[TANEIIIXTHMIO OEXXAAIAX
[TOAYTEXNIKH XXOAH

TMHMA HAEKTPOAOT' QN MHXANIKQN &
MHXANIKQN YITOAOI'TETQN

Implementation of a Distributed System for the Solution of
MultiDomain / MultiPhysics Problems

Avantoén Kataveunpévoov Xvotnpatog yio Exilvon

[MpofAinpatov ITollantiov - Xopiov / [ToAlarrldv - VoKV
Movtérlmv

AIITAQMATIKH EPTAXIA

KQNXETANTINOX K. XAAKIAX

EmPrenovieg KaOnyntéc: [Mavayidta Toopmavoroviov
Enikovpn Kanyntpua

EppovounA Bapaing
Kobnyntig

BoéAog, IovAog 2013

[TANEIIIZTHMIO OEXXAAIAX
ITOAYTEXNIKH 2XOAH

TMHMA HAEKTPOAOI'QON MHXANIKQN &
MHXANIKQN YTIOAOTI'TXTQN

Avantoén Kataveunpévoov Xvotipartog yio Exilvon
[MpoBAnpatov IToAlaniov - Xopiov / [ToAlantAdv - Dveikodv
Movtéimv

Authopatikny Epyacia

KOQNXTANTINOX K. XAAKIAX

Empiémovrec KaOnyntég: Iavayiovta Toopmavomroviov
Enikovpn Kabdnynrpua I1.0.

Eppavound Bapaing
Kadnyntg I1.0.

EykpiOnke amd v diedn e&etaoctikn enttponn v 5 loviiov 2013

I1. Toopmavomoviov E. Bapoing
Enikovpn Kabnyntpua Kafnyntg

Aumdopatikny Epyacia yio v andktnon tov Autkodpotog tov Mnyavikov H/Y, Thienikowovidv
& Awtdov tov [Tavemompiov Oecoariog, ota TAaicio Tov [Ipoypdppatog [Tpomtuytakmy
2rovdav tov Tunpatog Hiektpordywmv Mnyovikdv kot Mnyovikdv Y moloyiot®dv Tov
[Tavemomuiov Oecoaiiog.

KQONZTANTINOZ XAAKIAZ
Authopatovyog Mnyavikoc HY, Thdvidv

& Awktoov

© 2013 - All rights reserved

To my family and friends.

14
Evyopiotieg

Y& avto to onpeio Ba NBeda va evyaploTHo® OAOLG TOVS avOp®TOVG ToV e fondncav Kot
He vrootnpiEav 6t poOvia GTOVd®Y LOV.

Apyikd 6o NBeha va evyaplotno® TV eMPAETOLGO TNG OIMA®UATIKNAG HOv epyaciag,
[Movayiwta Toopmavomovlov yio TV EUMGTOCVUYVN TOL Hov €0elée va acyonbm e Hio toco
amonTNTIKN OWmA®MaTK) epyacia. H vmoot)piEn g, m kabodnynon ¢ Kol Ol OLGLDOELS
napePacel e He dtevkdivvay vo emTOX® TNV 0AOKANpwon tG. To evilapépov Tng Kot ot
ocv(nmoelg mov eiyole Hov £d€1Ee OTL Ot HOVo elyape Mo AploTtn cuvepyaoio aAAd kot OTL
avantHéape o ovclooTikny avOpomvny oyéorn. Oa Mbela emiong va vyapPIGTAC® TOV OEVTEPO
emPAETOVTO TG SAMMOTIKNG Hov epyacioc K. EMpavouvnd BaBain yia tig cupovAéc Tov Ko tnv
VIOoTNPLEN TOV KOBOAN TN SEPKELN TOV GTOVODV HOV.

AxOUN opeilm €vo PeydAo gvyaploT® O6TOVS QGiAovg Hov, v Aleéia, tov Baciin, v
Maopiavva, tov Koota, v Aepoditn kot v Xpoon yio TV ayanrn Toug Kot TV VTOGTHPIEN TOVG
KO TNV VoY TOVS OTIG W10TPOTiEG Hov OAQ aVTA T ¥POVID. GTOVOMV OAAG Kol KATA TN SLApPKELQ
™G EKTOVNONG TS SUTAMHATIKNAG LoV epyaciog.

Téloc, Ta ekmONdELTIKA MOV emTevYHaTo €ivol TO OmOTéEAECHO NG Gvev Op®V ayamng,
vrootpigng, evldppuvong , cvdPovAng kot kKaBodynong mov €y omd TV OowoyEVELd Hov.
Evyoapiotd tovg yoveig Hov, Evyevia kot Kvpialn, mov wévta etvan dimha pov va pe otnpilovv , va
He BonBovv pe 0motodnToTe TPOTO Kot Vo Lov divouv duvapn vo cuveyicm Kot vo TposTad® Yo To
KaAOTEPO dvvartd. AkOpn Ba NBeia va gvyapiotiom OepUd ta adépero Lov, Mdayda kot ITepucin,
Yo TNV OYAmn TOVG Kot TV KOTOVOTGY| TOVG,

Koo,
Bolog, 2013

Iepiinyn

H povtehomoinon kot n mpocopoiwon cOvOET®V QuoIK®V TPoPAnUatov mepthapPfdver
GLY VA TOAAG PEPM Kupimg Yol

1. 1o @uoikd TpoPAnpata amd LoV TOVS AToTEAOVVTAL OO TOAAA ETUEPOVS VITOTPOPAT|HaTOL
SLPOPETIKNG PHONG

2. 0l TOPAAANAEG LTOAOYIOTIKEG GTPUTNYIKES KOl TPOCEYYIGES Oamattovv TOAAG (oyedmv
aveEaptnta) eTUEPOLE TPOPANaTa, Kot

3. 10 VIAPYOV AOYIGHO TPOGOpoimaNg £xel pappoyn HOVo og amhd Ye®UETPIKE GynHaTo Kot
HOVTEAD PLGIKTG.

O K0prog okomdg aVTNG NG JMAGUOTIKNG epyociog etvar vo mpoteivel éva mepiPdiiov
TPocooimong vy v emilvon tov TpofAnUdtev moAlamdv yopiov / TOALUTAGV QULOIKOV
wpofAnpatev He T HEBOJO TNG YOALP®ONG OTIG JETAPES UETAED YEITOVIKOV VIOY®PIOV TOL
apykov mpoPAruatog (Interface Relaxation).

To npotewvopevo epyaheio (IRTool) mpénet va Exet apretég Told mBVUNTES 1O10TNTES, OO
gvpeia epappoyn , avénM évn mpocapd 06TIKOTNTA, LYNAN andd0CN , TOPUAANACUS Kot
enovoypNoLonoinon AoyoUkoy, Ue TV evoopdtwon HeBOdwV og O1ApOopovs EMGTNHOVIKOVG
ToMelg Omwg 1 Habnpatik) avdAivor, aptOuntiky avaivor, Ot emGTNHOVIKOL VTOAOYIGHOT Kot Ot
KotaveUnEvot VTOAOYIGHOL.

Abstract

The modeling and simulation of complex physical systems often involves many components
because

1. the physical system itself has components of differing natures,
2. parallel computing strategies require many (somewhat independent) components, and

3. existing simulation software implies only to simpler geometrical shapes and physical
situations.

The main purpose of this thesis is to propose a simulation environment for solving
MultiDomain / MultiPhysics problems using different relaxation methods to the interfaces between
neighboring subdomains of the original problem (Interface Relaxation).

The proposed tool (IRTool) should have several very desirable properties as, fast
convergence, wide application, increased flexibility, high performance, parallelism and reuse of
existing software, integration of the advances in various scientific fields such as mathematical
analysis, numerical analysis, scientific computing and distributed computing.

Table of Contents

List Of Acronyms

List of Figures

Chapter 1: Introduction

1.1 General

Chapter 2: Related Works

2.1 First Implementation of IR

2.2 SciAgent

Chapter 3: Theoretical Background
3.1 General
3.2 Domain Decomposition & Interface Relaxation

3.3 Interface Relaxation Methods

3.3.1 The Geometric (GEO) Construction Based Method

Chapter 4: System Design & PDETool

4.1 Matlab PDETool
4.1.1 What does this Toolbox do?
4.1.2 Who can use this toolbox?
4.1.3 What Problems can | solve?
4.1.4 In which areas can the Toolbox be used?
4.1.5 How do | define a PDE Problem?
4.1.6 How can I solve a PDE Problem?
4.1.7 Can | use the Toolbox for Nonstandard problems?
4.1.8 Who can | visualize my results?
4.1.9 Are there any applications already implemented?

4.2 IRToolbox (Interface Relaxation Toolbox)

10

11
12

16
16

18
18
18

20
20
21
23

24

25
25

25
25
25
27
27
28
28
28
28

29

4.2.1 Expanding Matlab’s PDE Toolbox

4.2.2 Architecture’s Basic ldea & Functionality

Chapter 5: IRToolbox GUI

5.1 Global Window

5.1.1 File Menu

5.1.2 Edit Menu

5.1.4 Draw Menu

5.1.5 Interface Relaxation Menu
5.2 Subdomain Window

5.2.1 Boundary Menu

5.2.2 PDE Menu

5.2.3 Mesh Menu
Chapter 6: IRTool Implementation
6.1 General
6.2 IRTool Initialization
6.3 Geometry Decomposition
6.4 Boundaries & Interfaces
6.6 Interface Relaxation

6.7 Graphical User Interface (GUI)

Chapter 7: User Guide / Numerical Experiments
7.1 General
7.2 Two - dimensional elliptic partial differential problem
7.2.1 Uniform Problem - Solution Step By Step

7.2.2 Non Uniform Problem - User Practice

Chapter 8: Conclusions

8.1 Conclusions

11

29

29

30
30
31
31
31
32
32
33
34
35
36
36
36
36
39
43
47

48
48
48
48

53

55
55

Bibliography
Appendix

12

56
67

List Of Acronyms

GEO
AVE

NEW
ROB
SCO

SHO

PDE

IR
PDEToolbox
IRToolbox

Geometric Construction Based Method

A simple method of averaging the solution and its normal derivative
along the interfaces.

A scheme based on Newton’s method to “correct” the interface values.
An algorithm that uses Robin interface conditions for smoothing.

A scheme that is based (but not formulated) on Schur complement
approach.

A method based on the concept of the shooting method for solving
Ordinary Differential Equations (ODES).

Partial Differential Equation
Interface Relaxation
Partial Differential Equation Toolbox

Interface Relaxation Toolbox

13

List of Figures
Figure 2.1: The components of the SciAgent System

Figure 3.2.1: The Interface Relaxation mechanism

Figure 3.3.1: Cross section perpendicular to the interface where UL and Ur have slopes S,
and Sr at the interface point I. Changing the values of UL and Ur by a quantity m makes

the slopes equal in magnitude.

Figure 5.1: IRTool Global Window

Figure 5.1.1: IRTool File Menu

Figure 5.1.2: IRTool Edit Menu

Figure 5.1.3: IRTool Options Menu

Figure 5.1.4: IRTool Draw Menu

Figure 5.1.5a: IRTool Interface Relaxation Menu
Figure 5.1.5b: IR Parameters pop - up window

Figure 5.2a: Global Window with drawn Geometry
Figure 5.2b: Subdomain Window for the first domain
Figure 5.2c: Subdomain Window for the second domain
Figure 5.2.1a: Boundary Menu

Figure 5.2.1b: Boundary Condition Window

Figure 5.2.1c: Interface Relaxation Condition

Figure 5.2.2a PDE Menu

Figure 5.2.2b: PDE Specification Window

Figure 5.2.3a: Mesh Menu

Figure 5.2.3b: Mesh Parameters Window

Figure 7.1: Matlab’s Command Window

Figure 7.2: Geometry of the uniform problem

Figure 7.3: Object Dialog Window for geometry specification
Figure 7.4: Decomposition of the initial problem to subdomains

Figure 7.5: Boundary Mode of the subdomains

14

18

22

30
31
31
31
31
32
32
33
33
33
34
34
34
35
35
35
35
48
49
49
50

50

Figure 7.6: Boundary Condition Window for Uniform Problem

Figure 7.7: Interface Relaxation Conditions Window for Uniform Problem
Figure 7.8: PDE Specification Window for Uniform Problem

Figure 7.9: Mesh Parameters Window for Uniform Problem

Figure 7.10: IR Parameters Specification for uniform problem

Figure 7.11: Contour plot for the solution and plots for the interface relaxation of the
uniform problem

Figure 7.12: Contour plot for the solution and plots for the interface relaxation of the non
uniform problem

15

51
51
52
52
53

53

54

Chapter 1: Introduction

Chapter 1: Introduction

1.1 General

For the numerical solution of large partial differential equations (PDE’s) problems there are
many techniques[1][2][11]. The first and most common approach is to discretize the geometrical
domain using grids or meshes to create a large discrete problem. These grids or meshes are then
partitioned to create a set of inter-connected discrete problems. This is simple Domain
Decomposition (D.D. also known as sub-structuring) and the coupling between components
(discrete problems) is rather tight as the mathematical model along interface points or elements is
discretized into equations that involve details from both neighboring components. Moreover,
domain decomposition methods solve a boundary value problem by splitting it into smaller
boundary value problems on subdomains and iterating to coordinate the solution between adjacent
subdomains. A coarse problem with one or few unknowns per subdomain is used to further
coordinate solution between the subdomains globally. The problems on the subdomains are
independent, which makes domain decomposition suitable for parallel computing. However domain
decomposition methods are typically used as pre-conditioners, such as the conjugate gradient
method.

The second and oldest approach is Schwarz Splitting which decomposes the geometrical
domain into components with small overlap[3]. In overlapping domain decomposition methods, the
subdomains overlap by more than the interface. The mathematical models on each component can
then be solved independently in some way and the Schwarz alternating method is applied iteratively
to compute the global solution. Of course, some discretization method is applied to the solution
process on each individual component. The overlapping creates a serious complication in the
Schwarz method even when the global problem has a simple geometry. The method has become
more feasible with the discovery of non-overlapping domain versions.

The third and newest approach is Interface Relaxation (IR) where the geometrical domain is
decomposed into subdomains, each with its own mathematical model. In these, non-overlapping
methods, the subdomains intersect only on their interface. In primal methods, the continuity of the
solution across subdomain interface is enforced by representing the value of the solution on all
neighboring subdomains by the same unknown. Along the interfaces between subdomains one must
satisfy interface conditions derived from the physical phenomena (e.g., continuity of mass or
temperature, conservation of momentum). The models in each domain are solved in the inner loop
of the interface relaxation iteration method to compute the global solution. The methods use one of
a variety of “smoothing” formulas to reduce the error in satisfying the interface conditions. Finite
element simulations of moderate size models require solving linear systems with millions of
unknowns. Several hours per time step is an average sequential run time, therefore, parallel
computing is a necessity.

The goals of handling different physical problems, using parallel computers and reusing
existing software all lead to the need for high flexibility and loose coupling between components in
the computation. The approaches mentioned above have similar goals but are quite different in their
generality and flexibility. The tight coupling of domain decomposition requires that neighboring
components have a lot shared information about their discretizations. Further, this approach is quite
awkward when the models are different on neighboring components. The mortar method creates
specialized refinements of the models and meshes along the interfaces to accommodate changes in
models across interfaces. overlapping Schwarz methods are similarly constraint to a single physical
problem for neighboring subdomains. the non - overlapping Schwarz methods are restricted to a
single mathematical model for neighboring subdomains.

16

Chapter 1: Introduction

The interface relaxation approach imposes no coupling conditions, except those inherent in
the mathematical models, and it provides maximum generality and flexibility. The interface
relaxation method is the method that we are going to use in order to solve complex PDE problems.
The IR methodology is an iterative procedure. First the initial problem is decomposed into smaller
and simpler PDE subproblems, where there is no overlap between the neighboring subdomains. On
all subdomain interface we use initial values, which we estimate. The next step is to solve each
single PDE subproblem independently using the estimated values on the interfaces. If the solution
that we compute is not the same as the real solution we improve the values on the interfaces using a
relaxer. A relaxer is an interface relaxation method, such as GEO, ROB, AVE [12][13][14]. This
procedure is progressed iteratively until satisfactory accuracy and convergence are achieved.

The main purpose of this dissertation is to propose a simulation environment for solving
multi-domain/multi-physics problems. More specifically we want to solve elliptic PDE problems
that are coupled with both cartesian and general decompositions. The Graphical User Interface
(GUI) is a simulation framework where we can draw a 2-D complicated domain and define
boundary and interface conditions. We can also specify the partial differential equation, create,
inspect and refine the mesh and compute the solution for the particular problem. This framework
must have several very desirable properties like fast convergence, wide applicability, increased
adaptivity, high efficiency, inherent parallelism and software reuse by integrating advances in
different scientific areas like mathematical analysis, numerical analysis, approximation, scientific
computing, distributed computing and agent computing.

In the Second Chapter, we present previous related works. In the Third Chapter we provide
a theoretical background about how Interface Relaxation can be used in order to solve complex
PDE’s problems. In the Forth Chapter a brief description of Matlab’s PDETool is given. The Fifth
Chapter introduces IRTool’s Graphical User Interface. The PDE Toolbox is used as a base of the
proposed simulating environment for the decomposition and solution with the use of various
interface relaxation methods. In the Sixth Chapter we provide technical information for the
implementation of our tool. In the Seventh Chapter a manual is given which provides any
prospective user all the necessary guidance needed to compose the initial problem and afterwards
decompose it and solve it with the Interface Relaxation Toolbox. The Eighth Chapter suggests
guidelines for any future development and extension of the proposed implementation of the
Interface Relaxation Toolbox.

17

Chapter 2: Related Works

Chapter 2: Related Works

2.1 First Implementation of IR

Given the fact that Methodology in Interface Relaxation is relatively new, it is easily
assumable that there are only a few implementations that cover this area of research. A first but also
naive of such a prototype implementation goes back to 1991. it was solely based on core TCP/IP
routines to implement the collaboration among the co-workers. it did not use software parts
technology but rather developed from scratch on local solvers and implemented just one relaxer.
The second primitive implementation differs from the first one mainly on the fact that it exploited,
based on plain KQML messages, the Agent approach to integrate the ELLPACK PSE. both were
very unstable, were used through text based user interfaces, did not complied with standard
technology and were very limited for our purposes [5][6][7][8][9]. Nevertheless, the later
implementation have provided with a good starting point and it is presented next.

2.2 SCiAgent

Collaborative PDE Solvers: Theory and Practice[2], presented in 2000 an implementation
of a collaborative PDE system, named SciAgent, for truly heterogeneous distributed computer
systems. In particular the architecture and the main software components are described and the
Agent Technology used is introduced. SciAgent implementation consists of a whole class of
Interface Relaxation methods in an agent based framework that is implemented mainly using C and
JAVA. This implementation is used for general two-dimensional decompositions of linear and non-
linear elliptic PDE problems. The SciAgents exploit the inherent parallelism in the interface
relaxation methods using the Agents computing paradigm over a network of heterogenous
workstations. The components of a SciAgent system are shown in Figure 2.1 below.

Figure 2.1: The components of the SciAgent System

Specifically, the SciAgents transform the physical problem into a network of local PDE solvers and
interface relaxers. In the SciAgent prototype there are three types of agents: one PDECoordinator
agent, several PDESolver and PDEMediator agents. The PDECoordinator, as it is Figured by its
name, is responsible for the control of the entire application and coordinate the whole procedure, a
PDEMediator arbitrates between the two solvers sharing a boundary between two domains, and a
PDESolver is a wrapper for the legacy application and solves the local problem.

18

Chapter 2: Related Works

When the PDECoordinator agent is started, reads a problem description file and writes the
information into its model. The input file contains information about the number of solvers and
mediators, the characteristics of the interfaces, the initial guesses on the interfaces, the interface
relaxation methods and the names of the machines that will be used to solve the whole problem.
The next step in the procedure is to create and conFigure the PDESolver and PDEMediator agents.
The PDECoordinator uses their addresses to setup the communication between them. Then the
coordinator waits for messages from the mediators, regarding the status of the convergence to the
solution of the problem, or from the user. The messages from the user are to change the values of
specific variables of the input file, such as convergence tolerance or to force the execution to stop.

The PDESolver agent is responsible to solve the problem locally and path the input/ output
files etc. In the first state, the PDESolver starts-up the Pelltool which compiles the .e file that
describes the local PDE problem, and creates the executable that will be used later on by the
ExecuteTool. Both Pelltool and ExecuteTool are parts of PELLPACK system. In the next state, the
solver extracts the points on the interfaces from the file that contains the mesh/ grid points, and
writes them into a file. Then the solver notifies the mediators that the files are ready. The
PDESolver agent remains idle until being notified by the mediator that the list with all the points
and their initial guesses are stored in a file at a specific location. Then the solver uses these files to
run the ExecuteTool to solve the problem and then, the solver send a message to the mediators that
new values are computed, and waits for their response. Depending on the message from the
mediators, the solver will solve the problem again, remain idle waiting for the other solvers, or plot
the local solution. The PDECoordinator is able to terminate the PDESolver by sending an
appropriate message.

The mediator agent, PDEMediator, is created and conFigured by the PDECo- ordinator
agent. The mediator agent has a complete description of the interface, the relaxation method used,
the solvers to collaborate with, the location of the input/ output files, the location of the legacy
programs, the tolerance used to decide convergence, and the initial guess function. This information
is provided by the coordinator agent. After being started, the mediator waits for the boundary points
from the neighboring solvers. In the next stage, the mediator combines the two point lists and then
uses the initial guess to compute values at these points. Afterwards, the mediator sends a message to
the two solvers that the files with the points and their values are ready. The mediator remains idle,
waiting for new values from the two solvers. When it receives new values it moves to the next
stage, reads the new data and compares them with current data. Then the mediator agent uses the
relaxation method to calculate the new values for the boundary conditions. If convergence is
reached on this interface then the mediator sends messages to the solvers and informs the
PDECoordinator about the local convergence so it will be able to decide on global convergence. A
message from the coordinator is sent to the mediator and the PDEMediator will finish, in case of
global convergence or wait for new data from the two solvers.

SciAgents require strong interpolation support, procedure for estimating initial guesses,
mechanisms for determining “good” values for relaxation parameters and criteria to control the
iterative procedure. Interpolation is needed because grids/meshes do not necessarily match on the
interface segment. Also the estimation of initial values on the interface is a very complex procedure,
because the Neumman and the mixed boundary conditions are sensitive to their initial guesses and
as the PDE problems get more complicated better initial guesses will be needed.

19

Chapter 3: Theoretical Background

Chapter 3: Theoretical Background

3.1 General

The various domain decomposition methods that have been recently developed for the
efficient solution of elliptical differential equations can be easily classified into two categories -
overlapping and non-overlapping [3]. Both approaches already have been used to effectively model
large scale, industrial, ill-conditioned problems. Nevertheless it is believed that further theoretical
and experimental analysis is required before such methods will become practical and useful tools
for non - experts.

Overlapping (Schwarz) schemes have received in the past a great deal of attention. Articles
that review and compare various such schemes and survey the associated preconditioning strategies
have already appeared in the literature. it is relatively recent that a number of studies have shown
that non-overlapping schemes can compete well an d can possibly free the user from certain
complications in their formulation and implementation. the comparison of the main characteristics
of these two classes of methods and the existence of equivalent relations between them have already
received a great deal of study.

Interface relaxation methods takes us a step beyond non overlapping domain decomposition.
In an effort to mimic the physics in the real world, they split a complicated partial differential
equation (PDE) that acts on a large and / or complex domain into a set of PDE problems with
different but simple operators acting on different and easy to solve subdomains. This Multi - PDE,
Multi - Domain system is properly coupled using smoothing operations on the inter domain
boundaries.

From the interface relaxation viewpoint, the methods that can be used in order to solve a
problem, consist of partitioning the domain on a set of non-overlapping subdomains and of
imposing some boundary conditions on the interface boundaries defined by this partition. Then,
using initial guesses on the interfaces, the set of the resulting PDE problems is solved. The solutions
obtained do not satisfy the interface boundary conditions and interface relaxation is applied to
obtain new interface boundary values, which satisfy the conditions better, and we solve the PDEs
with these new values. We repeat the above steps until the desired convergence is acquired.

For this dissertation we have collected most of the known interface relaxation methods and
for the implementation of the IRTool we have used the GEO method.

Specifically, we consider the methods listed below in alphabetical order with respect to their
acronyms. These acronyms are used in the sequel to refer to associated methods.

AVE A simple method of averaging the solution and its normal derivative along the interfaces.
GEO A method based on a simple geometric contraction.

NEW A scheme based on Newton’s method to “correct” the interface values.

ROB An algorithm that uses Robin interface conditions for smoothing.

SCO A scheme that is based (but not formulated) on Schur complement approach.

SHO A method based on the concept of the shooting method for solving Ordinary Differential

Equations (ODEs).

20

Chapter 3: Theoretical Background

SPO A method originated from the use of Steklov Poincare operator which involves alternating
boundary condition types.

3.2 Domain Decomposition & Interface Relaxation

The domain decomposition world consists of two parts, overlapping and non-overlapping.
Overlapping, known also as Schwarz, methods were the first considered and have already proved
themselves as very efficient numerical procedures enjoying certain very desirable convergence
properties. Nevertheless, it has been also observed that they might have serious drawbacks which
will prohibit their use for certain applications. For example, almost all of the many proposed
domain decomposition methods for solving wave propagation models (that consist of the Helmoltz
equation coupled with various absorbing or reflecting boundary conditions) are non-overlapping.

Non overlapping methods exhibit certain advantages compared to overlapping ones.
Specifically:

» They are not sensitive to jumps on the operator coefficients. Their convergence behavior and
theoretical errors estimates remain the same even if the differential operator includes
discontinuous coefficients provided that the jumps occur along the interface lines.

» They have smaller communication overhead in a parallel implementation on distributed memory
multiprocessor systems. Their communication overhead is proportional to the length of the
interface lines while it is proportional to the overlapping are in the case of overlapping methods.

» The bookkeeping is rather easy for the decomposition and manipulations of the associated data
structures compared to the more complicated and costly bookkeeping of the overlapping methods.

Interface relaxation is a step beyond non overlapping domain decomposition; it follows
Southwell’s relaxation of the 1930’ but at the PDE instead of the linear algebra level - to formulate
relaxation as iterated interface smoothing procedures. A complex physical phenomenon consists of
a collection of simple parts with each one of them obeying a single physical law locally and
adjusting its interface conditions with neighbors. Interface relaxation partitions the domain on a set
of non overlapping subdomains, imposes some boundary conditions on the interface among
subdomain lines. given an initial guess, it imitates the physics of the real world by solving the local
problems exactly on each subdomain and relaxing boundary values to get better estimates of correct
interface conditions. The procedure described above can be explained as an algorithm, as follows :

1. Guess solution values (and derivatives if needed) on all subdomain interfaces.

2. Solve all single PDEs exactly and independently on all the subdomain with these values as
boundary conditions.

3. Compare and improve the values on all interfaces using a relaxer
4. Return to Step 2 until satisfactory accuracy is achieved.

The simplest relaxers do some sort of “smoothing” of values on the interfaces and averaging is a
good mental model for a relaxation formula.

21

Chapter 3: Theoretical Background

Relaxation:

G, (UNw, UNew,“"0 -, ")=0

Figure 3.2.1: The Interface Relaxation mechanism

The illustrated Figure above shows the generic relaxation formula G;j;
(based on the current solutions Ui"" and U™ of the two local to the neighboring subdomains Qi
and Q;) calculates successive approximations bi;New to the solution on the interface T'ij between
them.

To formally describe this method we consider the differential problem

Du=fin €, Bu=con Jf (3.1)

where D is an elliptic, non-linear in general, differential operator and B a condition operator defined
on the boundary 6Q of an open domain Q E RY, d=1,2,... This domain is partitioned into p open
subdomains Q;,i=1,...,p such that

Q = UP_ Q:\0Q and N?_ Q; = 0. (32)
For reasons related either to the physical characteristics of this problem or to the computing
resources available, one would like to replace (3.1) with following system of loosely coupled

differential problems

D;u = f; in (), (3.3)

Giju=0on (0Q; NO;)\OQ Vj #1, Biu=c; on 082 N IN

22

Chapter 3: Theoretical Background

where i=1,...,p. These differential problems are coupled through the interface conditions Gijju=0 and
involve the restrictions Di and Bj of the global differential and boundary operators, D and B,
respectively, on each subdomain with some of them possibly linear and some other nonlinear. The
functions fi and ci are similar restrictions of the function f and c. The local interface operator Gjj is
associated with the interface relaxation method and different selections for the Gj’s lead to
different relaxation schemes. In this dissertation we consider interface relaxation methods that have
the following characteristics.

 They first decompose the problem (3.1) at differential level and then discretize the resulting
differential subproblems (3.3).

« They have the versatility to use the most appropriate discretization scheme for each
subproblem.

» They do not overlap the subdomains Q;
« using good relaxation parameters in Gi, they are fast enough so no preconditioning is needed.

« They simplify the geometry and physics of the computation by considering the subproblems
(3.3) instead of the global differential problem (3.1).

» They can utilize software parts technology by reusing existing “legacy” software parts for
solving the individual subproblems (3.3).

« They are general and robust.

3.3 Interface Relaxation Methods

Due to the inherent abstraction, it is relatively easy to describe the various interface
smoothing methods at both the conceptual and algorithmic level. For the purpose of this dissertation
though, we will present only the GEO method which is used for the implementation of our tool. For
simplicity in the presentation of algorithms, we consider only one way (along the x axis) partition of
the domain. Therefore each subdomain can have at maximum two interface lines with the two
neighbouring subdomains. The basic building block for our algorithm is the procedure u =
solve_pde(ui,dui) which calculates the solution u of the local to a subdomain PDE problem with
Dirichlet, Neumann or GEO boundary conditions on the interface using as the interface values ui
and its gradient dui. The subscripts R and L denote left and right subdomains or interfaces
respectively and u; denotes the solution of the problem associated with subdomain Q.

23

Chapter 3: Theoretical Background

Figure 3.3.1: Cross section perpendicular to the interface where UL and Ur have slopes S. and Sr at the
interface point I. Changing the values of UL and Ur by a quantity m makes the slopes equal in magnitude.

3.3.1 The Geometric (GEO) Construction Based Method

GEO estimates the new solution for each subdomain by solving a Dirichlet problem and is
classified as an one step method. The values on the interfaces are obtained by adding to the old
ones, a geometrical weighted combination of the normal boundary derivatives of the adjacent
subdomains. Specifically, we assume in Figure 3.3.1 that UL and Ur are the solutions of the PDE
problems associated with the left and right subdomains, respectively, of the interface point I.
They are equal along interface |1 and we denote by Si. and Sr their slopes at I. As it can be easily
seen geometrically, m is the correction needed to be added to U and Ur so as to match the normal
derivatives I. To calculate m we consider the two triangles IAB and CDI whose heights are given by
multiplying the corresponding tangent with the base of the triangle, or equivalently by multiplying
the normal derivative with the base. The bases wi and wr are the widths assumed for the validity of
the slope values; these can be arbitrary selected and play the role of the relaxation parameters. The
new interface values are now given by adding the weighted average of the heights to the old
interface values UL and Ur. One can intuitively view this as grabbing the function U at the | and
stretching it up by m until its derivative becomes continuous. numerical experiments show that the
convergence rate does not seem to depend much on the widths wr and wg. In case that UL and Ur
are not equal on I we simply use their average. GEO is given algorithmically by

e fork =012, ...

.Il' ‘:I —_ A 'I:'-' .'-Allll‘b ."'“.'. on i ! Ve l 1 >f‘ .
— ut = 5 - 54—) on each mterface

— u'""" = solve_pde(ut'*"*’) in each subdomain

24

Chapter 4: System Design & PDETool

Chapter 4: System Design & PDETool

4.1 Matlab PDETool
4.1.1 What does this Toolbox do?

The Partial Differential Equation (PDE) Toolbox [4] provides a powerful and flexible
environment for the study and solution of partial differential equations in two space dimensions and
time. The equations are discretized by the Finite Element Method (FEM). The objectives of the
PDE Toolbox are to provide you with tools that:

. Define a PDE problem, i.e., define 2-D regions, boundary conditions, and PDE coefficients.

* Numerically solve the PDE problem, i.e., generate unstructured meshes, discretize the
equations, and produce an approximation to the solution.

* Visualize the results.

4.1.2 Who can use this toolbox?

The PDE Toolbox is designed for both beginners and advanced users. The minimal
requirement is that you can formulate a PDE problem on paper (draw the domain, write the
boundary conditions, and the PDE). Start MATLAB. At the MATLAB command line type:

pdetool

This invokes the graphical user interface (GUI), which is a self-contained graphical environment for
PDE solving. For common applications you can use the specific physical terms rather than abstract
coefficients. Using pdetool requires no knowledge of the mathematics behind the PDE, the
numerical schemes, or MATLAB.

Advanced applications are also possible by downloading the domain geometry, boundary
conditions, and mesh description to the MATLAB workspace. From the command line (or M-files)
you can call functions from the toolbox to do the hard work, e.g., generate meshes, discretize your
problem, perform interpolation, plot data on unstructured grids, etc., while you retain full control
over the global numerical algorithm.

4.1.3 What Problems can | solve?
The basic equation of the PDE Toolbox is the PDE

-V-(cVu)+au =f jn Q,

which we shall refer to as the elliptic equation, regardless of whether its coefficients and boundary
conditions make the PDE problem elliptic in the mathematical sense. Analogously, we shall use the
terms parabolic equation and hyperbolic equation for equations with spatial operators like the one
above, and first and second order time derivatives, respectively. Q is a bounded domain in the
plane. c, a, f, and the unknown u are scalar, complex valued functions defined on Q. c can be a 2-
by-2 matrix function on Q. The toolbox can also handle the parabolic PDE

25

Chapter 4: System Design & PDETool

the hyperbolic PDE

and the eigen value problem

where d is a complex valued function on Q, and A is an unknown eigenvalue. For the parabolic and
hyperbolic PDE the coefficients c, a, f, and d can depend on time. A nonlinear solver is available for
the nonlinear elliptic PDE

=V - (c(u)Vu) + a(u)u = f(u) ,
where ¢, a, and f are functions of the unknown solution u. All solvers can handle the system case

-V - (cﬂVul) -V- (chVuz) +a,u ta,u, = f1

—V-(021Vu1)—V-(CZZVUZ)+a21u1+a22u2 = f2 ,

You can work with systems of arbitrary dimension from the command line. For the elliptic problem,
an adaptive mesh refinement algorithm is implemented. It can also be used in conjunction with the
nonlinear solver. In addition, a fast solver for Poisson’s equation on a rectangular grid is
available.The following boundary conditions are defined for scalar u:

« Dirichlet: hu = r on the boundary 0Q .

« Generalized Neumann: n - (cVu) + qu=gon 0Q.

n is the outward unit normal. g, g, h, and r are complex valued functions defined on 62 . (The
eigenvalue problem is a homogeneous problem, i.e., g = 0, r = 0.) In the nonlinear case, the
coefficients, g, g, h, and r can depend on u, and for the hyperbolic and parabolic PDE, the
coefficients can depend on time. For the two-dimensional system case, Dirichlet boundary
condition is

hiiu1 + hiou2 = 11

hyU; + hyl, =1,
the generalized Neumann boundary condition is

n-(chu1)+n-(c12Vu2)+q11u1+q12 2= 9
n'(C21VU1)+n'(czzvu2)+q21u1+q22u2 =9,

26

Chapter 4: System Design & PDETool

and the mixed boundary condition is
hllul + h12uZ = rl
n-(C,, VU,)+n-(C,,Vu,)+a, U, +q,,u, = g, +h, 1

n-(c21Vu1)+n-(c22Vu2)+q21ul+q22 2= gz+h12“’

where p is computed such that the Dirichlet boundary condition is satisfied. Dirichlet boundary
conditions are also called essential boundary conditions, and Neumann boundary conditions are
also called natural boundary conditions.

4.1.4 In which areas can the Toolbox be used?

The PDEs implemented in the toolbox are used as a mathematical model for a wide variety
of phenomena in all branches of engineering and science. The following is by no means a complete
list of examples:

The elliptic and parabolic equations are used for modeling
« steady and unsteady heat transfer in solids
« flows in porous media and diffusion problems
« electrostatics of dielectric and conductive media potential flow

The hyperbolic equation is used for
« transient and harmonic wave propagation in acoustics and electromagnetic
« transverse motions of membranes

The eigenvalue problems are used for, e.g.,
« determining natural vibration states in membranes and structural mechanics problems

Last, but not least, the toolbox can be used for educational purposes as a complement to
understanding the theory of the Finite Element Method.

4.1.5 How do I define a PDE Problem?

The simplest way to define a PDE problem is using the graphical user interface (GUI),
implemented in pdetool. There are three modes that correspond to different stages of defining a
PDE problem:

« Draw mode, you create Q, the geometry, using the constructive solid geometry (CSG) model
paradigm. A set of solid objects (rectangle, circle, ellipse, and polygon) is provided. You can
combine these objects using set formulas.

« In Boundary mode, you specify the boundary conditions. You can have different types of
boundary conditions on different boundary segments.

 In PDE mode, you interactively specify the type of PDE and the coefficients c, a, f, and d. You
can specify the coefficients for each subdomain independently. This may ease the specification of,
e.g., various material properties in a PDE model.

27

Chapter 4: System Design & PDETool

4.1.6 How can | solve a PDE Problem?
Most problems can be solved from the graphical user interface. There are two major modes
that help you solve a problem:

o In Mesh mode, you generate and plot meshes. You can control the parameters of the
automated mesh generator.

« In Solve mode, you can invoke and control the nonlinear and adaptive solvers for elliptic
problems. For parabolic and hyperbolic problems, you can specify the initial values, and the
times for which the output should be generated. For the eigenvalue solver, you can specify the
interval in which to search for eigenvalues.

After solving a problem, you can return to the Mesh mode to further refine your mesh and then
solve again. You can also employ the adaptive mesh refiner and solver. This option tries to find a
mesh that fits the solution.

4.1.7 Can | use the Toolbox for Nonstandard problems?

For advanced, nonstandard applications you can transfer the description of domains,
boundary conditions etc. to your MATLAB workspace. From there you use the functions of the
PDE Toolbox for managing data on unstructured meshes. You have full access to the mesh
generators, FEM discretizations of the PDE and boundary conditions, interpolation functions, etc.
You can design your own solvers or use FEM to solve subproblems of more complex algorithms.

4.1.8 Who can | visualize my results?

From the graphical user interface you can use Plot mode, where you have a wide range of
visualization possibilities. You can visualize both inside the pdetool GUI and in separate Figures.
You can plot three different solution properties at the same time, using color, height, and vector
field plots. Surface, mesh, contour, and arrow (quiver) plots are available. For surface plots, you can
choose between interpolated and flat rendering schemes. The mesh may be hidden or exposed in all
plot types. For parabolic and hyperbolic equations, you can even produce an animated movie of the
solution’s time-dependence. All visualization functions are also accessible from the command line.

4.1.9 Are there any applications already implemented?
The PDE Toolbox is easy to use in the most common areas due to the application interfaces.

Eight application interfaces are available, in addition to the generic scalar and system (vector valued
u) cases:

* Structural Mechanics - Plane Stress

* Structural Mechanics - Plane Strain

* Electrostatics

* Magnetostatics

* AC Power Electromagnetics

* Conductive Media DC

* Heat Transfer

* Diffusion

28

Chapter 4: System Design & PDETool

These interfaces have dialog boxes where the PDE coefficients, boundary conditions, and solution
are explained in terms of physical entities. The application interfaces enable you to enter specific
parameters, such as Young’s modulus in the structural mechanics problems. Also, visualization of
the relevant physical variables is provided.

Several nontrivial examples are included in this manual. Many examples are solved both by using
the GUI and in command-line mode.

The toolbox contains a number of demonstration M-files. They illustrate some ways in which you
can write your own applications.

4.2 IRToolbox (Interface Relaxation Toolbox)
4.2.1 Expanding Matlab’s PDE Toolbox

The PDE Toolbox is written using MATLAB'’s open system philosophy. There are no black-
box functions, although some functions may not be easy to understand at first glance. The data
structures and formats are documented. Anyone can examine the existing functions and create his /
her own as needed.

4.2.2 Architecture’s Basic Idea & Functionality

The IRTool (Interface Relaxation Tool) is a Matlab Toolbox that solves MultiDomain
MultiPhysics Problems. Firstly we studied PDETool which as mentioned before solves 2 -
Dimensional PDE problems. Although PDETool can face multi-domain problems at the linear
algebra level of study (domain decompositions techniques), it is not able to solve multiDomain
multiPhysics problems with Interface Relaxation (IR) Methods. The common boundary between
different domains of a PDE problem, named interfaces, can be treated as the physics demand in a
high level of decomposition by the IR methodology. We embedded PDEtool in our toolbox,
IRTool, in order to be able to define multiPhysics / multiDomain PDEs, set appropriate conditions
on the global boundary, define/call proper methods on the interfaces, solve the global problem and
visualize the solution of the entire PDE problem. Our work was quite difficult since we had to
understand the MATLAB code, find out the proper data structures the MATLAB uses to store and
compute a PDE problem and then use them properly in our toolbox to define and solve a composed
PDE problem by making multiple PDETools communicating properly, which in PDETool case it
does not allow us to create more than one design window.

29

Chapter 5: IRToolbox GUI

Chapter 5: IRToolbox GUI

5.1 Global Window

The PDE Toolbox which is implemented in Matlab provides a flexible environment for the
study and solution of partial differential equations. Nevertheless, it does not handle with interface
relaxation methods the common boundaries of a multi domain problem. This is the reason that
inducts us to implement the IR Toolbox. The Interface Relaxation Toolbox provides a graphical user
environment for the study and solution of partial differential equations with multiple domains /
multiple physics as it considers at the same time the interface relaxation methodology. Therefore,
the IRToolbox has some additional properties and capabilities. The basic need was that with the
IRTool we can deal with the interface segments and solve the global problem by contemplating
parameters such as interface relaxation method, initial guesses on the interface segments and
tolerance for the convergence of the global solution.

The Graphical User Interface (GUI) of IRTool is an extension of PDETool’s GUI with some
modifications that are implied by the IR methodology. IR has a pull-down menu bar that we can use
to control the modeling. It conforms to common pull-down menu standards. Menu items followed
by a right arrow lead to a submenu. Menu items followed by an ellipsis lead to a dialog box. Stand-
alone menu items lead to direct action. Some menu items can be executed by using keyboard
accelerators. IRTool also contains a toolbar with icon buttons for quick and easy access to some of
the most important functions. The following sections describe the contents of IRTool menus, the
dialog boxes associated with menu items and an illustrated example.

To get started with the graphical environment we simply type in the Matlab prompt the command
irtool. The GUI looks like the Figure below (Figure 5.1) and is the initial / global window of our
implementation.

Figure 5.1: IRTool Global Window

30

Chapter 5: IRToolbox GUI

5.1.1 File Menu
The pull-down menu has the following applications: New, Open, Save, Save As, Print, EXit.
These applications deal with basic procedures that exist in many toolboxes of Matlab.

5.1.2 Edit Menu
The Edit menu provides the applications below: Undo, Cut, Copy, Paste, Clear, Select All.

5.1.3 Options Menu

Similarly, the Options menu is the same as the pull-down Options menu of the pdetool. Its
applications are: Grid, Grid spacing, Snap, Axis Limits, Axis Equal, Turn off Toolbar Help, Zoom,
Application and Refresh.

Figure 5.1.1: IRTool File Menu Figure 5.1.2: IRTool Edit Menu Figure 5.1.3: IRTool Options Menu

5.1.4 Draw Menu

In the Draw Mode, we can draw the geometry on which we want to solve the PDE. As in
PDE Toolbox, the IRTool provides four types of solid objects: polygons, rectangles, circles, and
ellipses by the selecting the following options from the pulldown menu of the Draw menu:
Rectangle/Square, Rectangle/square (centered), Ellipse/Circle, Ellipse/Circle (centered), Polygon.
In order to rotate the selected objects we can use the Rotate choice from the same menu.

The objects are used to create a Constructive Solid Geometry model (CSG model). Each
solid object is assigned a unique label, and by the use of set algebra, the resulting geometry can be
made up of a combination of unions, intersections, and set differences. By default, the resulting
CSG model is the union of all solid objects. The only thing that we must take care when we draw
the geometry is that the solid objects must not overlap each other if we want to solve the PDE
problem using the interface relaxation methodology.

Figure 5.1.4: IRTool Draw Menu

31

Chapter 5: IRToolbox GUI

5.1.5 Interface Relaxation Menu

Interface Relaxation Menu in the global window provides us with the following two choices

A. Decompose Geometry
Splits the initial geometry to the consisting subdomains. Each subdomain is redrawn to
individual window - subdomain window - awaiting for further specification, i.e. boundary
conditions, interface relaxation conditions e.t.c.

B. Parameters
Opens additional window for user entry. The user has to specify the number of iterations that
the interface method will execute and the error tolerance (convergence). The window by default has
the iteration number set to 20 and the error value set to 0.5e-6.

C. Solve MultiPDE
Starts the solution of all the subdomains & interfaces.

D. Clear IR Parameters

In case that we want to insert new boundary values,pde coefficients e.t.c. we have first to
choose this menu in order the old parameters to be flashed out from our subdomains.

Figure 5.1.5a: IRTool Interface Relaxation Menu Figure 5.1.5b: IR Parameters pop - up window

5.2 Subdomain Window

Supposing that we have the initial / global geometry shown in Figure 5.2a, pressing the
Decompose geometry from the Interface Relaxation menu, the current geometry splits in multiple
windows -subdomain windows-. Every window now creates a unique handle for every subdomain
as shown in Figures 5.2b and 5.2c respectively.

32

Chapter 5: IRToolbox GUI

Figure 5.2a: Global Window with drawn Geometry

Figure 5.2b: Subdomain Window
for the first domain

Figure 5.2c: Subdomain Window for the second domain

5.2.1 Boundary Menu

In the Boundary menu we have the following options:Boundary mode, Specify Boundary
Conditions, Show Edge Labels, Show Sub-domains Labels, Remove Sub-domain Border, Remove
All Sub-domain Borders and Export Decomposed Geometry, Boundary Cond’s, as shown in Figure
5.2.1a.

33

Chapter 5: IRToolbox GUI

Figure 5.2.1a: Boundary Menu

We can now define the boundary conditions for the outer boundaries but for the interfaces as well.
We can enter the Boundary Mode by clicking the 6Q icon, or by selecting Boundary Mode from the
Boundary menu. The boundaries are indicated by colored lines with arrows. The boundary
condition can also be a function of x and y, or simply a constant. By default, the boundary condition
is of Dirichlet type: u = 0 on the boundary. If we double click on a boundary segment the boundary
condition window pops up as shown in Figure 5.2.1b

Figure 5.2.1bh: Boundary Condition Window

If we double click on an interface then the interface condition window pops up as presented in
Figure 5.2.1c. In this window the user can insert the initial condition of the interface which can be a
vector, a function or even another Matlab file which contains an expression that can be evaluated.
The default interface relaxation method is GEO. There is also an option for a user define method. In
this case the user has to create his / her own IR method.

Figure 5.2.1c: Interface Relaxation Condition
5.2.2 PDE Menu

The PDE menu is exactly as it is in Matlab and has the following options as shown in Figure
5.2.2a: PDE Mode, Show Sub-domain Labels, PDE Specification and Export PDE Coefficients.
The parameter d does not apply to the elliptic PDE. The coefficients a, ¢ and f can be constants or

34

Chapter 5: IRToolbox GUI

functions. In order to specify the PDE equation and its coefficients for each subdomain we have to
choose PDE Specification and enter the desired values in the window as shown in Figure 5.2.2b.

Figure 5.2.2a PDE Menu Figure 5.2.2b: PDE Specification Window

5.2.3 Mesh Menu

The Mesh menu has the following options: Mesh Mode, Initialize Mesh, Re- fine Mesh,
Jiggle Mesh, Undo Mesh Change, Display Triangle Quality, Show Node Labels, Show Triangles
Labels, Parameters and Export Mesh as is presented in the Figure 5.2.3a. Parameters for controlling
the jiggling of the mesh, the refinement method, and other mesh generation parameters can be
found in a dialog box that is opened by selecting Parameters from the Mesh menu. At this time, we
must initialize the maximum edge number, as this refers to the hmax. Hmax is necessary in order to
solve the PDE problem. This menu is the same as it is in PDE Toolbox and the window that appears
looks like the Figure 5.2.3b.

Figure 5.2.3a: Mesh Menu Figure 5.2.3b: Mesh Parameters Window

35

Chapter 6: IRTool Implementation

Chapter 6: IRTool Implementation

6.1 General

In this chapter we are going to give further information about the implementation of
IRToolbox. Since PDETool as has already been mentioned is open source we had to alter some of
it’s files in order to achieve the desirable result. We also had to create a few new files also to
implement IRToolbox. The created files with all the code that has been written can be found at the
end of this thesis in the appendix.

6.2 IRTool Initialization

One of the first changes that we had to make in Matlab’s PDETool was its ability to open
more than one window since only one at a time can be open. Since our primal problem has to be
decomposed in many other, IRTool must support this functionality. As already presented in the
previous chapter IRTool has a main / global window in which we draw the initial problem, and
thereafter our toolbox decomposes it to each subproblems / subdomains.

The files that were created are

1. irtool.m
It contains the function irtool() which simply calls the pdetool() function. This function was
created to avoid writing pdetool() in order to initialize our toolbox. So in order ti initialize
our tool we have to type irtool()

The file that we altered was
1. pdetool.m
When pdetool is called with no input arguments it calls the pdetool(‘initialize”) which draws
the initial window. Before the drawing of the window we inserted the following lines of code.

It was also necessary to insert the global variable pde_fig which is used in almost every file which
denotes at every given time the current IRTool window.

6.3 Geometry Decomposition

Once the user has drawn the geometry that describes his / her problem, he / she can then
choose Decompose Geometry from the Interface Relaxation menu of the main / global window.
When the user chooses to decompose the initial / global geometry then the function
pdetool(‘decomposeGeometry’) is called. This function is an addition to pdetool.m file as another
else - if statement for the kind of function that our toolbox wants to execute. The number of lines
and the code of this block of code is presented bellow.

36

Chapter 6: IRTool Implementation

In this if -else branch two other functions all called which are also inside the pdetool.m file.
1. pdetool(‘ir’)

This function finds the boundaries and the interfaces that every subdomain has. This is a
necessary step before the decomposition of the geometry, since PDETool would ignore the interface
segments. In this part of the development we had to introduce another global variable - a cell array -
called splitGometryInCellArray which contains the decomposed geometry of every subdomain.The
produced code is shown below

2. pdetool(‘split’)
In this code block the subdomain windows are created, since the geometry of every
subdomain is now known by the previous function. At this part becomes more obvious the
importance of the global variable pde_fig and the few lines of code that we inserted in the beginning

of pdetool.m

37

Chapter 6: IRTool Implementation

In the above code block pdeinit.m is called which is actually responsible for the kind of the
initialization that happens. In PDEToolbox if there is not an opened window, this functions calls
pdetool.m to create one. If there is an active window and pdeinit.m is called then it clears the
current window. We had to change this function so that our tool will not clear the initial geometry
but open another window. In the following code inside pdeinit.m we added lines 4 - 9.

38

Chapter 6: IRTool Implementation

6.4 Boundaries & Interfaces
Once the user has decomposed his / her geometry can enter boundary mode. We had to make
a few modifications in this part too in order for the interfaces to appear in this mode. If we had not
make the changes presented below our toolbox would handle interfaces as common boundaries.
The changes we made in some existing files and the new files we created are the following:
» Changes
1. pdetool(‘drawbounds’)

This function is called within pdetool(*boundmode’). The decomposed geometry
description matrix that PDETool creates for every subdomain contains information for all the line
segments that consist a boundary / interface. The first row contains the type of segment, if it is a
line,circle,ellipse segment. The next four lines contain information about the coordinates of each
segment. The sixth and seventh lines contain information about the left and right hand region of
each segment. This piece of information is vital for us. PDETool denotes the wide external region
of a domain with zero. If both these lines are not both equal with zero means that is an interface.
The additions / changes that we introduced are shown below.

39

Chapter 6: IRTool Implementation

2. pdetool(“initbounds’)
It is called within pdetool(‘drawbounds’) and packs and initializes the boundary and
interface conditions.

3. pdetool(interfaceclk)
It is another code block inside pdetool.m that makes us able to double click with the
mouse on an interface in order to insert interface conditions.

40

Chapter 6: IRTool Implementation

4. pdetool(“set_internal_bounds”)
Its called from pdetool(interfaceclk) and is responsible for preparing the interface to
acquire the input that the user enters - pack and unpack parameters-.

4

Chapter 6: IRTool Implementation

« New file created
1. irbddlg.m
This function designs and handles the interface boundary condition window that appears
when the user double clicks with his / her mouse on an interface line. The code implementation of
this function can be found in the appendix.

6.5 Mesh Initialization

One other change that we had to make in order our toolbox to work properly is the mesh
production strategy. Once the initial geometry has been decomposed to component subdomains the
mesh generation of each geometry changes. This is forced by the fact that since each subdomain is
single on each window it does not have at the left / right hand region in the decomposed geometry
matrix one or more segments with other neighboring subdomain / subdomains. So if we proceed to
create the mesh for each subdomain, a wrong one will be produced. In order to achieve the correct
mesh initialization we had to alter the function pdemgeom.m which is called from the function
initmesh.m that starts the mesh creation. Specifically after the decomposition of each subdomain we
search which line segments have a left / right hand region that is not the same with the internal
region of the current subdomain. Once this region is found is set to zero. This change of values is
not saved in the decomposed geometry matrix-is only used for the triangulation. The code block
that has been added to pdemgeon.m is

42

Chapter 6: IRTool Implementation

6.6 Interface Relaxation

The last stage of the development of our toolbox was the implementation of the interface
relaxation method. At this stage appeared any other file modifications that we had to implement and
also the creation of many new functions. Due to the fact that all the files that were created were
extensive in code lines here we will present only the line codes of interfaceRelaxation.m function as
long as the functionality of all the functions that are called by it. The implementation of those
functions can be found in the Appendix.

Firstly we had to add a few lines of code in the pdetool.m function in order to make the
menu Solve MultiPDE responsive and functional.

Additionally we had to implement also the functionality of the pop up window for the user
input of iteration number and error for the interface relaxation methodology.

43

Chapter 6: IRTool Implementation

Once the user has finished entering all the necessary variables of his / her problem can start
the solution of the problem by pressing the Solve MultiPDE choice from the Interface Relaxation
Menu on the main / global window. This action calls the interfaceRelaxation.m function which is
presented below

44

45

Chapter 6: IRTool Implementation

Chapter 6: IRTool Implementation

Inside the interfaceRelaxation function the following functions are being called:

1. subdomaininfo.m
Gathers all the specifications and variables that we inserted for each subdomain, such
as IR parameters, IR initial condition, the line segments in which an interface exists e.t.c.,

2. initmesh.m
Builds an initial triangular PDE mesh

3. createmesh.m
Creates a cartesian mesh

4. correctBoundFile.m
After the extraction of the interfaces initial conditions it replaces them with irleft or iright
according to whether the current interface is in the left or right hand region of the domain

under inspection

5. solveDomains.m
Solves the domain in order to get the new value for every iteration

46

Chapter 6: IRTool Implementation

6. tri2cartmesh.m
Computes uc and its derivatives (Uxc and Uyx) on the cartesian

7. interfinfo.m
Given a mesh of a domain, find out information for a specific boundary
segment. This information is valuable for the IR methodology.

8. interfvalues.m
Computes the function and its derivatives on the interface points

9. geo.m
computes the new values of u on the interface nodes of
each domain relaxing the old values from both neighboring domains
using the outward normal vector .

6.7 Graphical User Interface (GUI)

Last but not least we had to make some changes in the initial and the subdomain window
layout. These changes concern if a menu button is available at any stage of the problem modeling
procedure. The changes were made in the pdetool.m file and are inflicted in lines 134 - 433. We
present here only the code block for the Interface Relaxation menu which was not implemented in
PDEToolbox.

47

Chapter 7: User Guide / Numerical Experiments

Chapter 7: User Guide / Numerical
Experiments

7.1 General

The purpose of this chapter is to demonstrate and verify the functionality of IRTool by
experimentally examining its validity. For this dissertation we have implemented the GEO method
for elliptic problems using IRTool we restricted our experiments to partitions in two or three
subdomains.

7.2 Two - dimensional elliptic partial differential problem
7.2.1 Uniform Problem - Solution Step By Step

For this let us consider the following elliptic problem:
Lu(xy) = ~VAu(xy)+72uxy)=f(xy), (xy) € 2
uix,) = uPx,), (x,y) € 6,
The true solution u(x,y) is

u(xy) = &YXy (x-1)(x-0.9)y(y-0.5).

This PDE problem consists of a geometry that is decomposed into three domains with interfaces on
x1 = 1/3 and x2 = 2/3, Hmax =0.05 and omega is 0.03 and 0.04 for the first and second interface

respectively.

In order to initialize IRTool we type irtool in Matlab’s command window.

Figure 7.1: Matlab’s Command Window

48

Chapter 7: User Guide / Numerical Experiments

Automatically IRTool enters Draw Mode. In this stage the user has to draw the physical problem.
One can either use the Draw Menu or the buttons below the menu in order to determine what type
of geometry his / her problem consists of.

Figure 7.2: Geometry of the uniform problem

In order to achieve maximum accuracy for our domains we can double click on any subdomain and
manually insert the coordinates, height and width of each one. The window that appears is shown
below

Figure 7.3: Object Dialog Window for geometry specification

Once the desired geometry is designed we choose Decompose Geometry form the initial /
global window. This action leads to the decomposition of the initial geometry to subdomains.

49

Chapter 7: User Guide / Numerical Experiments

Figure 7.4: Decomposition of the initial problem to subdomains

There after it is time to enter boundary mode for each subdomain, so we choose Boundary Mode
from the Boundary Menu for each subdomain.

Figure 7.5: Boundary Mode of the subdomains

In Boundary Mode by double click on each boundary or interface we can give the input according
to our problem. The two Figures below show the user input for both boundaries and interface
according to the initial description of the problem.

50

Chapter 7: User Guide / Numerical Experiments

Figure 7.6: Boundary Condition Window for Uniform Problem

Figure 7.7: Interface Relaxation Conditions Window for 1st Interface

Figure 7.8 Interface Relaxations Conditions for 2nd Interface

Afterwards we insert PDE Parameters for each domain from the PDE Menu. At this stage IRTool
has entered PDE Mode.

51

Chapter 7: User Guide / Numerical Experiments

Figure 7.8: PDE Specification Window for Uniform Problem
Following the Menu from the main / global window we then must specify the hmax for the
generation of the mesh in each subdomain. For our problem we use as input for mesh parameters as
maximum edge size 0.05 (hmax =0.05) as shown in the Figure 7.9.

Figure 7.9: Mesh Parameters Window for Uniform Problem

Before we proceed to the solution of our problem we have to specify the number of iterations and
error value from the menu IR Parameters from the main / global window.

52

Chapter 7: User Guide / Numerical Experiments

Figure 7.10: IR Parameters Specification for uniform problem
The modeling of our problem is now complete. Lastly we have to choose Solve MultiPDE

from the Interface Relaxation Menu in the main / global window. The Figure below shows the
contour of the solution and the relaxation in each of the two interfaces.

Figure 7.11: Contour plot for the solution and plots for the interface relaxation of the uniform problem
during the 25th iteration

7.2.2 Non Uniform Problem - User Practice

The second PDE problem consists of a geometry that is decomposed into three domains with
interfaces on x1 = 1/5 and x2 = 1/2. We use the same differential elliptic equation and true solution

u(x,y), as we used in 7.2.1. For further practice the reader can model the problem him / herself.
Below is the Figure of the solution.

53

Chapter 7: User Guide / Numerical Experiments

Figure 7.12: Contour plot for the solution and plots for the interface relaxation of the non uniform problem
during the 29th iteration

54

Chapter 8: Conclusions

8.1 Conclusions

We propose an implementation of IRToolbox for composite PDE problems by properly
combining existing models and software components. Our approach enjoys the following
approaches:

Problem simplification. It dramatically simplifies the complexity of the physical problem
by (1) considering subproblems that involve simpler local physical rules acting on simpler
geometries, and (2) providing a convenient abstraction of the modeling and solution process while
simultaneously providing a modeling practice that yields a closer representation of the physical
world.

Reduction in software development time. It drastically reduces the time to develop a
simulation engine by permitting the heavy reuse of legacy scientific software.

Numerical efficiency. It increases the efficiency of the overall numerical scheme by
allowing one to reuse the most appropriate numerical method for each particular subproblem.

This thesis focuses on the implementation of IRToolbox that consists one proposal for
solving MultiDomain / MultiPhysics Problems.

55

Bibliography
1] A. Quarteroni, A. Valli. Domain decomposition methods for partial differential equations. Oxford
University Press, 2000.

[2] Panagiota Tsompanopoulou, Collaborative PDE Solvers: Theory and Practice. PhD Thesis,
University of Crete, Department of Mathematics, 2000.

[3] P.E. Bjorstad, O. Widlund, To overlap or not overlap: A note on a domain decomposition method
for elliptic problems (Pages: 1053 - 1061). 1989.

[4] PDE Toolbox, Matlab, http://www.mathworks.com/products/pde.

[5] H.S. McFaddin. An Object-based Problem Solving Environment for Collaborating PDE Solvers
and Editors., PhD Thesis, Computer Science Department, Purdue University, 1992.

[6] T.T. Drashansky, An agent-based approach to building multidisciplinary problem solving
environments. PhD Thesis, Computer Science Department, Purdue University, 1996.

[7] T.T. Drashansky, E.N. Houstis, N. Ramakrishnan, J.R. Rice, Networked Agents for Scientific
Computing. ACM Communications, 1999.

[8] S.Karin, S.Graham, The high performance computing continuum., ACM Communications,
1998.

[9] T.Finin, Y.Labrou, J.Mayfield, KQML as an agent communication language. Cambridge, 1997.

[10] S.McFaddin, J.R. Rice, RELAX: A software platform for PDE Interface Relaxation
methods.CSD-TR-91-018, 1991.

[11] J.R. Rice, P.Tsompanopoulou, E.Vavalis, Interface relaxation methods for elliptic differential
equations. Applied Numerical Mathematics 32 (2000) 219-245, Purdue University, Computer
Science Department, 2000.

[12] J.R. Rice, P.Tsompanopoulou, E.Vavalis, Fine Tuning interface relaxation methods for elliptic
differential equations.Technical Report CSD-TR-98-017, Purdue University, Computer Science
Department, 2002.

[13] Analysis of an Interface Relaxation Method for Composite Elliptic Differential Equations, P.
Tsompanopoulou and E. Vavalis, Journal of Computational and Applied Mathematics, 226(2), (Apr.
2009), pp 370-387.

[14] An Experimental Study of Interface Relaxation Methods for Composite Elliptic Differential
Equations, P. Tsompanopoulou and E. Vavalis, Applied Mathematical Modelling, 32, (Aug. 2008),
pp 1620-1641.

56

http://www.mathworks.com/products/pde
http://www.mathworks.com/products/pde

Appendix

Initialization
1. irtool.m

Boundary
l.irbddlg.m

i 67

68

Appendix

69

Appendix

70

Appendix

71

Appendix

72

Appendix

73

Appendix

74

Appendix

75

Appendix

76

Appendix

77

Appendix

78

Appendix

79

Appendix

Appendix

Interface Relaxation

1. subdomaininfo.m

80

2.initmesh.m © Panagiota Tsompanopoulou — All rights reserved

3.correctBoundFile.m

i 67

Appendix

4.solveDomains.m

68

69

Appendix

70

Appendix

71

Appendix

72

Appendix

Appendix

5. tri2cartmesh.m © Panagiota Tsompanopoulou — All rights reserved

6.interfinfo.m © Panagiota Tsompanopoulou — All rights reserved

73

Appendix

7.interfvalues.m - © Panagiota Tsompanopoulou — All rights reserved

74

