[TANENIZTHMIO OEXXAAIAZ
[TOAYTEXNIKH £XOAH
TMHMA HAEKTPOAOT'ON MHXANIKQON KAI MHXANIKQN YTIOAOTIXTQN

YXEATAXMOX KAI YAOITIOIHXH AXYPMATHX
EINIKOINQNIAY XE KAPTEX AIIOMAKPYXMENHX
ATAXEIPIXHY KOMBQN ITEIPAMATIKQN
AIATAEEQN

AurAwpotikr) StatpBr g
Itapatiog Appoditng HAoudn

ErupAénwv: Aéavbpog TaoloUAag, Kabnyntng M.0.

JuveruBA£nwyv: ABavaolog Kopadkn, Aéktopac M.0.

Volos, September 2013

H éykplon tng SUTAWHATIKAG SLaTtplBNg amo To TuApa Twv HAEKTpoAOywv MnXavikwy
Kol Mnyavikwv YroAoylotwy tng MoAutexvikng ZXoAng tou Naveniotnuiou
@eooaliog dev umtodnAwvel amodoyr TwV YVWHWY Tou cuyypadea.

(N. 5343/32, ApBpo 202, map. 2)

© Copyright by
HAwoU6n B. Zrapatia-Adpoditn

2013

Me smuupUAagn navtog Sikatwpatog. All rights reserved.

Anayopeuetal n avtiypadn, anobnkeuon kat Sltavopn Tng mapolong epyaciag e€ oAokApou f TUAUATOG AUTAC,
yloL EUIOPLKO OKOTIO. Emitpénetal n avatimwon, amobrikeuon Kat Stavopn yLo Un KEpSOOKOTIKO GKOTIO, EPEUVNTLKO
Il EKMALSEVTIKO, UTIO TV Mpolmobeon va avadEpetal n mnyn npoéAeuong kat va dlatnpeital o mapodv uRvupa

Evyaploticg
H mapoloa Statplfn ekmoviOnke oto TUApA HAeKTpoAOYywY Mnxavikwy Kot MnXavikwv YIoAoyLoTwy
¢ MoAutexvikng IxoAng Tou Mavemotiuiou Oscoaliog.

OAokAnpwvovtag thv SutAwpatikn Statplpn pou Ba nBeha va suxaplotiow Wolaitepa tov enPAENOVTA
KaBnyntr Tou TuApatoc HMMY tng MoAutexvikng 2xoAng tou M.0., TacloVAa Aéavdpo, KaBwg Kat Tov
ocuverBAEnovta Aéktopa Tou TuApatog HMMY tng MoAutexvikng xoAng tou M.0., Kopakn ABavdoto,
yla tnv moAUutiun kabodrynon toug, tnv evBdppuvon Kal TNV CURBOAR TOUC otnv eKmoOvnon Kot
olokAfpwaon TG SUTAWHATIKAG SLaTplpBrg otnv TEPLOX TWV ACUPHATWY SIKTUWVY UTIOAOYLOTIKWY
OUOTNUATWV.

Eniong Ba nbeha va euyaplotiow Oepupd tov umoyndlo Sddktopa Tou TUAUOTOG HMMY 1tng
MoAutexvikng ZxoAng tou MN.O., Kaldapidn lwavvn, ywa tnv Bonbeld toug Katd TNV SLAPKELX TWV
£PYAOTNPLAKWY SOKLUWV.

ErunpdoBeta Ba Bsha va suxaplotiow Tov K. HyoUpevo lwavvn, yla tnv oTRpLEr Tou Kal TV TIOAUTLUN
OUVELODOPA TOU OTNV EKTEAECT TWV TIEPAUATWV.

Oa Bela va euxaplotow 000UG UE cuUmapaoTABnkav Kal pe Bonbnoav e omoloSAMOTE TPOMO oTNY
SlapKeLa TwV OTIOUSWV HOU KaL TNG SLaTpLprg pou.

TéAog BEAW va eKPPACW TNV EUYVWHOCUVN LOU OTOUC YOVEIG OV yLa TNV cuvexn otnplén, evbappuvon
KOL QUEPLOTN AYATIN TOUG KOTA TNV SLAPKELA TWV OTIOUSWVY HOoU.

Mpoioyog

Y€ YEVIKEG YPAUUEC OL KOUPBOL TOU SIKTUOU, CUUMEPIAAUPBAVOUEVWV TWV OTABUWY KAl CUGKEUWVY SLKTUOU
SUoKkoAa pmopolv va pubulotolv cwotd. MNa va ehaylotonolnBel n anattovpevn dtapdpdwon f ta
odbdApata acdoahelog, oL Sloxelplotég Sktuwv ouvnBwg ulomololv éva SikTuo UTIoAoyLoTwyY
ULKpOTEPNG KALpaKaC (SIKTUO yla epyaoTnpLlakeéG SOKLUEG) e€opOLWVOVTOG TO TIPAYUATIKO SiKTUO, OToU
Kot dokipalovral ol amaltoUpeveg aAllayeg Twv puBuiocswv. Qotdoo, yla va Asttoupyel éva Siktuo
UTTOAOYLOTWV XPELATETAL CUXVA TOTIKA Slaxeiplon Kal umtootnpLEn, Tou HepLKEC PopEC eival damavnpn
KoL oveédlktn Sladlkaoia. H kavotnta tng omopakpuopévng Slaxelplong eival €va onUAvVILKO
XOPAKTNPLOTIKO TIAEOVEKTN A, TIOU EMNPEALEL TH CUVOALKN amoS00n VoG SIKTUOU UTIOAOYLOTWV.

OL Texvoloyieg aMOUOKPUOUEVOU EAEYXOU UMOPEL va emITpEPouv o €va SLAXELPLOTI) CUOTAUATOG va
ouvbeBel aneuBeiog oe kKOUPBOUG Tou SikTUOU, L8LaLTEPA SLOKOULOTEG (servers) Kal EEOTALOUO SIKTUWONG
UE OKOTO TNV umoothplen N aliayn tg Sopdpdwong, OMOU XPNOLUOTOLETAL omdvia 0 TieplmAoKog
£€OMALOUOG TWV SoKLpwY. Agdopévou OTL 0 €EOMALOUOC TOU SIKTUOU elval YewypadIlKA KOTAVEUNUEVOG,
N MPOcBacn TWV CNUOVTIKWY TUNHATWY TOU SIKTUOU EMLTPEMEL TNV €€ ATIOCTACEWC TILO OMOTEAECUATLKN
xpnon tou efomAlopol Tou SIKTUOU, OTOUSATIOTE, HELWVOVTAG TO KOOTOC KOTAOKEUNG KOl AELTOUpYLOG
tou Slktuou. Onwg otnv mepimtwon evog ocuvvedou Stakoplotwv (server cloud), €vag SLaXELPLOTAC
uropel va {ntrioel mpooPacn o CUOKELEG SIKTUOU (routers kol switches) amopokpuopéva Kal vo
ouvdeBel pe autég péow ypadikol meplparlovtog xpriotn (Graphical User Interface-GUI) 1 péow
urtnpeowwv dladiktuou (web services). Inuepa €xouv avamtuyxBei Stadopec ehaAPUOYEC KOL UTINPECIES
OTOUOKPUCUEVOU €AEYXOU, TIOU KATA TNV Aamodin TwV KOTOOKEUAOTWV SLoB£TouV SLOPOPETIKEG Kol
povadikég duvatotnteg. MNépa amod tnv €€0LKOVOUNON KOOTOUG, OPLOUEVEG ATIO OQUTEC TIC EDAPUOYES
enmipépouv TOAG TipdaBeta odéAn, cupmeplapBavouévng tng SuvVOTOTNTOG VO QUTOLOTOTOLOUV
TANPWCE TNV SLApOPPWOon Tou SLKTUOU KoL TLG ATIALTOU LEVEG SOKLLLEG.

O okomdg g mopoloog epyaciag sival va oxedlaotel Kal va SOKLPAOTEL pila kKotaokeun Baclopévn os
MLKPOEAEYKTH, TIOU Ba UIOpOUCE VoL ETLTPETEL TNV QATIOUAKPUOHEVN Slaxelplon twv KOUPBwv piag
SOKLUAOTIKAG TAATPOpUaG acUppatou Siktuou. H mpwtotunn kapta Baciletal otov HIKPOEAEYKTH
ATmega328 tn¢g etalpeiag Atmel eomAlopévn pe éva M10 GSM Modem tng etalpeiog Quectel kat
Sokipdotnke €dikd yla to NITOS (Network Implementation Testbed using Open Source platforms)
Wireless Testbed, to omoio avamtuxbnke oto €fwteplkd tou Ktpiou MkAaBavn tou MNavemiotnuiou
Oeoocaliag (M.0.). Eniong n edappoyn Slaxeiplong SIKTVWV €€ OMOCTACEWS SOKLUAOTNKE EVAAAOKTLKA
xpnowonowwvtag éva Wiznet Ethernet eleyktr). EmumpocBeta, ulomoluiBnke pwa amAn oOeslplakn
ETUKOLVWVLA XPNOLLOTIOLWVTAG TNV 8La KapTa, mou Baociletal otov pikpoeAeykt ATmega328 tng Atmel,
HEow £vOC KATAAANAOU oAokAnpwpévou KukAwpato¢ MAX232 (MAX232 IC). OAa to melpdpota
gTKOLVWVIAG mpaypatomnot)Bnkav oto gpyaotrpto NIT (Network Implementation Testbed Lab-NIT Lab)
Tou Tunuoatog HAektpoAoywv Mnyavikwv kot Mnxavikwyv YroAoylotwv oto Mavemiotiuo Oscoaiilog
(BoAoc, EANGda). ErmumAéov, n mopoloa epyacio avalUel TIC TPEXOUOEG TAOELG TNG PLOUNXAVIO OXETLKA
JLE TOV OUMOLLOKPUOHEVO EAEYXO KOl TTIPOCSLOPILEL T XOPOKTNPLOTLKA, TIOU OXL LOVO Ba EMITPEMOUV GTOUG
SLOXELPLOTEG va eAEyXouv TOUG KOUBOUG Tou OSiktUou, OMA va TOUG EMITPEMETAL E€mMiong va
SLOXELPLOTOUV TO CUVOALKO SIKTUO Ao pLa KEVTPLKN B€on.

Né€ewg KAeibia — AoUpuata Aiktua (Wireless Networks - WN); NITOS Testbed Platform;

Anouakpuouévoc EAeyxo¢ Aiktoou (Remote Network Control); Global System for Mobile

communication (GSM); Anouakpuouévn Awaxeipion Awktvou Testbed (Remote Network Testbed
Management-RNTM); Zeiplakn Emikowvwvia (Serial Communication); 20véeon RS232 (RS232 Interface)

UNIVERSITY OF THESSALY
FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

YXEATAXMOX KAI YAOITOIHXH AXYPMATHX
EINIKOINQNIAY XE KAPTEX AIIOMAKPYXMENHX
ATAXEIPIXHY KOMBOQN ITEIPAMATIKQN
ATATAZEQN

Dissertation

Itapatiog Appoditng HAoudn

Supervisor: Leandros Tassioulas, Prof. of UTH

Co-Supervisor: Athanasios Korakis, Lecturer of UTH

Volos, September 2013

Acknowledgments
This Dissertation was prepared at the Department of Electrical and Computer Engineering, Faculty of
Engineering of the University of Thessaly.

Completing the diploma thesis | would like to thank the supervisor of the ECE Department, Faculty of
Engineering, University of Thessaly, Professor Dr Leandros Tassioulas, and the co-supervisors Lecturer of
the ECE Depurtment, Faculty of Engineering, University of Thessaly, Lecturer Dr Korakis Athanasios, for
their valuable guidance, encouragement and their contribution to the development and completion of
the thesis in the area of wireless networks.

| would also like to thank the doctoral student of ECE Department, Faculty of Engineering, University of
Thessaly, Kazdaridis loannis, for his help during the laboratory tests.

Additionally | would like to thank Mr Igoumenos loannis, for his support and valuable contribution in
carrying out experiments.

| would like to thank those who stood by with me and helped me in any way during my studies.

Finally | want to express my gratitude to my parents for their continuous support, encouragement and
unconditional love during my studies and preparation of my thesis.

Vi

Abstract

In general network nodes including stations and network devices are difficult to configure correctly. To
minimize configuration or security errors, network administrators usually build a smaller scale computer
network (test lab) simulating the real network and test out the required configuration changes. However
operating a computer network needs frequently local management and support, which is expensive and
sometimes impractical. The ability of remote management is an important feature affecting the overall
performance of a computer network.

Remote control technologies can enable a system administrator to connect directly to network nodes,
especially servers and net equipment for support or configuration changes using rarely complicated test
equipment. Since the network equipment is geographically distributed, access of important network
parts remotely allows more efficient use of network equipment anywhere reducing the building and
operating costs of the network. Similar to a server cloud, an administrator could request access to
networking devices (routers or switches) remotely and connect them through GUI or web services
interface. Nowadays there are developed several remote control applications and services available that
all claim to have different, unique capabilities. Beyond saving costs, some of them bring about many
additional benefits, including the ability to fully automate network configuration and testing.

The aim of the present thesis is to design and test a microcontroller based construction that could allow
remote node management of a testbed. Prototype card is based on an Atmel ATmega328
microcontroller equipped with a Quectel M10 Modem and it was specifically tested for NITOS Wireless
Testbed deployed at the exterior of the University of Thessaly (UTH) campus building. Remote network
management application is also using a Wiznet Ethernet. Additionally a simple serial communication is
also implemented using the same card based on Atmel ATmega328 microcontroller though a MAX232
IC. All the communication experiments are implemented in NIT lab of the Department of Electrical and
Computer Engineering at University of Thessaly (UTH, Volos, Greece). Additionally presented work
analyses current trends in the remote control industry and identifies features that will not only allow
users to control network nodes, but can also enable them to manage an entire network from a
centralized location.

Keywords - Wireless Networks (WN); NITOS Testbed Platform; Remote Network Control;
Remote Network Testbed Management (RNTM); Global System for Mobile communication
(GSM); Serial Communication; RS232 Interface).

Vi

Contents

STy o o1 £ S ii
107010 1Yo TSR iii
ACKNOWIEAZMENTS.eiiii e e et e e e et e e e e e bt e e e s ebteeeeeabaaeeseabaaaeeastaeeessteeeeassaeeesnseaeeeanns Vi
Y o1 1 T T PSP VRSV R T PPOPRRPRRRT vii
N [) oo [¥ Lot T o PO PSP PP PPTPRRTPPTOPPRRPON 2
1.1 Background Of the STUAYcocuiiiiiieecc e s e 2
1.2 (0] o [=Tot 41V =T] i 1 TS {0 o Y PP 3
13 Dissertation OrZaNiZatiONcceeiiiiriiiiiiieiee ettt e e e e s s e st e e e e s s s sssabareeeeesssssanreaeeeens 3

2 Remote Management for NITOS Wireless testbedcooecuiiiiiiiiiii e e 5
2.1 Types of Remote Control ManagemeENT..........oeicciiiiieciiie ettt eertee e e e saae e e e eare e e e saeeeeas 5
2.1.1 Browser—Based Remote ManagemeENT.......cccuueieeiiieeieciiee et eree e e eabee e e e 5
2.1.2 Software-Based Remote ManagemeENnt.....c..uiiicuiiieiiiiiee ettt e e svree e e e e 5

2.2 LT eJ=Te I o] o1 o] 0 0L U 6
2.2.1 NITOS Wireless Testbed - Network Implementation Testbed Laboratory (NIT Lab)............ 6
2.2.2 NITOS Testbed DePlOYMENT.......ooc et e e et e e e e aree e e e abe e e e enreeas 8

2.3 Application Using Browser-Based Remote Control SESSIONS........cccccuveeeeiiiieeeeciiieeeecciieeeeeiieeenn 10
24 SUIMMAIY ittt e e et e et et ettt et et e e e e et et e e et e e e e et et et e e et et ee et eeeeaeeeeeaeaeeeeeeeeseeeeeeseasenes 10

I e oY AT I oF- o o PP UPPPPPPRNt 11
3.1 Arduino PIatfOrm ..ot s 11
3.1.1 AVR AFCNITECEUIE .c..tiiiiieeie ettt ettt b e st st sttt sbe e s beesaeeeaeeeneean 11
3.1.2 GSIM IMIOTUIE ..ttt ettt b e b e s be e st e et e e te e beesbeesaeenas 13
3.1.3 Ethernet INTerfaceo ittt st st 14
3.14 SEIIAl INTEITACE ..eeeeeeeee et s s s 16

3.2 Prototype Shield OVEIVIEWccoouiiiiiiiiee et e e e e et e e e sbae e e s eabe e e s eeareeas 16
3.3 SUMMAIY ittt e et et e e e ettt et ettt e et e et e e e et e e e et et et eeseene 18

4 Implementation of remMote MaNAZEMENT.......cccuiiii ettt e e e e tr e e e e br e e e e anaaeaeas 19
4.1 Programming the Arduino DOArd............uuiiiieiiii et e e e e e re e e e e e e e ennrnnes 19
4.2 ReVIEWING the SOUICE COUE ..uuiiiiiiie ittt cree e e e e e e e e e e e e e e e s snbteeeeeeaeesennnrnnes 19
4.2.1 Arduino Libraries iNCludedcooeeriiriiiiieeee e 19

4.2.2 (€1 le] o 1RV T =1 o] =TT 20

4.2.3 FUNCEIONS ..ttt ettt e e e e e e sttt e e e e e e sanbrbeeeeeeesesnnsenaeaeeesannas 20
4.3 Description Of the Wb SEIVET.........oo e e 20
4.4 SUIMIMIAIY it e e e e et e e e et e e e e e e e e e e et e e e e e e et e e e e et e e e e e e e e e e et eeeeeeeeeeeeeeeeeeeeeeaaeees 21
5 Experimental SEtUP and tESTING ..cccccviiie ittt e et e e e et e e e e e e e e e e ebaeaeeeanes 22
5.1 [Tt [or= 1 IR o T PP 22
5.2 Experimental Remote Management iN SEEPS ..uuviviieei it e e e 22
53 1010 00 =1 O PPPRPRPTPTNt 22
6 CoNCIUSION AN FULUIE WOTK ..eiiiiiiiiiiiiiieeiee ettt ste st e sete st e s saae e st e stee s ssbeesnbaeensteessneesaneesn 23
6.1 6o Y3 Vol (11 To 3 -SSR 23
6.2 FULUPE WOTK cetiitieectee ettt sttt ettt e st e et e e st e s aee e s s teeesbeeesateesnsaeesseeesnseassseesnseeenseessnsensnn 23
2] =T =T o 1ol T TP 24
APPENTIX A — SOUICE COUR...eiiiiiiiii ittt e et e st e e et e e s sata e e e e sbaeeesataeeesassaeeesassseeesanseeeesnnssneesns 26
Appendix B - Description of communication COMPONENTS.......c.uveiiiiiiieeeiiiie e e e e aaee e 44
B.1 GSM MOAUIE dESCIIPLION ..ccetiiee et ettt e e e e et e e e et e e e e e bte e e e ebeeeeeesteeeeenstaeeesnsrenasannes 44
B.2 Ethernet Controller DESCIIPLION........ciiiciieie ettt ettt e e ee e e e e tre e e e ette e e e ebteeeeeabteeeeeseeneesanes 44
B.3 MAX232 IC DESCIIPLION .eettttiieeeiiiiitetee e e e ettt et e e e ettt e e e e e s s s saabbreeeeeesssssnbsbteeeesesssasssssaaeaeessnsannnnes 45
Figure 1 Exterior of Glavani Building's testbed deployment at the UTH [1].....ccccovieiiiiiiiiiiieeeiiieee e, 8
Figure 2 NITOS Testbed of Glavani Building's testbed deployment at the University of Thessaly[1] 9
Figure 3 Architecture of Atmel ATmega328 in details [13]ccceciiiieeiiiie e et 12
Figure 4 Atmel ATmega328 schematic diagram [14]......coouciiieeiiieieeiee e ree e e e e 13
Figure 5 An Arduino GSM shield with a Quectel modem mountedccccvveeeiiiie e, 14
Figure 6 Typical SPI bus configuration with three slave devices connectedcccccccvveeieiiieecccciee e, 15
Figure 7 Breadboard for MAX232 IC connecting to Ethernet Boardcccccevveviieeiiiiiee e, 17
Figure 8 Prototype Shield of R5232 Interface used in Remote Control Management experiments.......... 18
Figure 9 A detailed graphical representation of Lexical Analyser with interconnections...........cc.ccc......... 21
Figure 10 Wiznet Ethernet Module for Arduino boardcoeeeiiiiiiiiiic e 45
Figure 11 A schematic diagram of the MAX232 IC circuit with 4 electrolytic capacitors of 1uF 16V
oo] 0T a Y=o =1e 1N 117 RN 46
Figure 12 A MAX232 IC circuitry allowing a uP to communicate with a PC through its serial port [13], [14]
.. 47

1 Introduction

1.1 Background of the study

Networking improves communication within a specific area moving large amounts of information from
place to place in a reliable way. Computer networks allow more efficient work to be accomplished in a
specific time. However it is reported that most network outages are caused by operator errors in
configuration, rather than networking equipment failures [6], [14]. Sometimes it is necessary for the
network administrators even if they are informed soon, to get to a specific location in order to solve the
related problem. Most of the times, this anxiety could be avoided if they at least have access to the
Internet to be able to change node configuration or to do something for fixing the occurred failure. A lot
of proposed solutions are based on remote network control management. Remote control software is
one way in which an organization or a company can expand its network usability and centrally
administer the overall network. This links to any network node required being controlled.
Administrators can keep surveillance over a computer network to ensure its operating conditions, while
having the power to immediately access being informed about the failure taken place in a network node
and fix occurred problems related to network [8]. This helps keep the network operating at maximum
potential as networks could be technically supported in a matter of sort time without a requirement of
moving up to problematic locations. Among the approaches based on remote network control
management some of them are using Short Message Service (SMS) by means of telecommunications
networks [10]. In these implementations the administrators could be informed for network operating
conditions or failures and allowed to access the network sending commands for altering operating
conditions or fixing the occurred problems. This is achieved through an application, which is set up on
one or more of the manageable network systems using SNMP (Simple Network Management Protocol)
protocol. The needed information for the network administrators is gathered via Internet, while
network managers can send commands to the application software running on a system by means of
short messages (SMS) to let them fix the failure.

Using a remote management scheme, the network inspection (concerning performance and security
issues), configuration and repair are getting more time efficient. The right remote network control
approach makes all this possible, while creating a barricade of security against network attacks. A
remote control session is conducted, when two necessary modules are present:

a. The Administrator Machine Application (Controller)
b. The Controlled Machine Application (Network Node), which grants the controller access to the
network node.

Normally remote management should be able to do every task except some specific tasks, which must
be operated only from node location. The network node simply allows the controller to control or access
it.

Extensive researches on remote network management systems in laboratories as well as at industrial
sites have been conducted and various control methods have been developed so far. Within the large
volume of such researches, a lot practical solutions have been given to the remote control problem

applied on a variety network structures improving the communication performance and data
transmission efficiency.

This dissertation address issues of remote control techniques for networking with special attention to
solutions based on easy implementations using simple commercial hardware and software schemes.

1.2 Objectives of the study

This research is expected to contribute a new practical technique to the design and implementation of a
wireless based remote network tested management for NITOS (Network Implementation Testbed using
Open Source code) Wireless Testbed, which is deployed at the department of Electrical and Computer
Engineering in University of Thessaly (UTH). On this purpose, an experimental prototype system was
designed, built and tested in the NIT Lab at University of Thessaly (UTH). In the tested system, both
hardware and software were used in combination to verify the proposed remote network management
procedure.

The main objectives of present work include:

e Develop a remote network control scheme that is easily implemented in a low-cost based on
commercial microcontroller equipped with a GSM Modem and an Ethernet network controller
as additional communication option.

¢ |Investigate developed remote management scheme in terms of network efficiency and
performance operating at real time.

e Develop an alternative solution for remote network management using standard serial
communication ports interfacing microcontroller TTL signals with R$232 standards in the case of
network node on site.

1.3 Dissertation Organization
The dissertation is organized as follows:

Chapter 1 introduces the background for present dissertation research, the significance of the study and
the research objectives.

Chapter 2 reviews the state of the art and recent developments of remote network management. Also,
the developed hardware scheme is presented briefly considering the communication platform of NITOS
Wireless Testbed.

Chapter 3 addresses the development of required hardware for network node management. Moreover,
basic operation principles of components used such as Arduino microcontroller board and Wiznet
Ethernet interface are discussed whereupon remote network control is briefly explored.

Chapter 4 presents an alternative scheme for remote network management based on serial
communication. The main aspects discussed for the developed scheme are the interfacing of
microcontroller with R$232 standard port and the conversion of TTL to R$232 signals with respect to
MAX232 IC.

Chapter 5 proposes a simple implementation of remote network management using simple commercial

hardware devices. The communication is conducted by means of browser-based remote sessions over
HTTP or HTTPS ports.

Chapter 6 gives the overall conclusions of the work and recommendations for future work.

2 Remote Management for NITOS Wireless testbed

2.1 Types of Remote Control Management
Considering remote control sessions, these could be mainly conducted in two primary ways:

a. Browser-Based Remote Sessions
b. Software-Based Remote Sessions

Function of Browser-Based Remote Sessions is implemented through an Internet browser that generally
requires the temporary download of network node software (client software) necessary for a
connection to be made. Software-Based Remote Sessions operate using individual control and node or
client applications installed separately on each machine. Both ways offer advantages and disadvantages
that will ultimately determine which type of remote control solution is best for specific networking
environment [11].

2.1.1 Browser-Based Remote Management

Browser-based remote control sessions are conducted through a website that utilizes an ActiveX version
of a control application with a downloadable node or client application that is usually required for the
remote control session to take place. These browser based remote control solutions typically “piggy-
back” over HTTP or HTTPS (TCP ports 80 and 443 respectively), and must connect to a third party
website to establish a connection. A web server based application can be configured to require
authentication before allowing access to the page, where the ActiveX control component is loaded and
roles for users can be created from within the management console. With ActiveX Remote Sessions, the
majority of the security will come from the client being able to disconnect the control whenever they’d
like and the flexibility is almost unparalleled. Because the control application is pre-configured on the
server side, there will be no control configuration or installation necessary by the administrator, a huge
advantage if administrators move around and connect from any box they happen to be working with or
if clients are typically “on the road” and need support over the Internet. This type of remote control
allows the control piece to connect directly to the desired client from anywhere on the Internet [11].

2.1.2 Software-Based Remote Management

Quality software-based remote control solutions provide enterprises with more features, security and
configuration options than web-based or ActiveX solutions for a private network environment. With
software-based remote control, both control and client applications are present and the control can
securely connect directly to the desktop of the client machine within the private network.

Software-based remote control solutions differ from browser-based or ActiveX solutions because the
client and control applications are installed on both machines allowing a remote session to take place. A
good software-based remote control will enable an administrator to deploy, install, and configure
controls and clients from a centralized location. Such a feature saves valuable time of IT administrators
and decreases the overall cost as this can be done in a matter of minutes.

The ability to remote control distant computers is no new technology. Since its development almost
three decades ago, several products have evolved beyond simple remote control capabilities to offer

feature-rich applications that simplify helpdesk environments. Providing with a number of extremely
powerful utilities, a good remote control application will enable system administrators to take complete
control of their entire network without having to leave their working place [11].

2.2 Testbed platforms

Experimentally driven research is the key to success in exploring the possible futures of the Internet. The
Onelab initiative provides an open, general-purpose, shared experimental facility, both large-scale and
sustainable, which allows European industry and academia to innovate and assess the performance of
their solutions. Based on the results of several different European and national projects, OnelLab offers
access to a range of tools and testbeds including PlanetLab Europe, the NITOS wireless testbed, and
other federated testbeds [12].

The Network Implementation Testbed Laboratory (NITLab) of the Computer and Communication
Engineering Department at University of Thessaly is also affiliated with the Center for Research &
Technology Hellas (CERTH). CERTH, as part of the Onelab project, collaborates with other European
institutes and it is in the process of federating NITOS with other testbed facilities, in particular PlanetLab
Europe, providing in this way access to a unified European experimental infrastructure. The research of
the lab focuses on the design, study and implementation of wireless schemes and their performance in
the real environment. In this context, NITLab has developed a testbed named NITOS, which stands for
Network Implementation Testbed using Open Source code [1], [2].

2.2.1 NITOS Wireless Testbed - Network Implementation Testbed Laboratory (NIT Lab)

As wireless networks rapidly gain significance in the world of Information and Communication
Technologies (ICT), it is essential to test and evaluate tomorrow’s wireless protocols and technologies in
real-life experimental facilities. NITOS (Network Implementation Testbed using Open Source code) is a
wireless experimental testbed that is designed to achieve reproducibility of experimentation, while also
supporting evaluation of protocols and applications in real-world settings. It has been developed in the
city of Volos, Greece by Onelab partner CERTH, in association with NITLab, the Network Implementation
Testbed Laboratory of the Computer and Communication Engineering Department at the University of
Thessaly. CERTH (Center for Research and Technology Hellas) has developed a wireless testbed called
Network Implementation Testbed using Open Source platforms (NITOS). NITOS is a testbed offered by
NITLab and consists of wireless nodes based on open source software. The testbed is designed to
achieve reproducibility of experimentation, while also supporting evaluation of protocols and
applications in real world settings. NITOS wireless testbed has been developed as a part of the wireless
facilities of the European project Onelab2 [1], [2].

NITOS consists of nodes based on commercial Wi-Fi cards and Linux-based open-source platforms,
which are deployed both inside and outside of the University of Thessaly's campus building, as
illustrated in Fig. 1 below. NITOS testbed currently consists of 50 operational wireless nodes, which are
based on commercial Wifi cards and Linux open source drivers. The testbed is designed to achieve
reproducibility of experimentation, while also supporting evaluation of protocols and applications in real
world settings. Currently, three kinds of nodes are supported: orbit-like nodes (shown in yellow),
diskless Alix2c2 PCEngines nodes (shown in blue), and GNU/MIMO nodes (shown in green). The control

and management of the tesbed is done using the cOntrol and Management Framework (OMF) open-
source software. NITOS testbed is deployed at the exterior of the University of Thessaly (UTH) campus
building (see Fig. 1). In testbed configuration there are two servers with discrete operations to perform.
The first one, the webserver, is responsible for scheduling of the testbed’s resources and its primary task
is to handle users’ requests to access the testbed. It also keeps valuable information for
experimentation and developing through a wiki-site. The second one, the console-server, is used to run
experiments on the testbed through OMF, and to host various network services including DHCP, DNS,
NTP, TFTP, PXE, Frisbee, NFS, MySQL, OML and Apache. The webserver communicates with console and
they share common info and data for experiment and user handling. Indeed the webserver is the
interface between the testbed and the external world, and the console server subsequently is used to
execute experiments in the testbed. The console server is connected through a PoE switch which
enables power switching to all nodes. Currently, the testbed supports orbit-like nodes (figure 2), diskless
nodes (figure 3), and some custom made nodes. In particular, there are 10 orbit-like nodes, 15 diskless
ones (ALIX 2c2) and 20 custom made already deployed in the campus testbed. Besides this
development, NITOS has a branch for experimenting with GNU-radios, and uses 6 USRPs equipped with
XCVR2450 daughterboards. This choice was driven by the fact that communication norms should be as
close to IEEE802.11 standards while experimenting with Software Defined Radio.

NITOS is remotely accessible and gives users the opportunity to implement their protocols and study
their behaviour in a real-case environment. The NITOS platform is open to any researchers who would
like to test their protocols in a real-life wireless network. They are given the opportunity to implement
their protocols and study their behavior in a custom tailor-made environment. NITLab is constantly in
the process of extending its Testbed capabilities. Users can perform their experiments by reserving slices
(nodes, frequency spectrum) of the testbed through NITOS scheduler that together with OMF
management framework, support ease of use for experimentation and code development. OMF
simplifies the procedure of experiment defining and offers a more centralized way of deploying
experiments and retrieving measurements. Detailed information about NITOS testbed use can be found
on the NITOS Site. Instructions for using the NITOS scheduler are also available online.

Figure 1 Exterior of Glavani Building's testbed deployment at the UTH [1]

Through NITOS scheduler a more sophisticated way of node allocation to users is achieved since
multiple users have the opportunity to run their experiments at the same time sharing the testbed's
resources. In addition, users are prevented from interfering with each other by selecting different
frequency spectrum to operate. NITOS scheduler is an innovative testbed framework that supports a
more effective way of scheduling. NITOS Scheduler is a tool responsible for managing the testbed
resources. NITOS nodes are laying in a six-floor building, while it is planned to extend it to other
buildings. Therefore, NITOS topology would not be realistically represented on a two-dimension shape;
this is why the scheduler is letting the user to see the exact position of each node in the building.

2.2.2 NITOS Testbed Deployment

In Fig. 1, it is illustrated the exterior view of Glavani Building where the NITOS testbed is deployed.
NITOS testbed already supports 10 Orbit nodes, 5 diskless nodes and 20 Commell nodes. Analytical
details about the specifications of the nodes are explained below, in Fig. 2.

Figure 2 NITOS Testbed of Glavani Building's testbed deployment at the University of Thessaly[1]

The nodes are powered over Ethernet; however, for the orbit-like nodes that are regular powered
through 220 Voltage, using a custom made electro-mechanical disruptor controlled via the
aforementioned switch and its configurable interface. All type of nodes are equipped with wireless
interfaces for experimenting through the air and particularly use Wistron CM9 - mPCl Atheros
802.11a/b/g 2.4 & 5 GHz cards that also take advantage of the extensions of MadWifi driver so that Click
modular router features can be exploited.

The wired infrastructure of NITOS testbed deployment is used for control experimentation and resource
management via OMF (cOntrol and Management Framework). OMF was initially developed by ORBIT at
Rutgers University and is now maintained and extended by NICTA and CERTH. NITOS, as a stand-alone
testbed, is constantly in the process of extending its testbed capabilities. In the long term, NITOS intends
to expand its deployment with new nodes and new technologies (WIMAX, 3G) and develop new control
and management modules for efficient experimentation on wireless networks. Additionally, NITOS, as
part of Onelab 2, collaborates with other European institutes and intends to provide access to a unified
experimental infrastructure, considering federation among different testbeds. To this end, a primary
goal is to federate with the PlanetLab Europe testbed.

CERTH has developed a wireless testbed called Network Implementation Testbed using Open Source
platforms (NITOS). NITOS is a testbed offered by NITLab and consists of wireless nodes based on open
source software. NITOS wireless testbed has been developed as a part of the wireless facilities of the
European project Onelab2. NITOS registered users can run their experiments real-time on the
configurable wireless nodes. For quick information about using the testbed, you can refer to tutorial. If
you already are an experienced user, you can go to scheduler to begin the node booking process.
Furthermore, the scheduler mirrors the testbed's slicing capabilities. Until now, spectrum slicing support
is enabled on NITOS. This means that various users may use the testbed at the same time, without

interfering with each other, since each one of them will be using different spectrum. Each user at
scheduling declares this spectrum. The scheduler does not allow for a user to choose any channel that
has been chosen by another user. Although NITOS is supporting spectrum slicing, the testbed
reservation procedure has been simplified to the user that visits the site for the first time [1], [2].

2.3 Application Using Browser-Based Remote Control Sessions

One of the main aims of the thesis is to design a card that will have remote management of the nodes of
NITOS testbed illustrated in Fig. 1. In present work the remote network management is achieved
applying Browser-Based Remote Sessions method via a wireless GSM module. Remote control sessions
are conducted through an Internet browser sending HTTP Requests, while the controlled node is running
an HTTP Server application configured properly for management requirements replying HTTP
Responses. The monitoring of the node is been implemented using the RS 232 interface. For this
network management implementation the following devices are used:

a. Arduino Ethernet - a microcontroller board based on the Atmel ATmega328 microcontroller
including Wiznet Ethernet interface [6]

b. Arduino GSM shield, including radio modem M10 by Quectel

C. MAX232 - an IC interfacing microcontroller TTL signals to RS232 standards for serial

communication purposes [3]

2.4 Summary

Two major aspects on the computer network issues have been reviewed comprehensively in terms of
remote network management and testbed platforms (NITOS Wireless Testbed). The related types of
remote management are briefly discussed and provided to outline the state of the art and potential
trends of technology development in this area. Also NITOS Wireless Testbed fundamentals and basic
operation ideas are introduced. Moreover an application using software-based remote control sessions
is briefly discussed in this chapter for conducting a server node of the NITOS Testbed network

10

3 Prototype card

3.1 Arduino Platform

For the impelentation of this remote management solution we use an Arduino board as master of the
interfaces which are implemented on different modules. In this chapter we describe each of these
modules.

3.1.1 AVR Architecture

The Arduino platform used in the experimental work is based on Atmel ATmega328 microprocessor. This
is an 8-bit microprocessor built according to Harvard architecture. However, it provides general purpose
registers of 16-bit, although it is equipped with 8-bit data bus [13]. A detailed microprocessor diagram is
illustrated in Fig. 3

The ATmega328 microcontroller is an upgrade from the very popular ATmega8. They are pin compatible,
but not functionally compatible. The ATmega328 has 32kB of flash, where the ATmega8 has 8kB. Other
differences are in the timers, additional SRAM and EEPROM, the addition of pin change interrupts, and a
divide by 8 prescaler for the system clock.

The schematic below shows the Atmel ATmega328 circuit (see Fig. 4) as it was built on the test board.
The power supply is common and is shared between all of the microcontrollers on the board. The
ATmega328 is in a minimal circuit. It is using its internal 8 MHz RC oscillator (divided by 8). With the
ATmega328 it is needed to both burn a bootloader and download Arduino sketches. The bootloader is
programmed using the ISP programming connector, and the Arduino sketches are uploaded via the 6-
pin header. Programming the Arduino bootloader into the ATmega88, ATmegal68, or ATmega328
micrcontroller will change the clock fuses, requiring the addition of an external crystal. The crystal
shown on the schematic is only required when the ATmega328 is going to be used as an Arduino,
although it may be desired in any real world application (see Fig. 4). Typically ATmega328 is running at
16 MHz, but it will run as high as 20 MHz.

There are schematics and an ExpressPCB design file for a full 28-pin AVR development board that
supports the ATmega8, ATmega48, ATmega88, ATmegal68, and ATmega328 (the ATmega328 pinout is
the same as these others)

11

Figure 3 Architecture of Atmel ATmega328 in details [13]

12

2 | -
O
51
rmore MOSI 1 2 vee
31 11 car e D
1 e | 11 RESET (SCK)PES :: nsﬂ?cl;{o ; ?0
(MISOPES f—
SND {MOSI)PB3
GND 10 1 yrale {S5)PB2 —:g S SV1
o ©ciper M2 W 330 ”JET
£ xraLt (ICP|PBo -
A - By
. 21 aseF (aocsipes 22
o1 AVCC (ADC4)PC4 =L
22 | AGND {ADC3)PC3 %
01u ; (ADC2)PC2 22
vCe {ADC1)PC1 =2
8 1 anp (ADCO)PCO) |22
. 13
Iy (AINIPD7? |—=
GND (AINOPDS |—1E
(TPDS [+
{T0)POs |-
(INTHPD3 |
(INTOPD2 |
(TXDJPOT |——
(RXD)PDO p—=—
ATmega3z8
)| . Pin 10
e _
© o3
=
)% T Pin g
3
GND
Optional crystal circuit

Figure 4 Atmel ATmega328 schematic diagram [14]

3.1.2 GSM Module

GSM (Global System for Mobile Communications, originally Groupe Spécial Mobile) is a standard set
developed by the European Telecommunications Standards Institute (ETSI) to describe protocols for
second generation (2G) digital cellular networks used by mobile phones. It became the de facto global
standard for mobile communications with over 80% market share.

The GSM standard was developed as a replacement for first generation (1G) analog cellular networks,
and originally described a digital, circuit switched network optimised for full duplex voice telephony.
This was expanded over time to include data communications, first by circuit switched transport, then
packet data transport via GPRS (General Packet Radio Services) and EDGE (Enhanced Data rates for GSM
Evolution or EGPRS) [22].

GSM standard module allows a PC or other device to control a GSM phone via standard and extended
AT commands. In present case an Arduino board is equipped with GSM for remote network

13

management providing wireless communication. In the case of an Arduino GSM shield those commands
are been transmitted through pins 2 and 3.

Figure 5 An Arduino GSM shield with a Quectel modem mounted

3.1.3 Ethernet Interface

An alternative solution for remote network management is implemented using ATmega328 board
equipped with a Wiznet Ethernet interface. The Arduino Ethernet Shield allows an Arduino board to
connect to the Internet. It is based on the Wiznet W5100 ethernet chip (datasheet). The Wiznet W5100
provides a network (IP) stack capable of both TCP and UDP. It supports up to four simultaneous socket
connections. Ethernet library must be used to write sketches, which connect, to the Internet using the
shield. The ethernet shield connects to an Arduino board using long wire-wrap headers, which extend
through the shield. This keeps the pin layout intact and allows another shield to be stacked on top.
Communication is done through SPI (Serial Peripheral Interface). For this reason, the board is reserved
the pins 10-13. SPI also communicates with SD (Secure Digital) controller, with the SS pin 4.

3.1.3.1 Description of Serial Peripheral Interface (SPI) Signals

SPI Bus is a synchronous serial data link that operates in full duplex mode. Devices communicate in
master/slave mode where the master device initiates the data frame [16]. More analytically the SPI bus
specifies four logic signals:

SCLK: Serial Clock (output from master);

MOSI: Master Output, Slave Input (output from master);
MISO: Master Input, Slave Output (output from slave);
SS: Slave Select (active low, output from master).

As shown in Fig. 6, each device has one I/0O interface and, in case of a slave operation, SPI can ignore the
input signals as long as the master does not select it.

14

Figure 6 Typical SPI bus configuration with three slave devices connected

3.1.3.2 Pros/Cons
Advantages:

¢ Full duplex communication
¢ Higher throughput than I12C or SMBus
e Complete protocol flexibility for the bits transferred
o Not limited to 8-bit words
o Arbitrary choice of message size, content, and purpose
e Extremely simple hardware interfacing
o Typically lower power requirements than I>C or SMBus due to less circuitry (including
pull up resistors)

o No arbitration or associated failure modes
o Slaves use the master's clock, and don't need precision oscillators
o Slaves don't need a unique address — unlike I12C or GPIB or SCSI

Transceivers are not needed
e Uses only four pins on IC packages, and wires in board layouts or connectors, much fewer than
parallel interfaces
e At most one unique bus signal per device (chip select); all others are shared
e Signals are unidirectional allowing for easy Galvanic isolation
¢ Not limited to any maximum clock speed, enabling potentially high throughput

Disadvantages:

15

e Requires more pins on IC packages than I°C, even in the three-wire variant

¢ No in-band addressing; out-of-band chip select signals are required on shared buses

¢ No hardware flow control by the slave (but the master can delay the next clock edge to slow the
transfer rate)

¢ No hardware slave acknowledgment (the master could be transmitting to nowhere and not
knowing it)

e Supports only one master device

* No error-checking protocol is defined

e Generally prone to noise spikes causing faulty communication

e Without a formal standard, validating conformance is not possible

¢ Only handles short distances compared to RS-232, RS-485, or CAN-bus

¢ Many existing variations, making it difficult to find development tools like host adapters that
support those variations

e SPI does not support hot plugging (dynamically adding nodes)

3.1.4 Serial Interface

For interfacing RS232 with TTL logic (5V for logic 1, OV for logic 0) of Arduino board in a simple way an
integrated circuit MAX232 IC is used. MAX232 is one of the many IC in the market, which implements
conversion between RS232 -/+10V and TTL +/- 5V. In brief, it is a simple voltage level converter. Its
simple charge pump design allows the circuit to generate +/-10V from a 5V supply using four capacitors.
This charge pump can double up the supply voltage for RS232 transmitter eliminating the need to design
a power supply for +/-10V. This chip converts RS232 signal voltage levels to TTL voltage levels and vice-
versa enabling Arduino board to communicate to a PC through its serial ports (COM1 or COM2).

3.2 Prototype Shield Overview

The overall control system consists of an Arduino Prototyping Shield, a GSM Modem card, a Wiznet card
and a MAX232 IC. In the experimental setup a breadboard is built for the MAX232 IC interfacing. The
usage of a breadboard for testing is a good idea, since fixing mistakes on soldered prototype board can
be frustrating and messy. Breadboarding allows testing the communications and designing the final
prototype shield. It is known that this way of testing is great for sketching out an electronics idea, but it
is terrible at storing a more permanent prototype. Implemented breadboarding for the MAX232 IC
interfacing is demonstrated in Fig. 7. Creating permanent prototypes for use with Arduino or other
microcontroller development boards should include a share of the Arduino pinouts. In general
Prototyping Shield makes easy the design custom circuits.

An alternative design could include the Prototype Shield of RS232 Interface shown in Fig. 8. Prototype
Shield of RS232 Interface could be used in remote control management scheme after experiments
completed in breadboard. Arduino Prototyping Shield has got extra connections for all of the Arduino
I/0 pins and space to mount through-hole and surface mount integrated circuits such as MAX2323 IC.
This allows making custom circuits and Arduino into a single module in a convenient way.

Wiznet card is an Ethernet shield and it can be stacked as any other shield) on top of the Arduino
Prototyping Shield, since this kit provides stackable header pins. Some other development boards, such

16

as Netduino, require 3.3V analog signals instead of the Arduino's 5V. The signal voltage could be
selected between either 5V or 3.3V by means of a jumper provided.

Figure 7 Breadboard for MAX232 IC connecting to Ethernet Board

17

Figure 8 Prototype Shield of R$232 Interface used in Remote Control Management experiments

3.3 Summary

In this chapter, the Arduino platform used in the experimental work is discussed. Here a GSM module is
connected with Arduino board to implement the wireless communication for remote management. A
detailed diagram of Atmel ATmega328 microprocessor is also presented and its circuitry is reviewed.
Two additional remote management schemes are discussed by means of Ethernet (Wiznet Ethernet) or
Serial (RS232) interface. Mainly communication based on Ethernet is accomplished by means of SPI
(Serial Peripheral Interface). Also advantages and disadvantages of SPI communication modes are
discussed focusing on data transfer efficiency. Additionally serial communication is presented by means
of a program example written in C++ programming language. Finally Prototype Shield and a Schematic
are described analytically showing the overall system connections in details.

18

4 Implementation of remote management

4.1 Programming the Arduino board

Arduino board is programmed using the Arduino Integrated Development Environment (IDE), which is a
cross-platform application written in Java. It is similar to the IDE for the Processing programming
language and the Wiring projects. Arduino programs are written in C++. The Arduino IDE comes with a
software library called "Wiring" from the original Wiring project, which makes many common
input/output operations much easier. Users only need to define two functions to make a runnable cyclic
executive program:

e setup(): a function run once at the start of a program that can initialize settings.
¢ loop(): a function called repeatedly until the board powers off or resets.

When the user clicks the "Upload to I/O board" button in the IDE, a copy of the code is written to a
temporary file with an extra include header at the top and a very simple main() function at the bottom,
to make it a valid C++ program. The Arduino IDE uses the GNU tool chain and AVR Libc to compile
programs, and uses avrdude command lines to upload the created hex file into the Target AVR.

Arduino Programs are basically C++. Mainly its program structure consists of the following tree parts:

a. Header: declarations, includes, etc
b. b.setup()
c. c.loopl()

The setup() function is like Verilog’s “initial” and it is executed once when program starts. Finally the
third part called loop() is like Verilog’s “always”. C++ code is continuously re-executed when the end of
loop() is reached until we have a reset signal.

4.2 Reviewing the Source Code

4.2.1 Arduino Libraries included

Four main libraries are included at the beginning of the final program, all written in C++:
SPL.h is used for the connection with the Ethernet and SD peripheral, based on SPI protocol.

Ethernet.h includes the implementation of many functions of classes used such as Ethernet and Client. It
also implements the function that initiates the serial connection (SPI) between the microcontroller and
the Ethernet peripheral, using SPI.h.

GSM.h is used for the GSM module interface. The GSM shield receives AT commands from the
dedicated serial. GSM defines functions that implement these AT commands in a more human-friendly
form.

SD.h defines all the functions needed to allow the microcontroller talk with the sd controller over SPI
In order to include all the above functions the space of RAM needed reaches approximately 36 MB.

19

4.2.2 Global variables
e MAC address of the network interface,
e |P address pre-set, in order to know which node operates,
e Instance of a EthernetServer listening to a dedicated port
e Instance of a GSM interface and SMS stream
e Instance of a stream to a file we use to write in the SD card

4.2.3 Functions
The following functionalities are implemented inside setup():

e initializing of the Serial session and waiting for establishment,
e initializing of the Ethernet interface,

e initializing of the HTTP server,

e initializing of the GSM server,

e a “ready” message to the serial bus,

The following functions are called continuously by loop():
http_serv() which checks every time if there is an http client available. If there is

e prints a Serial message

e while the HTTP session is active it fetches one by one chars from the client buffer and searches
for the first “/” (the argument of HTTP GET follows), and calls decode() with client as parameter

e when the decode() returns the loop breaks (no multiple instructions functionality) and closes
the HTTP session

gsm_serv() which checks if there is any sms available by the modem. If there is it calls decode() with the
sms stream as parameter

decode() which implements a lexical analyser. It takes as parameter a stream and it parses it based on
the Finite State Machine (FSM) at Fig.9

The following functions are called by decode(), depending on the state:

print_page() which, based on the message it receives as argument, creates the proper http post. The
message can be either a file or a string.

screen_printer() which collects the input from the serial interface and stores it into a file.

4.3 Description of the Web Server

In order to call Ethernet.begin() we have to pass as parameter the MAC address of our Ethernet
Interface and a prefered IP - since this Web Server has remote control purpose and an ip address set by
DHCP will not be as useful as a pre-set. Begin() is called in the setup() function. In the loop() function we
check for available client and, if so, we read the HTTP Request character-by-character by client [15].

20

A detailed listing of entire program is presented in APPENDIX A.

Figure 9 A detailed graphical representation of Lexical Analyser with interconnections

4.4 Summary

In this chapter a description of the developed web server program is analyzed using C++ programming
language. Communications between ATmega328 microcontroller board and a network node (e.g. a
server) is also illustrated through the analytical comments presented. The tests of the prototype card
are presented in the next sections.

21

5 Experimental setup and testing

5.1 Practical work

The experimental setup consists of an RS232 interface (MAX232), an Ethernet card based on Wiznet
Ethernet controller (10/100Mbps) with an SD card inside the SD slot and a GSM modem for wireless
communication (Quectel M10). These connection interfaces are already described in previous sections
(see Chapter 3). Remote computer network management is achieved through the developed software
for any of the two ways, via Ethernet or wirelessly via GSM modem. Enabling parameters included in the
executed program determine which hardware interface (serial RS232, Ethernet or Wireless GSM) is
active for communication defining the operation mode.

5.2 Experimental Remote Management in Steps
Executing the program written in C++, there are two options to manage the remote network nodes in
the following steps:

1. Input: HTTP requests to the IP address <assigned id> requesting one of the commands of the
command set (<assigned id>/on)
Output: Command in capitals displayed on the monitor

2. Input: SMS with body one of the commands in the command set
Output: Command in capitals displayed on the monitor

An extra feature is to have a prospective of the screen of the terminal. The output of the screen is
collected in a file stored in the SD card. The content of the file can be seen remotely in the following
steps:

1. Input: HTTP requests to the IP address <assigned id> requesting sc (<assigned id>/sc)
2. Output: HTTP response displaying the output of the screen.

5.3 Summary

In this chapter a discussion on experiments completed using the hardware equipment and running the
developed web server program. Remote communication could be obtained through any hardware
interface, i.e. serially, directly via Ethernet or wirelessly via GSM modem. Experiments show that the
developed web server software operates quickly and exceptionally well allowing access to a remote
node. Therefore this hardware-software implementation could be applied to manage remotely network
nodes in a fast and easy manner. The prototype card has been tested running the remote management
program for web server.

22

6 Conclusion and Future Work

6.1 Conclusions
This dissertation covers major issues and solutions dealing with remote computer network management

over Internet. Related remote node control methods have been studied and the following conclusions

can be presented upon the fulfilment of the dissertation:

a.

A remote network control scheme is designed, implemented and tested using a low-cost
commercial microcontroller board equipped with a GSM modem. For management purposes a
relatively small C++ program is also developed in a communication environment using HTTP
protocol. Since the network the GSM communication uses does not allow SMS transmittion
without balance, this remote control interface is limited to only sending commands.
Additionally solution for remote network management has been proposed using standard
Ethernet network controller and serial communication port. These interfaces have been tested
and could be applied as alternative concepts of remote connection to extend the
communication capabilities of the proposed management system.
Other contributions in this dissertation include:

1 optimisation of the running program code written in C++

2 minimisation of the code execution time without decreasing its comprehensive skills.

Compared to conventional remote control solutions, the proposed one features the flexibility to design

parameters of microprocessor based communications with low cost hardware equipment and easy C++

programming.

6.2 Future Work
Future research may be of interest concentrating on the following:

Include an automated procedure into running program to test remotely network nodes and
estimate network performance.

Explore the possibility of extending the proposed remote management design adding more
peripherals for diagnosis purposes.

Implement this remote control using an Arduino Mega and taking advantage of the bigger RAM
memory.

23

References
[1] http://nitlab.inf.uth.gr/NITlab/index.php/testbed

[2] http://nitlab.inf.uth.gr/NITlab/index.php/testbed/hardware/testbed/testbed-deployment

[3] avrfreaks.net and C Programming for Microcontrollers

[4] Atmel Data Sheets, http://www.atmel.com/Images/doc2543.pdf

[5] http://arduino.cc/en/Reference/Ethernet

[6] Arduino Ethernet, http://arduino.cc/en/Main/ArduinoBoardEthernet

[7] http://en.wikipedia.org/wiki/Lexical analysis

[8] Erik Nordstrom, Per Gunningberg and Henrik Lundgren, “A Testbed and Methodology for
Experimental Evaluation of Wireless Mobile Ad hoc Networks”, In Proceedings of the 1%
International Conference on Testbeds and Research Infrastructures for the Development of
Networks and Communities (Tridentcom 2005), pp. 100-109, Trento, Italy, February 23-25,
2005.

[9] Huan Liu and Dan Orban, “Remote Network Labs: An On-Demand Network Cloud for
Configuration Testing», Proceedings of the WREN’09, pp. 93-101, August 21, 2009,
Barcelona, Spain.

[10] Ghasemzadeh, M. and Foroushani, V.A., “Remote management of computer networks by
short message service”, Proceedings of International Conference on Computer and
Communication Engineering 2008, ICCCE 2008, pp. 300 — 305, Kuala Lumpur, 13-15
May2008.

[11] CrossTec Corporation, “Beyond Remote Control-Features that Take Remote Control
Capabilities to the Next Level of Network Management”, 500 NE Spanish River Blvd, FL,

USA, http://www.crossteccorp.com/remotecontrol/.

[12] OneLab FUTURE INTERNET TESTLABS, http://www.onelab.eu/

[13] Washigton umiversity lecture notes notes; Lecture 6 - Introduction to Atmega328 and
Arduino, Arduino C++ language; Lecture 7 — Controlling Time, CSE P567,
http://www.cs.washington.edu/education/courses/csep567/10wi/lectures/L ecture6.pdf.

[14] http://avrprogrammers.com/atmega328bd.php

[15] http://en.wikipedia.org/wiki/Lexical_analysis

24

http://nitlab.inf.uth.gr/NITlab/index.php/testbed
http://nitlab.inf.uth.gr/NITlab/index.php/testbed/hardware/testbed/testbed-deployment
http://www.avrfreaks.net/
http://www.avrfreaks.net/
http://www.atmel.com/Images/doc2543.pdf
http://arduino.cc/en/Reference/Ethernet
http://arduino.cc/en/Main/ArduinoBoardEthernet
http://en.wikipedia.org/wiki/Lexical_analysis
http://www.crossteccorp.com/remotecontrol/
http://www.onelab.eu/
http://www.cs.washington.edu/education/courses/csep567/10wi/lectures/Lecture6.pdf
http://avrprogrammers.com/atmega328bd.php
http://en.wikipedia.org/wiki/Lexical_analysis

[16] http://en.wikipedia.org/wiki/Serial_Peripheral _Interface Bus

[17] http://arduino.cc/en/Reference/Ethernet

[18] http://arduino.cc/en/Main/ArduinoBoardEthernet).

[19] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, “Compilers: Principles,
Techniques, and Tools (commonly known as the Dragon Book)” , 2" edition, PEARSON
Addison Wesley, Pearson Education, Boston, USA, 2007.

[20] http://en.wikipedia.org/wiki/Lexical_analysis.

[21] http://www.dreamincode.net/forums/topic/260592-an-introduction-to-compiler-design-part-

i-lexical-analysis/.

[22] http://en.wikipedia.org/wiki/GSM

25

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://arduino.cc/en/Reference/Ethernet
http://arduino.cc/en/Main/ArduinoBoardEthernet
http://en.wikipedia.org/wiki/Lexical_analysis
http://www.dreamincode.net/forums/topic/260592-an-introduction-to-compiler-design-part-i-lexical-analysis/
http://www.dreamincode.net/forums/topic/260592-an-introduction-to-compiler-design-part-i-lexical-analysis/
http://en.wikipedia.org/wiki/GSM

Appendix A - Source Code

A detailed source code listing is presented in the following pages. Useful comments are embedded in to

the source code for better explanation of program operation. The entire C++ code is divided into five

main parts described as follows:
#include <SPI.h>
#include <Ethernet.h>
#include <SD.h>

#include <GSM.h>

#define GSM ENABLE

/* DHCP was not supported by Ethernet.h since ver.1.0

** Tn our case we need pre-set IPs in order to know which node we operate */

byte mac[] = { 0x90, 0x2A, OxDA, 0x0D,

IPAddress ip(10,64,45,164);

//By default http uses port 80

EthernetServer server (80);

#ifdef GSM ENABLE
GSM gsmAccess;
GSM_SMS sms;

#endif

#ifdef SD ENABLE
#define SPACE 0x20
File fscreen;

#endif

0x39, 0x11 };

26

/* This part runs the first time the board powers on
or after RESET signal */

void setup () {

// start serial interface for the RS232

Serial.begin(115200);

// walit until serial is established

while (!Serial) {

//start the Ethernet interface
Ethernet.begin (mac, ip);

//Ethernet.begin (mac) ;

#ifdef GSM_ENABLE
// start GSM shield
gsmAccess.begin () ;
sms.flush();

#endif

#ifdef SD ENABLE
pinMode (10, OUTPUT) ;
if (!SD.begin(4)) {
//Serial.println("SD initialization failed!");
}
//Serial.println("initialization done.");

//1if file left from previous

if (SD.exists("screen.txt")) {
SD.remove ("screen.txt");
}
//fscreen = SD.open("screen.txt", FILE WRITE);
if (SD.exists("screen.txt")) {

Serial.println("screen.txt exists.");

#endif

//initialize the server
server.begin () ;

Serial.print ("server is at ");

//prints the actual IP, not the one set above

Serial.println (Ethernet.localIP());

void loop () {

#ifdef SD ENABLE
screen parser();

#endif

#ifdef GSM ENABLE
gsm_serv();

#endif

http serv();

/************************************

28

web server ()
Initiates an http connection and
handles the HTTP Request
************************************/
void http serv () {

//initialize the client

EthernetClient client = server.available();

//1if there is no client connected it skips the hole "if" body and
//jumps at the end of the loop
if (client) {
//Serial.println("new client");
while (client.connected()) {
if (client.available()) {
//reads one by one the chars of the HTTP Req
char ¢ = client.read();
//found the /, begin reading the info
if(c == "/"){
//Serial.print ("via Ethernet: ");
//starts decoding the instruction
decode (client) ;

break;

}

// give the web browser time to receive the data
delay (1) ;

// close the connection:

29

client.stop();

//Serial.println("client disonnected");

#ifdef GSM_ ENABLE

/**

gsm_serv ()

checks if there are unread sms stored at the SIM

*k**********************/

void gsm_serv () {
if (sms.available () >0) {
Serial.print("via SMS: ");
decode (sms) ;

sms.flush ()

#endif

/****************

lexical analyzer

****************/

void decode (Stream &stream) {

char ¢ = stream.read():;
//S
if (¢ == 'o'"){

//1-0

30

c = stream.read();

if(c == "'n"){
//8-on
Serial.println ("ON") ;

success_page () ;

}else if(c == "f"){
//9-0of
c = stream.read();
if(c == "£"){
//10-off

Serial.println ("OFF");
success_page () ;
}else status page();
}else status page();

}else if(c=="r'"){
//2-r
c = stream.read();
if(c=='e"){
//1ll-re
c = stream.read();
if(c=="s"){
//12-res
c = stream.read();
if(c=='e"){
//13-rese
c = stream.read();
if(c=="t"){

//ld-reset

Serial.println ("RESET");
success_page () ;
}
}else status page();
}else status page();
}else status_page();
}else if (c=='c"'") {
//3-c
c = stream.read();
if (c=="o0"){
//15-co
c = stream.read();
if (c=="m") {
//1l6-com
c = stream.read();
if(c=="m") {
//17-comm
c = stream.read();
if(c=="a"){
//18-comma
c = stream.read();
if(c=="n"){
//19-comman
c = stream.read();
if(c=='d") {
//20-command
c = stream.read();

if(c=='s"'){

//21-commands

Serial.println ("COMMANDS") ;

commands page () ;
}else status page();
}else status page();
}else status_page();
}else status_page();
}else status_page();
}else status page();
}else status page();
telse if(c=="t") {
//4-t
c = stream.read();
if(c=='e"){
//22-te
c = stream.read();
if(c=="m") {
//23-tem
c = stream.read();
if(c=="p"){
//24-temp
Serial.println ("TEMP") ;
success_page () ;
}else status_page();
}else status page();
}else status page();
Jelse if(c=="1"){

//5-1

33

c = stream.read();

if(c=="1") {
//25-11
c = stream.read();

if(c=="g"){
//26-1ig
c = stream.read();
if(c=='h"){
//27-1igh
c = stream.read();
if(c=="t"){
//28-1ight
Serial.println ("LIGHT");
success_page () ;
}else status page();
}else status page();
}else status_page();
}else status_page();
}else if(c=='h") {
//6-h
c = stream.read();
if (c=="u'"){
//29-hu
c = stream.read();
if(c=="m") {
//30-hum
c = stream.read();

if(c=="1i") {

//31-humi
¢ = stream.read();
if(c=="d"){
//32-humid
¢ = stream.read();
if(c=="1i"){
//33-humidit
c = stream.read();
if (c=="y") {

//34-humidity

Serial.println ("HUMIDITY")

success_page () ;
}else status page();
}else status page();
}else status page();
}else status page();
}else status_page();
}else status_page();
}else if(c=='s") {
//1-s
c = stream.read();
if(c=='e"){
//36-se
c = stream.read();
if(c=="n"){
//37-sen
c = stream.read();

if(c=="s"){

35

//38-sens
¢ = stream.read();
if(c=='o"){
//39-senso
¢ = stream.read();
if(c=="r"){
//40-sensor
c = stream.read();
if(c=='s"){
//41l-sensors
Serial.println ("SENSORS") ;
success_page () ;
}else status page();
}else status page();
}else status page();
}else status page();
}else status_page();
}else if(c=="t"){
//42-st
c = stream.read();
if(c=="a"){
//43-sta
c = stream.read();
if(c=="t"){
//44-stat
c = stream.read();
if(c=="u"){

//45-statu

c = stream.read();
if(c=="s"){
//46-status
Serial.println ("STATUS") ;
status_page () ;
}else status_page();
}else status_page();
}else status_page();
}else status page();
}
#ifdef SD_ENABLE
else if(c=='"c") {
screen_page () ;
}
#endif
else status page();
}else if(c=='e") {
Serial.print ("\x1B" "i");

}else status_page();

void status_page () {
//we should check here if httprequest has ended
Serial.println ("STATUS") ;
EthernetClient cl = server.available();
if(cl) {
boolean currentlLineIsBlank = true;

while (cl.connected()) {

37

char ¢ = cl.read();

if (¢ == '\n' && currentLineIsBlank) {
cl.println ("HTTP/1.1 200 OK");
cl.println("Content-Type: text/html");
cl.println("Connection: close");
cl.println();
cl.println ("<!DOCTYPE HTML>");
cl.println ("<html>");
cl.print ("STATUS:");
//we could print here the instruction set
cl.println("</html>");

break;

if (¢ == '\n'") {
// you're starting a new line
currentLineIsBlank = true;
}
else if (c != "\r') {
// you've gotten a character on the current line

currentLineIsBlank = false;

}

void success_ page () {
EthernetClient cl = server.available();
if(cl) {

boolean currentLineIsBlank = true;

while (cl.connected()) {

char ¢ = cl.read();

if (¢ == '\n' && currentlLineIsBlank) {
cl.println ("HTTP/1.1 200 OK");
cl.println("Content-Type: text/html");
cl.println("Connection: close");
cl.println();
cl.println ("<!DOCTYPE HTML>");
cl.println ("<html>");
cl.print ("Success");
//we could print here the instruction set
cl.println("</html>");

break;

if (¢ == "\n') {
// you're starting a new line
currentLineIsBlank = true;
}
else if (c != "\r') {
// you've gotten a character on the current line

currentLineIsBlank = false;

}
void commands_page () {
EthernetClient cl = server.available();

if(cl) {

boolean currentLineIsBlank = true;

while (cl.connected()) {
char ¢ = cl.read();
if (¢ == '\n' && currentlLineIsBlank) {

cl.println ("HTTP/1.1 200 OK");
cl.println("Content-Type: text/html");
cl.println("Connection: close");
cl.println();

cl.println ("<!DOCTYPE HTML>") ;
cl.println ("<html>");
cl.println("Commands: (in lower case)");

cl.println("on\n off\n reset\n commands\n temp\n light\n humidity\n
sensor\n status");

//we could print here the instruction set
cl.println("</html>");

break;

if (¢ == "\n') {
// you're starting a new line
currentLineIsBlank = true;
}
else if (c != "\r') {
// you've gotten a character on the current line

currentLineIsBlank = false;

}

#ifdef SD ENABLE

40

/**************************************

screen_parser ()
Inputs: serial stream from screen
and pointer to html file
If two whitespaces in a row ignores it
**************************************/
void screen parser (void)
{
boolean space;
char t;
fscreen = SD.open("screen.txt", FILE WRITE);
while (Serial.available()) {
t = Serial.read();

fscreen.write (t);

/*
if (Serial.read() == SPACE) {
space = true;
fscreen.print (' ');
}
if ((Serial.read() == SPACE) && space) {
fscreen.print ("\n");
}
*/

}
//Serial.println("file printed");
fscreen.flush () ;

fscreen.close();

41

void screen_ page () {
EthernetClient cl = server.available();
if(cl) {

boolean currentLineIsBlank = true;

while (cl.connected()) {
char ¢ = cl.read();
if (¢ == '\n' && currentLineIsBlank) {

cl.println("HTTP/1.1 200 OK");
cl.println("Content-Type: text/html");
cl.println("Connection: close");
cl.println();

cl.println ("<!DOCTYPE HTML>") ;

cl.println ("<html>");

fscreen = SD.open("screen.txt");
while (fscreen.available()) {
//Serial.print(".");
cl.print (fscreen.read());

}
cl.println("</html>");

break;

if (c == '\n'") {
// you're starting a new line
currentLineIsBlank = true;
}
else 1if (c != "\r'") {
// you've gotten a character on the current line

currentLineIsBlank = false;

}

#endif

43

Appendix B - Description of communication components

B.1 GSM Module description
The M10 is a complete Quad-band GSM/GPRS solution in an LCC type which can be embedded in
customer applications, offering the highest reliability and robustness.

Featuring an industry-standard interface and extremely low power consumption, the M10 delivers
GSM/GPRS 850/900/1800/1900MHz performance for voice, SMS, Data, and Fax in a small form factor.
The M10 can fit into almost all the M2M applications, including VTS, Smart Metering, Wireless POS,
Security, etc.

As a part of Quectel’s corporate policy of environmental protection, all products comply to the RoHS
(Restriction of Hazardous Substances) directive of the European Union (EU Directive 2002/95/EG).

Key benefits:

e Quad-band GSM/GPRS module with a size of 29.0 x 29.0 x 3.6mm

e LCC type suits for customer application

e Embedded powerful internet service protocols, multiple Sockets & IP addresses

e Based on mature and field-proven platform, backed up by our support service, from definition
to design and production

B.2 Ethernet Controller Description

The Arduino Ethernet Shield connects Arduino board to the Internet. Simply by plugging this module
onto an Arduino board, connect it to network with an RJ45 cable and start controlling any node through
the Internet. Every element of the platform — hardware, software and documentation —is freely
available and open-source.

Specifications:

e Operating voltage 5V (supplied from the Arduino Board)
e Ethernet Controller: W5100 with internal 16K buffer

e Connection speed: 10/100Mb

e Connection with Arduino on SPI port

44

Figure 10 Wiznet Ethernet Module for Arduino board

B.3 MAX232 IC Description

The RS232 serial port protocol (v.24) states -15v to represent binary 1 and +15v to represent binary 0.
For TTL communication this is incompatible since TTL uses Ov to represent binary 0 and +5v to represent
binary 1. MAX232 chip converts serial signal voltage levels to TTL standards, and also vice versa. It
therefore has a transmitter (driver) and a receiver to perform this function.

The support capacitors C4 and C3 are used for the internal voltage inverter that creates the negative
voltage level for the serial communication. C1 and C3 are used for the voltage doubler to raise the TTL
(5v) level. MAX232 IC is a specialized circuit, which makes standard voltages as required by RS232
standards. This IC is very reliable solution against discharges and short circuits. Also it provides best
noise rejection. As it can be seen, there are 2 drivers, and 2 receivers in the MAX232 package. This can
be confusing for students and makes the chip look more complicated than it really is, but it's actually
very easy since for most applications we generally use only one driver and one receiver. Normally Pins 7,
8, 9, and 10 are used for most of circuits. The other driver and receiver not used could be used as a
spare. The diagram below shows the usually schematic of the MAX232 IC circuit. It consists of only 4x
1uF 16V electrolytic capacitor, and the MAX232 IC itself (see Fig. 6.1).

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-
F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS
levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept +30-
V inputs. Driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and
voltage generator functions are available as cells in the Texas Instruments Lin ASIC library. The MAX232
is a dual driver/receiver that includes a capacitive voltage.

45

SVUINPUT
TOP VIEW [Y
£5 !
; . | :
o = - v ~ |
Ci+ [1] 6] Vec G1Ji_1 Cte ”"Ecarm*.f vab 210y
Ve [2] 5] GnD "I“—z C1- VOLTAGE DOUBLER
----- 2+ 0V T0 10V 6 -10V
- 10V TO -10V _
c-[8) paop |14 Thowr C?Jqf_ﬁ Co- VOUTAGENVERTER [¢y
c2o[s] MACEZ) hi . T
c2- 5] 12] Riour 400K
v- 4] E Tin i HALTD ; Mour Eﬂ
VT
Toour [7 10| T2 TTIL/EMOS RS-232
o 10 INPUTS 400kQ . OUTPUTS
A2 E E R2pur \‘1{:- w5 > Rour |7
DIP/SO AR :
..1 Ripur :i . Ry 13_1\:
CAPACITANCE (uF) TTLCMOS 5O | RS-232
DEVICE (1 (2 (3 04 05 ouTRUTS | o = 1 INPUTS
MAX220 0047 033 033 033 033 K.-_A-L;c< T
MAXZ3Z2 10 10 10 10 10 -
MAX232A 01 01 01 01 Ol)
GND =
115
Diagrams continued in the full data sheet. —

Figure 11 A schematic diagram of the MAX232 IC circuit with 4 electrolytic capacitors of 1uF 16V connected [14]

Figure 12 A MAX232 IC circuitry allowing a pP to communicate with a PC through its serial port [13], [14]

47

