access Level: The Impact of Energy
Constraints on Medium Access

In this chapter, we move from the realm of Mobile Cloud Computing to the setting of energy-

constrained medium access. Contemporary mobile devices are battery powered and operate on a

tight energy budget. Besides, the scarcity of bandwidth resources leads to strong competition for

the medium. In an attempt to capture these facts, we consider random medium access schemes for

devices that support sleep modes, i.e. turning off electronic compartments for energy saving.

Due to hardware limitations, sleep mode transitions cannot occur at the medium access timescale,

but only at a slower timescale. Each terminal can choose when to turn on/off and its probability

to transmit on an arbitrary slot. Thus, we develop a two level model, consisting of a fast timescale

for transmission scheduling and a slower timescale for the sleep mode transitions. We take a game

theoretic approach to model the user interactions and show that the energy constraints modify the

medium access problem significantly and lead to reduced price of anarchy. Our findings give valuable

insights on the energy–throughput tradeoff for contention based systems.

5.1 Introduction to Energy Efficient MAC

As mobile communications become part of our everyday lives, new challenges for the system de-

signers come to the foreground. First of all, the scarcity of bandwidth resources leads to extreme

competition for the medium. Besides, the total energy dissipation by communication devices has

been shown to amount to a significant portion of a nation’s power profile, motivating efforts of per

device energy economy. In an attempt to minimize their energy footprint and/or maximize the battery

lifetime, existing wireless devices support radio sleep modes.

A generic wireless terminal consists of several circuit building blocks with the RF transceiver

(radio) contributing significantly to the overall energy consumption. The RF transceiver itself con-
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Table 5.1: Switching time and energy consumption of a CC2420 radio

Power mode Switching Switching Current
time(ms) Energy (μJ) Consumption (μA)

Tx 0 0 10000

idle 0.1 1.035 426

power down 1.2 42.3 40

deep sleep 2.4 85.7 0.02

sists of four subblocks. The transmit block that is responsible for modulation and up-conversion (i.e.

transforms the baseband signal to RF), the receive block dedicated to the down-conversion and de-

modulation, the local oscillator that generates the required carrier frequency, and the power amplifier

that amplifies the signal for transmission. Existing wireless devices support radio sleep modes that

turn off specific subblocks, to minimize their energy consumption while inactive. For example, as

shown in Table 5.1 the CC2420 transceiver ([61]) provides three different low power modes. In the

deepest sleep mode, both the oscillator and the voltage regulator are turned off, providing hence the

lowest current draw. However, this comes at the cost of the highest switching energy cost and the

longest switching latency. On the other hand, the idle mode provides a quick and energy inexpen-

sive transition back to the active state, but at the cost of higher current draw and consequently higher

current consumption.

To address this tradeoff, the authors of [62] propose a scheme to dynamically adjust the power

mode according to the traffic conditions in the network. They show that in a low traffic scenario, deep

sleep should be preferred since most of the time the nodes tend to be inactive. In a high traffic setting

though, a ”lighter” sleep mode would be preferable, because frequent mode transitions incur high

delay and energy costs, overshadowing the energy saving due to the low current draw. In a similar

setting, [63] considers optimal scheduling of the sleep periods for the scenario of a mobile receiving

data from a base station. The objective is to derive the sleeping strategy that balances the energy cost

of frequent waking up to check for new packets and the retrieval latency.

In this direction, several energy aware MAC protocols have been proposed, either centralized or

distributed ones, to resolve contention. However, most of them rely on the willingness of the nodes

to comply with the protocol rules. Hence, they are vulnerable to selfish users that may deviate from

the protocol in order to improve their own performance. Game theory comes as the ideal tool to

model interactions among self–interested entities competing for common resources and it has also

been considered recently for medium access.

In [64], the Nash Equilibrium Points (NEP) in a slotted ALOHA system of selfish nodes with

specific quality-of-service requirements are studied. It has been observed that usually selfish behavior

in medium access leads to suboptimal performance. For example, a prisoners dilemma phenomenon

arises among selfish nodes using the generalized slotted Aloha protocols of [65]. A decrease in

system throughput, especially when the workload increases due to the selfish behavior of nodes, has

been observed in [66], [67].

In [70] a random medium access scheme is cast as a non-cooperative game where each node wants
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to maximize an expression of its medium access probability and contention. The proposed scheme

adapts to a continuous contention measure, which is estimated by observing consecutive idle slots

between transmissions, instead of the binary feedback of collision detection. However, it requires

that each node is aware of contention for the decision making and no energy constraints are assumed.

The interplay of medium access contention and energy consumption was considered recently in

[68]. In particular, a scenario of users selecting their back-off control parameters based on the mea-

sured collision rate and their power consumption was considered. Each user attempts to balance

the utility acquired by transmitting and the disutility caused to him due to the induced energy con-

sumption. The existence, uniqueness and stability of the equilibrium points of the arising game were

investigated. In a similar framework and in an attempt to mitigate the effects of selfishness, the au-

thors of [69] study the problem of minimizing the energy consumption for given throughput demands

for a contention MAC. They show that whenever the demands are feasible, there exist exactly two

Nash equilibrium points and derive a greedy mechanism that always converges to the best one.

In this work we introduce an additional level of decision making capturing the ON-OFF strategy

of the terminals over the classic ALOHA game. We model contention for the medium as a game,

where users with specific energy constraints select both the proportion of time that they sleep and

their medium access probabilities. To the best of our knowledge, this is the first work that addresses

the interplay between contention and energy consumption for systems that support sleep modes. The

contributions of this work can be summarized in the following:

• We characterize the throughput optimal strategy under energy constraints, which differs from

traditional Aloha and serves as a reference point. We also provide a distributed counterpart

strategy, which focuses on fairness.

• We formulate contention as a non-cooperative game and show that it has a unique NEP and

bounded Price of Anarchy (PoA). Contrary to the game with no energy constraints, where the

PoA is infinite, we find that energy constraints reduce the negative impact of selfish behaviour.

• Based on the rationality of the users we derive a modified strategy, which allows the users to

observe competition. This policy is more efficient but has multiple NEPs.

The main characteristics of slotted ALOHA are also apparent in most contemporary contention-

based systems, such as the IEEE 802.11. For example, all these systems exhibit a certain amount

of inherent inefficiency; the total throughput in a common channel breaks down significantly, as the

number of users and the message burstiness increase (see [71]). Despite its limited applicability and

mainly due to its simplicity, Aloha remains a tractable insightful tool for studying such systems.

Consequently, our results provide insights for other contention based systems.

5.2 System Model

We consider a communication scenario of N = |N | mobile terminals transmitting to a common des-

tination (e.g. uplink to a Base Station). Time is slotted and within each timeslot each user may select
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Figure 5.1: The structure of a superframe

either to transmit or to stay silent. Medium access is performed probabilistically, according to a slot-

ted Aloha protocol, where a collision occurs whenever two or more terminals transmit concurrently.

Each terminal has always packets at its buffer for transmission (i.e. saturated queue), but it has lim-

ited energy resources. Each device i is characterized by an energy budget ẽi, representing either its

available battery power or the maximum energy it is willing to expend. In order to save energy it can

turn into a sleep mode, where most of the circuits are turned off. For analytical tractability we assume

that each terminal may be in one out of two possible operation modes, ON or OFF.

In general, a mode transition incurs significant energy and time (delay) costs. Besides, due to

hardware limitations the time required for a mode transition is of the order of msec, much larger

than the duration of a timeslot. Consequently, transition at the timeslot level is neither feasible nor

desirable. Hence, we introduce a new timescale (we call it frame) where the mode switching takes

place. Several timeslots constitute a frame. The beginning of each frame is a decision point, where

a node may change its operation mode. Within a frame, the nodes keep their mode fixed and may

access the medium randomly with probability p. This is also assumed fixed on a per frame basis.

For decision reasons and without affecting the operation of the system, we introduce yet another

timescale, that of the super frame, where an arbitrary number of frames, say K, forms a superframe

(Fig. 5.1)

A binary vector qqqi( j) = {0,1}K , represents the ON or OFF state of user i on superframe j, and

pi its access probability (i.e. the access probability is selected only once per superframe). In practice

the mobile terminals are autonomous and due to the limited knowledge available node level, synchro-

nization of sleep modes is a difficult task. On the other hand, probabilistic ON-OFF has been deemed

a feasible strategy ([72]). Thus, we focus on a probabilistic version of the aforementioned problem.

Each user i is characterized by a probability of being ON, denoted with qi and a medium access prob-

ability pi. In matrix notation the strategy space can be written as I = {ppp,qqq}, with ppp = [p1, p2, . . . pN ]

and qqq = [q1,q2, . . .qN ].

If we consider the probability of user i successfully transmitting a packet in an arbitrary slot we

can calculate throughput as

T̄i(ppp,qqq) = piqi ∏
j∈N\i

(1− p jq j)
piqi =1
=

piqi

1− piqi
∏
j∈N

(1− p jq j) (5.1)
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Notice that the throughput of user i is an increasing function of pi and qi, but decreasing in the number

of terminals N contending for the medium. The latter is in compliance with the classic ALOHA, but

in practice also holds for CSMA/CA protocols.

The energy cost of user i is a random variable with a mean value of Ēi(pi,qi) = qi(c1 + c2 pi),

where c1 is the energy consumption while ON and c2 the additional cost imposed by the transmis-

sion. Obviously, in order to transmit, the node has to be ON. Here, we do not consider the energy

consumption of the transition itself.

5.3 The Impact of Constrained Energy Resources on System Through-
put

First, we would like to find the ON–OFF and the medium access probabilities that maximize the

collision–free utilization of the medium, and consequently the throughput of the system. This can be

formally expressed as the following optimization problem:

maximize
I={ppp,qqq}

N

∑
i=1

T̄i(ppp,qqq)

s.t. Ēi(pi,qi)≤ ẽi ∀i

{pi,qi} ∈ [0,1]2 ∀i

(5.2)

The intuitive explanation of the energy constraint is the fact that each battery cycle provides ẽi

resource and thus, the maximum energy constraint is directly mapped to a minimum recharge time

for the mobile. Throughout this chapter, and without loss of generality, we assume that the users are

ordered in decreasing energy budget, i.e. ẽ1 ≥ ẽ2 ≥ . . .≥ ẽN .

5.3.1 Throughput optimal scheduling in energy constrained ALOHA with sleep modes

In the classic ALOHA setting, where no energy constraints exist, the throughput optimal strategy

would be the one that eliminates contention. Thus, if we could force only a single user, say user k,

to access the medium with probability pk = 1 in each frame, we would achieve the maximum total

throughput. In our scenario though, due to the energy constraints, the users may not be able to stay

continuously ON (i.e qk = 1) or to transmit with pk = 1. Then, what is the best way to exploit the

available energy resources? For each user we need to find the portion of energy to spend for staying

ON during the frames and the portion used for transmitting while being ON.

Lemma 5.3.1. Out of all the throughput optimal strategies the most energy efficient ones are of the

form I∗ = {111,aaa} with 111 = [1,1, . . .1] and aaa ∈ [0,1]N. Thus, without loss of optimality we may restrict

the strategy search space only to strategies where the nodes transmit continuously inside any ON

frame.
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Proof. Let Î be a feasible throughput optimal strategy, where {p̂i, q̂i} the strategy of user i. From

eq. 5.1 we may see that throughput depends only on the pq products. Let ai = p̂iq̂i. The strategy

I∗ = {111,aaa} with aaa = [ p̂1q̂1, p̂2q̂2, . . . p̂iq̂i] achieves the optimal throughput, i.e. T̄ (I∗) = T̄
(
Î
)
.

Then, we prove that I∗ is also feasible, as the most energy efficient strategy.

Any other feasible throughput optimal strategy Î can be written as an expression of aaa as {p̂i =
ai

ai+δi
, q̂i = ai +δi}, with 0 < δi ≤ min{1−ai,

ẽi−ai(c1+c2)
c1

}. Thus, regarding the energy efficiency we

have:

Ē
(
Î
)

=
N

∑
i=1

(ai +δi)

(
c1 + c2

ai

ai +δi

)

=
N

∑
i=1

δic1 +ai(c1 + c2) = Ē (I∗)+ c1

N

∑
i=1

δi

> Ē (I∗) .

This completes our proof.

Based on Lemma 5.3.1, the optimization problem described by eq. 5.2 can be simplified to an

expression that depends only on qqq leading to the objective function T̄ (qqq) =
N

∑
i=1

qi ∏
j∈N\i

(1− q j) and

constraints 0≤ qi ≤ q̃i =min
{

ẽi
c1+c2

,1
}

; this can be further simplified into a problem of binary integer

programming.

Lemma 5.3.2. The optimal solution is of the form qqq∗ = bbb∗diag[q̃1, q̃2, . . . q̃N ] where bbb∗ is a binary row

vector.

Proof. The partial derivative of the objective function is given by:

∂ T̄
∂qk

= ∏
j∈N\k

(1−q j)− ∑
j∈N\k

q j ∏
l∈N\{k, j}

(1−ql)

= ∏
j∈N\k

(1−q j)− ∑
j∈N\k

q j

1−q j
∏

l∈N\k
(1−ql)

=

(
1− ∑

j∈N\k

q j

1−q j

)
∏

j∈N\k
(1−q j)

We have thus shown that the sign of the partial derivative with respect to the kth element depends

only in the parameter ∑
j∈N\k

q j

1−q j
. This leads to the following decision making:

qk =

⎧⎨
⎩

q̃k, if ∑
j∈N\k

q j

1−q j
< 1,

0, otherwise.

(5.3)
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Lemma 5.3.3. The optimal solution bbb∗ is of the form bbb∗ = [1,1, . . .1,0,0, . . .0].

Proof. We will prove this by contradiction. Assume that b̃bb = bbb∗, a vector of k ones (i.e. any vector

where the ones are not placed in the first k places), is the throughput optimal binary vector. We can

construct a new vector b̂bb = [1,1, . . .1,0,0, . . .0], which has only the first k users activated and gives

identical throughput, by deriving the ON-OFF vector q̂qq from the corresponding indices of b̃bb. To

construct such a vector we need to move the rightmost 1, say from position l of the initial vector to an

earlier zero position say m with m < l. Based on Lemma 5.3.2, we can show that by fully activating

or deactivating users (i.e. meeting the constraint with equality or setting access probability to zero),

we receive a new schedule bbb∗ = b̂bb and the corresponding qqq∗ of increased throughput. This leads us to

a contradiction regarding the optimality of b̃bb.

Based on the aforementioned lemmas we may derive the centralized Algorithm 4 that yields

the throughput optimal probabilistic strategy and is of linear, in the number of users N, complexity.

The main idea behind this algorithm is that contention may or may not be beneficial, depending on

the energy constraints of the users. Namely, an additional user is useful if and only if the energy

resources of the already active users are not sufficiently large, leaving thus the medium underutilized.

An additional user introduces a gain due to the exploitation of the empty frames, but also a loss, due

to the collisions whenever he is concurrently active within a frame with someone else. If the average

gain is greater than the induced loss, it is beneficial for the system to be enabled.

Algorithm 4 Optimal probabilistic frame scheduling

1: Order users in decreasing ẽi. Without loss of generality,

we reassign the indices such that q̃1 ≥ q̃2 ≥ . . .≥ q̃N

2: qqq ← 000

3: j ← 1

4: while j ≤ N and
j

∑
i=1

qi

1−qi
< 1 do

5: q j ← q̃ j

6: j ← j+1

7: end while

Theorem 5.3.1. Algorithm 4 yields the throughput optimal probabilistic strategy.

Proof. The optimality of 4 comes directly from Lemmas 5.3.1, 5.3.2 and 5.3.3.

Note that this algorithm gives also the throughput optimal scheduling for the constrained version

of the Aloha problem, where each terminal has an individual constraint on its medium access prob-

ability pi. This is a simplified version of the problem considered in this work, where no sleep mode

support exists, i.e. qi = 1.

The algorithm above promotes the k less energy constrained users (0 ≤ k ≤ N depends on actual

constraints) and suppresses the rest. It will only serve as a performance benchmark, since it is a cen-

tralized algorithm that introduces important coordination and fairness issues. In particular, it requires
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extensive coordination among the users and causes extremely unfair treatment of the users of low

energy budget. Thus, in the following sections we develop algorithms that capture the autonomous

nature of the users and fit to the dynamic distributed environments considered here.

5.3.2 A distributed fair algorithm

In order to capture the notion of proportional fairness we substitute the original objective function

with the following: U(ppp,qqq) =
N

∑
i=1

wi log T̄i. The multiplicative factor wi can be used to balance the

throughput among the users of the system at will. For example, the value wi =
ẽi

∑k∈N ẽk
would al-

low us to split the throughput proportionally to the energy budget of the users. By proper refor-

mulation, the objective function can be rewritten as U(ppp,qqq) =
N

∑
i=1

log
[
(piqi)

wi(1− piqi)
1−wi

]
. This

is a separable per user function that leads to a fully distributed implementation, requiring mini-

mal information exchange. Actually the only information required is the value of the total en-

ergy available in the terminals, namely ∑
k∈N

ẽk, information that can be easily acquired. The solu-

tion to this optimization problem, in accordance to Lemma 5.3.1, is of the form I∗ = {111,aaa} with

aaa = [min{w1, q̃1} ,min{w2, q̃2} , . . . ,min{wN , q̃N}].

5.3.3 A modified strategy

Up to now we assumed that each user makes a decision once for his strategy and applies it forever.

As a result, user k whenever active, transmits with pk = 1, independently of the number of active

users within a frame. Thus, whenever two or more users select to transmit within a frame they receive

zero payoff, but consume energy. Based on these observations, a rational player would be expected

to backoff whenever a collision is detected. Although, the terminal is not allowed to switch off in a

crowded frame, due to the switching time overhead incurred, it may reduce its access probability. This

way, it would avoid spending energy on useless transmission that always lead on collisions and could

utilize these savings for pursuing further contention–free frames. Building on this idea we propose

the following modified strategy.

Any active user attempts a transmission within the first timeslot of the current frame. If the

transmission succeeds he selects a medium access probability of pi = 1 and captures the whole frame

successfully. Otherwise he adjusts his strategy, and reduces his transmission probability to p̃i. It can

be shown that this strategy always yields better throughput than the original one. The expressions for

throughput and energy consumption for this case are respectively given by:

T̄i = qi

{
(1− p̃i) ∏

j∈N\i
(1−q j)+ p̃i ∏

j∈N\i
(1− p̃ jq j)

}
(5.4)

Ēi = qi

{
c1 + c2

[
p̃i +(1− p̃i) ∏

j∈N\i
(1−q j)

]}
(5.5)
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Proof. In this approach user i exploits fully each frame where no contention exists and only partially

the ones where competition has been identified. Thus,

T̄i = qi

{
1 ∏

j∈N\i
(1−q j)+ p̃i ∏

j∈N\i
(1− p̃ jq j)− p̃i ∏

j∈N\i
(1−q j)

}
(5.6)

The first term corresponds to the no-contention frames while the second captures the total through-

put derived from empty slots given that the user transmits with probability p̃i. Given that the slots

belonging to an empty frame have been counted twice, we have to remove the third term.

The resulting energy consumption of user i is either due to staying ON or a transmission:

Ēi = qic1 +1qi ∏
j∈N\i

(1−q j)c2 + p̃iqi

[
1− ∏

j∈N\i
(1−q j)

]
c2 (5.7)

The first term is the energy consumed when the terminal is ON, the second corresponds to transmis-

sion cost in empty frames and the last is the energy consumed in frames where competition has been

identified.

The complicated throughput and energy expressions for the modified scenario make the problem

of optimal scheduling analytically intractable. Thus, in order to get insight on the performance of

the modified strategy, we consider a simplified version of the problem by restricting the feasible user

strategies. In particular, we assume that all the users of the system can be classified in one of the

following three groups; the aggressive, the conservative and the passive ones. The former capture

the medium whenever they are active (ON), the second transmit only whenever they sense an empty

frame and the last do not participate at all.

We consider Algorithm 5 that performs a search over the solution subspace. This algorithm is of

exponential complexity and will be used only for comparison purposes. It can be shown that in the

optimal scheduling for our restricted solution space, at least one aggressive and one conservative user

exist. In all the simulation cases that we have tried, this categorization did not to limit the system

performance; nevertheless a formal proof that the optimal solution lies on the restricted subspace

could not be derived.

5.4 Game Theoretic Approach

Previously we derived probabilistic medium access protocols that require coordination of actions of

the users involved. However, in an autonomous setting as the one considered here, individuals may

not comply with the rules imposed by the protocol. Actually, users may exhibit selfish behaviour and

select the strategy that maximizes their own utility, namely their individual throughput, at the expense

of others. Thus, in this section we model the user interaction/contention as a non-cooperative game.

We derive models for both the initial and the modified scenario.
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Algorithm 5 Modified optimal probabilistic frame scheduling

1: Search over B = {A,C,P}, i.e. the set of all the possible partitions of N of size 3, with |A| ≥ 1

and |C| ≥ 1 for the throughput optimal assignment:

2: for all i ∈ A (% aggressive) do
3: {p̃i,qi}= {1,min

{
ẽi

c1+c2
,1
}
}

4: end for
5: for all k ∈ C (% conservative) do
6: {p̃k,qk}=

{
0,min

{
ẽi

c1+c2 ∏ j∈N \k(1−q j)
,1
}}

7: end for
8: for all j ∈ P (% passive) do
9: {p̃ j,q j}= {0,0}

10: end for

A non-cooperative game is defined by a set of players, a set of strategies and a metric that indicates

the preferences of the players over the set of strategies. In our case we have:

• Players: the N users

• Strategies: user’s i set of feasible medium access and ON–OFF probabilities Ii = {pi,qi : Ēi ≤
ẽi and 0 ≤ pi,qi ≤ 1}

• User preferences: represented by a utility function Ui(Ii); peer i prefers strategy Îi to Ii iff

Ui(Îi)>Ui(Ii).

5.4.1 The initial scenario as a non-cooperative game of perfect information

For the initial optimization problem (5.2) the utility function of user i is defined as Ui(Ii) = T̄i =

piqi ∏ j∈N\i(1 − p jq j). It can be easily verified that the throughput maximizing strategy of each

individual is independent of the actions of the other users and comes as the solution of the following

optimization problem:

maximize
Ii={pi,qi}

piqi

s.t. qi(c1 + c2 pi)≤ ẽi

{pi,qi} ∈ [0,1]2

(5.8)

Lemma 5.4.1. The throughput optimal strategy for user i is {pi,qi} =
{

1,min{ ẽi
c1+c2

,1}
}

. The re-

sulting game has a unique Nash Equilibrium Point, described by the strategy I∗ = {111,qqq∗}, with

q∗i =
ẽi

c1+c2
.

Proof. Since the utility is an increasing function of both pi and qi the energy constraint should be

satisfied with equality at the optimum.

The proof is similar in spirit to the one in Lemma 5.3.1. Let {p̂i, q̂i} be the throughput optimal

strategy of user i, with p̂i < 1. From the energy constraint we have q̂i(c1 + c2 p̂i) = ẽi. There exists
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the alternative strategy {ṕi, q́i} = {1, p̂iq̂i} of equivalent utility (individual throughput) but of lower

energy consumption. In particular,

q́i(c1 + c2 ṕi) = q́i(c1 + c2) = q́i(c1 ṕi + c2 ṕi)< ẽi (5.9)

Consequently, there exists δ > 0 such that (q́i+δ )(c1+c2) = ẽi. This strategy {p∗i ,q
∗
i }= {1, q́i+

δ} obviously yields increased utility for the user, which contradicts the user optimality of {p̂i, q̂i} and

completes our proof. The same result can be derived through the KKT conditions.

Given that the optimal strategy of a user is independent of the actions of the other users and is

determined only by his own energy constraint, deriving the resulting NEP is straightforward.

From the above, we may deduce that at the Nash equilibrium point we receive throughput, only

when a single user is ON in a frame. Given the NEP of the game we may quantify the performance

loss arising due to the selfishness of the individuals, by using so called Price of Anarchy (PoA) metric.

This is the ratio of the value of the objective function at the global optimum to its value at the NEP

and in our setting is given by:

PoA =

∑
i∈S

ẽi

c1 + c2
∏

j∈S\i
(1− ẽ j

c1 + c2
)

∑
i∈N

ẽi

c1 + c2
∏

j∈N\i
(1− ẽ j

c1 + c2
)
≥ 1, (5.10)

where S is the set of enabled users at the global optimum.

Whereas in the classic Aloha games the PoA is unbounded, in our energy constrained Aloha

setting the PoA is bounded, since the energy constraints impose a fictitious pricing scheme. The PoA

grows unbounded only when at least two users have unconstrained energy resources. These users

(e.g. power plugged stations) can capture the medium totally and consequently would involuntarily

act as jammers for each other and for all the others, yielding hence zero system throughput.

5.4.2 The modified strategy as a non-cooperative game of perfect information

Here, we consider the game arising from the modified strategy. In this setting, we derive a non–

cooperative game of perfect information, where at each iteration, given the parameters α = ∏
j∈N\i

(1−

q j) and β = ∏
j∈N\i

(1− p̃ jq j) a user selects its best response. By best response we mean that each

user updates his decision variables, so as to maximize its utility function, in response to the others’

actions.

Theorem 5.4.1. The best response strategy of user i is given by:
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p̃i =

{
1, if [c1 + c2α]β > (c1 + c2)α,

0, otherwise.
(5.11)

qi =
ẽi

c1 + c2 [p̃i +(1− p̃i)α]
(5.12)

The arising modified game has multiple NEPs.

Proof. Since the utility is an increasing function of p̃i and qi, the constraint needs to be satisfied with

equality. Thus, we may replace qi from eq. 5.5 into the throughput expression, namely eq. 5.4. Then,

the partial derivative of the objective function is given by the following expression:

∂ T̄
∂ p̃i

= ẽi
[β −α] [c1 + c2α]− c2α[1−α]

{c1 + c2 [p̃i +(1− p̃i)α]}2

= ẽi
[c1 + c2α]β − (c1 + c2)α
{c1 + c2 [p̃i +(1− p̃i)α]}2

The sign of this expression depends only on α = ∏
j∈N\i

(1− q j) and β = ∏
j∈N\i

(1− p̃ jq j). As a

result given the actions of the other users, the objective function is either a strictly increasing or a

strictly decreasing function of p̃i. Thus, the best response strategy of user i is given by eq. 5.12.

5.5 Numerical Results

In order to quantify the throughput performance of the proposed schemes we perform extensive sim-

ulations of a small, easy to follow system. We consider a scenario of N = 5 terminals with energy

constraints given by ẽ = [30,25,15,10,5] and {c1,c2}= {50,70} units. By abusing slightly the def-

inition of PoA, we use the modified optimal as the performance benchmark and for each scheme we

derive the performance ratio metric defined as:

Performance ratioX =
Throughput of modified optimal

Throughput of scheme X
(5.13)

Thus, all the figures depict the performance degradation in comparison to the modified optimal.

Since the modified game has several NEPs we depict the PoA i.e. the ratio of the throughput at the

optimum to the throughput at the worst NEP, the price of stability (PoS) i.e. the ratio of the throughput

at the optimum to the throughput at the best NEP, and the mean performance at the NEPs. Regarding

the initial setting, we depict the performance degradation of the original optimal, the fair approach

and the initial game theoretic scheme.

Initially, we consider how the energy budget of the less energy constrained user affects the

performance of the system as a whole. In Figure 5.2 we see that the additional power budget in-

creases the performance degradation due to the additional collisions caused. The system stabilizes

for ẽ1 = c1+c2, where user 1 has sufficient energy budget to capture medium entirely on his own. We
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Figure 5.2: The throughput performance of the system as an expression of the less energy constrained

user
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Figure 5.3: The throughput performance of the system as the total energy budget of the system in-

creases

notice also that the modified strategy, of backing off whenever a collision is detected, provides sig-

nificant performance benefits. The improvement is becoming more significant as the available energy

budget increases.

In Figure 5.3 we depict the system performance as we relax the energy constraints of every ter-

minal. We start from the energy budget vector of ẽ = [30,25,15,10,5] and increase each dimension

by 5 within each iteration. The x axis refers to the ẽ1 value, whereas the whole vector is given by

ẽ = [ẽ1, ẽ1 −5, ẽ1 −15, ẽ1 −20, ẽ1 −25]. In this scenario, one may notice the benefits that arise from

the coordination among the terminals. The coordinated approaches are robust again the increased

availability of energy, whereas in the game theoretic approaches this leads to an increased number of

collisions, due to the increased aggressiveness of the users.

Next, we consider the impact of the transmission cost c2. We notice in Figure 5.4 that in a

scenario of low energy constraints the increased transmission cost makes the users less aggressive,
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Figure 5.4: The throughput performance of the system as an expression of the transmission cost
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Figure 5.5: The throughput performance of the system an expression of the number N of competing

terminals

leading thus to reduced collisions and consequently the performance gap among the coordinated and

the game theoretic approaches diminishes. Nevertheless, the performance gap of the initial and the

modified strategy remains more than 40% throughout.

Finally, we investigate the impact of the number of competing users on the performance at the

resulting equilibria (Figure 5.5). Starting from a system of only two competing users with energy

constraints ẽ = [5,10] we keep adding in each iteration a single terminal of increasing energy budget.

Thus, newcomer i is characterized by energy constraint ẽi = 5i. As expected the introduction of

additional users increases competition for the medium and leads to more collisions. Consequently,

the performance of the game theoretic approaches deteriorates very fast, whereas the coordinated

approaches exhibit significant robustness.
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5.6 Conclusion

In this chapter we pursued a better understanding of the energy–throughput tradeoff for mobile de-

vices that support sleep modes and operate according to contention medium access schemes. Initially,

we derived the throughput optimal strategy of probabilistic medium access under energy constraints.

Next, in order to capture the autonomous nature of mobile terminals we developed game theoretic

models. Compared to the unconstrained case, we showed that energy constraints reduce contention

and enable better exploitation of the medium.

We observed that due to lack of coordination, distance from the optimal strategy (i.e. PoA)

tends to increase as energy availability increases. In order to counteract this, we developed a simple

modified medium access scheme, where the contention state of the medium can be sampled within

a frame by the competing stations. The modified scheme implicitly coordinates the actions of the

terminals and leads to even better exploitation of the limited energy resources.

In this work, we have assumed non–cooperative games of perfect information. The scenario

where each involved entity has only a subjective belief on its opponents’ strategies is an interesting

topic of future study. Besides, mechanism design could be considered as a means of driving the

system to more efficient equilibrium points, e.g. by penalizing users that exhibit extremely aggressive

behaviour.
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Chapter 6

Energy Efficiency at the Wireless
Network Level: Interference-Aware
Relay Selection and Power Control
Algorithms

In this chapter, we consider an interference-limited wireless network, where multiple energy-constrained

mobile devices form source-destination pairs, communicate over the same channel and compete for a

pool of relay nodes. In an attempt to maximize sum-rate of the system, we address the joint problem

of relay assignment and power control.

Initially, we study the autonomous scenario, where each source greedily selects the strategy (trans-

mission power and relay) that maximizes its individual rate, leading to a simple one-shot algorithm

of linear complexity. Then, we propose a more sophisticated algorithm of polynomial complexity

that is amenable to distributed implementation through appropriate message passing. We evaluate the

sum-rate performance of the proposed algorithms and derive conditions for optimality.

We also provide guidelines on how our algorithms can be applied in 4G OFDMA systems. Our

schemes incorporate two of the basic features of the LTE-Advanced broadband cellular system,

namely interference management and relaying.

6.1 Introduction to Cooperative Communications

Cooperative communications exploit the broadcast nature of the wireless medium by using interme-

diate nodes as relays. Thus, a virtual Multiple Input Multiple Output (MIMO) system is formed,

realizing the benefits of spatial diversity even when each node is equipped with a single transceiver

[73].

In infrastructure-based wireless networks, strategically placed relays are part of the network in-

frastructure. Relays are generally used to extend coverage and enhance throughput with minimum
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deployment cost. Although multihop communications require additional radio resources (frequency

channels or time slots), relaying reduces the path loss significantly, by shortening the propagation

path. This gain is maximized whenever a non line-of-sight (NLOS) path from a transmitter to the

intended receiver is split, through an intermediate relay, into two line-of-sight (LOS) links. The

relay nodes also create diverse paths that mitigate the effects of fading during the transmission of

data from the source to destination. Finally, relaying may also increase capacity by enabling spatial

reuse, allowing thus multiple transmissions to take place simultaneously in the same frequency/time

slot throughout a cell, as shown in [74]. However, in such scenarios interference management is of

crucial importance.

In this work, we consider the interference-limited environment that arises when multiple unicast

communications take place over the same physical channel. Our network consists of communicating

sources and destinations and idle nodes that may serve as relays. In this setting, we study relay se-

lection and power control as the main mechanisms of achieving the maximum sum-rate performance

for the system. We derive easy to implement heuristic algorithms that require minimal information

exchange. The proposed algorithms are ideal for scenarios where the resource allocation decisions

need to be made fast e.g. due to rapidly changing channel conditions. We also derive algorithms of

polynomial complexity that coordinate the actions of the terminals and exhibit near optimal perfor-

mance.

The difficulty of the problem under consideration lies on the following:

i. Interference couples relay selection and power control.

ii. Due to interference, the selected transmission power of any single device affects all the others

iii. The first and second hop transmission rates are coupled, since the achievable rate of the bottle-

neck link determines the maximum end-to-end rate.

In order to deal with these challenges, first we assume that each source is agnostic of relays,

i.e. transmits without knowing whether a relay will be used to assist its transmission. Since rate is

an increasing function of transmission power, everyone is expected to transmit at maximum power

to achieve the maximum individual rate. However, later we relax this assumption, by introducing a

protocol that allows sources and relays to coordinate their actions in an attempt to improve the total

rate of the system.

The contributions of this work are the following:

1. We develop lightweight resource allocation algorithms (of at most polynomial complexity),

amenable to distributed implementation and applicable to any relay assisted network (from

ad-hoc to infrastructure-based ones) and any relaying strategy.

2. We derive conditions for the optimality of the proposed algorithms and characterize their impact

on the sum-rate performance of the system.

3. We present a case study for the LTE-Advanced system, indicating the applicability of our pro-

posed algorithms and the performance benefits derived.
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This chapter is organized as follows. Section 6.2 provides an overview of existing works in

the field. In Section 6.3 we present our system model and the assumptions made. In Section 6.4

we describe our relay selection and power control algorithms and derive conditions for optimality.

Section 6.5 describes how our proposed algorithms can be applied in the LTE-Advanced framework.

Numerical results quantifying the performance of our proposed schemes are presented in Section 6.6

for an interference-limited ad-hoc network and an LTE-Advanced scenario. Section 6.7 concludes

our study.

6.2 Related Work

Several relaying strategies have been proposed with Amplify and Forward (AaF) and Decode and For-

ward (DaF) being the most common ones [75]. In the former, the relay acts as a repeater, amplifying

the received signal (noise included) in the analog domain, whereas in DaF the relay decodes the re-

ceived signal, re-encodes it and forwards it to the destination. Regardless of the strategy applied, the

performance of cooperative communications highly depends on the allocation of network resources,

namely the relay assignment and power control at transmitter side.

In this direction, the authors of [76] propose an iterative relay selection algorithm with a max-min

fairness objective, where out of the relays that lead to improved minimum capacity, the best one is

selected. After some iterations of reassignments, the proposed algorithm converges to the optimal

assignment. In [77] the problems of relay selection and power allocation are modeled as auctions,

where each user makes best response bids in an attempt to maximize its utility and the relay allocates

its transmission power according to the bids. This leads to a distributed algorithm that converges to a

Nash equilibrium point. The same resource allocation problem is modeled as a Stackelberg game in

[78], where sources are the buyers and relays serve as sellers. A relative problem, that of scheduling

users over multiple OFDM carriers in relay-enabled networks, is addressed in [79].

The significance of relay selection is indicated by the recent interest of the research community in

relaying for next generation wireless systems. A practical system that benefits from the introduction

of relay nodes is the 802.16j that was recently finalized in [80]. Besides, LTE-Advanced and IEEE

802.16m (under development [81, 82]) consider the use of relays so as to meet the 4G performance

requirements described by IMT-Advanced, especially for users located close to the cell edge. All

these systems are based on orthogonal frequency division multiple access (OFDMA) schemes for the

downlink, mitigating thus the effects of intersymbol interference (ISI) and providing robustness to

frequency selective fading.

A scenario of a single 802.16 cell consisting of a Base Station (BS), several infrastructure Relay

Stations (RS) and Mobile Stations (MS) uniformly distributed within a cell is considered in [83]. The

authors of this paper show that in the downlink, when the relays operate in transparent mode, i.e. just

forward data but take no synchronization or control decisions, significant throughput improvement

appears only for the half of the cell coverage area. In a similar setting [84] quantifies the tradeoff

between coverage extension and capacity increase that relays can offer through spatial reuse.
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Most of the works in the field of cooperative communications assume that the transmissions take

place over orthogonal channels. In TDMA, OFDMA and CDMA for example, interference is caused

only by transmitters using the same time slot, frequency channel and spreading code respectively.

However, due to the scarcity of channel resources, in an attempt to improve spectrum efficiency, fre-

quency reuse is very common in practice. For example, in cellular systems neighboring cells tend

to use the same channels. Most existing works either consider this interference negligible or handle

it as noise. Strong interference may appear though, whenever adjacent cells transmit over the same

time/frequency to users located almost in the same location. The impact of interference becomes even

more significant when the coverage areas of neighboring BSs overlap. In such cases proper interfer-

ence management is of crucial importance, requires though extensive cooperation among the BSs for

the relay selection and frequency allocation. The most straightforward way to tackle interference is

transmission power control.

It was only recently that the standardization committees recognized inter-cell interference as one

of the primary limiting factors of the performance of current cellular systems and set interference

management as one of the major research directions for the next generation communication systems.

In this direction, the authors of [85] propose a heuristic power allocation scheme, where each relay

selects its power so as to achieve a minimum bit error requirement and minimize the interference

caused. Work [86] investigates the performance of several emerging half-duplex relay strategies

in interference-limited cellular systems. In [87] a message passing based algorithm for distributed

power control and scheduling in a line network is proposed and is shown to be optimal for the K-hop

interference model.

6.3 System Model

We consider a wireless network of N sources, N destinations and K intermediate nodes. The latter

are not communicating within the time of interest and hence can serve as relays for the active com-

munication pairs. All nodes are arbitrarily located in a plane. We denote with S = {S1,S2, . . .SN} the

set of sources, D = {D1,D2, . . .DN} the set of destination nodes and R = {R1,R2, . . .RK} the set of

potential relays. Sets S, R and D are disjoint sets. We consider only point-to-point (unicast) com-

munications with {Si,Di} defining communication pair i. Each source has always queued packets

to transmit to the corresponding receiver and may transmit them either directly to the destination or

through a relay. All the transmissions take place in the same frequency channel and thus interference

has to be taken into consideration.

Each node has a single transceiver and consequently, simultaneous transmission and reception

is not feasible. Thus, communication is half-duplex i.e. each frame consists of two timeslots of

fixed and equal duration of T/2 time units each. In the first slot, the sources transmit and the relays

overhear the transmission. During the second one, each relay forwards the received signal to the

proper destination. Here, for simplicity we assume that the two timeslots are of equal duration.

Another option would be to set the relative duration of the timeslots, such that for each Source-Relay-
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Figure 6.1: A network of N = 3 communication pairs and K = 2 relays

Destination link, equal amount of information is transferred through the two hops. However, such

a scheme would require extensive coordination among the transmitters in order to synchronize their

transmissions. An analysis of the scenario of unequal timeslots is presented in [88], but for the case

of orthogonal channels, where no interference exists.

We use GGG, HHH and QQQ to denote the source-relay, relay-destination and source-destination channel

gain matrices respectively. For example, element GSiRk captures fading, path loss and antenna gains

of the link between nodes Si and Rk. We assume that the transmission frame length is small compared

to the channel coherence time and as a result all channel gains can be considered fixed during the time

of interest. We depict in Fig. 6.1 an indicative such network.

In this general setting, we would like to find the assignment aaa = [a1,a2, . . . ,aN ]
T of the relays

to the sources and the transmission power of the sources pppS = [pS1
, pS2

, . . . , pSN ]
T and the relays

pppR = [pR1
, pR2

, . . . , pRK ]
T that maximize the end-to-end rate of the system. We assume a maximum

transmission power constraint for each transmitter. Without loss of generality, we assume that all

nodes are characterized by the same maximum transmission power pmax and the assignments are

described by:

ai =

{
Rk, if relay Rk is assigned to source Si

0, no relay assigned (direct transmission).
(6.1)

We mention here that we do not consider the scenario where multiple relays assist a single source.

Nevertheless, we allow the same relay to be assigned to more than one sources. In this case some

form of scheduling is required.

Our ultimate objective can be formally written as
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maximize
pppS,pppR,aaa

∑
i∈S

rai
Si

s.t. 0 ≤ pSi ≤ pmax ∀Si ∈ S
0 ≤ pR j ≤ pmax ∀R j ∈R.

(6.2)

The expression of rai
Si

, the end-to-end rate of source node Si assisted by relay ai, depends also on

the strategy that the relay applies, with Decode and Forward (DaF), Amplify and Forward (AaF) and

Compress and Forward (CaF) being the most common ones. Regardless of the strategy used, the rate

is an expression of the following form:

rai
Si
= f (SINRSiDi ,SINRSiai ,SINRaiDi). (6.3)

We use the notation Kab to denote a parameter K referring to link a → b, where a is the transmitter

and b the receiver. Thus, the signal to interference ratio (SINR) at relay ai, when it decodes the

transmission of source Si is denoted as SINRSiai and is given by:

SINRSiai =
GSiai pSi

∑
l∈S\Si

Glai pl +σ2
ai

, (6.4)

where σ2
ai

is the variance of the zero mean noise in the receiver of the relay. Obviously, if no relay is

used, the achievable rate depends only on the SINR of the direct link, i.e. the first term of (6.3).

In this work, we mainly focus on a DaF scenario where only the sources transmit within the first

timeslot. Then, each relay decodes the signal and re-encodes it. Within the second timeslot only the

relays transmit, forwarding the signal to the respective destination. In the end, each destination has to

retrieve the transmitted information out of the received signal. We assume that a destination decodes

either the signal received from the respective relay or the direct signal, if no relay is used, leading to

the following end-to-end rate expression:

rai
Si

= max
{

r0
Si
,min{rSiai ,raiDi}

}
(6.5)

=
W
2

log2

(
1+max

{
SINRSiDi ,min{SINRSiai ,SINRaiDi}

})
,

where W is the channel bandwidth. Here, we have assumed that the sources transmit only during the

first timeslot, leaving hence the second one for the relay transmissions, which results to the 1/2 factor.

However, this assumption may be easily relaxed. In order to improve the achievable decoding rate at

the destination, but at the cost of increased complexity, maximal ratio combining can be applied at

the receiver similarly to [75, 76]. If no relay is used, the destination will decode the signal coming

directly from the source, or the combination of signals received from the respective source and relay
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otherwise. Then, the achievable rate would be:

rai
Si
=

W
2

log2

(
1+max

{
SINRSiDi ,min{SINRSiai ,SINRSiDi +SINRaiDi}

})
. (6.6)

6.4 Relay Assignment and Power Control in Interference-limited Envi-
ronments

In order to solve the optimization problem (6.2), we need to calculate the transmission powers at

the sources and the relays, and the relay assignment that maximize the system-wide sum-rate perfor-

mance. These two problems are strongly coupled, since the optimality of a relay assignment depends

on the selected transmission powers and vice versa. Consequently, solving it even in a centralized

way is particularly challenging. Initially, we decouple these two operations, by solving the two prob-

lems in an iterative way, i.e. for a given an transmission power allocation we derive the optimal relay

assignment and then we derive optimal power allocation for the resulting assignment.

Given others’ powers, the rate of a node is an increasing function of its transmission power.

Hence, a natural starting point is to assume that all sources transmit at maximum power in an attempt

to maximize their individual rate. We also consider fully cooperative relays, that transmit at maximum

power in order to forward the signals to the destinations. Since we do not consider any power budget

constraints, which would restrict the willingness of the relays to forward messages in order to save

energy. Thus, the initial power allocation is ppp0
S = ppp0

R = pmax.

6.4.1 The relay selection problem

If we assume full Channel State Information (CSI) at the transmitter, the problem of finding the op-

timal relay assignment is of exponential in the number of sources complexity, namely O
(
(K +1)N

)
,

since each source has K +1 choices, either to transmit through one of the K relays or directly to the

destination. However, any schedule, where a relay is assigned to more than one sources cannot be

sum-rate optimal.

Remark 6.4.1. The sum-rate optimal assignment is a matching from the set of sources S to the set of

relays R.

Proof. We will prove this by contradiction. Assume that the sum-rate r̃ achieved by an assignment

where more than one sources, say {S1,S2, . . . ,Sl} use the relay Rk is optimal. Since each relay has

a single transceiver and operates over a specific channel a time sharing schedule has to be applied.

Given the randomness of the channel gains the probability that any two of these sources achieve equal

rates, i.e. rRk
Si

= rRk
S j

is zero. As a result the rates are ordered, with say rRk
Si

having the largest value.

Thus, if instead of having the relay being shared by all these sources, we assign it to user Si we get

a r∗ > r̃. Consequently no assignment, where a relay is assigned to more than one sources, can be

sum-rate optimal .
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This way the complexity of the problem is reduced, but remains exponential. In this work we aim

to develop distributed protocols that can guarantee near optimal performance in at most polynomial

time.

From the rate expressions above, we notice that even under full CSI at the transmitter, the sources

are ignorant of the CSI of the second hop, and consequently cannot identify whether using a relay is

beneficial. However, they can exclude some relays, which compared to direct transmission cannot of-

fer any rate improvement. Generally, each source Si is able to categorize relays in two sets, namely the

bad ones BSi = {Rk : SINRSiDi ≥ SINRSiRk} and the unknown ones USi = {Rk : SINRSiDi < SINRSiRk}.

The first one includes all the relays, which cannot improve the performance of source Si, whereas no

decision can be made a priori for the relays in the latter one, since the achievable rate depends also

on second hop parameters. As a result, each source has to make a guess on which relay may offer the

maximum rate. In this direction, we devise the following alternatives.

One-shot greedy algorithm

Each source greedily selects the relay that is expected to maximize its own rate. That is, assuming

full CSI at each source for its links to the relays, the source selects out of USi the relay that has the

best first hop performance, or none if USi = /0. This relay selection can be formally described as:

ai = arg max
k∈{R∪0}

r̂k
Si

= argmax
k∈R

{SINRSiDi ,SINRSik} (6.7)

We use the hat to denote that this is an estimation of the actual achievable rate, based only on the

first hop. Whenever a relay k is selected by two or more sources, since a relay within one timeslot

cannot decode and forward more than one signal (see previous remark), it will forward the one that

achieves the best rate, i.e. the strongest signal.

This myopic relay selection approach is of linear complexity and is expected to yield suboptimal

assignments, whenever the performance of the second hop is the limiting factor. Due to lack of

coordination this scheme may also yield suboptimal assignments even if all first hop channels are

worse than the corresponding second hop ones. Since each source Si either uses its best candidate

relay out of USi or none (direct transmission to the destination), whenever a relay is selected by two

or more sources, useful relays may remain unassigned and the diversity gain is not fully exploited.

Remark 6.4.2. Whenever i) the achievable rates in the first hop links are smaller than the corre-

sponding second hop ones (i.e. the first hop is the bottleneck) for all the communication pairs, and

ii) the greedy algorithm returns an assignment where no relay is selected by more than one source,

this is the optimal assignment. In this case the optimal assignment is a maximum matching of size |S|
from the set of sources S to the set R∪D.

Other possible strategies that we do not consider in this work are either the unassigned sources
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Figure 6.2: The bipartite graph that we use to model the relay assignment as a MWM problem

not to transmit at all or the unassigned sources by using a marking mechanism to select the best out

of the remaining relays through subsequent rounds. Alternatively, relays could decide on their own

which signal to forward.

In the proposed approach each source acts for itself and no coordination of actions exists. Next,

we propose an alternative algorithm that enforces the cooperation of the nodes through appropriate

message exchanges.

Bipartite Maximum Weighted Matching (MWM) approach

The relay selection problem can be mapped into the problem of finding the maximum weighted

matching in a properly constructed complete bipartite graph G = {S,R,E}, as the one shown in

Fig. 6.2, where the weights of the edges are given by wSiRk = rRk
Si

. If the interference in the receiver of

each link is known, then these weights can be easily calculated.

As previously mentioned, we assume that each node selects its transmission power without con-

sidering the interference it causes. Then, interference in the first hop can be easily estimated through

appropriate pilot transmissions. However, the interference in the second hop cannot be known a pri-

ori, since it depends on which relays will be selected to forward data. Thus, interference at each

destination cannot be estimated prior to the relay assignment. Besides, without an estimation of in-

terference we cannot calculate the achievable rate in the second hop. To overcome this, we adopt a

conservative approach and assume that in the optimal assignment all the relays are used. Notice that

this approach may lead to an overestimation of actual interference.

Under this assumption, the distributed algorithm of [89] can be applied to find the maximum

weighted matching. The relays and the sources exchange messages and finally after O
(

max(N,K)
)

iterations we converge to the optimal assignment. However, this algorithm has some limitations that

should be taken into account. First of all, it works only on balanced bipartite graphs. Thus, in order to

turn our graph into a balanced one, we need to introduce |N −K| virtual nodes, either on the left side

(virtual sources) with zero weights, if N < K, or on the right side (virtual relays) of the graph with
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wSiRk = r0
Si

otherwise. Secondly, it converges only when the maximum weighted matching is unique.

To guarantee this, we have to add infinitesimal random values εi (disturbances) into the weight of

each link, making thus any previously equally weighted matchings, ordered.

Next, we derive conditions for the optimality of the MWM algorithm.

Remark 6.4.3. With high probability, i.e. with probability going to 1 as the number of sources over

the number of relays goes to infinity ( N
K → ∞), our MWM algorithm finds the optimal assignment.

Proof. Whenever in the optimal assignment every relay is assigned to a source, all the relays will

eventually transmit. Consequently, the interference estimation that we made for the second hop will

be accurate and the MWM will return the optimal assignment. As N
K → ∞ every source can find a

relay to improve its rate performance leading thus to a perfect matching.

Starting from the initial power allocation ppp0
S, ppp0

R, these algorithms can find an assignment of

the available relays to the sources. Given this, we may then modify the transmission powers of the

sources and the relays in an attempt to maximize the sum-rate. In the following section we propose

two alternatives for the power control part.

6.4.2 The power control problem

Given relay assignment aaa, we have to find the optimal transmission powers for the sources and the

relays. In this direction, we propose heuristic power control that attempts to equalize the rates of the

first and the second hop and one based on high-SINR approximation.

Rate equalization algorithm (Req)

In our setting, we have two apparently independent steps of power control, one in the first and one

in the second hop. Nevertheless, they are coupled, since the rate of both hops have to be equal. If

rSiai > raiDi , the relay cannot forward the data to the destination at the rate they are transmitted by the

source. Thus, we say that for this transmission pair the 1st hop is the bottleneck link. On the other

hand, if rSiai < raiDi , the transmission rate of the relay cannot be fully utilized, leading to a bottleneck

in the second hop.

As a result, for the given relay assignment and starting from initial power vectors ppp0
S, ppp0

R, sources

and relays should iteratively update their transmission powers to match the rate of the other hop.

However, since increasing the transmission power, also increases interference, something that may

lead us to worse sum-rate performance, the rate equalization process should be applied only in the

non-bottleneck links, leading the transmitters to reduce their transmission power. That is, for each

source-relay assignment where rSiai > raiDi source Si will reduce its transmission power to match the

rate of the second hop. Otherwise, the corresponding relay will have to reduce its transmission power.

The proposed heuristic for each communication pair is formally described in Algorithm 6.

If we apply this iteratively and since power adaptation is always a power reduction we get a

contraction mapping and convergence to a stationary point is guaranteed.
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Algorithm 6 Rate equalization step for communication pair i
if rSiai ≥ raiDi then

pt+1
Si

= y such that rSiai(y) = raiDi(pppt
R)

else
pt+1

ai
= z such that raiDi(z) = rSiai(pppt

S)
end if

Joint source and relay power control algorithm (JsrPC)

The problem of sum-rate maximization through power control has been extensively studied for single

hop networks. Although it has not been solved yet due to its nonconvex nature, several approxima-

tions have been proposed. The authors of [90] proposed the approximation log(1+SINR) ≈ SINR

for the low SINR regime. On the other hand, in [91] a distributed algorithm that converges geometri-

cally fast was proposed for the power control in the high SINR regime, based on the approximation

log(1+SINR)≈ logSINR.

In our two-hop scenario the rates of the first and the second hop have to be equal. Thus, we may

modify the aforementioned algorithms by incorporating the additional constraint rSiai = raiDi for each

communication pair i. To achieve this we may apply unconstrained power control on either hop, say

the second one, and then a constrained one on the other. If we apply the unconstrained power control

in the relay hop in timeslot t, the transmission powers of the sources for the high SINR regime will

be given by:

pt+1
Si

= min

{⎛⎜⎜⎝ ∑
k∈S\Si

GSiak

∑
l∈S\Sk

GSlak pt
Sl
+σ2

ak

⎞
⎟⎟⎠

−1

, y such that rSiai(y) = raiDi(pppt
R), pmax

}
(6.8)

Here, the first term corresponds to the actual control of transmission power as described in [91].

The second term corresponds to the constraint introduced by the fact that increasing the rate of the

source-relay link beyond the rate of the relay-destination link is meaningless. This is actually an

incorporation of the Req algorithm (see Algorithm 6). The third term corresponds to the physical

limitation of maximum transmission power pmax that we assumed for every node of the system.

Next, we derive conditions for the optimality of the JsrPC algorithm.

Remark 6.4.4. In the high SINR regime (i.e. SINR>> 1) the JsrPC algorithm yields the optimal

power allocation whenever the bottleneck is in the same hop for all the communication pairs.

Any combination of the aforementioned algorithms along with some control messages can lead

to the design of distributed protocols of at most polynomial complexity.
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Figure 6.3: The cellular structure of an LTE-Advanced system

6.5 Relay Selection and Power Control in the context of LTE-Advanced

The cellular downlink (uplink) communication scenario, where all the logical transmitters (receivers)

reside in the same physical entity, namely the Base Station, comes as a special case of the previously

described system model. In this section we focus on the downlink of the upcoming LTE-Advanced

system. Such a system is depicted in Fig. 6.3.

Cellular relay-assisted networks can be thought of as a multilevel hierarchical tree structure. The

BS lies at the highest level, being the root, the RSs are organized in the intermediate levels and the

MSs are the leaves. Thus, each downlink communication can be represented as a top-down path

starting from the root, whereas the uplink takes place the reverse way. Here, we consider a two-hop

downlink scenario consisting only of a single level of relays, which is also the case for LTE-Advanced.

Nevertheless, the analysis performed here can be easily extended to the uplink.

In contrast to the generic scenario described earlier, here relays are infrastructure nodes, strategi-

cally placed, either to serve cell edge users or in places where coverage holes appear, and much fewer

in number than the MSs. Besides, since communications within a cell take place over orthogonal

subcarriers, only inter-cell interference is apparent. Thus, now each BS has to decide how to assign

the relays to the MSs, and how to allocate the subcarriers to the communication pairs.

From the point of view of the BS, it is easily deduced that in order to maximize the downlink

throughput of the cell, it will allocate all the available subcarriers. Thus, for the first timeslot the BS

has to assign every single subcarrier to a receiver, which may be either an RS or an MS. If we assume

that the subcarrier allocation is performed in an end-to-end path basis, i.e. the subcarriers used in the

first timeslot for communication with relay Rk, are used in the second timeslot only by the same relay

for transmission to the corresponding MS, the problem of relay selection and power control for each

subcarrier can be mapped to our original problem.

If we focus on a single subcarrier, the sources of interference are the transmitters of the adjacent

cells that use the same subcarrier, namely BSs during the first hop and either BSs and / or relays
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Figure 6.4: A cellular system of 7 cells, with the central one having N = 3 mobiles and K = 2 relays

during the second hop. Besides, in this setting no contention for the available relays exists among the

BSs, since each one can only use the relays within its cell. In other words for each BSi there exists a

set of relays Ri that can be used, but all these are disjoint sets. A representation of this structure for a

single subcarrier, the SC1, is shown in Fig. 6.4. From this figure it is obvious that for each subcarrier

and each BS a proper bipartite graph like the one depicted in Fig. 6.2 can be created . Then, the relay

selection algorithms of the previous section can be directly applied in this graph. The proposed power

control algorithms are also directly applicable to this new setting, with the only difference being the

sources of interference. However, in the cellular networks all the resource allocation decisions are

made by the BS. Thus, the distributed versions developed earlier are needless. Instead centralized

approaches should be applied like the well known Hungarian algorithm for MWM [92].

We saw earlier that in order to maximize the benefits of cooperative communications, the source

(the BS in our case) has to be aware of the physical layer conditions for the BS-RS, BS-MS and

RS-MS links. In LTE-Advanced such information can be acquired through the CSI-reference signals

(CSI-RS), which estimate the condition of a channel and assist the beamforming and scheduling deci-

sions. CSI-RSs are transmitted in every kth subframe, with k being configurable. In our scenario the

BS needs also to know the interference caused by the adjacent cells. This can be realized through the

Relative Narrowband TX Power (RNTP) indicator, which is transmitted by each BS to its neighbors

through the X2 interface.
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6.6 Numerical Results

In this section we present some simulation results for the generic scenario of an interference-limited

ad-hoc network. We also simulate a cellular network, similar to the upcoming LTE-Advanced, in

order to get some insight on the relative performance of the proposed schemes.

6.6.1 The generic scenario

For the following simulations we assume a specific number of nodes, uniformly distributed over a

given q×q square area. We use the channel gain function

GSiRk(dSiRk) = [max(dSiRk ,d0)]
−β , (6.9)

where dSiRk denotes the distance of Si and Rk, and d0 the radius around the transmitter where unit gain

is assumed to hold. In the following experiments we assume d0 = 1,a path loss coefficient of β = 2,

maximum power (pmax) and bandwidth (W ) equal to 1 and white Gaussian noise (AWGN) of zero

mean and variance 0.01.

In an attempt to quantify the performance loss due to the decoupling of relay selection and power

control, we first consider a simple motivating example of two communication pairs and one relay,

all randomly located within a square. For such a small network we can also derive the joint relay

selection and power control optimal solution. In Fig. 6.5(a) we depict the impact of side length

q on the sum-rate performance of the system. As side length q increases, the average distance of

any two nodes increases and transmissions experience higher path loss. As expected the polynomial

approach performs significantly better than the lower-complexity greedy approach. Generally though,

all proposed schemes outperform the option of direct transmission.

In such a simple network, relay assignment is quite trivial, leading thus to identical sum-rate

performance for the greedy and the MWM approach. Furthermore, applying the Req algorithm has

no significant impact, since no interference exists in the second timeslot. On the other hand, applying

the JsrPC algorithm, which combines the MWM relay selection with power control the performance

is improved towards the optimum solution, especially for small distances where the gain from the

interference mitigation is more significant.

However, in the previous setting, at least for small distances the interference is significant, making

the assumption of high SINR regime not valid. Thus, we consider a high SINR scenario where the

two communication pairs lie on the vertices of a square and the relay is randomly placed within

the square. In Fig. 6.5(b) we depict the impact of side length q, i.e. the distance separating the

two communication pairs. As expected here the proposed algorithms perform significantly better,

exhibiting near optimal performance. We mention that all the values depicted are mean values of at

least 1000 simulation runs.

In order to demonstrate scalability of the proposed algorithms, we consider larger scale random

topologies consisting of N = 15 sources. We investigate the impact of the number of relays K on

performance. We expect that up to a point as the number of available relays increases, better sum-rate
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Figure 6.5: Sum-rate performance (for different SINR regimes) vs. Side length q of the square area
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Figure 6.6: Sum-rate performance for 15 sources inside a square of side length q vs. Number of

Relays K

performance can be achieved. However, this is not always the case for our algorithms.

The greedy approach makes a myopic decision based only on the first hop. On the other hand,

MWM relay selection overestimates interference in the second hop, when the optimal assignment

leaves some relays unused. Thus, we expect worse performance as the number of relays K gets larger

than N, something evident in Fig. 6.6(a). Here, the small side length q maximizes the impact of in-

terference overestimation, because the redundant terms have large values (due to high channel gains).

Nevertheless, compared to direct–transmissions, it is evident that our relay selection algorithms ex-

ploit the benefits of cooperative diversity. Furthermore, the proposed power control schemes improve

the achievable sum-rate in general. However, since all transmissions take place in the same channel,

and we are considering a dense network, we lie in the extremely low SINR regime, where the JsrPC

provides only marginal benefits.

In Fig. 6.6(b) we increase the side length q, which also causes path-loss to increase. Here, we
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Figure 6.7: The impact of number of relays K on sum-rate performance of 20 mobiles located in a

cell

observe that the performance benefit from relaying becomes more significant. Besides, this leads

us to an environment of less interference, where the power control algorithms perform significantly

better. Through proper relay selection and power control the achievable sum-rate gain approaches

100%. Finally, here increasing the number of available relays does not degrade performance losses,

since due to increased pathloss most of the relays are beneficial.

6.6.2 The LTE-Advanced scenario

In this section, we study the applicability of the proposed algorithms on a LTE-Advanced scenario.

We consider a system of 7 cells, one located in the center and its six direct neighbors, as the one

depivted in Fig. 6.3. Each cell has a radius of 3km, the RSs are deterministically placed in a distance

of 1.5km from the BS, so that cell edge users benefit the most and 20 MSs are randomly placed within

each cell.

Given that OFDM is used in the downlink of LTE-Advanced, interference is only apparent from

neighboring cells. We consider a system of 32 data subcarriers sharing a total bandwidth of 5 Mhz.

Here, we assume LOS paths for the BS-RS, and the RS-MS communications. This is a logical as-

sumption, since usually infrastructure relays are placed on the rooftops of high buildings. On the

other hand, we consider NLOS path loss for the BS-MS links. We also assume lognormal shadow-

ing. The NLOS model that we use is given by 36.5+23.5log10 d + χNLOS, where χNLOS ∼N (0,8),

χLOS ∼ N (0,3.4) in dB, and d denoting the distance between the transmitter and the receiver in

meters.

Under this model we study the sum-rate performance of the central cell. The neighboring cells

not only serve as sources of interference, but also participate in the power control updates. Fig. 6.7

shows the performance of our proposed algorithms as a function of the number of available relays in

the cell. The first thing one may notice is that in the cellular setting the proposed algorithms perform

much better. This can be justified by the fact that in LTE-Advanced interference experienced by the
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receivers is in general some orders of magnitude smaller than the actual signal. Besides, the scenario

considered here incorporates the benefits arising from the transformation of a NLOS link into two

LOS ones through relaying. Thus, the sum-rate performance of the cell is improved significantly.

Concluding we could say that all the remarks made for the interference limited scenario also hold

here, but now the environment is less demanding (lower interference, higher transmission powers

etc.).

6.7 Conclusion

In this chapter, we investigated the interaction of relay selection and power control in interference-

limited networks. We developed easy to implement distributed algorithms of at most polynomial

complexity that are applicable to any type of relay assisted wireless systems and offer significant

improvement in the sum-rate performance. We also demonstrated that our algorithms meet the objec-

tives of interference management and relaying exploitation of 4G wireless systems.

Throughout this work we have assumed that the system parameters do not change within the time

of interest. It would be interesting though to derive online versions of the proposed schemes that

capture the dynamic scenario of nodes entering or leaving the system or time-varying channels. In

this case, instead of solving the problem from scratch, online matching schemes like the one proposed

in [93, 94] can be used.

95

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 19:09:18 EEST - 3.143.22.156



96

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 19:09:18 EEST - 3.143.22.156



Chapter 7

Conclusions and Future Work

7.1 Summary of Contributions

This thesis explores the challenges that arise from limited availability of energy resources at device,

system and community level. On the one hand, we considered ways to improve the energy efficiency

of the power grid itself. On the other hand, we devised resource allocation schemes that optimally

exploit the limited energy resources of mobile devices and we investigated the impact of energy

constraints on performance of networked systems.

7.1.1 Smart grid

Initially, we explored the potential of dynamic pricing towards a less costly and more stable power

grid. We proposed a day-ahead DR mechanism that captures both the price setting strategy of the

operator and the response of home users. Our negotiation-based scheme enables an accurate pre-

diction of the demand distribution for the following day and hence utility operator can efficiently

apply economic dispatch even in presence of DR. We showed that properly designed pricing mecha-

nisms align the seemingly contradictory interests of the cost minimizing operator and self-interested

home-users. Our realistic numerical evaluation provides ample evidence that existing works tend to

overestimate DR benefits and provide only limited incentives to end-users. This partially justifies the

limited penetration of DR schemes in the residential sector.

Due to the large number of home users and the negligible impact of each of them on the DR

market, we introduced a new market entity, the aggregator, that represents a set of home users in the

negotiations with the utility operator. In this direction, we devised a hierarchical DR market model for

the smart grid where aggregators compensate end-users to modify their demand pattern, and compete

with each other to resell DR services to the utility operator. Our numerical analysis showed that

DR benefits are maximized when the utility is non-profit, which is consistent with the current trend

in electricity market restructuring. Interestingly though, in such a hierarchical market the utility of

the end-users is not a monotonously increasing function of elasticity, which indicates that truthful

reporting may not be the optimal strategy of the users.
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7.1.2 VM migration schemes for the cloud

Next, in an attempt to improve the energy efficiency of mobile devices per se, we investigated the

scenario of Mobile Cloud Computing (MCC) where energy-constrained devices offload their com-

putationally intensive tasks to remote cloud servers. We considered the objectives of minimizing

execution time and energy consumption. We also identified the lack of QoS guarantees as the miss-

ing tile of cloud computing. However, providing QoS guarantees is particularly challenging in the

dynamic MCC environment, due to the time-varying bandwidth of the access links, the ever changing

available processing capacity at each cloud server and the time-varying data volume of each virtual

machine. Thus, we proposed novel cloud architectures and migration mechanisms that effectively

bring the computing power of the cloud closer to the mobile user.

In contrast to the migration policies currently applied in commercial virtualization platforms, like

vSphere [40], we showed that migrations should be performed according to the estimated perfor-

mance and not based on the estimated resource demands of each task/VM. The underlying idea of the

proposed schemes is that a VM should migrate from its current server if the anticipated total execu-

tion time at a new server (including the migration and download delay) is less than the execution time

at the current one. An overview of cloud scenarios in which VM migration schemes can be applied is

presented in [38].

7.1.3 Energy efficient wireless access

We also investigated the energy-throughput tradeoff for mobile devices that support sleep modes and

compete for access to the shared medium. We characterized the throughput optimal strategy under

energy constraints and we developed game theoretic models that capture the autonomous nature of

terminals. As expected, the lack of coordination causes some performance degradation. Our analysis

shows that energy constraints modify the medium access problem significantly. Interestingly, the

limited energy resources indirectly reduce contention and lead to bounded price of anarchy.

Next, we developed a modified medium access scheme, where the competing stations can sample

the contention state of the medium within a frame. In this case each mobile user faces an interesting

dilemma: whenever the frame is sensed busy, is it beneficial to backoff in order to save energy or

a transmission should be attempted? The proposed scheme leads to more efficient exploitation of

the medium, by implicitly coordinating transmissions within a frame, without any direct information

exchange among the competing terminals.

7.1.4 Interference management for energy efficient wireless access

Finally, we considered the interaction of relay selection and power control in interference-limited

environments. Starting from an uncoordinated approach, we showed that system performance is

mainly determined by the competition of users for the same relays and by the interference they cause

to each other. Thus, we developed easy to implement distributed algorithms of at most polynomial

complexity that are applicable to any type of relay assisted wireless systems. The key idea is to
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coordinate the selection of relays and adjust transmission power through appropriate message passing.

For a given subcarrier allocation, we outlined how the proposed algorithms can be applied in

OFDMA systems like LTE-Advanced. Our algorithms meet two major objectives of 4G systems,

namely relaying and interference management. Through extensive simulations, we demonstrated that

the proposed schemes guarantee significant improvement in terms of sum-rate performance and by

adjusting transmission power also lead to tangible energy savings for mobile devices.

7.2 Usefulness of Results in Practical Systems

In this section, we attempt to translate the major findings of this thesis into practical guidelines for

the design of energy-efficient systems.

7.2.1 Electricity market restructuring

In this thesis we proposed a novel DR market, where all the required communication between the

utility operator and the home users takes place before the actual day of operation. Our day-ahead

approach provides numerous advantages. First of all, guarantees that the home users are aware of

the exact pricing pattern for the following day and hence can schedule their demands accordingly.

Second, enables the operator to accurately predict the total consumption for each period of the fol-

lowing day. Finally, guarantees that there is always sufficient time so that the negotiations among

generators, the utility operator and the home users converges to a stable operating point. That would

not be possible if a real-time market approach was adopted instead.

We also suggest that DR should be performed in an automated manner with minimum human

intervention, since the lack of knowledge and time from the users’ side to respond to dynamic prices

hinder large-scale penetration of residential DR programs. Finally, existing DR schemes expect users

to bear the investment cost of smart meter installation, while the utilities reap most of the DR benefits.

This is mainly due to the fact that each individual amounts to a small portion of the total demand and

hence has limited negotiation power. Our work provides tangible evidence that organization of home

users into communities under the umbrella of an aggregator is an efficient way to deal with this issue

and will drastically change the DR landscape.

7.2.2 Cloud providers

In the pursue of energy efficient cloud computing, most cloud providers focus on improving the ef-

ficiency of their infrastructure per se. In this thesis, we suggest that significant improvements can

be also derived through novel migration mechanisms that require no changes of the existing infras-

tructure. Live VM migrations enable providers to adjust the load at each server. Given that energy

consumption is an increasing function of the load of a server, we suggest that VM migrations can be

used to reduce total energy consumption of a cloud facility by consolidating tasks on fewer physical

servers and turning off unused ones.
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Apart from energy consumption, a major objective of a cloud provider is the minimization of

the corresponding electricity cost. In this direction, VM scheduling enables the cloud provider to

exploit temporal variation of electricity prices by scheduling non-critical tasks in low-cost periods. In

addition, given that servers are geographically dispersed over the world, exploiting spatial variation

of electricity prices is an additional option. Summarizing, VM migrations enable execution of tasks

wherever/whenever cost of electricity is the lowest.

Contemporary virtualization platforms, such as vSphere of VMware, introduced recently the ca-

pability of VM migrations across distant servers. Currently migrations are performed such that av-

erage CPU and memory utilization are balanced across servers. Since energy consumption of cloud

infrastructure corresponds to a significant portion of a cloud provider’s operating costs, we expect that

migration mechanisms that consolidate load in fewer physical machines will be implemented soon.

However, any such migration scheme should also consider performance degradation caused due to

multitenancy.

7.2.3 Mobile network operators

In this thesis, we underlined the importance of relaying and interference management in 4G wireless

communication systems. Relays enhance throughput of cell edge users, while power control is a

promising mechanism for handling interference and calibrating energy consumption. Although both

are basic features of 4G systems, their exact implementation is not defined in the corresponding

standards, but is vendor-specific. Thus, mobile network operators (MNO) should preferably invest on

4G implementations that incorporate such mechanisms and achieve better exploitation of the available

resources.

In addition, we suggest that sleep modes is a promising energy-saving mechanism since as we

showed it can provide significant energy benefits, especially in scenarios of contention-based medium

access. A mobile device by turning off its transceiver can increase its lifetime. A side effect of

sleep modes is that contention for the medium is implicitly reduced and hence throughput increases.

Although here we focused on the user side, similar energy saving techniques can be applied at the

base stations. In particular some base stations can be turned off in low traffic periods, hence leading

to reduced operating costs for MNOs.

7.3 Future Challenges and Open Research Problems

We conclude this thesis with a discussion of open research problems in the area of smart grid and

energy-constrained systems.

7.3.1 Smart grid

In the smart grid context, we have developed day-ahead DR market models that rely on iterative ne-

gotiation mechanisms and hence require communication among the participating entities. In addition,
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we assumed that the actual preference of the user can be deduced in an automated manner. However,

as we showed the benefits of DR strongly depend on the accuracy of this estimation. For this purpose,

novel regression methods that accurately estimate the utility function of a user through historical data

need to be developed in order to fully exploit the potential of demand-response.

Virtual aggregators and incentives

The potential benefits from the introduction of aggregators has to be further explored. Since each

aggregator represents a significant amount of total demand in the DR market, it can act strategically as

price anticipator by considering the impact of its actions on the price setting strategy of the operator.

Hence, the increased negotiation power of the aggregators can be exploited to maximize the DR

benefits for the home users. Instead of being represented through a third-party, home users could

also form self-organized DR communities, i.e. virtual aggregators. For this purpose, tools from

game theory can be used to model coalition formation among users and to analyze the competition of

several virtual aggregators in selling their DR services to the operator. Here, we have assumed that

the users truthfully respond to the announced compensation from the aggregators. However, since

additional benefits may arise through strategic misreporting, the investigation of such user strategies

and the derivation of mechanisms that guarantee truthfulness are interesting topics for future study.

Distribution automation

In this thesis, transmission and distribution constraints of the system are not taken into account.

However, such operational constraints are critical for proper operation of the grid. The power grid

is a dynamic system mainly due to the continual variability of demands, but also due to the massive

distributed and variable energy generation from renewable sources. In this direction, the potential

of distribution automation has to be explored and particularly towards the proper integration of re-

newables and energy storage devices. Distribution automation consists in frequency and voltage

control schemes that take into account the constraints of the distribution network through power flow

equations. Frequency control keeps the active power generated in the grid equal to the active power

consumed, while voltage control at the distribution feeders minimizes distribution losses.

Optimal storage placement and dimensioning

An interesting topic of future study is that of optimal placement of renewables and storage facilities

so as to balance demand and supply and minimize distribution losses. This problem becomes even

more challenging when optimal dimensioning of energy storage facilities is also considered. In gen-

eral, energy has to be stored and consumed locally, close to where it is generated so as to minimize

distribution losses. On the other hand, central large batteries provide more opportunities to exploit

fluctuations of price, demand and renewable generation. Deriving the optimal solution to this tradeoff

could eventually turn residential renewable systems into a reality. A preliminary study of optimal

storage placement within the distribution network can be found in [95].
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7.3.2 Energy efficient cloud computing

In the context of cloud computing the derivation of optimal VM migration schemes towards a more

energy efficient, and hence less costly, cloud is an active area of research. Such an issue becomes

especially critical given that cloud facilities are large-scale datacenter networks, which consist of

multiple dispersed server facilities. In this thesis, we showed that VM migrations can effectively

reduce energy consumption of the cloud ecosystem.

Energy-driven VM migration schemes

Energy consumption of a cloud facility depends on the number of active server machines. Further, for

each active machine, energy consumption is an increasing function of the server load. Task migra-

tion can contribute to significant savings in energy consumption by (i)reducing the number of active

servers through appropriate concentration of active tasks on fewer physical machines with the aid

of virtualization (consolidation), and (ii) reducing the energy consumption of individual servers by

moving the processes from heavily loaded to less loaded servers (load balancing).

The challenge lies in that a migration has contradicting consequences due to the reasons above:

by reducing the number of active servers as reason (i) dictates, the load is concentrated on fewer

servers which are thus loaded more. On the other hand, by performing load balancing according to

reason (ii), the heavy load of some servers is alleviated, but at the same time more servers would

need to be activated to accommodate it. The final choice will depend on the relative amounts of

energy consumption of servers when they are idle and loaded, as well as on the precise dependence of

energy consumption on physical machine load. An associated challenge would therefore be to derive

analytical models for energy consumption. Given also that consolidation introduces unpredictable

performance due to multitenancy, providing QoS guarantees is particularly challenging in this context.

Integration of renewable sources

In addition, the prevalent policy in datacenter server farms is to build a collocated renewable energy

source (e.g. wind turbine or photovoltaic) in an attempt to minimize the dependence of the datacenter

on the main power grid. The output of these renewable sources is highly time-varying and unpre-

dictable. On the other hand, migration of tasks among different datacenters allows us to control the

instantaneous power demand, which is a function of load. Given also that electricity prices are time-

varying and different from place to place, the arising challenge is to select the VM migration strategy

that matches the dynamic power supply of renewable sources and dynamic datacenter power demand

at a minimum cost, without violating any user QoS service level agreement (SLA) though.

7.3.3 Energy efficient wireless access networks

Although important steps forward in energy efficiency of the cloud itself have been made, the wire-

less access network has been generally neglected. In this thesis, we mainly focused on the mobile

device side and we investigated how sleep modes enable better exploitation of the limited available
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energy. However, a recent survey [96] indicates that the potential energy efficiency gains at the Mobile

Network Operators (MNO) side are even more significant, ranging from 10% to 25%.

Energy efficient infrastructure

The first step required for more efficient mobile networks is the identification of the least efficient

network components. For this purpose, tools that measure and monitor energy consumption of exist-

ing network infrastructure have to be developed. Based on this analysis, an MNO has to explore the

available options such as installing renewable energy sources, upgrading energy-intensive network

equipment or improving the design of its base stations so as to rely less on air conditioning (e.g. by

using techniques like free air cooling). Selecting the optimal option calls for a cost-benefit analysis

of the available solutions.

Energy efficient control

The main issue of the aforementioned approaches is that they require significant investment. Instead,

less radical approaches could provide comparable benefits. Indicatively, dynamic resource allocation

algorithms that adapt to the load conditions require only minimal changes of existing infrastructure

and hence can be easier adopted by telecom operators. Representative such methods are transmission

power control, turning off base stations in low traffic periods and reassociation of mobile users, and

scheduling schemes such as bandwidth and capacity adaptation [97], that make use of the minimum

amount of resources required to meet the arising traffic.
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