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Euxaptotiec:

Na suyapiotnow ToUg KaBnynTec UOU TOV KUPLO AVTwVOroudo Xpnoto kot tov kupto MméAda
Nikodao yiax tq ouveyn kadobnynon toug ko O0An tn Olapkela TG UAomoinong tne
SUTAWUATIKAC HUoU epyaoiag. Emionc va euxaplotiow TNV OLKOYEVELA OU KOl TOUG PIAOUG LouU
YL TN CUVEXD TOUG oThpPLéN.




[TepiAnym

To avtikeipevo PeAETNC pag ivat n ¢uhoyevetikn edpappoyn PBPI. H PBPI sival pua edapuoyn
TIOU XPNOLUOTIOLELTAL yla TNV eKTiunon ¢duloyevetikwv S£évépwv. H PBPI xpnotpormoletl to phylogenetic
Bayesian inference, évav aAyoplBuo yia ektipnon ¢uloyevetikwv 6évépwy, oe cuvbuaopd aAucideg
Markov. Emtiong n PBPI evowpatwvel KATOLEC aAYOPLOUILKEG BEATIOTOMOLAOEL OE OXEON LE QVTIOTOLYEC
epapuoyEg kal xpnotponolel MPI interface yla va emtuyet mopaAAnAio otov KwSLKA TIPOKELUEVOU VOl
MELWOEL ONAVTLKA TO XPOVO EKTEAECNHG TNG.

ZKOTOG TNC LEAETNG Hag elval va katadEpoupe va petadépoupe tn PBPI og moAuenefepyaotikod
cUOTNUA KAl ELBLKOTEPA TTAVW OTNV KAPTA YPADIKWY. ZTO KELUEVO HOG AVOAUOUE TNV OPXLTEKTOVIKA TNG
KOPTAG YpadLKWY KOl yloTl elval davikr yla UTIOAOYLOMOUG ot oOx€on e Tov emeepyaoti).
Metadépovtag tn PBPI mavw otnv Kapta ypadlkwyv Bo HEAETACOUME Tn oUupmepLdopd TNG Kal v
TPAYHATL N KApTa Yropel va fonbroel otn BeAtiotonoinon Tng anodoong tne.

Eniong okomog NG PeEAETNG HaG elval va SEL&OULE KAL TEXVIKEG TIOU UITopoUV va GOPUOCTOUY
oTnNV KApta ypadkwv. H kdpta elval Ll6aviky yLo UTOAOYLOHOUG, aAAG €XEL KAl auTrh aduvapieg kot
Xpelaletal L8Laitepog XeLPLoPOG LePLKEG DopEC. Oa Selfoupe TPOTOUG TTOU UMOPOUE VOl EEMEPACOUE
QUTEC TLG ASUVOLEG KATL TTIOU UTTOPEL VA €lval EMOVaA)PNOLULOTOLAOLUO KAl ard AAeg edpapUOYEC.

Akopa Ba Seifoupe OAa ta Bripata Kol oTAdLa ou MEPACAE YLla VAl GTACOUE OTNV TEALKH HOG
anddoon. Metadépovtag pia epappoyn MAVwW otnv KApTa v TIETUXALVOUE KateuBeiav Tn péyLotn
anddoon, OUwE TG Teploocotepeg GOPEC elpaote Hakpld amd outr. Oa avaAlcooupe OAeC TIG
BEATLOTOMOLNOELG TTOU KAVAWE KaL TTWG TEALKA PTACAUE OTNV TEAKA pag anddoon.

Emopevo PAua pag eival va ouykpivoups tnv tehikn amdédoon t¢ PBPI mavw otnv kapta
YPOPLKWVY O OXEON HE AUTH TNG APXLKNG UAoToinoNG yla Tov enegepyaotr). Me tn oUykplon B£houpe va
cupmepaivoupe av mpaypatt n PBPI gixe kamolo k€pdog amo OAn autr ta Stadikacia OMwg UTIOoXETOL
TO MOVTEAO TTPOYPAUHATIONOU YLa TLG KAPTEG YPADLKWV.

2710 TENOG TNG SUTAWHOTLKAC UTIAPXEL KL £VA TIOAPAPTN O E TIEPALTEPW UETPAOELG. OL LETPNOELG
oUTEG elval pe overclocked puBuioelg. e autd To KOUPATL daivetal EekdBapa ToloL MTAPAUETPOL TNG
Kapta ypadkwyv ennpealouvv dueca tnv anodoor] tng otnv PBPI.




Abstract

This undergraduate Diploma Dissertation studies the phylogenetic application called PBPI which
estimates phylogenetic trees. PBPI combines Bayesian phylogenetic inference with Markov chains. It
uses the MPI interface for exploiting parallelism and uses algorithm improvements in contrast with
others similar applications in order to achieve great performance. The purpose of this undergraduate
Diploma Dissertation is to make a new implementation for PBPI on a GPU. We analyze the architecture
of a GPU and why a GPU is suitable for tough computations. We will study the performance of PBPI on
the GPU to see if we can get any performance improvement. Also we will show some techniques we
may use for GPU programming. A GPU may be powerful for computations but it has some weaknesses.
We will demonstrate some ways for overcoming these weaknesses and how we can use these ways for
other applications. We will analyze all the optimizations that were applied on our implementation of
PBPI in order to achieve a better performance. These optimizations can be used in other applications
too. We compare the performance of the initial PBPI implemented on CPU with that implemented by us
on GPU. We also have some graphs, representing the total execution times for CPU and GPU and see if
the GPU can really improve the performance.
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Chapter 1 - Introduction

Exploring the mysteries of life is one of the most demanding sectors of biology. Scientists try to
explain how life appeared on earth and how all the organisms were created and the relatedness
between them using phylogenetic trees. This demands months of research especially if they have to
analyze large DNA sequences. There have been created many algorithms for that purpose.

One of the most useful algorithms is the Bayesian phylogenetic inference. It is incorporated in
many application because offers a very good quality of the phylogenetic tree. PBPI also incorporates
Bayesian phylogenetic inference. PBPI is one of the most fast phylogenetic applications for estimating
phylogenetic trees because has algorithm improvements and uses MPI interface for exploiting
parallelism. Nevertheless analyzing DNA sequences of different species with PBPI may take several hours
of computation.

Applications like PBPI usually have intensive computations. These computations delay the
execution of PBPI too much. A CPU cannot execute them effectively. This is why nowadays the GPUs are
used for computations. A GPU has more cores than a CPU and it can be used for making calculations in
parallel giving a great performance.

Our aim is to port PBPI on a GPU. We will make all the computations on the graphics card to
exploit parallelism and improving the performance. We will compare the time needed for the
computations on a GPU with that needed for a CPU and we will analyze the results to see if PBPI can
actually gain any improvement from the GPU.

Programming on a GPU is little more complex than programming on a CPU. PBPI uses recursion
for accessing a tree and a GPU does not support recursion. A technique how a GPU and a CPU can be
combined to overcome this problem will be represented. Also there is analyzed how the performance of
PBPI can be improved when is ported on the GPU. The GPU programming model has a weakness called
memory transfers that may delay the execution of PBPI too much. The optimizations that are done are
analyzed and these optimizations can be reused in other applications.

In chapter 2 we analyze the Bayesian phylogenetic inference and the phylogenetic application
PBPI. In chapter 3 we represent the architecture of the graphics card that was used and the differences
between a GPU and a CPU. In chapter 4 we discuss how to port PBPI on the GPU the optimizations that
were made on the GPU and the performance comparison between the GPU and the CPU. We discuss
our final thoughts in chapter 5 while in the annex we have some measurements with overclocked
settings for the GPU.




Chapter 2 - Studying Phylogenies and the application PBPI

2.1 - An Introduction in Phylogenies

Through centuries many species have disappeared and other have changed so much that new
species were created. All these species may have a common ancestor. For many years the scientists are
trying to figure out the relatedness between species, even if the species may have lived on earth on
different periods. The method they use to study the evolution of species is called phylogeny.

Phylogeny studies the evolutionary relatedness among groups of organisms, which is discovered
through molecular sequencing data and morphological data matrices. In a few words phylogeny tries to
find the similarities through species taking information from their genes. There are two ways that genes
can be inherited: vertical gene transfer and horizontal gene transfer. Vertical gene transfer is the
passage of genes from parent to offspring and horizontal gene transfer occurs when genes jump
between unrelated organisms. The history of organismal lineage is inextricably connected to these gene
transfers.

One serious problem that biologists have to face is that evolution takes place over long periods
of time. They have to reconstruct phylogenies inferring the evolutionary relationships among present-
day organisms. To accomplish this, they use fossils, but unfortunately the fossils often have a lack of
information.

To manage to do all this research on evolution scientists need to include two major steps: a) to
construct a phylogenetic tree that maps the evolutionary relationship among a group of taxa, and b) to
access the confidence on the estimated tree given the observed data.

A plylogenetic tree helps biologists to visualize evolution. The evolution of species consists of
branches of a common ancestor. This information can be seen in Figure 2.1. These trees can describe
the descending pattern or evolutionary relationship among species or organisms. The poorness of fossils
affects these trees as well, so the genetic data are only available for living taxa because the fossils are
often too poor.

The reason of this research is that phylogenies are very useful because all biological phenomena
are the result of evolution. Phylogenies help us in several areas such as pharmaceutical research, drug
discovery, agricultural plant improvement and disease control studies.

There are several methods to study phylogeny and infer phylogenetic trees. Some of them are
parsimony[1] where several trees are estimated and the one that best fit our criteria is chosen,
maximum likelihood[2] where the tree with the maximum probability is chosen and MCMC-based
Bayesian Inference[3] which will be analyzed on next chapter.




Figure 2.1 — Phylogenetic Tree[4]

2.2 - Bayesian phylogenetic inference

The Bayesian phylogenetic inference estimates a phylogenetic model W= (T,t,0) of a given
molecular sequence alignment D (D is the data). This phylogenetic model consists of three components:

e T:is atree structure that represents the evolutionary patterns for the organism under study.

e T:maps the divergence time along different lineages.

e {¥:is a model of the molecular evolution that approximates how the chatacters at each site
evolve over time along the tree.

In this model, the observed data D and the phylogenetic model W are treated as random
variables. Next, we introduce the formulas that Bayesian phylogenetic inference uses to calculate the
conditional probabilities:

e P(D|¥W) =P(DI¥Y)P(¥) : This is the joint distribution of the data.

_ _POlvorer)
° P(qjilD) = Xi(PDI¥IPWY)

¥;, where P(D|¥;) is the likelihood, P(¥;) is the prior probability of the model and
2j(P(D|¥;)P(¥))) is the unconditional probability of the data.

e P(T;|D) = [[ P(T;,7,0|D)dzd®8 : This is the marginal distribution which helps us to estimate the
posterior probability of a specific phylogenetic tree.

: This is the posterior probability for a specific phylogenetic model




2.3 - PBPI

Scientists that work on phylogenies always need an efficient way to analyze their data, because
these analyses are often very expensive. One of the best ways to test their DNA sequence data is the
programs that incorporate the MCMC-based Bayesian inference. Bayesian-based phylogenetic inference
programs are a very good choice for this scope because these programs are usually faster and also have
a better tree quality than other algorithms. However, analyzing a DNA sequence using Bayesian analyses
is very computationally expensive, especially if the DNA sequence data requires several of memory
space and therefore several months of computing time. A high performance application is needed in
order to exploit the advantages of Bayesian plylogenetic inference.

PBPI[5] is a parallel implementation of Bayesian phylogenetic inference method for DNA
sequence data and it combines Markov Chain Monte Carlo method with likelihood-based assessment of
phylogenies. In order to achieve the desired efficiency, PBPI incorporates parallel processing and
algorithmic improvements. The aim of PBPI is to estimate phylogenetic trees in order to quantify and
visualize the relatedness between different species. PBPI takes DNA sequences of the examined species
as input, constructs the tree where each node of the tree represents an organism and calculates the
probabilities of the nodes of the tree according to the formulas of Bayesian phylogenetic inference.

There is an array of doubles in each node where the probabilities that show us the relatedness
of the species of the tree are calculated. The length of this array depends on the input file. These arrays
show the relatedness between the different species of the tree. The arrays of the leaves of the tree are
initially filled with data but the arrays of the internal nodes needs computation. We also need the data
of the arrays of the children of each node to compute the array of the corresponding node. For example
in Figure 2.2 if we want to calculate the array of node 10 we must know the array of node 5 and have
calculated the array of node 6.

Figure 2.2 — Structure of a phylogenetic tree in PBPI

There were three challenges to overcome, when the PBPI was being designed. First, PBPI is
founded on Markov Chain Monte Carlo method[6], which is a sequential method and current steps




depend on previous time steps. Second, it requires frequent |/O operations to store data drawn by the
MCMC method. Third, even when a multiple-chain MCMC method is used, there is a limit on the degree
of parallelism.

The computation time of PBPI depends on two factors:

e The length of the Markov Chains for approximating the posterior probability.
e The computation time needed for evaluating the likelihood values at each generation.

The algorithm proposed by Felsenstein[7] is used to calculate the corresponding likelihood. This
algorithm traverses the phylogenetic tree in post order and computes the conditional probabilities for
each internal node from the conditional probabilities of its children nodes. All this computation requires
o(N - M - 5?) multiplications, where M is the length of the alignment, N the number of taxa and S the
number of possible states at each site.

A property of this algorithm that helps a lot in saving computation time is the likelihood local
update. First the conditional probabilities for all the nodes of a phylogenetic tree (T) are calculated.
When the calculations for the (T) are completed, a new phylogenetic tree (T’) is created. The advantage
is that the new tree (T’) is constructed from (T) with partial changes, as we can see in Figure 2.3, so the
algorithm has only to recompute the conditional probabilities for those nodes appearing in the back
tracing path to the root nodes. In our example, we evaluate the likelihood of the tree (T) and then a new
tree (T’) is constructed. The right child of the node 13 has changed, so we have only to compute the
conditional possibilities for the nodes 13, 15 and 16. This likelihood local update only requires
o(logN - M - 5%) multiplications improving significantly the performance.

Figure 2.3 — The phylogenetic tree (T) and the proposal phylogenetic tree (T’)

Nevertheless, it is not known if the proposed tree T' will be accepted. A method should be used
to avoid frequent memory copies to save and restore the conditional probabilities. The method that is
used is vector re-linking. The technique of vector re-linking is described as follows:
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e A conditional probability vector is allocated for each internal node for both the current and the
proposal tree.

e The proposal tree is obtained from the current tree and the vector links between the
corresponding unaffected nodes in the current tree and proposal tree are swapped, keeping the
remaining links untouched.

e |[f the proposal tree is accepted then the current tree and the proposal tree are swapped with all
links unchanged, else all links for unaffected nodes are swapped back.

PBPI uses these optimizations to reduce computation time. But the biggest advantage of this
application is the parallelism levels that it incorporates. PBPI uses the MPI interface to express and
implement parallelism. MPI allows us to create many threads on non-common memory that may run
concurrently reducing the computation time.

When a DNA sequence data (in our example we have 5 sequences) is given it is broken in
smaller segments. The program analyzes the small segments and merges the result of them into a larger
tree. Each segment can be analyzed concurrently and moreover several independent analyses can be
performed in the same dataset to check the convergence of the chains. The partitioning of the data is
shown in Figure 2.4.

Figure 2.4 — Partitioning DNA sequence data in segments

Except from these granularities of parallelism, there is another degree of parallelism at the
Markov chain level as shown in Figure 2.5. Each sequence runs in a number of chains that are executed
in parallel. The number of the chains is defined by the user. If there are enough processing elements in
our system we may break the sequences in segments, run them in parallel, perform many independent
analyses on the same dataset and execute the chains in parallel.
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Chain 1 Segment1 Segment 2 Segment 3 Segment4q
Chain 2 Segment1 Segment 2 Segment 3 Segment 4
Chain 3 Segment1 Segment 2 Sesment 3 Segment4q
Chain 4 Serment 1 Segment 2 Segment 3 Segment 4

Figure 2.5 — Chain level parallelism

Our aim is to run this application on GPU. We will see the way it runs on a GPU and study if

there is any performance improvement on the graphics card.
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Chapter 3 - Parallel programming on graphics cards

3.1 - GPU computing

Graphics cards were initially designed as devices to process and visualize computer graphics.
When in the late 1990°s the hardware became programmable, NVIDIA took this chance and applied this
new tendency to graphics cards. It also coined a new term called GPU in 1999 and the General Purpose
(GPGPU) era was about to start.

At first it was too difficult to program on a GPU even for those who were programming on
languages like OpenGL. They had to use triangles and polygons in order to represent their scientific
calculations. The help of some researchers from Stanford, who saw the GPU as a stream processor,
made programming on a GPU very easy. The term stream means a set of records that require similar
computation and stream processing allows exploiting parallelism on applications.

Moreover, in 2003 a team led by lan Buck unveiled Brook[8]. At last programmers were able to
write programs on GPUs using C language with data-parallel constructs using concepts as kernels and
streams. But the most important was that not only Brook programs were easier to write, they were
about seven times faster than similar existing code. NVIDIA invited lan Buck to join the company and
they started to work on how to run C seamlessly on GPU. In 2006, NVIDIA revealed CUDA (Compute
Unified Device Architecture), the first official solution of the company for supporting code execution on
GPUs.

CUDA is a parallel computing platform and programming model that increases dramatically the
computing performance, using the power of GPUs. The computations can be done on a GPU, while a few
years back they should be only done on a CPU. A new scheme was created: the co-operation of a CPU
and a GPU. Exploiting the GPUs’ parallel throughput architecture the computation time decreased
significantly. It is better to have many threads that run slowly in parallel than a single thread that run
quickly. This is called GPGPU.

This concept was considered very useful and the computations can be finally done very quickly and
nowadays CUDA is used extensively for accelerating computations in many application domains, such as:

e Bio-informatics where scientists accelerate their analyses.
e Pharmaceuticals where pharmaceuticals companies worldwide accelerate new drug discovery.
® Financial market.

13



The first NVIDIA GPU series that were designed for CUDA and helped in the sections said above
were G8x series. Since then all the newest series support CUDA including GeForce, Tesla and Quadro
lines. Figure 3.1 depicts the typical pattern that characterizes a CUDA application:

The processing data are copied on the GPU’s global memory.
The CPU initiates the processing on the GPU.

The GPU executes the code in parallel.

The result is copied back to RAM.

A wN e

Figure 3.1 — The CUDA model[9]
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3.2 - NVIDIA's Fermi architecture

It is very important to realize how a GPU works at a low level, before starting programming it.
We will discuss the Fermi architecture[10] and specifically this discussion is based on the GeForce
GTX480.

The main building block of the Fermi architecture is shown in Figure 3.2. This level is called
CUDA core. CUDA cores are very simple. They just have a pipelined floating-point unit (FPU), a pipelined
integer unit, some logic for dispatching instructions and operands to these units, and a queue for
holding results. They do not have their own register file or L1 caches like CPUs. They do not even have a
load or store unit to access memory. These cores are not designed to execute efficiently single-threaded
codes, but rather to work in parallel and provide high computational throughput.

Operand Collector

FP Unit i INT Unit

Figure 3.2 — A CUDA Core

Multiple CUDA cores are aggregated at a higher level as streaming multiprocessors. A streaming
multiprocessor is depicted in Figure 3.3. Each multiprocessor has 32 CUDA cores and all these cores
share the registers, the caches, the local memory, and the load/store units. The special function units
(SFUs) handle complex math operations, such as square roots, reciprocals, sines, and cosines. Now it is
understandable why a CUDA core does not have caches and load/store units. These 32 cores work as a
group, share these resources and are designed to work simultaneously on 32 instructions from a bundle
of 32 threads, which NVIDIA calls a warp. Moreover two different warps may run on the same
multiprocessor concurrently and this is called dual-issue.

Before continuing to the next level, we have to say how the streaming-multiprocessor works.
The scheduler can now issue two instructions per clock, unlike the previous architectures. However,
these two instructions cannot be issued by the same thread but by different warps. A multiprocessor
can manage up to 48 warps and each warp, as we have previously said, has 32 threads. So, a
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multiprocessor can manage 1536 threads and in the case of GTX480, which has 15 streaming
multiprocessors, we can have 23.040 parallel threads. We cannot execute all these threads concurrently,
but we need to have as many as possible activated threads. When a warp of threads is accessing the
memory, the thread scheduler simultaneously switches to another ready warp for executions, hiding
this access. At any time, there are executed concurrently the maximum number of threads for the
current device. For example, in GTX480 this number is 480 threads (15 streaming multiprocessors * 32
CUDA cores each streaming multiprocessor) and when they have finished their execution, 480 different
instructions can be executed in the next clock cycle.

Figure 3.3 — A streaming multiprocessor

The last and highest level is shown in Figure 3.4. We can clearly see the streaming
multiprocessors, and the unified L2 Cache of 768KB, which is shared by them. We can also see the six
64-bit DRAM chipsets of 256MB each, also known as global memory, the host interface (PClI Express) and
the GigaThread hardware thread scheduler. This scheduler is responsible for thousands of simultaneous
threads and very quick context switches between graphics and compute applications.

16



Figure 3.4 — Fermi Block Architecture Diagram

Understanding the way a GPU works it is obvious that is totally different form a CPU. But, there
is also another big difference between them. A CPU can communicate straight to the system’s main
memory (RAM) through an integrated memory controller (IMC). A GPU can also communicate with the
system’s main memory, but there is a big problem. A GPU reaches the main memory over PCl-express
(PCle), which has a high latency. A more efficient way is needed, in order not to spend too much time
transferring data over PCle.

In Figure 3.5 we illustrate the memory hierarchy, which saves us a lot of time when accessing
memory. The highest level is the DRAM (global memory), which is more than 1GB. We transfer the data
that are needed to this memory from RAM and we just use DRAM and not the main memory of our
system. We have also mentioned that global memory consists of six 64-bit interfaces, which are installed
on the PCB of the graphics card and not in the chipset. This memory is fast enough using DDR5
technology with low latencies achieving high performance in today’s top-level graphics cards. Also, this
memory is shared by all the streaming multiprocessors. Although global memory is fast enough, the fact
that is installed on the PCB and not in the chipset, makes its accessing a little slow.
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For this reason, designers have installed some memory in the chipset as well. This is the next
level, it is called unified L2 cache memory and it is also shared by all the streaming multiprocessors. The
position that is installed is very important. So, it is put among all the multiprocessors and it is easily
accessible by all them. L2 cache memory’s capacity is only 768KB, significantly smaller than the global
memory, but it is very faster than the global memory. L2 is usually used to cache data of a small capacity
that are frequently used by the multiprocessors, allowing us to avoid the “trip” to the global memory.

Even though we can say that L2 is fast enough for the needs of a GPU, there is yet another level
of memory. This level called L1 cache is installed in each streaming multiprocessor and its capacity is
64KB. It is lowest and the fastest level reducing latency and increasing bandwidth. The 32 cores of each
multiprocessor share this level, but cores from one multiprocessor cannot access L1 cache memory from
another multiprocessor. It is local to each 32-core streaming multiprocessor and shared by all those
cores.

Figure 3.5 — Fermi Memory Hierarchy

18



3.3 - Differences between a CPU and a GPU

A CPU’s architecture and specifically the intel i7 860‘s die[11], is shown in Figure 3.6.

Figure 3.6 — The die of an intel core i7 860

First, there are 4 cores with HyperThreading technology. We can execute 4 threads concurrently
and due to HyperThreading we can sometimes execute even 8 threads concurrently if the 2 threads of a
core have not to share the same resources. So the maximum number of threads that can be executed
concurrently on this CPU is 8. Unlike a GTX480 can have 23,040 active threads because a GPU is good for
throughput via a high degree of parallelism. The 480 of these threads are executed concurrently.

Second, there is a difference in the control units of these two architectures. The control unit
orders which instructions will be executed on a core. The control unit is very important on a CPU,
because each thread may execute different things in each time. Unlike a GPU does not have a complex
control unit. The threads are executed in warps in parallel and they do the same thing. We do not have
to control each core but we control a group of 32 threads.

Third, there is also a difference in caches. The intel core i7 860 has 3 levels of caches. The lowest
level is the 4*64KB L1 Cache, the second is the 4*256KB L2 Cache and the third is the 8MB shared by all
cores L3 Cache. CPU uses large caches to hide memory access latency. In comparison with the caches of
GTX480, we see that the GTX480 has one less level of cache than the i7 860 and that the higher level in
GTX480 is too small compared to the i7 860 ‘s. GPUs may have small caches, but they use fast context-
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switching to overlap memory access latency with useful computations. We just use a GPU for
computations in parallel, and it is more important to have many cores than big capacities of cache
memory.
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Chapter 4 - Using CUDA on PBPI

4.1 - Introduction and methodology

We used the back218 L10000np256.nex input file to count the execution time of PBPI. This file
contains the DNA sequences of several organisms. These DNA sequences are 10,000 characters length.
We executed PBPI with the following options:

e 4 Markov Chains

e 50,000 repeats for each chain
e 1,000 step for each repeat

e 1run of the PBPI

Our benchmark rig consists of:

e Anintel corei7 860
e 8GBRAM
e GeForce GTX480

The core i7 860 is clocked at 2.8GHz (133MHz (bclk) * 21 (multiplier)). The core i7 860
incorporates the turbo boost technology[12]. When an application is executed the core i7 860
automatically changes its clocks to 3.46GHz changing its multiplier to 26 (133MHz (bclk) * 26
(multiplier)).

The GTX480's specifications are:

e Core clock: 700MHz

e Shader clock: 1400MHz

e Memory Clock: 3700MHz DDR5
e Memory capacity: 1536MB

The operating system was used was Kubuntu 11.10. The compiler that was used for the PBPI
implemented on CPU is icc and the flags of the compiler were -03 -fomit-frame-pointer. The compiler for
the GPU was the nvcc which is based on gcc and not on icc and the flags were the —arch=sm_21. We
used the nvvc to complie the .cu files but we made the link with the icc.

The computation time and the total time of this application executed on the specific CPU is
shown in the following graph:
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Figure 4.1 — PBPI on single threaded CPU

4.2 - Profiling PBPI

Profiling PBPI shows us which function is the most computationally intensive. We used Intel's
Vtune[13] to do so. Profiling PBPI with Vtune we saw that the most time consuming function is the
ComputeNodelikeData. This function estimates the arrays in each node of the tree. The length of these
arrays called sitelike is depended on the input file, but they are usually quite lengthy. The length of the
arrays for the specific input set was in the order of 40000 items

The computation of different elements of each array is independent and therefore the value of
different elements can be computed in parallel. It is obvious that we cannot create 40,000 threads on
CPU to calculate this array in parallel, but this a job that can be easily done in GPU. Using a GPU for
these calculations we can exploit parallelism and reduce significantly the computation of these arrays.

4.3 - Working-around recursive function calls

A GPU does not support recursion. The main reason is that each thread cannot have its
individual stack. Millions of threads are created when someone uses a GPU for computations and there
is not enough memory to have a stack for all those threads. There are two ways to solve this problem:

e \We can execute the recursion on CPU and invoke the kernel on the GPU in each node.
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e We can execute the recursion on CPU, record the sequence of the nodes and invoke the kernel
on the GPU one time only.

We opted for the second solution, because multiple kernel invocations would penalize
performance. This technique is generally applicable if the recursion is only used to traverse a linked
data structure and the traversal order is not dependent on computations.

4.4 - The PBPI implementation on GPU

The most time consuming function is the ComputeNodelikeData. This is a recursive function. In
each step of this recursive is computed the sitelike array of a node of the tree. For this computation we
need to know the corresponding siteLike array of the children of that node.

We run this function on CPU because GPU does not support recursion. When we reach a node
that needs computation we call five times the cudaMalloc function. CudaMalloc is a function that
allocates memory on the GPU’s memory. We need to call two times the cudaMalloc function to allocate
memory on the GPU ‘s DRAM for the sitelike arrays of the left and the right child, two times for the
trprob arrays of the left and the right child and one time for the sitelLike array for the node we have
reached in order to save our results. Then we call the cudaMemcpy functions 4 times to transfers the
arrays of the two children on the GPU‘s memory.

When our data are copied on GPU‘s memory the kernel for the GPU is invocated. In our example
40,000 threads are running exploiting parallelism on GPU. Each thread on GPU is running much slower
than a single thread on the CPU but the fact that they are all parallel to each other gives us a greater
performance for this computation than a single thread on a CPU.

When our computations are done we call the cudaMemcpy one time and transfer the siteLike
array of that node to the RAM. Then we call the cudaFree function five times to free memory from all
the above arrays and we continue the recursive access of the tree. In this way are computed all the
siteLike arrays of the tree and we have computed all the siteLike arrays of a tree we go to the next tree.
All this procedure is show in Figure 4.2 for the node 13 of a tree.
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*  S¥cudaMalloc

*  A*cudaMemcpy to transfer data on GPU 's memory
* kernel invocation

+ cudaMemecpy to transfer data on RAM
* 5*cudaFree

Figure 4.2 — Example of node 13 executed on GPU

Our implementation consists of 3 basic components: the memory allocations, the memory
transfers and the computation time on GPU. It is crucial to see analyze these 3 components when

programming on a GPU in order to optimize our performance. These 3 components are shown in the
graph of Figure 4.3.
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Figure 4.3 — PBPI executed on GPU

Using a GPU for exploiting parallelism on computations gives us a great performance in contrast
with a single threaded CPU. On GPU took 80 seconds for the computations while on CPU needs 790
seconds. The total time of our execution is more than the CPU‘s because of the memory allocations and
transfers. The memory allocations need 805 seconds and the memory transfers 1025 seconds.

4.5 - Parallel execution on GPU

Our goal is to run all the items of the array of each node in parallel on GPU. The big advantage of
PBPI is that all items of each array are independent to each others. So, we create as many threads as the
items of these arrays. When we invocate the kernel these threads are executed in parallel reducing the
computation time.

The arrays of the back218 L10000np256.nex input file have 40,000 items. We can simply create
40,000 threads to compute our arrays in this way:

dim3 dimBlock(4,100);
dim3 dimGrid(1,100);

We now have 40,000 threads running to execute our computations. But this is not very efficient.
The threads in a multiprocessor are organized in warps. Each warp has 32 threads. The 40,000 threads
cannot be divided with the number 32 and multiprocessors do not always have group of threads of 32
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threads each. The solution is that the number of threads that is declared in each block should be a pow
of 2.

For example we may use 256 (4*64) threads per block and 157 blocks. This configuration seems
to be fine because the number of the threads per block is a pow of 2. However this configuration is not
very efficient because we have only a few blocks. We want to have many blocks because when a warp is
accessing the memory we want to swap to another warp that waits for computation. On the other hand
we should not have excessively too many blocks. Having a few threads per block kills the performance
too. We should find the suitable configuration and this can be done by testing different configurations.
The best configuration for PBPI is:

dim3 dimBlock(4,32);
dim3 dimGrid(1,313);

We now have 128 threads in each block and the threads are organized in warps. Also we divide
the 40,000 with 128 and the result is 312.5. We round the 312.5 to the next integer and we have 313
blocks. Now we have more than 40,000 threads. We use the 40,000 threads for computation and the
remaining threads do nothing. It may seem that these useless threads may give us a bad performance,
but this is not actually true. These threads run in parallel and they cost us almost nothing. The
performance efficiency is show in the graph of Figure 4.4.
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Figure 4.4 — Organizing threads
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4.6 - Memory allocations optimization
Our first optimization concerns the memory allocations on GPU. Our total execution time of

time was 2216 seconds. The memory allocations time was 805 seconds which is a big part of our total
time.

S*cudamMalloc

+  STCumaMallo

*  A*cudaMemcpy to transfer data on GPU 's memory
* kernel invocation
¢+ cudaMemcpy to transfer data on RAM

+  SCemFIRe

5*cudaFree

Figure 4.5 — Elimination of memory allocations

All the internal nodes of the trees need the same quantity of memory for the computations. It is
not wise to allocate and free that memory for every node. We can allocate these areas in the beginning
of the application and reuse them for all the internal nodes. For example we may transfer to GPU the
data of the node 8 and 9. These data are needed for the node 13. We can compute the array of node 13,
save the result and return it to the RAM. Next we can compute the node 15 and use the same areas in
our memory to transfer our data. The node 13 is done and we do not need the data of node 8 and 9. So
we can overwrite the areas with these data, saving the new required data for the new computation. We
do that for the entire tree and it is shown in Figure 4.5.

Our new total execution time is 1346 seconds is shown in graph 4.6. The memory allocations
time is almost eliminated (0.1 seconds instead of 805) but the memory transfers are still a big problem.
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Figure 4.6 — PBPI on GPU

4.7 - Asynchronous memory transfers

The total time for all the memory transfers is 1025 seconds. We want to either eliminate them
or overlap them with useful computation. First we used asynchronous copies from and to GPU in order
to overlap them with computations. Asynchronous memory copies are a feature that was added in the
latest NVIDIA’s graphics cards and allows us to execute the memory copies in parallel with other
instructions of our code. We do not wait the function cudaMemcpy to return saving a lot of time for our
application.

Asynchronous memory copies are used in streams. The concept of streams is very simple. First
we put in the same stream the memory copies and the kernel invocation that are depended on each
other. Instructions within each stream will execute in-order and each instruction in a stream waits for a
previous instruction in the same stream to be executed. On the other hand instructions from different
streams may execute in arbitrary order. For example in Figure 4.7 we copy the data and execute the
kernel in streamO for operation A and we can copy the data for operation B in stream1. The kernel of
streamO is executed in the same time with the memory transfers of stream1.
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Figure 4.7 — Usage of streams

In our application we copy the data of a node’s children asynchronously, execute the kernel for
the computation of that node in the same stream with the memory transfers of the children’s data and
finally we copy the result in the RAM in the same stream with the previous operations. The problem in
calculating the arrays for the nodes is that the parent node is depended on its children’s nodes. We
cannot put them in different streams because we must wait for the children to calculate their arrays. For
example as shown in Figure 4.8 we cannot put node 15 in a different stream from node 13. When we
want to calculate the node 13 we transfer the data from node 8 and 9, we start the calculations for node
13 but we cannot do anything for node 15 because node 13 must finish its calculations first. So, we put
the entire tree in the same stream because the parent nodes are depended on their children nodes. We
may not have many streams to overlap the instructions of different streams but we can overlap the
instructions of the stream with other instructions that are not related to this stream.
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Figure 4.8 — Asynchronous copies in a single stream

Using asynchronous memory transfers helped to decrease the total execution time of memory
transfers to 825 seconds from 1025 as we in graph 4.9. We had an improvement in memory transfers
but they still have a great share of our total time.
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Figure 4.9 — Execution on GPU
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4.8 - One kernel invocation for each tree

In this optimization we will implement the technique discussed in chapter 4.3, invoking the
kernel on GPU once for each tree. To do so we need to create a struct on GPU that will keep the right
order for accessing the tree. Each item of the struct contains the data of a node and the nodes are saved
in the order they are accessed on the tree. Then we will access the struct repeatedly on GPU invoking
the kernel once as shown in Figure 4.10. One more benefit of this implementation is that we keep on
GPU the computed data of a node that are needed by its parent node. We do not transfer them back to
RAM and then to the GPU again. It is better to have GPU to GPU copies than RAM to GPU copies via
PCle. The NVIDIA’s bandwidth test shows us the reason:

e Copying data via PCle from RAM to GPU‘s DRAM: 5500MB/s.
e GPU to GPU copies: 150000MB/s.

The implementation of this is very simple. We access the tree recursively on CPU. When we
reach a leaf of the tree we transfer the 40,000 item array of the node on the corresponding position of
our struct. For the internal nodes we do not have to transfer these arrays, as they are initially filled with
zeros. We just record the id of their children of the internal nodes. So when we reach an internal node
for computations, we just use the data of its children to compute the array of this node.

Figure 4.10 — Accessing the tree repeatedly on GPU
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The new total execution time is 764 seconds as shown in graph 4.11. The memory copies time
decreased at 633 seconds from 825 because we have all the data of a tree on GPU‘s DRAM.
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Figure 4.11 — Execution on GPU

4.9 - Memory transfers aggregation

Even though the total execution time of PBPI and the memory transfers time have decreased,
the data copies still affect negatively the performance. The reason that our data copies last so much is
that we copy the data of every node of every tree. Not only we transfer too many megabytes of data on
GPU‘s memory, but we also transfer them in segments.

The aim of GPU programming is to manage to transfer the data we need in one copy at the
beginning of the application. It is preferred one large transfer than many smaller because we pay the
transfer latency fewer times and exploit the bandwidth better. This is not always easy, especially if our
data are scattered in the memory. Although that does not really affect a CPU, it is always a big problem
for a GPU and we usually need to do some extra work on that creating our own memory manager.
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This technique is shown in Figure 4.12. If our data are scattered in memory as RAM-1 we save
them in a continuous area in the memory as RAM-2. First we allocate on RAM the needed continuous
area. Then we save the first data segment at the beginning of that area. When the first data segment is
saved we put the pointer to the end of that segment. So, when we save the second segment, it will be
saved next to the first one. We do that until all the data are saved and we finally have them in a
continuous area in RAM.

wi [ B W0

Rama-2

1st data 3rd data

2nd data Ath data

Figure 4.12 —Organizing data in RAM

Having all the 40,000 item arrays in one piece in system’s memory, we allocate the total amount
of memory needed on GPU and we transfer the data on GPU‘s memory at the beginning of the
application once. Then we access the trees recursively on CPU but we do not any more transfer the
40,000 item arrays on GPU‘s memory for each node. We only pass an argument of the position of the
data we need on GPU for each node, do the computations and return the results back to RAM. We no
longer have to transfer any 40,000 item array of the next tree, because were initially copied on GPU’s
memory and we make all the changes there.

We can see the new total execution time in graph 4.13. PBPI now needs 398 seconds for the
data copies instead of 633. The remarkable of this technique is that we do not need to use
asynchronous copy for that one memory transfer. We do not copy that area asynchronously and our
memory transfers are faster than our previous implementations with asynchronous copies. Also we now
pay the latency time once at the beginning of the code without spending time paying for every node for
each 40,000 item array.
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Figure 4.13 — Execution on GPU

4.10 - Minimization of results transferred to the CPU

Transferring data on GPU at once is the ideal when working on GPU and using on PBPI
decreased the memory transfers time. But the copies of the results back to RAM still affects PBPl. We
copy back to RAM each array of any internal node. These copies cost too much hurting our performance.

Having all the data on GPU’s memory we do not transfer data for each node apparently.
Furthermore we now work only on GPU’s memory and make all the changes there. No changes happen
on RAM anymore. But we still return all the result of every node back to RAM. Studying the way the tree
works we see that we calculate the arrays of each node in order to reach the root of the tree to
calculate root’s array. PBPI takes the result of the root and prints in a file. This is the wanted result. Not
using RAM anymore and needing only the root’s result we do not have to return all the arrays of all
nodes of the tree back to RAM. As we see in Figure 4.14 we can just compute the data for each internal
node such as 13, save the new results on GPU’s memory and copy back to RAM the array of node 16
only.
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Figure 4.14 — one transfer back to RAM

Making this optimization we saved a lot of time. Now the memory transfers take 27 seconds
only instead of 398 as we see in graph 4.15. We have avoided the transfers from GPU’s memory to RAM
which are the most expensive. This can be approved using the NVIDIA’s bandwidth test:

e Copying data via PCle from RAM to GPU‘s DRAM: 5500MB/s.
e Copying data via PCle from GPU’s DRAM to RAM: 4800MB/s.
e GPU to GPU copies: 150000MB/s.
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Figure 4.15 — Execution on GPU

This was the last optimization we did. In next chapter we will compare the performance of PBPI
using the GPU against the CPU.

4.11 - GPU speedup of PBPI

4.11.1 - Methodology
For the time comparison between CPU and GPU we used the back218 L10000np256.nex input
file with the defaults options:

e 4 Markov Chains

e 1,000,000 repeats for each chain
e 1,000 step for each repeat

e 5run of the PBPI

We used the default setup because is a larger and more realistic experiment and this makes the
benefits of using the GPU more obvious. We will execute PBPI on CPU with 1 thread, 2 threads and 4
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threads using MPI and we will compare the execution time of these runs with the time execution on
GPU. First we will compare the computations time only and then the total execution time of PBPI.

4.11.2 - Computations between CPU and GPU

The comparison between the core i7 860 and GeForce GTX480 for computation time only is
shown in graph 4.16. The computation times of CPU and GPU are:

e 1threaded CPU: 23h 59m 23s
e 2threaded CPU: 12h 09m 57s
e 4threaded CPU: 6h 44m 50s
e GPU:1h59m 52s
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Figure 4.16 — Computation time

We see that GPU is faster than any CPU setup. It is significantly faster if we execute the
computations on 1 thread on CPU but GPU is even faster if we execute the computations on 4 threads
on CPU. The computations on GPU are 12 times faster than a single threaded CPU and 3.4 times faster
than a 4 threaded CPU. The speedup of GPU against CPU is:

e 1 threaded CPU: 12x
e 2 threaded CPU: 6.1x
e 4threaded CPU: 3.4x
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Having a good speedup against CPU we will examine if the GPU is also faster against CPU for the
total execution of PBPI. There is no importance if the computations are faster on GPU but the total
execution is slower.

4.11.3 - Total execution of PBPI between CPU and GPU

We will compare the total execution time of PBPI between CPU and GPU as shown in graph
4.17. We used the same CPU and same GPU. These times are:

e 1threaded CPU: 24h 51m 21s
e 2 threaded CPU: 13h 37m 46s
e 4threaded CPU: 8h 06m 04s
e GPU:2h 55m 08s
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100000
90000
80000
70000
60000
50000
40000
30000
20000 10508
10000

0 __

cpu (1thread) cpu(2threads) cpu (4 threads) GPU

89481

49066

total time (sec)

29164

Figure 4.17 — total time of PBPI

The implementation on GPU is faster than the implementation on CPU and specifically GPU is
8.5 times faster a single threaded CPU and 2.7 times faster than a 4 threaded CPU. The speedup of GPU
against CPU is:

e 1 threaded CPU: 8.5x
e 2 threaded CPU: 4.7x
e 4threaded CPU: 2.7x
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We see that GPU is faster than CPU again. The speedup may be less than the previous one but
GPU is still much faster. If we want to reach GPU’s performance with a CPU we must add more
processors. But we cannot add more processors on the same system. So we have to create a cluster
increasing system’s cost and complexity.

We also have to say that the reason we did not show the time of 8 threads on CPU is that we did
not have any performance improvement. The intel i7 860 may support 8 threads, 2 in each core, in
parallel due to HyperThreading but in PBPI this is of no use. These 2 threads compute the same thing
and they do not finally run in parallel. In order to test PBPI with 8 threads we should use an 8-core CPU.

39



Chapter 5 - Conclusion

PBPI is one of the most intensive computational applications. Although it has an algorithm
improvement, is still too slow when running on a single thread on a CPU. Porting PBPI on a GPU gave us
a very good performance. The implementation on GPU is even faster when we run PBPI on 4 threads on
CPU. We finally managed to run PBPI fast enough on a GPU which was our initial target on a system of
low cost and complexity exploiting the throughput of the GPU for parallel calculations.

GPU helped us to achieve a very good performance on PBPI but this performance needs a lot of
optimization. GPU may have a better efficiency than a CPU but also a GPU needs a lot of work in order
to achieve a great performance. Optimizing memory transfers is the most crucial thing when working on
GPU. It usually needs to make your own memory manager in order to transfer all your data in one copy
which is the ideal.

Also PBPI gave us the opportunity to see that we cannot use recursion on GPU. But this is not a
big problem because the CPU can help to access structs recursively and then we can make our own
struct on GPU with these data and accessing it repeatedly.

The next step is to execute PBPI in 2 GPUs but not in the same system because having two GPUs
on the same system these two GPUs share the bandwidth of PCle. We want to run PBPI in two different
systems with a GPU in each of them. The application will be executed in two threads on CPU (one thread
on each CPU of each system) each of them will be responsible for one GPU.
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Annex

This annex contains results of PBPI executed on GPU with overclocked settings. Overclocking our
system may give a little more power on our applications. Overclocking is considered as a dangerous act
because it may cause system failure. But nowadays manufacturers are programming the hardware in
that way that it can protect itself even if the user wants to push his system to the limits.

We will represent the way we tested our system. For these tests we used:

e Anintel corei7 860.

e The MSI TWIN FROZR Il GeForce GTX560Ti, a graphics card that is pre-overclocked from the
factory.

e Asus Maximus Ill Extreme P55 chipset.
e Supertalent 4GB RAM, DDR3 2133MHz 8-8-8-24. The system was with the default settings, so
the RAM was running at 1600MHz 9-9-9-24.

We used the back218_L10000np256.nex input file to compare the default and the overclocked
settings for the execution of PBPI with the following options:

e 4 Markov Chains

e 50,000 repeats for each chain
e 1,000 step for each repeat

e 1run of the PBPI

The most time consuming time functions for CUDA are the memory copies from and to GPU.
These transfers occur over PCle which is not fast enough. The bandwidth that offers the PCle 2.0 x16 is:

e Copying data via PCle from RAM to GPU‘s DRAM: 5500MB/s.
e Copying data via PCle from GPU’s DRAM to RAM: 4800MB/s.

First we will test PCle to see if there is any gain from it. The default setting is 100MHz. We
pushed it to 140MHz which is a very high number for the 1156 socket and P55 chipset but not unstable
for our motherboard. The new bandwidth is:

e Copying data via PCle from RAM to GPU‘s DRAM: 6500MB/s.
e Copying data via PCle from GPU’s DRAM to RAM: 5300MB/s.

The next step is to test all our versions of PBPI on GPU to see the gain of each version. We can
see that gain in the next 6 graphs.
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We infer that overclocking can help improve our performance in most cases. From the graphs
we see that when we make many transfers it helps a lot. For example overclocking PCle gave us a good
performance improvement for implementations discussed in 4.4, 4.6, 4.7 and 4.8 chapters. These 4
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implementations have many memory transfers and adjusting the MHz of PCle gave us a performance
boost. In contrast with these 4 implementations, the implementations discussed in 4.9 and 4.10
chapters, do not depend on PCle overclocking especially the last one. These results show how important
is to transfer our data in one copy. Not having a big gain from PCle overclocking means that the
performance of these implementations does not depend on memory transfers too much.

The second test we did is to overclock the GPU. The defaults clocks of MSI TWIN Frozr Il GeForce
GTX560Ti are:

e Core clock: 880MHz
e Shader clock: 17760MHz
e  Memory Clock: 4200MHz

We tweaked the GPU’s BIOS, changed the clocks and we saved the new BIOS with these clocks:

e Core clock: 950MHz
e Shader clock: 1900MHz
e  Memory Clock: 4580MHz

The results for the computations only are shown in the graph. There is no need to measure the
entire time of PBPI because the GPU executes only the computations.
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Overclocking our GPU may have decreased the computation time but there in not a big
difference. This is because the GPU executes the computations in parallel. If we had a single thread
running we would see a big difference but now each thread executes a few instructions in parallel with
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others and a small increment in MHz does not really affect the performance too much. In contrary if we
could run more threads in parallel then we would see a big difference.
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