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Chapter 1

Introduction and Literature review

The essential features of fracture mechanics began with characterizing the stress and de-

formation fields, in the region near the tip of a crack, in order to develop sound fracture

criteria. This was achieved principally through the use of asymptotic continuum mechanics

analysis where the functional form of the local singular field was determined within a scalar

amplitude factor whose magnitude was calculated from a complete analysis of the applied

loading and geometry. The best known example of this approach was for the linear elastic

behavior of a stationary crack subjected to tensile opening (Mode I).

Classical (local) continuum theories possess no material/intrinsic length scale. The typi-

cal dimensions of length that appear are associated with the overall geometry of the domain

under consideration. In spite of the fact that classical theories are quite sufficient for most

applications, there is ample experimental evidence which indicates that, in certain specific

applications, there is significant dependence on additional length/size parameters.

One of the most effective generalized (non-local) continuum theories proved to be in recent

years the theory introduced by Toupin (1962) and Mindlin (1964)−see the brief literature

review on applications and extensions, below. The general framework appears under the

names strain-gradient theory or grade-two theory or dipolar gradient theory. This approach

is appropriate for formulations of both elasticity and plasticity problems.

Historically, ideas underlying generalized continuum theories were advanced already in

the 19th century by Cauchy (1851), Voigt (1887), and the brothers E. and F. Cosserat [3],

but the subject was generalized and reached maturity only in the 1960’s and 1970’s with

the works of Mindlin [14], Koiter [10][11] and Toupin [19] who considered “strain-gradient”

elasticity theories, in which the elastic strain energy density is a function of strain as well as

of strain and rotation gradients. They solved also a number of problems and demonstrated

the effects of the material length scales that enter these theories (Mindlin and Tiersten [17],

Mindlin [14][15], Koiter [11]). Several theoretical issues related to strain-gradient elasticity

were addressed later by Germain [7][8][9].

The solution of a number of boundary value problems is now available in the literature

(e.g. Exadaktylos [4]) including problems of fracture mechanics (e.g. Zhang et al. [20],
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2 Introduction and Literature review

Georgiadis [6]).

The finite element implementation of “strain-gradient” constitutive models has been the

subject of several publications, especially in the recent years (e.g. Amanatidou and Aravas

[1]).

Regarding appropriate length scales for strain gradient theories, as noted by Zhang et al.

[20], although strain gradient effects are associated with geometrically necessary dislocations

in plasticity, they may also be important for the elastic range in microstructured materials.

In elasticity, length scales enter the constitutive equations through the elastic strain energy

density function W , which in this case depends not only on the strain tensor ǫǫǫ but also on

gradients of the rotation ω and strain tensors; in such cases we refer to “gradient elasticity”

theories. Mindlin [14] presented several alternative equivalent formulations of his theory by

using different kinematic variables in the elastic strain energy density function W .

In the present study we focus on mode-I cracks and apply the formulation of strain-

gradient elasticity developed by Mindlin and co-workers (Mindlin [14], Mindlin and Eshel

[16]). Chapter 2 gives a description of the aforementioned formulation where W is written

in terms of the strain, the spatial gradient of rotation, and the fully symmetric part of

the second spatial gradient of displacement (or of the gradient of strain). The variational

formulation developed by Amanatidou and Aravas [1] is described thoroughly in Chapter 3.

In the latter case since “Type III” form is used, the calculation of the true stress σ and the

true couple stress µ is straightforward. In Chapters 4 and 5 we consider the plane strain

problem of a center-cracked panel (CCP) and an edge-cracked panel (ECP) respectively. The

specimens and the applied loads are symmetric with respect to the crack plane (mode-I) in

both cases. We carry out detailed finite element calculations and we proceed comparing the

results with the asymptotic solutions developed by Aravas and Giannakopoulos [2] where

the singular (1/
√

r) strains in the classical solution (ℓ = 0) have been replaced by the finite

(asymptotically constant) strains of the gradient elasticity solution (ℓ > 0) at the crack-tip.

Institutional Repository - Library & Information Centre - University of Thessaly
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Chapter 2

Mindlin Type III strain-gradient elasticity

theory

2.1 Notation and conventions

2.1.1 Tensor products

Standard notation is used throughout. Boldface symbols denote tensors the orders of which

are indicated by the context. All tensor components are written with respect to a fixed

Cartesian coordinate system with base vectors ei (i = 1, 2, 3), and the summation convention

is used for repeated Latin indices, unless otherwise indicated. The prefixes “tr” and “det”

indicate the trace and the determinant respectively, a superscript T the transpose of a second

order tensor, and the subscripts S and A the symmetric and anti-symmetric parts of a second

order tensor. Let (a,b) be vectors, and (A,B) second order tensors; the following products

are used in the text a · b = ai bi, (ab)ij = ai bj, (a · A)i = ak Aki, (A · a)i = Aik ak,

(A · B)ij = Aik Bkj, and A : B = Aij Bij. A comma followed by a subscript, say i, denotes

partial differentiation with respect to the spatial coordinate xi, i.e., A,i = ∂A/∂xi. The

following notation is also used for the symmetric and antisymmentric parts of a second order

tensor:

AS
ij = A(ij) ≡

1

2
(Aij + Aji), AA

ij = A[ij] ≡
1

2
(Aij − Aji). (2.1)

2.1.2 “Normal” and “tangential” parts of tensors

Let S be the bounding surface of a body and n the outward unit normal to S. We consider

a vector field a defined on S and define its “normal” (an) and “tangetial” (at) parts as

an = (a · n)n and at = a − an. (2.2)

Similarly, if A is a second-order tensor field A on S, we define its “normal” (An) and

“tangetial” (At) parts as

An = (A · n)n = A · (nn) and At = A− An. (2.3)

Institutional Repository - Library & Information Centre - University of Thessaly
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4 Mindlin Type III strain-gradient elasticity theory

If A and B are second-order tensors, it can be shown easily that

An : Bt = At : Bn = 0, A : B = An : Bn + At : Bt and At · n = 0. (2.4)

On S we define also the normal derivative D of a field f as the normal component of

∇f = f,i ei, i.e.,

Df = (∇f) · n = f,i ni. (2.5)

The “surface gradient” Df on S is defined as the tangential part of ∇f , i.e.,

Df = ∇f − (Df)n or Dif = f,i − f,k nk ni. (2.6)

It should be noted that the tangential derivative of the unit vector n normal to the bounding

surface S obeys the law1

Djni = Dinj. (2.7)

If we consider the second order tensor, say A, defined by the gradient of a vector field u

on S, i.e.,

A = u∇ or Aij = ui,j, (2.8)

then it can be shown easily that

An = (Du)n and At = uD (2.9)

or

An
ij = (Dui)nj and At

ij = Djui, (2.10)

i.e., An consists of the derivatives of the components ui in the direction normal to S, whereas

At contains the derivatives of ui on a plane tangent to S.

Amanatidou and Aravas [1] have shown that for every second order tensor A

An
ij = nk At

ki nj + 2A[ik] nk nj + nk A(kp) np ni nj. (2.11)

If we set now Aij = ui,j in the last equation, we find that

(Dui)nj = nk nj Diuk + 2u[i,k] nk nj + nk u(k,p) np ni nj . (2.12)

1 The proof (2.7) is based on the fact that n can be written in the form n = ∇F/|∇F |, where F (x) = 0

is the function that defines analytically the surface S. It can be shown readily that the quantity Djni =

ni,j − ni,k nk nj is symmetric with reepect to i and j.

Institutional Repository - Library & Information Centre - University of Thessaly
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Mindlin Type III strain-gradient elasticity theory 5

2.2 Kinematic variables

Let u be the displacement field. The following quantities are defined:

ǫij = u(i,j) =
1

2
(ui,j + uj,i) = infinitesimal strain, (2.13)

Ωij = u[i,j] =
1

2
(ui,j − uj,i) = −eijk ωk = infinitesimal rotation tensor, (2.14)

ωi =
1

2
(∇× u)i =

1

2
eijk uk,j = −1

2
eijk Ωjk = infinitesimal rotation vector, (2.15)

κ̄ij = ωj,i = infinitesimal rotation gradient, κ̄ii = 0, (2.16)

¯̄κijk =
1

3
(ui,jk + uj,ki + uk,ij) =

1

3
(ǫij,k + ǫjk,i + ǫki,j) = ¯̄κjik = ¯̄κikj = ¯̄κkji, (2.17)

where eijk is the alternating symbol.

2.3 Constitutive equations

The strain energy density W is written in the form:

W = W̄ (ǫǫǫ, κ̄, ¯̄κ). (2.18)

Mindlin refers to the description W = W̄ (ǫǫǫ, κ̄, ¯̄κ ) as “Type III”. Mindlin and Eshel [16]

present the most general form of W̄ for an isotropic linear elastic material. Using the above

form of the elastic strain energy density, one defines the following quantities:

σ̄ij =
∂W̄

∂ǫij
= σ̄ji, (2.19)

µ̄ij =
∂W̄

∂κ̄ij
, ¯̄µijk =

∂W̄

∂ ¯̄κijk
= ¯̄µjik = ¯̄µikj = ¯̄µkji. (2.20)

It is worthy of note that σ̄ij , µ̄ij, and ¯̄µijk are introduced as “conjugate” quantities to ǫij , κ̄ij

and ¯̄κijk, and their relationship to “true” stress or “true” couple stress is not obvious; this

relationship is discussed in Section 2.5. It should be noted also that the so-called “micropolar

theory of elasticity” (Toupin [19], Koiter [10][11], Mindlin and Tiersten [17]) is a special case

of the above theory. In fact, if W̄ is independent of ¯̄κijk, i.e. W = W̄ (ǫij , κ̄ij), then ¯̄µijk ≡ 0

and µ̄ij becomes the usual “couple stress” tensor. The variation of the internal work is given

in a separate expression for form III of W :

δW int =

∫

V

δWdV =

∫

V

(σ̄ij δǫij + µ̄ij δκ̄ij + ¯̄µijk ¯̄κijk) dV, (2.21)

where V is the volume of the elastic body. Let fi be the “body force” per unit volume

and Φij the “body double force” per unit volume. Using equation(2.21) and making use of

Stokes’ surface divergence theory, we adopt the following form for the variation of work done

Institutional Repository - Library & Information Centre - University of Thessaly
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6 Mindlin Type III strain-gradient elasticity theory

by external forces for form III of W (Mindlin [14], Mindlin and Eshel [16]):

δW ext =

∫

V

(
fi δui + Φ[ij] δΩji + Φ(ij) δǫji

)
dV +

∫

S

(
P̄i δui + Q̄t

i δωt
i + R̄ δǫn

)
dV +

+
∑

α

∮

Cα

Ēi δui ds, (2.22)

where S is the bounding surface of the elastic body, ǫn = ni ǫij nj = n · ǫǫǫ · n the component

of the strain tensor in the direction normal to S, and (P̄, Q̄t, R̄, Ē) are generalized external

forces, which are defined precisely in the following. In the above equation, the line integrals

over Cα are included when the outer surface S is piecewise smooth; in such a case, the surface

S can be divided into a finite number of smooth surfaces Sα (α = 1, 2, . . . ) each bounded

by an edge Cα, and integration is conducted along the arc length of each Cα. We note that

the body moment per unit volume is Mi = eijk Φ[jk] (or Φij = 1
2 eijk Mk), so that the term

Φ[ij] δΩji in (2.22) can be written also as Φ[ij] δΩji = Mi δωi, where δωi = −1
2 eijk δΩjk. The

identity δW int = δW ext leads to the following relations for the “external forces” ([14][16]):

Type III

P̄i = nj (σ̄ji −
1

2
µ̄pk,p ejik − ¯̄µkji,k − Φji) −

1

2
nj µ̄n

,k eijk −
−[Dj − (Dpnp)nj](nk ¯̄µkji + ni nq np ¯̄µpqj), (2.23)

Q̄t
i = nj µ̄t

ji + 2nq nj nk ¯̄µkjp eqpi, (2.24)

R̄ = ni nj nk ¯̄µijk, (2.25)

Ēi = [[[[[[
1

2
si µ̄

n + ℓj nk (¯̄µkji + ni np ¯̄µpkj]]]]]], (2.26)

where µ̄n = ni µ̄ij nj = n · µ̄µµ · n on S.

In the above expressions, the double brackets [[ ]] indicate the jump in the value of the

enclosed quantity across Cα, and ℓℓℓ = s× n, where s is the unit vector tangent to Cα.

2.4 Boundary value problem

Mindlin and Eshel [16] have shown that the equilibrium equations and the appropriate

boundary conditions for Type III formulation are as follows:

Type III

(σ̄ji − ¯̄µkji,k −
1

2
µ̄pk,p ejik − Φji),j + fi = 0 in V. (2.27)

At each point on the boundary S the following are specified: i) ui or P̄i, ii) ωt
i or Q̄t

i, and iii)

ǫn or R̄. If S is piecewise smooth, then ui or Ēi is also specified at each point on the edges

Cα.

Institutional Repository - Library & Information Centre - University of Thessaly
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Mindlin Type III strain-gradient elasticity theory 7

2.5 Relation to true stress, true couple-stress and true loads

In this section we discuss the relationship between σ̄ij, µ̄ij , ¯̄µijk defined in Section 2.3 and

the “true” stresses. Also the relations between the “external loads” P̄i, Q̄t
i, R̄, Ēi and the

“true” loads are discussed. Let σij be the usual true stress tensor and µij the couple-stress

tensor. On an infinitesimal area with unit normal vector n, the traction vector t and the

couple vector m are related to σ and µ by

ti = nj σji and mi = nj µji. (2.28)

If the body force per unit volume is fi and the body moment per unit volume is Mi =

eijk Φ[jk], then the principles of linear and angular momentum lead to the well known equa-

tions

σji,j + fi = 0 and σ[ij] +
1

2
µpk,p eijk + Φ[ij] = 0. (2.29)

Mindlin and Eshel [16] adopt the following expression for the variation of the work done by

external forces:

δW ext =

∫

V

(
fi δui + Φ[ij] δΩji + Φ(ij) δǫji

)
dV +

∫

S

(ti δui + mi δωi + ni ¯̄µijk δǫjk) dV +

+
∑

α

∮

Cα

Ēi δui ds. (2.30)

It should be noted that the last two terms in each of the integrals of (2.30) can be written

as

Φ[ij] δΩji + Φ(ij) δǫji = Φij δuj,i, (2.31)

and

mi δωi + ni ¯̄µijk δǫjk = T[ij] δΩji + T(ij) δǫji = Tij δuj,i, (2.32)

where Φ is the “body double force” per unit volume, and T the “surface double force” per

unit area (or “double traction”) defined on S as

T S
ij ≡ T(ij) = nk ¯̄µkij and TA

ij ≡ T[ij] =
1

2
eijk mk =

1

2
eijk np µpk. (2.33)

Using the above expression for δW ext, and setting it equal to

δW int =

∫

V

(σ̄ij δǫij + µ̄ij δκ̄ij + ¯̄µijk δ¯̄κijk) dV. (2.34)

Mindlin and Eshel [16] have shown that the true stress σ is related to σ̄, µ̄ and ¯̄µ by the

expressions

σ(ij) = σ̄ij − ¯̄µijk,k − Φ(ij), (2.35)

σ[ij] = −1

2
eijk µ̄pk,p − Φ[ij], (2.36)
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8 Mindlin Type III strain-gradient elasticity theory

and the true couple stress µ is2

µij = µ̄ij. (2.38)

In view of the last equation the surface double force T can be written as

Tij = nk ¯̄µkij +
1

2
eijk np µ̄pk. (2.39)

Using the definition of P̄i, Q̄t
i, R̄ and Ēi given in (2.23)–(2.26) and equations (2.35)–(2.38)

above, we can show easily that the “mathematical” loads (P̄i, Q̄
t
i, R̄, Ēi) are related to the

true loads (ti,mi, T(ij)) by the following expressions:

P̄i = ti −
1

2
eijk Dk(mp np nj) + [(Dpnp)nj − Dj ] (T(ji) + nk T(kj) ni), (2.40)

Q̄t
i = mt

i + 2 eqpi nq nj T(pj), (2.41)

R̄ = ni T(ij) nj, (2.42)

Ēi = [[[[[[
1

2
si mj nj + ℓj (T(ij) + ni T(jk) nk)]]]]]]. (2.43)

Using direct notation, we can write the above relationships in the form

P̄ = t +
1

2
D× [(m · n)n] + [(D · n)n − D] · (TS + n · TS n) (2.44)

Q̄t = mt + 2n × (n ·TS), (2.45)

R̄ = n · TS · n, (2.46)

Ē = [[[[[[
1

2
(m · n) s + ℓℓℓ · TS · (I + nn)]]]]]]. (2.47)

The relationship between “true” and “mathematical” stresses and loads is discussed also

by Germain in [7] and [9], where “higher order” volumetric forces are also considered. It

should be noted that in physical problems one would, presumably, have information about

the body force fi and the body double force Φij throughout the volume V , and the true

traction ti, the true moment per unit area mi, and the double traction T(ij) on the surface

S. Equations (2.40)–(2.47) indicate the way in which this information is to be employed in

setting up the boundary “loads” in Type III boundary value problems discussed in Section

2.4 within the framework of strain-gradient elasticity. It should be noted though that the

true loads (ti, mi, T(ij)) cannot be prescribed directly; instead, they enter the boundary

conditions in certain combinations according to (2.40)–(2.47). Finally, after the boundary

value problem of Section 2.4 has been solved, the true stresses σij and true couple-stresses

µij are determined from equations (2.35)–(2.38).

2 Note that micropolar theory of elasticity ¯̄µijk = 0, so that

σ(ij) = σ̄ij − Φ(ij), σ[ij] = −
1

2
eijk µ̄pk,p − Φ[ij], and µij = µ̄ij . (2.37)

Institutional Repository - Library & Information Centre - University of Thessaly
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Chapter 3

Variational formulation

Here we discuss the Type III formulation and emphasize the calculation of true stresses and

true couple stresses.

3.1 Type III formulation

The governing equations in V are (ΦΦΦ = 0):

σji,j + fi = 0, (3.1)

σij = σ̄ij + σ̄
(2)
ij , σ̄

(2)
ij = − ¯̄µkij,k −

1

2
eijk µ̄pk,p, (3.2)

ǫij = u(i,j), ωi = −1

2
eijk uj,k or u[i,j] = −eijk ωk, (3.3)

κ̄ij = ωj,i, ¯̄κijk =
1

3
(ǫij,k + ǫjk,i + ǫki,j), (3.4)

σ̄ij =
∂W̄

∂ǫij
, µ̄ij =

∂W̄

∂κ̄ij
, ¯̄µijk =

∂W̄

∂ ¯̄κijk
. (3.5)

The corresponding boundary conditions are

ui = ūi on Su, (3.6)

nj σji −
1

2
nj µ̄n

,k eijk + [(Dpnp)nj − Dj ](nk ¯̄µkji + ni np nk ¯̄µkpj) = P̄i on SP , (3.7)

ωt
i = ω̄t

i on Sω, (3.8)

nj µ̄t
ji + 2nq nj nk ¯̄µkjp eqpi = Q̄t

i on SQ, (3.9)

ni nj ǫij = ǭ on Sǫ, (3.10)

ni nj nk ¯̄µijk = R̄ on SR, (3.11)

ui = ūα
i on Cα

u , (3.12)

[[[[[[
1

2
si µ̄

n + ℓj nk (¯̄µkji + ni np ¯̄µpjk)]]]]]] = Ēα
i on Cα

E , (3.13)

where µ̄n = ni nj µ̄ij , (ū, P̄, ω̄t, Q̄t, ǭ, R̄, ūα, Ēα) are known functions, Su ∪ SP = Sω ∪ SQ =

Sǫ ∪ SR = S, Su ∩ SP = Sω ∩ SQ = Sǫ ∩ SR = ∅, Cα
u ∪ Cα

E = Cα and Cα
u ∩ Cα

E = ∅.
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10 Variational formulation

We recall that, if we omit the terms involving ¯̄κ in W̄ , set ¯̄µ = 0 and Sǫ = SR = ∅,
then we recover the standard boundary value problem of “micropolar elasticity” (Toupin

[19], Koiter [10][11], Mindlin and Tiersten [17]).

Amanatidou and Aravas [1] presented a variational formulation of the problem, in which

u, ω, ǫǫǫ and σ(2) were viewed as the primary unknowns. In particular, the quantities u, ω

and ǫǫǫ were considered as independent variables subject to suitable side conditions. These

side conditions were:

i) the kinematical equations ui,j = ǫij − eijk ωk in the entire body, and

ii) the expression of the tangential part of the ǫij −eijk ωk on the entire surface S in terms

of the tangential derivatives Djui of the displacement, i.e.,

Djui = (ǫij − eijk ωk)
t = ǫij − eijk ωk − ǫik nk nj + eipk ωk np nj on S. (3.14)

Amanatidou and Aravas [1] showed that the solution to the problem can be given also by

the stationarity condition δΠ = 0 of the functional

Π(u,ω, ǫǫǫ, σ̄(2)) =

∫

V

W̄ (u(i,j), κ̄(ω), ¯̄κ(ǫǫǫ)) dV +

∫

V

[ui,j − (ǫij − eijk ωk)] σ̄
(2)
ji dV −

−
∫

V

fi ui dV −
∫

SP

P̄i ui dS −
∫

SQ

Q̄t
i ωt

i dS −
∫

SR

R̄ ni nj ǫij dS −
∑

α

∮

Cα
E

Ēα
i ui ds +

+

∫

S

[u(i,j) − 2nj nk u[i,k] − ni nj np nq u(p,q) −

− (ǫij + 2nj nk eikp ωp − ni nj np nq ǫpq)]nr ¯̄µrij dS +

+

∫

S

(
1

2
eijk uk,j ni − ωi ni

)

np µ̄pq nq dS, (3.15)

where ǫji = ǫij, κ̄ij(ω) = ωj,i, ¯̄κijk(ǫǫǫ) = (1/3) (ǫij,k + ǫjk,i + ǫki,j), W̄ = W̄ (u(i,j), κ̄(ω), ¯̄κ(ǫǫǫ)),

µ̄ij(u,ω, ǫǫǫ) = ∂W̄/∂κ̄ij , ¯̄µijk(u,ω, ǫǫǫ) = ∂W̄/∂ ¯̄κijk, δu = 0 on Su and Cα
u , δωt = 0 on Sω, and

n ·δε ·n = 0 on Sǫ. The stationarity condition δΠ = 0 implies the appropriate field equations

and boundary conditions, σ̄
(2)
ij = − ¯̄µkij,k − (1/2) eijk µ̄pk,p in V , and Djui = (ǫij − eijk ωk)

t

on S.

In the two dimensional case, the last term in the above functional vanishes identicaly and

the integrals over Cα
E are replaced by

∑

α

Ēα
i ui, (3.16)

where the sum over α refers to any corners that may exist on the bounding curve of the

two-dimensional body.
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Chapter 4

The Center Cracked Panel (CCP) —

Finite Element Plane Strain Solutions

4.1 Finite element formulation

In the examples that follow, we consider a material with an elastic strain energy density of

the form

W = W̄ (ǫǫǫ, κ̄, ¯̄κ), (4.1)

where

W̄ (ǫǫǫ, κ̄κκ, ¯̄κκκ) =
1

2
λ ǫii ǫkk + µ ǫij ǫij + ℓ2

[
2

9
(λ + 3µ) κ̄ij κ̄ij −

2

9
λ κ̄ij κ̄ji+

+
1

2
λ ¯̄κiij ¯̄κkkj + µ ¯̄κijk ¯̄κijk +

2

3
λ eijk κ̄ij ¯̄κkpp

]

, (4.2)

so that

σ̄ij =
∂W̄

∂ǫij
= 2µ ǫij + λ ǫkk δij , (4.3)

µ̄ij =
∂W̄

∂κ̄ij
=

2 ℓ2

9
[2 (λ + 3µ) κ̄ij − 2λ κ̄ji + 3λ eijk ¯̄κkpp] , (4.4)

¯̄µijk =
∂W̄

∂ ¯̄κijk
=

ℓ2

9
[3λ (¯̄κppk δij + ¯̄κppi δjk + ¯̄κppj δki) + 18µ¯̄κijk+

+2λ κ̄pq (δij epqk + δjk epqi + δki epqj)] . (4.5)

In the above equations, µ and λ are the usual Lamé constants and ℓ is a material length

scale. For the gradient model presented above, several boundary value problems have been

solved analytically (e.g., Georgiadis [6], Exadaktylos [4]).

In the following, the center-cracked panel problem is solved by using the variational for-

mulation presented in Section 3.1 together with the finite element method and the obtained

numerical solutions are compared to the corresponding asymptotic solutions developed by

Aravas and Giannakopoulos [2]. The finite element formulation is “mixed” [21] and indepen-

dent interpolations for u, ω, ǫǫǫ and σ(2) are used. In particular, the nine-node plane-strain

isoparametric element with 70 degrees of freedom developed by Amanatidou and Aravas [1]
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12 Finite Element Solutions - Center Cracked Panel

Figure 4.1: Nine-node finite element and the corresponding degrees of freedom.

is used (III9-70 in [1]). The quantities (u1, u2, ω3, ǫ11, ǫ22, 2ǫ12) are used as degrees of freedom

at all nodes; the quantities (σ̄
(2)
11 , σ̄

(2)
22 , σ̄

(2)
(12), σ̄

(2)
[12]) are additional degrees of freedom at the

corner nodes (Fig. 4.1). A bi-quadratic Lagrangian interpolation for (u1, u2, ω3, ǫ11, ǫ22, 2ǫ12)

and a bi-linear interpolation for (σ̄
(2)
11 , σ̄

(2)
22 , σ̄

(2)
(12), σ̄

(2)
[12]) are used in the isoparametric plane.

The resulting global interpolation for all nodal quantities is now continuous in a finite element

mesh.

This element was implemented in the ABAQUS general purpose finite element program.

This code provides a general interface so that a particular finite element can be introduced

as a user subroutine (UEL).

4.2 The center cracked panel (CCP)

In order to verify the asymptotic crack-tip solution (Aravas and Giannakopoulos [2]) and

determine its region of dominance, we carry out detailed finite element calculations of a

cracked specimen under mode-I plane-strain conditions. We consider the center-cracked

panel (CCP) subjected to uniaxial tension σ∞ as shown in Fig. 4.2.

Both the specimen and the applied loads are symmetric with respect to the crack plane

(mode-I). Because of symmetry, one quarter of the specimen is analyzed (Fig. 4.3a) and the
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Finite Element Solutions - Center Cracked Panel 13

Figure 4.2: Center Cracked Panel.

following conditions are applied along the symmetry lines (Fig. 4.3b):

u2 = 0, ǫ12 = 0, ω3 = 0 on AB, (4.6)

u1 = 0, ǫ12 = 0, ω3 = 0 on DE. (4.7)

Figure 4.3: Center cracked panel.

The finite element mesh is shown in Fig. 4.4; all crack-tip nodes are tied together. The size

of the smallest element in the focussed mesh at the crack-tip is h = a/2000 , where a is the

crack length as shown in Fig. 4.2.

Using dimensional analysis and taking into account that the solution is linear in σ∞, we

Institutional Repository - Library & Information Centre - University of Thessaly
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14 Finite Element Solutions - Center Cracked Panel

Figure 4.4: Finite element mesh.

conclude that one possible way to normalize the solution of the problem is as follows

u

a
=

σ∞

E
⌣
u(

q
︷ ︸︸ ︷

r

a
, θ, ν,

ℓ

a
) ⇒ u =

σ∞a

E
⌣
u(q), (4.8)

ǫǫǫ =
σ∞

E

⌣
ǫǫǫ (q), µ̂µµ =

σ∞

a

⌣
µµµ(q), (4.9)

τ

E
=

σ∞

E
⌣
τ (

r

a
, θ, ν,

ℓ

a
) ⇒ τ = σ∞ ⌣

τ (q), (4.10)

σ

E
=

σ∞

E
⌣
σ(

q
︷ ︸︸ ︷

r

a
, θ, ν,

ℓ

a
︸︷︷︸

q̃

) ⇒ σ = σ∞ ⌣
σ(q) (4.11)

where q is the collection of dimensionless variables

q =

{
r

a
, θ, ν,

ℓ

a

}

(4.12)

a is the crack length (see Fig. 4.2), and all functions with a superposed ⌣ are dimensionless.

The asymptotic crack-tip solution for a mode-I crack is of the form (Aravas and Gian-

nakopoulos [2])

u1 = Ax1 + ℓ
(r

ℓ

)3/2
[A1 ũ11(θ, ν) + A2 ũ12(θ, ν)] + O(r2), (4.13)

u2 = B x2 + ℓ
(r

ℓ

)3/2
[A1 ũ21(θ, ν) + A2 ũ22(θ, ν)] + O(r2),

where (x1, x2) and (r, θ) are crack-tip Cartesian and polar coordinates respectively, ν is

Poisson’s ratio, ũij are dimensionless functions, and (A,B,A1, A2) are constants determined

by the complete solution of a boundary value problem. The A- and B-terms above correspond
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Finite Element Solutions - Center Cracked Panel 15

to uniform normal strains parallel (ǫ11) and normal (ǫ22) to the crack line, which do not

contribute to the crack-tip “energy release rate” (J-integral).

The dimensionless constants (A,B,A1, A2) in the asymptotic crack-tip solution are all

proportional to σ∞

E . Therefore, we can write

A =
σ∞

E
Ã(q̃), B =

σ∞

E
B̃(q̃), A1 =

σ∞

E
Ã1(q̃), A2 =

σ∞

E
Ã2(q̃), (4.14)

where

q̃ =

{

ν,
ℓ

a

}

(4.15)

so that

Ã = lim
r→0

ǫ11(r, θ)
σ∞

E

, B̃ = lim
r→0

ǫ22(r, θ)
σ∞

E

, Ã1 = lim
r→0

u2(r, π)

σ∞ℓ
E

(
r
ℓ

)3/2
, Ã2 = lim

r→0

−ω3(r, π)
σ∞

E

√
r
ℓ

.

(4.16)

The material data used in the calculations are ν = 0 and ℓ = a/5, so that the size of

the crack-tip element relative to ℓ is h = a/2000 = ℓ/400. The results of the finite element

calculations are used for the evaluation of quantities that appear on the right hand side of

equations (4.16). Considering the limits of these quantities as r → 0, we conclude that for

the particular geometry and material analyzed, i.e., for

q̃ = (ν,
ℓ

a
) = (0, 0.2) (4.17)

we have

Ã = 0.962, B̃ = 2.292, Ã1 = 3.165, Ã2 = 3.433. (4.18)

The results of the finite element solution are compared now to the predictions of the asymp-

totic solutions (Aravas and Giannakopoulos [2]) as r → 0 under plane strain conditions

(u3 = 0). Let (r, θ) be crack-tip polar coordinates as shown in Fig. 4.5. The asymptotic

solution on the crack face (θ = π) is

u1(r, π) = −Ar + O(r2), (4.19)

u2(r, π) = A1 ℓ
(r

ℓ

)3/2
+ O(r2), (4.20)

ǫ11(r, π) = A + O(r), (4.21)

ǫ22(r, π) = B + O(r), (4.22)

ǫ12(r, π) = −3A1 − 2A2

2

√
r

ℓ
+ O(r), (4.23)

ω3(r, π) = −A2

√
r

ℓ
+ O(r). (4.24)

Figures 4.6-4.8 show the radial variation of the finite element solution for (u1, u2, ω3) on the

crack face (θ = π) together with the prediction of the asymptotic solution (equations (4.19),

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 19:40:53 EEST - 13.58.200.161



16 Finite Element Solutions - Center Cracked Panel

Figure 4.5: Crack-tip cartesian and polar coordinates.

(4.21), and (4.24)) on a logarithmic scale. The leading term in the asymptotic solution

provides an accurate description of the displacement and rotation fields on θ = π in the

range 0 < r < ℓ/10.
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Figure 4.6: Variation of log u1
σ∞a/E with log r

ℓ along the crack face (θ = π). The solid line

represents the asymptotic crack-tip solution, and the dots the results of the finite element

solution.
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Figure 4.7: Variation of log u2
σ∞a/E with log r

ℓ along the crack face (θ = π). The solid line

represents the asymptotic crack-tip solution, and the dots the results of the finite element

solution.
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Figure 4.8: Variation of log |ω3|
σ∞/E with log r

ℓ along the crack face (θ = π). The solid line

represents the asymptotic crack-tip solution, and the dots the results of the finite element

solution.
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18 Finite Element Solutions - Center Cracked Panel

Ahead of the crack (θ = 0) the asymptotic solution is (Aravas and Giannakopoulos [2])

u1(r, 0) = Ar +
3A1 − 2(3 − 4 ν)A2

12 (1 − ν)
ℓ

(r

ℓ

)3/2
+ O(r2), (4.25)

ǫ11(r, 0) = A +
3A1 − 2 (3 − 4 ν)A2

8 (1 − ν)

√
r

ℓ
+ O(r), (4.26)

ǫ22(r, 0) = B − 3A1 + 2 (1 − 4 ν)A2

8 (1 − ν)

√
r

ℓ
+ O(r), (4.27)

and u2(r, 0) = 0, ǫ12(r, 0) = ω3(r, 0) = 0.

Figure 4.9 shows the radial variation of the finite element solution for u1 ahead of the

crack (θ = 0) together with the prediction of the asymptotic solution. Two curves are

plotted for the asymptotic solution: curve I represents the leading term that involves A and

B, whereas curve II is the sum of the first two terms on the right-hand side of (4.25).
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Figure 4.9: Variation of u1
σ∞a/E with log r

ℓ ahead of the crack (θ = 0). Curve I represents the

leading term in the asymptotic expansion of the solution, curve II is the sum of the first two

terms in the expansion, and the dots are the results of the finite element solution.

Figures 4.10 and 4.11 show the radial variation of the finite element solution for ǫ11 and

ǫ22 on a logarithmic scale for θ = 0 together with the prediction of the asymptotic solution;

again, curves I represent the leading term that involve A and B, whereas curves II are the

sum of the first two terms on the right-hand side of (4.26) and (4.27).
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Figure 4.10: Variation of log |ǫ11|
σ∞/E ahead of the crack (θ = 0). Curve I represents the leading

term in the asymptotic expansion of the solution, curve II is the sum of the first two terms

in the expansion, and the dots are the results of the finite element solution.
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Figure 4.11: Variation of log |ǫ22|
σ∞/E ahead of the crack (θ = 0). Curve I represents the leading

term in the asymptotic expansion of the solution, curve II is the sum of the first two terms

in the expansion, and the dots are the results of the finite element solution.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 19:40:53 EEST - 13.58.200.161



20 Finite Element Solutions - Center Cracked Panel

As Aravas and Giannakopoulos [2] pointed out, the constants A and B provide the limiting

values of ǫ11 and ǫ22 as r → 0, but the second term in the asymptotic expansion is required

for an accurate description of the strain state ahead of the crack for radial distances of order

ℓ/10.

Figures 4.12-4.17 show the angular variation of the normalized components of u, ǫǫǫ and

ω3 at various radial distances form the crack-tip together with the corresponding prediction

of the leading term in the asymptotic crack-tip solution. In particular, the angular variation

of the following quantities is plotted:

{

u1/r

σ∞/E
,

u2/r

σ∞/E
,

ǫ11

σ∞/E
,

ǫ22

σ∞/E
,

2ǫ12/
√

r/ℓ

σ∞/E
,

ω3/
√

r/ℓ

σ∞/E

}

. (4.28)

In view of the normalization used, all curves for each of the aforementioned normalized

quantities should fall on a single curve for values of r inside the “region of dominance” of the

leading term in the asymptotic crack-tip solution. Figures 4.12-4.17 show that the leading

term in the asymptotic solution provides an accurate description of the crack-tip fields over

radial distances of order ℓ/10.
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Figure 4.12: Angular variation of u1/r
σ∞/E at various radial distances. The solid line represents

the asymptotic crack-tip solution.
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Figure 4.13: Angular variation of u2/r
σ∞/E at various radial distances. The solid line represents

the asymptotic crack-tip solution.
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Figure 4.14: Angular variation of ǫ11
σ∞/E at various radial distances. The solid line represents

the asymptotic crack-tip solution.
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22 Finite Element Solutions - Center Cracked Panel

0

1

2

3

0 20 40 60 80 100 120 140 160 180

      0,0230

      0,0280

      0,0335

      0,0393

      0,0456

      0,0524

      0,0597

 

/Symbol r  

22

/ E

!

"
#

Figure 4.15: Angular variation of ǫ22
σ∞/E at various radial distances. The solid line represents

the asymptotic crack-tip solution.
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Figure 4.16: Angular variation of
2ǫ12/

√
r/ℓ

σ∞/E at various radial distances. The solid line repre-

sents the asymptotic crack-tip solution.
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Figure 4.17: Angular variation of
ω3/

√
r/ℓ

σ∞/E at various radial distances. The solid line repre-

sents the asymptotic crack-tip solution.

In the finite element formulation of Amanatidou and Aravas [1] the true stress in a finite

element solution is calculated by using the equations

σij = σ̄ij + σ̄
(2)
ij =

∂W̄

∂u(i,j)
+ σ̄

(2)
ij . (4.29)

The results of the finite element solution are compared now to the predictions of the

crack-tip asymptotic solution (Aravas and Giannakopoulos [2]).

For comparison purposes, we carried out finite element calculations for the same specimen

geometry and applied loads using the corresponding classical isotropic linear elasticity model

(ν = 0, ℓ = 0). Eight-node plane strain isoparametric elements with 3× 3 Gauss integration

stations are used in the calculations. Again, all crack-tip nodes are tied together.

Figure 4.18 shows the variation of the normalized true stress σ22/σ
∞ as a function of the

normalized radial distance r/ℓ along the radial line θ = π
40 for both the gradient and classical

elasticity solutions.
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Figure 4.18: Variation of the normalized true stress σ22/σ
∞ as a function of the normalized

radial distance r/ℓ ahead of the crack. The classical solution is also shown for comparison.

In gradient elasticity, this full-field result shows the existence of a maximum tensile value

of σ22, at a distance r/ℓ ≃ 1 ahead of the crack, in accord to what has been reported by

various researchers and recently by Aravas and Giannakopoulos [2] for the ECP geometry.

This maximum value increases monotonically to infinity as ℓ → 0. We observe also that the

region of validity of the asymptotic solution in gradient elasticity is comparable to that of

the classical solution (ℓ = 0).

For the specimen geometry and applied loads considered above, we carry out finite ele-

ment calculations with ℓ/a = 0., 0.001, 0.01, 0.1 . Again the value ν = 0 is used for Poisson’s

ratio. For each value of ℓ, two sets of calculations are carried out: one with normalized true

stress σ22 and another with normalized normal strain ǫ22 as a function of the normalized

radial distance r, for the gradient and classical elasticity solutions. In the gradient elasticity

solution σ22 reaches a maximum at r ≃ ℓ.

Figures 4.19-4.22 show the variation of the normalized true stress σ22/σ
∞ as a function

of the normalized radial distance r/ℓ along the radial line θ = π
40 for both the gradient and

classical elasticity solutions.
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Figure 4.19: Variation of the normalized true stress σ22/σ
∞ as a function of the normalized

radial distance r/ℓ along the radial line θ = π
40 for both the gradient and classical elasticity

solutions.
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Figure 4.20: Variation of the normalized true stress σ22/σ
∞ as a function of the normalized

radial distance r/ℓ along the radial line θ = π
40 for both the gradient and classical elasticity

solutions.
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Figure 4.21: Variation of the normalized true stress σ22/σ
∞ as a function of the normalized

radial distance r/ℓ along the radial line θ = π
40 for both the gradient and classical elasticity

solutions.
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Figure 4.22: Variation of the normalized true stress σ22/σ
∞ as a function of the normalized

radial distance r/α along the radial line θ = π
40 for both the gradient and classical elasticity

solutions.
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Figures 4.23-4.26 show the variation of the normalized normal strain ǫ22 ahead of the

crack (θ = 0) for the gradient and classical elasticity solutions.
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Figure 4.23: Variation of the normalized normal strain ǫ22/(σ
∞/E) as a function of the

normalized radial distance r/a along the radial line θ = 0 for both the gradient and classical

elasticity solutions.
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Figure 4.24: Variation of the normalized normal strain ǫ22/(σ
∞/E) as a function of the

normalized radial distance r/a along the radial line θ = 0 for both the gradient and classical

elasticity solutions.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 19:40:53 EEST - 13.58.200.161



28 Finite Element Solutions - Center Cracked Panel

-200

-150

-100

-50

0

50

0,00 0,02 0,04 0,06 0,08 0,10

 22_l_0.1

 22_l=0

 22_!"#$%&'&()*_gradient

 22_!"#$%&'&()*_classical

/ ar

22

/ E

 

!
"

22

22

22

22

( 0.001)

( 0)

( 0.001)

( 0)

a

a

 

 

 

 

## $

## $

## # $

## $

 

 

 

 

asymptotic

asymptotic 

Figure 4.25: Variation of the normalized normal strain ǫ22/(σ
∞/E) as a function of the

normalized radial distance r/a along the radial line θ = 0 for both the gradient and classical

elasticity solutions.
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Figure 4.26: Variation of the normalized normal strain ǫ22/(σ
∞/E) as a function of the

normalized radial distance r/a along the radial line θ = 0 for both the gradient and classical

elasticity solutions.
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Figures 4.27-4.34 show the normalized components of σ11, σ22, σ(12) and σ[12] as a function

of the normalized radial distance r/ℓ along the radial lines θ = π
40 and θ = π − π

40 together

with the corresponding prediction of the asymptotic crack-tip solution on a logarithmic scale.
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Figure 4.27: Variation of log[
∣
∣σ11(r,

π
40 )

∣
∣ /σ∞] with log r

ℓ along the radial line θ = π
40 . The

solid line represents the asymptotic crack-tip solution, and the dots the results of the finite

element solution.
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Figure 4.28: Variation of log[
∣
∣σ22(r,

π
40 )

∣
∣ /σ∞] with log r

ℓ along the radial line θ = π
40 . The

solid line represents the asymptotic crack-tip solution, and the dots the results of the finite

element solution.
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Figure 4.29: Variation of log[
∣
∣σ(12)(r,

π
40)

∣
∣ /σ∞] with log r

ℓ along the radial line θ = π
40 . The

solid line represents the asymptotic crack-tip solution, and the dots the results of the finite

element solution.
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Figure 4.30: Variation of log[
∣
∣σ[12](r,

π
40 )

∣
∣ /σ∞] with log r

ℓ along the radial line θ = π
40 . The

solid line represents the asymptotic crack-tip solution, and the dots the results of the finite

element solution.
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Figure 4.31: Variation of log[
∣
∣σ11(r, π − π

40)
∣
∣ /σ∞] with log r

ℓ along the radial line θ = π − π
40 .

The solid line represents the asymptotic crack-tip solution, and the dots the results of the

finite element solution.
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Figure 4.32: Variation of log[
∣
∣σ22(r, π − π

40)
∣
∣ /σ∞] with log r

ℓ along the radial line θ = π − π
40 .

The solid line represents the asymptotic crack-tip solution, and the dots the results of the

finite element solution.
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Figure 4.33: Variation of log[
∣
∣σ(12)(r, π − π

40 )
∣
∣ /σ∞] with log r

ℓ along the radial line θ =

π − π
40 . The solid line represents the asymptotic crack-tip solution, and the dots the results

of the finite element solution.
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Figure 4.34: Variation of log[
∣
∣σ[12](r, π − π

40 )
∣
∣ /σ∞] with log r

ℓ along the radial line θ = π − π
40 .

The solid line represents the asymptotic crack-tip solution, and the dots the results of the

finite element solution.
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Figures 4.35-4.38 show the angular variation of the normalized components of σ11, σ22, σ(12)

and σ[12] at various radial distances from the crack-tip together with the corresponding

prediction of the asymptotic crack-tip solution. In particular, the angular variation of the

following quantities is plotted:

{
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3
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Figure 4.35: Angular variation of the normalized true stress σ11/σ∞

(r/ℓ)3/2 at various radial dis-

tances. The solid line represents the asymptotic crack-tip solution.
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Figure 4.36: Angular variation of the normalized true stress σ22/σ∞

( r
ℓ )

3
2

at various radial dis-

tances. The solid line represents the asymptotic crack-tip solution.
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Figure 4.37: Angular variation of the normalized true stress
σ(12)/σ∞

( r
ℓ )

3
2

at various radial dis-

tances. The solid line represents the asymptotic crack-tip solution.
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Figure 4.38: Variation of the normalized true stress
σ[12]/σ∞

( r
ℓ )

3
2

at various radial distances. The

solid line represents the asymptotic crack-tip solution.

Figure 4.39a shows the profile of the crack face for ℓ = 0 and ℓ/a = 0.2, together

with the predictions of the corresponding asymptotic solutions. The cusp-like crack opening

characterizes the gradient elasticity solution and has been observed also by Karlis et al.

[12, 13] and by Aravas and Giannakopoulos [2] in their studies of the central crack and edge

crack geometry respectively. Figure 4.39b shows the profiles of the crack face for the gradient

case and for different values of ℓ/a.
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Figure 4.39: Crack profiles u2(x1, π)/(σ∞α/E) for gradient elasticity: (a) asymptotic and

finite element solutions for ℓ = 0 and ℓ/a = 0.2, (b) finite element results for different values

of ℓ.
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Gavardinas [5] conducted qualitative experiments concerning the prediction for the me-

chanical behavior (e.g. the shape for the crack opening) of textile materials with microstruc-

ture. Typical fracture mechanics cracked configurations were examined. The specimens were

confined into transparent plexiglass to enforce plane strain conditions.

Figure 4.40 shows the left crack-tip of a polymer-impregnated textile with a double-edge

crack loaded in tension. The crack length a is 1 cm and the internal length ℓ (woven matrix)

is 0.1 cm (ℓ/a = 0.1). No bridging effect and complete closure are observed upon unloading.

The figure shows clearly the formation of a cusp at the crack-tip and indicates the possibility

of using gradient elasticity theory in order to describe the mechanical behavior of textile

composites.

(a)

(b)

Figure 4.40: Formation of a cusp at the crack-tip of a polymer-impregnated textile with a

double-edge crack loaded in tension (ℓ/a = 0.1).
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Figure 4.41 shows contours of the normal strain ǫ22 in the crack tip region for the two

theories (classical and gradient). The major difference in the two solutions is that the

finite (asymptotically constant) strains of the gradient elasticity solution at the crack-tip are

replaced by singular (1/
√

r) strains in the classical solution (ℓ = 0).
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Figure 4.41: Contour plots of the normal strain ǫ22 in the crack-tip region: (a) gradient

elasticity (ℓ/a = 0.2), (b) classical elasticity (ℓ = 0).
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Figure 4.42: Angular variation of the normalized σθθ/σ
∞ at the radial distance at which σθθ

maximizes ahead of the crack.

Figure 4.42 shows the angular variation of the normalized component of σθθ at the radial

distance where σθθ reaches a maximum ahead of the crack. At that radial distance, the

maximum value of σθθ appears at θ = 0. It emphasized though that this is not the case

for an edge-cracked panel (ECP). As discussed in the following section, the corresponding

maximum value of σθθ for the ECP appears at θ ≃ 100◦.

The results of the finite element calculations are used for the evaluation of the quantities

that appear on the right hand side of equations 4.16 and the radial distance rmax at which

σθθ maximizes ahead (θ = 0) of the crack (Fig. 4.43) where ℓ is the internal length and a is

the crack length of the problem under consideration..

Center Cracked Panel

a 1A
!

2A
! A! B! maxr  

0.001 37.388 37.945 19.879 52.16 3.22 

0.01 14.786 17.026 6.901 10.308 1.27 

0.1 4.700 5.299 1.779 3.251 1.34 

0.2 3.165 3.433 0.962 2.292 1.45 

Figure 4.43: Variation of the quantities that appear on the right hand side of equations (4.16

with the normalized radial distance rmax at which σθθ maximizes ahead (θ = 0) of the crack.
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Chapter 5

Finite Element Solutions - Edge Cracked

Panel (ECP)

In this chapter, for comparison purposes, we carry out finite element calculations of another

cracked specimen. We consider the plane strain problem of an edge-cracked panel (ECP)

loaded with two concentrated forces as shown in Fig. 5.1. Both the specimen and the applied

loads are symmetric with respect to the crack plane (mode-I).

Figure 5.1: Edge Cracked Panel.

The problem is solved again by using the finite element formulation of Amanatidou and

Aravas [1], which was implemented in the ABAQUS general purpose finite element program.

Nine-node elements (III9-70 in [1]) are used in the computations. Because of symmetry, only

half of the specimen is analyzed and the following conditions are applied along the symmetry

line ahead of the crack:

u2 = 0, ǫ12 = 0, ω3 = 0. (5.1)

In the following, we discuss in detail the variation of the true stress components. Figures

5.2-5.9 show the normalized components of σ11, σ22, σ(12) and σ[12] as a function of the
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40 Finite Element Solutions - Edge Cracked Panel

normalized radial distance r/ℓ along the radial lines θ = π
40 and θ = π − π

40 together with

the corresponding prediction of the asymptotic crack-tip solution on a logarithmic scale.
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Figure 5.2: Variation of log[
∣
∣σ11(r,

π
40)

∣
∣ /σ∞] with log r

ℓ along the radial line θ = π
40 . The

solid line represents the asymptotic crack-tip solution, and the dots the results of the finite

element solution.
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Figure 5.3: Variation of log[
∣
∣σ22(r,

π
40)

∣
∣ /σ∞] with log r

ℓ along the radial line θ = π
40 . The

solid line represents the asymptotic crack-tip solution, and the dots the results of the finite

element solution.
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Figure 5.4: Variation of log[
∣
∣σ(12)(r,

π
40 )

∣
∣ /σ∞] with log r

ℓ along the radial line θ = π
40 . The

solid line represents the asymptotic crack-tip solution, and the dots the results of the finite

element solution.
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Figure 5.5: Variation of log[
∣
∣σ[12](r,

π
40)

∣
∣ /σ∞] with log r

ℓ along the radial line θ = π
40 . The

solid line represents the asymptotic crack-tip solution, and the dots the results of the finite

element solution.
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Figure 5.6: Variation of log[
∣
∣σ11(r, π − π

40 )
∣
∣ /σ∞] with log r

ℓ along the radial line θ = π − π
40 .

The solid line represents the asymptotic crack-tip solution, and the dots the results of the

finite element solution.
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Figure 5.7: Variation of log[
∣
∣σ22(r, π − π

40 )
∣
∣ /σ∞] with log r

ℓ along the radial line θ = π − π
40 .

The solid line represents the asymptotic crack-tip solution, and the dots the results of the

finite element solution.

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 19:40:53 EEST - 13.58.200.161



Finite Element Solutions - Edge Cracked Panel 43

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

-1,5 -1,0 -0,5 0,0 0,5 1,0
log( / )r  

40

 
!  " #

(1
2

)
4
0

lo
g
[

(
,

)
/

]
r

 
$

 
$
%

#

Figure 5.8: Variation of log[
∣
∣σ(12)(r, π − π

40 )
∣
∣ /σ∞] with log r

ℓ along the radial line θ = π − π
40 .

The solid line represents the asymptotic crack-tip solution, and the dots the results of the

finite element solution.

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

-1,5 -1,0 -0,5 0,0 0,5 1,0
log( / )r  

40

 
!  " #

[1
2

]
4
0

lo
g

[
(

,
)

/
]

r
 

$
 

$
%

#

Figure 5.9: Variation of log[
∣
∣σ[12](r, π − π

40)
∣
∣ /σ∞] with log r

ℓ along the radial line θ = π − π
40 .

The solid line represents the asymptotic crack-tip solution, and the dots the results of the

finite element solution.
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Figures 5.10-5.13 show the angular variation of the normalized components of σ11, σ22, σ(12)

and σ[12] at various radial distances from the crack-tip together with the corresponding

prediction of the asymptotic crack-tip solution. In particular, the angular variation of the

following quantities is plotted:

{
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Figure 5.10: Angular variation of the normalized true stress σ11/σ∞

(r/ℓ)3/2 at various radial dis-

tances. The solid line represents the asymptotic crack-tip solution.
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Figure 5.11: Angular variation of the normalized true stress σ22/σ∞

( r
ℓ )

3
2

at various radial dis-

tances. The solid line represents the asymptotic crack-tip solution.
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Figure 5.12: Angular variation of the normalized true stress
σ(12)/σ∞

( r
ℓ )

3
2

at various radial dis-

tances. The solid line represents the asymptotic crack-tip solution.
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Figure 5.13: Variation of the normalized true stress
σ[12]/σ∞

( r
ℓ )

3
2

at various radial distances. The

solid line represents the asymptotic crack-tip solution.

For the specimen geometry and applied loads considered above, we carry out finite ele-

ment calculations with ℓ/a = 0., 0.001, 0.01, 0.1 . Again the value ν = 0 is used for Poisson’s

ratio. For each value of ℓ, two sets of calculations are carried out: one with normalized true

stress σ22 and another with normalized normal strain ǫ22 as a function of the normalized

radial distance r, for the gradient and classical elasticity solutions. In the gradient elasticity

solution σ22 reaches a maximum at r ≃ ℓ.

Figures 5.14-5.17 show the variation of the normalized true stress σ22/ (P/W ) as a func-

tion of the normalized radial distance r/ℓ along the radial line θ = π
40 for both the gradient

and classical elasticity solutions.
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Figure 5.14: Variation of the normalized true stress σ22/ (P/W ) as a function of the nor-

malized radial distance r/ℓ along the radial line θ = π
40 for both the gradient and classical

elasticity solutions.
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Figure 5.15: Variation of the normalized true stress σ22/ (P/W ) as a function of the nor-

malized radial distance r/ℓ along the radial line θ = π
40 for both the gradient and classical

elasticity solutions.

-10

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900

/r  

22

/P W

 

22

22

22

22

( 0.001)

( 0)

( 0.001)

( 0)

a

a

 

 

 

 

!! "

!! "

!! ! "

!! "

 

 

 

 

asymptotic

asymptotic 

Figure 5.16: Variation of the normalized true stress σ22/ (P/W ) as a function of the nor-

malized radial distance r/ℓ along the radial line θ = π
40 for both the gradient and classical

elasticity solutions.
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Figure 5.17: Variation of the normalized true stress σ22/ (P/W ) as a function of the nor-

malized radial distance r/a along the radial line θ = π
40 for both the gradient and classical

elasticity solutions.

Figures 5.18-5.21 show the variation of ǫ22 ahead of the crack (θ = 0) for the gradient

and classical elasticity solutions.
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Figure 5.18: Variation of the normalized normal strain ǫ22
P/(E W ) as a function of the nor-

malized radial distance r/a along the radial line θ = 0 for both the gradient and classical

elasticity solutions.
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Figure 5.19: Variation of the normalized normal strain ǫ22
P/(E W ) as a function of the nor-

malized radial distance r/a along the radial line θ = 0 for both the gradient and classical

elasticity solutions.
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Figure 5.20: Variation of the normalized normal strain ǫ22
P/(E W ) as a function of the nor-

malized radial distance r/a along the radial line θ = 0 for both the gradient and classical

elasticity solutions.
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Figure 5.21: Variation of the normalized normal strain ǫ22
P/(E W ) as a function of the nor-

malized radial distance r/a along the radial line θ = 0 for both the gradient and classical

elasticity solutions.

Figures 5.22-5.26 show angular plots of the true stress components at the radial distance

that maximizes σ22 ahead of the crack (ℓ/a = 0.1).
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Figure 5.22: Angular variation of σ11 at the radial distances which σθθ maximizes ahead of

the crack. The solid line represents the approximating functional form, and the dots the

results of the finite element solution.
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Figure 5.23: Angular variation of σ22 at the radial distances which σθθ maximizes ahead of

the crack. The solid line represents the approximating functional form, and the dots the

results of the finite element solution.

50 100 150
Θ

-8

-6

-4

-2

2

4

Σ12

P �W

Figure 5.24: Angular variation of σ12 at the radial distances which σθθ maximizes ahead of

the crack. The solid line represents the approximating functional form, and the dots the

results of the finite element solution.
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Figure 5.25: Angular variation of σ21 at the radial distances which σθθ maximizes ahead of

the crack. The solid line represents the approximating functional form, and the dots the

results of the finite element solution.

The results shown above can be approximated by the following expressions

σ11

P/W
= −6.41847 + 1.99194 cos θ + 9.28268 cos 2θ − 1.48744 cos 3θ − 0.64241 cos 4θ+

+ 14.6615 sin θ − 2.26578 sin 2θ − 3.19525 sin 3θ + 0.35435 sin 4θ, (5.3)
σ22

P/W
= −12.7025 + 3.46502 cos θ + 13.5931 cos 2θ − 2.73359 cos 3θ − 0.94459 cos 4θ+

+ 25.4893 sin θ − 4.961234 sin 2θ − 5.48417 sin 3θ + 0.80348 sin 4θ, (5.4)
σ12

P/W
= 5.11345 − 0.1163 cos θ − 6.19455 cos 2θ + 0.75721 cos 3θ + 0.5161 cos 4θ−

− 9.16073 sin θ + 2.03975 sin 2θ + 2.31792 sin 3θ + 0.29589 sin 4θ, (5.5)
σ21

P/W
= −3.37529 − 0.47195 cos θ + 4.17342 cos 2θ − 0.09338 cos 3θ − 0.48324 cos 4θ+

+ 6.27743 sin θ + 1.33057 sin 2θ − 2.1782 sin 3θ + 0.00493 sin 4θ. (5.6)

The corresponding σθθ is determined from the expression

σθθ =
σ11 + σ22

2
− σ11 − σ22

2
cos 2θ − σ12 + σ21

2
sin 2θ. (5.7)
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Figure 5.26: Angular variation of the normalized σθθ
P/W at the radial distance at which σθθ

maximizes ahead of the crack. The solid line represents the approximating functional form,

and the dots the results of the finite element solution.

Figure 5.26 shows the angular variation of σθθ. It interesting to note that the maximum

value of σθθ does not appear at θ = 0, but appears at θ ≃ 100◦!

The results of the finite element calculations are used for the evaluation of the quantities

Ã, B̃, Ã1, Ã2 in the asymptotic crack-tip solutions (Aravas and Giannakopoulos [2]) and the

radial distance rmax at which σθθ maximizes ahead (θ = 0) of the crack (Fig. 5.27) where ℓ

is the internal length and a is the crack length of the problem under consideration.

Edge Cracked Panel

a 1A
!

2A
! A! B! maxr  

0.001 310.569 364.641 208.720 218.640 3.22

0.01 118.510 137.128 75.694 80.320 1.27

0.1 32.600 40.300 21.120 18.360 1.05

0.2 19.134 23.505 11.104 9.470 0.77

Figure 5.27: Variation of the quantities Ã, B̃, Ã1, Ã2 with the normalized radial distance rmax

at which σθθ maximizes ahead (θ = 0) of the crack.
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Chapter 6

Closure

In this thesis, we considered the plane strain problems of a center-cracked panel (CCP) and

an edge-cracked panel (ECP). The specimens and the applied loads were symmetric with

respect to the crack plane (mode-I) in both cases.

The problems were solved by using the finite element formulation of Amanatidou and

Aravas [1], which was implemented in the ABAQUS general purpose finite element program.

We carried out detailed finite element calculations and we proceeded comparing the

results with the asymptotic crack-tip solutions developed by Aravas and Giannakopoulos [2].

The region of dominance of the asymptotic solution for the CCP geometry analyzed were

found to be of order ℓ/10 which is in accord to what has been reported by Aravas and

Giannakopoulos [2] for the ECP geometry.

In order to validate our results we calculated Cartesian components of the true stresses

for both specimens. Results were presented in the form of diagrams and verified the corre-

sponding asymptotic crack-tip solutions developed by Aravas and Giannakopoulos [2].
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