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ABSTRACT (Greek):  ΠΕΡΙΛΗΨΗ 
Σε αυτήν την διατριβής δοσίμετρα θερμοφωταύγεια (TLD) χρησιμοποιήθηκαν για την δοσιμέτρηση, στη 

διαγνωστική ακτινολογία και την ακτινοθεραπεία. Μελετήθηκαν από την άποψη της μείωσης του ακτινικού 

κινδύνου και της βελτιστοποίησης οι δόσεις  ακτινοβολίας δόσεων σε ασθενείς και προσωπικό.    

Η εργασία έχει δύο κύρια μέρη: 1) in vivo δοσιμετρία στις υψηλές ενέργειες  φωτονίων που χρησιμοποιούνται στην 

ακτινοθεραπεία και 2) in vivo δοσιμετρία στις χαμηλές ενέργειες φωτονίων (ακτίνες x) που χρησιμοποιούνται στην 

ακτινολογία Το  πρώτο μέρος, σκοπεύει να αξιολογήσει τη δυνατότητα χρησιμοποίησης διαφορετικών υλικών 

(χαλκός, αργίλιο, ανοξείδωτος χάλυβας και Plexiglas) με βάση την αρχή της υπεργραμμικότητας, όπως επίσης  να 

αξιολογήσει την ακρίβεια, στην μετρηση της δόσης είσοδου κατά τη διάρκεια του εγκεφάλου και λαιμού, της 

κοιλίας και στην ακτινοθεραπεία της περιοχής της πυέλου. Οι περιφερειακές δόσεις (σε δέρμα και θυροειδής) 

μετρήθηκαν κατά τη διάρκεια της θεραπείας του μαστού. TLDs-100 χρησιμοποιήθηκαν μέσα σε διαφορετικά 

καλύμματα χαλκού για ενέργειες φωτονίων 6 και 15 MV σε δύο γραμμικούς επιταχυντές. 

Η διαταραχής μπορεί να φθάσει σε μέχρι 20% του μεγίστου, το οποίο δρά ως περιορισμός για τις μετρήσεις δόσεων 

εισόδων. Η μέση δόση εισόδου του  θυρεοειδή ήταν 3,7% της θεραπευτικής δόση ανά συνεδρία και ενώ η μέση 

δόση εισόδου στους μαστούς υπολογίσθηκε να είναι για να είναι 42% του μεγίστου, και για τα δύο πεδία 

ακτινοβόλησης (εσωτερικό και εξωτερικό). Τα αποτελέσματα είναι συγκρίσιμα με εκείνα που υπάρχουν στην 

βιβλιογραφία. Ο κίνδυνος μοιραίου περιστατικού λόγω του καρκίνου θυροειδή ανά συνεδρία είναι 3x10–3.  Το 

μεγαλύτερο εύρος των μετρούμενων και των υπολογισμένων δόσεων βρίσκεται για τους ασθενείς με καρκίνο του 

μαστού.  

Το  δεύτερο μέρος σχετικά με την ακτινολογία. Οι δόσεις ακτινοβολίας μετρήθηκαν για τις συχνές εξετάσεις και 

θεωρήθηκαν ως τεχνικές χρυσών προτύπων για μερικές ευαίσθητες ομάδες πληθυσμού. Οι διαδικασίες 

περιλαμβάνουν Την  ανιούσα κυστεογραφία (MCU), την σαλπιγγογραφία (HSG) και το ενδοσκοπική 

οπισθοδρομική χολανγγειογραφία (ERCP).   

TLDs-100 και TLDs-200 χρησιμοποιήθηκαν για να μετρήσουν τις δόσεις των ασθενών αλλά και του προσωπικού 

αντίστοιχα, λόγω των πολύτιμων χαρακτηριστικών τους. Τα TLDs συσκευάστηκαν σε έναν λεπτό φάκελο 

φιαγμένο από διαφανές πλαστικό φύλλο.   

Οι εξεταστές εκτελούσαν τις εξετάσεις βάση ενός πρωτόκολλου που σχεδιάστηκε για να ελαχιστοποιήσει τη δόση 

των ασθενών και των εξεταστών. Συνολικά 242 ασθενείς δοσιμετρήθηκαν. Η  μέση τιμή της δόσης εισόδου (ESD) 

ήταν 1,13, 3,60 και 68,75 mGy αντίστοιχα για τις εξετάσεις MCU, HSG και ERCP, αντίστοιχα. Γενικά, ο κίνδυνος 

καρκίνου κυμαινόταν μεταξύ 10-6 και 10-7. Ιδιαίτερες μεταβολές  παρατηρήθηκαν μεταξύ των ασθενών από την 

άποψη της δόσης ακτινοβολίας, και του χρόνου ακτινοσκόπησης. Αυτές οι μεταβολές οφείλονται στις διαφορετικές 

ενδείξεις, τα χαρακτηριστικά  των εξεταζόμενων και τα παθολογικά συμπεράσματα.   

Τα στοιχεία που αναλύθηκαν σε αυτήν την εργασία παρουσίασαν ότι οι δόσεις μας  είναι χαμηλότερες κατά 

περίπου 50% ως 300% έναντι των χαμηλότερων μέσων τιμών που παρουσιάστηκαν στη βιβλιογραφία.  

Σαν  γενικό συμπέρασμα, η εργασία αυτής της διατριβής παρήγαγε τα ακόλουθα αποτελέσματα:  

• Πρωτόκολλα βαθμολόγησης των TLDs στις υψηλές και χαμηλές ενέργειες φωτονίων  

• Πρωτόκολλα για την in vivo επαλήθευση των δόσεων στους ασθενείς που υποβάλλονται σε 

ακτινοθεραπεία  
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• Πρωτόκολλα για τον προσδιορισμό διαγνωστικών επιπέδων αναφοράς δόσεων (DRLs) που εφαρμόζονται 

στην κλινική πρακτική στις εξετάσεις της ακτινολογίας. 

 

Το πρωτόκολλο επαλήθευσης δόσεων με την χρήση των TLDs είναι μέρος της διαδικασίας του ποιοτικού ελέγχου 

του τμήματος ακτινοθεραπείας του πανεπιστημιακού νοσοκομείου της Λάρισας.  
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ABSTRACT 
The concept of dosimetry covers the determination of absorbed dose to a medium both by measurement and by 

calculation. Different instruments are used for absorbed dose measurements, all based on the detection of some of 

the physical and chemical changes caused by radiation. Radiation dosimetry was originally developed as a tool to 

quantify biological effects for use in setting dose limits for radiation protection and to determine accurately the 

irradiation needed to treat tumors or to prevent from deterministic effects and radiation risks. Clinical radiation 

dosimetry involves the absolute dose calibration and quality assurance of radiation beams. In addition, the aims of 

clinical radiation dosimetry are to evaluate current clinical practice and to provide verification and improvements 

where these are required. This approach optimizes the benefits of a procedure or treatment (e.g. diagnostic integrity, 

tumor control), whilst minimizing the detriment (e.g. risk of inducing cancer, side effects).  

In this thesis Thermoluminescence Dosimeters (TLD) used in diagnostic, interventional radiology and radiotherapy 

were studied in terms of dose measurement, optimisation and radiation risk reduction for patients and staff.  These 

dosimeters act as a quality assurance tool in radiology, and in radiotherapy they are used to measure entrance, exit, 

peripheral and intra-cavity dose during treatment. The presented work has two main parts: in vivo dosimetry in high 

energy photon beams used in radiotherapy treatments and in vivo dosimetry in low energy photon beams used in 

interventional radiology. 

The first part, intends to evaluate the feasibility of different Buildup caps materials (Copper, Aluminum, Stainless 

steel and Plexiglas) on the onset of supralinearity of the entire dosimeters, and also evaluates the accuracy obtained 

from high z materials build up caps, measuring the entrance during head and neck, abdomen and pelvic 

radiotherapy. in addition to that, peripheral doses (skin and thyroid) were measured during breast treatment.  Natural 

lithium fluoride doped with magnesium and titanium (LiF: Mg, Ti (TLD-100)) was used with different copper build 

up caps for 6 MV and 15 MV photon beams from two linear accelerators. In the thyroid case cancer risk is higher 

following radiation at a young age, and decreases with increasing age for patients during a radiotherapy course for 

breast, head and neck stomach and prostate.  

The perturbation value can reach up to 20% of the Dmax, which acts as a limitation for entrance dose 

measurements. An average thyroid skin dose of 3.7% of the prescribed dose was measured per treatment session 

while the mean skin dose breast treatment session is estimated to be 42% of dmax, for both internal and external fields. 

These results are comparable in those of the in vivo of reported in literature. The risk of fatality due to thyroid cancer 

per treatment course is 3x10–3.   

Previous results from this author and previous results in literature indicate that the thyroid receives a significant dose 

during breast radiotherapy. Therefore, the routine evaluation of thyroid function is important in patients, who have 

been treated with radiotherapy, and whose treatment portals have included a large part of the thyroid gland. A 

suitable protection of thyroid gland is important to be provided especially for the patient receiving radical 

radiotherapy when young. 

The largest spread in ratios of measured and calculated entrance doses can be found for breast cancer patients, which 

are irradiated by a pair of tangential fields with wedge filters, applied to compensate for the curving of the breast. 

Satisfying results have been obtained for the, head and neck abdomen and pelvis. Errors increase for high-energy 

beams. 
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High Z Build up caps can be used to accurately determine and test doses given to patients as part of a regular quality 

assurance (QA) programme in in vivo dosimetry. 

The second part concerning medical radiology, deals with considerable radiation exposure to patients and staff. 

While optimisation of the radiation dose is recommended, few studies have been published. In addition to this, 

international organizations recommend a diagnostic reference level for different radiological and interventional 

procedures.  

Radiation doses were measured for frequent procedures and considered as gold standard techniques for some 

sensitive groups. These procedures include Micturating cystourethrography (MCU), Hysterosalpingography (HSG) 

and Endoscopic retrograde cholangiopancreatography (ERCP) are performed on infants and children, women in 

childbearing age and in the general population, respectively.  

TLD-100 and calcium fluoride doped with dysprosium (CaF2: Dy (TLD-200)) were used to measure patients and 

staff doses, respectively for their valuable characteristics. TLDs were packed on a thin envelope made of transparent 

plastic foil. Each envelope contained 4 TLDs. three envelopes in minimum were used to measure the entrance 

surface dose (ESD). 

The examiners were performing the investigations with a protocol that is designed to minimize patient and examiner 

dose. A total of 242 patients were investigated. The mean ESD were 1.13, 3.60 and 68.75 mGy for MCU, HSG and 

ERCP, respectively. Generally, the risk of cancer is ranges between 10-6 and 10 –7. Considerable variations were 

observed among patient populations in terms of radiation dose, and fluoroscopic time. These variations are due to the 

different indications, patient characteristics and pathological findings.  

The results of this study provide valuable data for dose optimisation and establishing reference dose levels for the 

mentioned examinations by a direct method using TLDs. However, additional measurements are necessary to 

improve the technique and the statistical information by including patient from different hospitals in order to 

establish national reference levels. Fluoroscopic captured image technique accompanied by reduced number of 

images has the lowest radiation dose without extremely compromising the capability diagnostic findings. However, 

dose reduction does affect image quality. Thus, it is important not just to reduce doses but also to optimise each 

imaging technique, maximizing its efficiency and determining the right balance between dose and image quality. 

The radiation risks associated with staff and co-patient are low. Although the radiation dose to examiners is very 

low, no radiation dose can be considered safe and in addition it is accumulated when a high workload coexists.  

The data analysed in this work showed our doses to be lower by approximately 50% to 300% compared to the lower 

mean values presented in the literature. 

As a general conclusion, the work of this thesis produced the following results: 

• Calibration protocols for TLDs in high and low energies photon beams 

• Protocols for in vivo dose verification to patients treated with radiotherapy 

• Protocols for the determination of Diagnostic Dose Reference Levels (DRLs) that are applied in clinical practice 

in the interventional radiology procedures studied. 

 

The TLD dose verification protocol is now part of the QA procedure at the Radiotherapy Department of the 

University Hospital of Larissa. 
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1. INTRODUCTION  

 

1. 1 Ionizing radiation in medicine  

Radiation has been used in medicine, since the discovery of x-rays in 1895 and radioactivity in 1896 by Roentgen and 

Becquerel respectively [1]. In 1898, Marie and Pierre Curie announced their discovery of polonium and radium. A 

benefit from the use of radiation was established very early on, but equally some of the potential dangers of radiation 

became apparent in the practitioners who overexposed to high doses [2]. The use of radiation in medicine has improved 

health care, but has resulted in medical radiation exposures becoming a significant component of the total radiation 

exposure of populations. 

Radiation is widely used in medicine; the population 

exposure from medical x-rays contributes approximately 

14% of the average annual population dose. More than 95% 

of human exposure to man-made ionizing radiation results 

from diagnostic and interventional radiology [3]. Fig.1.1 

The medical uses of radiation are classified into two main 

fields, radiation therapy and radiology. 

 

1.1. 1 Radiotherapy 

Radiotherapy is the use of ionizing radiation (photons high-energy beams of particles) to treat malignant tumors or some 

benign diseases such as the treatment of trigeminal neuralgia. The use of radiotherapy in non-malignant conditions is 

limited due to the risk of radiation-induced cancers cells [1-4]. The efficacy of the radiotherapy, which is applied in 50% 

of all cancer patients, is based on the radiosensitivity of the malignant cells and the ability of the healthy tissue to recover 

from the effects of radiation. 

Radiotherapy has advanced rapidly during the last decades due to the technical advancements in the therapeutic 

equipment, which allows the delivery of a high dose to a tumor without causing unacceptable side effects to the patient. 

Organ motion has made the task of eradicating a tumor difficult, resulting in inhomogenneity of the dose distribution 

leading to an under-dosage of Planning Target Volume (PTV) and over-dosage of some organ at risk (OAR) [3,4,6].  

There are two main risks to patients associated with radiation treatment, failure to control the initial disease, which when 

malignant can be lethal, and risk to normal tissue from irradiation. Radiotherapy may be used as the primary therapy or 

combined with surgery, chemotherapy, hormone therapy or a mixture of the three [3,5].   

The radiation damage to the DNA of the cells in the area being treated, affects their ability to divide and grow. 

Cancerous cells are unable to repair this damage as quickly, so their growth is curtailed and the tumor shrinks. Although 

some normal cells are affected by radiation, most normal cells appear to recover more fully from the effects of radiation 

than do cancer cells.  

There are principal differences between different types of radiation used in radiation therapy because the radiation 

quality of the low energy photons from an x-ray tube (200 kV in Fig. 2), deliver a maximum dose close to the surface of 

Figure.1.1: Sources of radiation exposure.  
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the patient and are mainly used to treat skin carcinomas and other superficial diseases. For photons from a linear 

accelerator, or other high energy therapy 

accelerator, the decrease with depth is much 

slower (6 MV in Fig. 2). Thus, this radiation 

quality can be used to reach deep sited tumours. 

These photons also show a useful skin sparing 

effect. Electrons show a relatively steep slope in 

the depth dose when they reach their maximum 

range. This makes it possible to spare organs 

behind the treatment volume when electrons are 

used. At larger depths a dose of only a few 

percent is received from bremsstrahlung photons mainly produced in the radiation treatment head [7, 8] (Fig. 2)  

 

 

In general, there are two modes of delivery of the radiation are teletherapy and brachytherapy:   
 
1.1.1.1 Teletherapy:  
 

Teletherapy (Eternal radiation therapy) means a source of radiation coming from a distance. It is also called 

percutaneous radiotherapy. About 60% of cancer patients referred for radiotherapy are treated with Teletherapy 

equipment. Teletherapy mainly applies high-energy photons or electrons from a medical linear accelerator or Cobaltc-60 

machines. Over 90% of total radiation treatments are conducted by teletherapy or Brachytherapy, with 

radiopharmaceuticals being used in only 7% of treatments [4]. In general, teletherapy is divided into two types: 

Conventional and conformal teletherapy. 

The term “conventional radiotherapy” refers to techniques that do not involve segmental modulation of beam intensity. 

Intensity Modulated Radiation Therapy and Tomotherapy are examples of delivery systems that are not conventional 

radiotherapy. 

The treatment is planned or simulated for on a specially calibrated conventional diagnostic x-ray machine (or sometimes 

by eye), and to the usually well-established arrangements of the radiation beams to achieve a desired plan. In vivo 

dosimetry may be performed in conventional treatments, depending on the institution's practices. 

Conformal radiotherapy refers to a method of treatment delivery that incorporates rigid immobilization and 3 

dimensional computer planning and treatment systems to produce a high dose area of radiation that conforms to the 

shape of the target and highly conformal dose-distributions with steep-dose gradients [7]. Increased sophistication of 3D 

multimodality medical imaging has led to an ability to visualize tumours, not only anatomically, but also with functional 

and molecular image displays. These developments in technology can be combined together to provide modern 

radiotherapy delivery with the most exciting potential for increased tumour cure and decreased long-term morbidity. 

Enhanced conformation allows for greater doses of radiation to reach the target volume while delivering less radiation to 

surrounding normal tissues [7]. As opposed to conventional radiation therapy, many fields and beam angles are used. 

Figure.1. 2: Depth dose curves for some important types of radiation 
used for radiation therapy 
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The dose delivery is modulated by multi-leaf collimator (MLC) within each field. Figure 1 illustrates these differences: 

the dose distribution is conforming closely to the tumor. 

A dosimetry check of the dose calculation in a solid water phantom is usually performed before the treatment. 

Additionally, in vivo dosimetry is strongly recommended [8].  

                                                                                                                    
 

 

 

 

 

 

 

 

 

 

1.1.1.2. Brachytherapy 

Brachytherapy: Brachy means ‘short time’ in Greek language. When the radiation source that emits γ ray (sealed 

radionuclides as tube, seeds, needles) is placed close to or within the tumor the treatment is called brachytherapy [3-5]. It 

is often used in combination with external beam radiotherapy and helps to preserve structure and function of the 

surrounding healthy tissue. There are three definite sub-specifications of brachytherapy: (i) Plesiocurietherapy (the 

radionuclide is placed on the surface of the skin (mould or plaque)), (ii) Intracavitary brachytherapy (inside the natural 

body cavity) and (iii) Interstitial brachytherapy (the radionuclide is implanted (needled) in to the substance of the tumor). 

 

1.1.2. Radiology 

Radiology is the use of ionizing radiation for medical diagnosis. It also uses techniques that do not involve radiation, 

such as magnetic resonance imaging (MRI) and ultrasound (US). Radiology is classified into two subfields. Besides 

radiology, diagnostic x-rays are also found in such clinics as cardiology, urology, orthopedics, gastroenterology, and 

dental [l, 2]. 

1.1.2.1. Diagnostic radiology 

Diagnostic radiology is a discipline, which uses of ionizing radiation for medical diagnosis, especially the use of 

x-rays in medical radiography or fluoroscopy. It is concern with the use of various imaging modalities to aid in the 

diagnosis of disease. 

 1.1.2.2 Interventional radiology 

 Is the use of the imaging modalities to guide minimally invasive surgical procedures. It is performed by a physician 

skillful in radiologic techniques and experienced in the clinical problems. The procedures may be predominantly 

therapeutic or primarily diagnostic [1,2]. 

Figure 1.3: Basic idea of conformal radiotherapy 
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1.1.2.3 Physical Basic of Radiology. 
Radiology works on the principle that when x-rays pass through human tissues the resultant physical processes (e.g. 

attenuation) provides contrast between different tissue types thus producing an image of human anatomy for the 

diagnosis of disease. Kilovoltage x-rays are used in various imaging modalities including: Conventional X ray, CT 

(Computed Tomography) scans which produce cross sectional images from a narrow fan x-ray beam, fluoroscopy, 

where the x-ray tube is left on or pulsed rapidly to produce real-time images, or mammography, where a high contrast 

image of the breast is produced by an x-ray beam with an effective energy less than 20keV and using K-edge filtration 

[13,14]. 

In contrast to the diagnostic benefit of ionizing radiation, exposure to any quantity of radiation carries with it some 

degree of risk of cancer induction [15,16]. The direct or indirect effects of ionizing radiation can cause cell modification, 

in particular DNA damage that may affect cell function or cause cell death. As a result, the benefit of each diagnostic 

procedure involving ionizing radiation must be weighed up against the potential risks involved. Consequently, clinical 

practice should be constantly reviewed to improve the benefit of the procedure (e.g. image quality) whilst minimizing 

radiation exposure.  

During diagnostic procedures there are two contributions to exposure to the general population from medical x-rays that 

must be considered. First, occupational exposure to radiation workers must be minimized whilst optimizing medical 

procedures [14]. Second, it is necessary to avoid medical exposures that are clinically unjustified, repeated and/or 

unoptimised [15]. In particular, different population sub-groups are more sensitive to radiation than others and must be 

observed more closely. For example, paediatric patients are more sensitive than adults, since radiosensitivity is related to 

the growth rate of the tissue irradiated. In addition, due to their long remaining life expectancy, every neonate has a 

greater time period for a cancer to develop. 

 

1.2. Radiation Risk  

Radiation risks of diagnostic radiology patients are either tissue reaction (deterministic) or cancer/heritable (stochastic) in 

nature. Tissue reactions, such as tissue injury or cataract production, occur when a number of cells are involved and a 

threshold dose is reached. Above the threshold, the severity of the injury is proportional to the dose. Cancer/heritable 

radiation injuries, such as genetic effects and carcinogenesis, are caused by injury to a single cell and typically a 

threshold dose is not required. The probability of the injury is proportional to the dose, but the severity of the injury is 

independent of the dose. If one assumes a linear relation without a threshold for such effects, then any amount of 

radiation, including low-dose plain film procedures, may potentially have an effect [16, 18].  

 

1.3. Occupational exposure 

Radiologists and radiological technologists are among the earliest occupational groups exposed to radiation. In 1902, 

only 7 years after the discovery of x-rays, excessive occurrences of skin cancer, which was the first solid cancer linked to 

radiation, were noted among radiologists. In early 1950, excess mortality from leukemia among radiologists began to 
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receive attention, and this, together with the rising concern about the effect of chronic radiation exposure from nuclear 

weapons tests, led to two landmark cohort studies of radiologists 

Today, a large number of professional and technical personnel in medicine are occupationally exposed to radiation 

whilst undertaking various radiological procedures, i.e., diagnostic, therapeutic, interventional and nuclear medicine. The 

latest United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR) report estimates that, 

worldwide, there are 2.3 million medical radiation workers—half of the entire workers exposed to man-made sources of 

radiation. Health risks from radiation exposure in such a large occupational segment of the population are clearly of 

special concern. During the decades after the discovery of x-rays in 1895, radiologists were exposed to such high doses 

that dermatitis and other radiation-induced injuries were common. The first dose limit was introduced in 1902, which 

was about 0.1 Gy per day (30 Gy per year!); this was not based on biological data but rather on the lowest observable 

amount, i.e. fogging of a photographic plate [1,10,19]. 

 

1. 4. Radiation dose optimisation  

Optimisation of exposure to ionizing radiation is important to both patient and examiner to reduce them where possible. 

Over the years, reductions in patient dose have been achieved through advances in technology and changes in clinical 

practice. In UK, National Radiological Protection Board (NRPB) [13] mentioned that there was an average of 30% 

reduction in mean doses for common types of X-ray examination since the survey in the mid 1980s, and that less than 

10% of hospitals were exceeding the original national reference doses.  

 However, whilst some dose reduction measures have a positive effect on image quality, others degrade contrast or 

increase noise. Thus, it is important not just to reduce doses but also to optimize each imaging technique, maximizing its 

efficiency and determining the right balance between dose and image quality. 

European Union directive 97/43/Euratom [20] stipulates that: “All doses due to medical exposure for radiological 

purposes except radiotherapeutic procedures… shall be kept as low as reasonably achievable consistent with obtaining 

the required diagnostic information…” Member states are required to pay special attention to exposures involving high 

doses to the patient, such as those considered in this study. The Ionising Radiation (Medical Exposure) Regulations 

(IRMER) 2000 [1], which extend the obligations to cover therapeutic as well as diagnostic exposures state that, “The 

operator shall select equipment and methods to ensure that for each medical exposure the dose of ionizing radiation to 

the individual undergoing the exposure is as low as reasonably practicable and consistent with the intended diagnostic or 

therapeutic purpose.” Since medical exposure has been justified, due to the potential benefit to the patient, there are no 

prescribed dose limits, but practitioners should apply the principle of optimization to ensure that patient dose is as low as 

reasonably achievable in order to avoid the stochastic effects and decrease the probability of non-stochastic effects while 

obtaining necessary diagnostic information [3, 4]. Optimization could be achieved by selection of modern equipment, 

technique, well-trained personnel and well-defined diagnostic reference level (DRL) consistent with the intended of 

diagnostic purpose [19, 20]. 

There are a number of different methods for reducing radiation dose, and these affect image quality in different ways. 

The challenge is to make the most effective use of the imaging equipment, so that the requisite clinical information can 

be obtained using the lowest practicable dose.  
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1.5. Diagnostic reference levels 

The concept of ‘reference doses’ for common X-ray examinations was introduced in the UK in 1990 in a joint 

document by the Royal College of Radiologists (RCR) and the NRPB entitled Patient Dose Reduction in Diagnostic 

Radiology [21]. DRL is defined is the dose level in Medical –radio diagnostic or in case of  pharmaceutical the level of 

activity, for a typical examinations of group of size patients or standard patients for broadly type of equipments. DRL is 

apply only for diagnostic procedures in diagnostic radiology or nuclear medicine, and does not apply to radiation 

therapy [18].  

The purpose of the reference dose was to provide a trigger to the first step in the optimization of patient doses and 

identify those practices in most urgent need of investigation and corrective action.  

ICRP [18] recommended that values should be selected by professional medical bodies, reviewed at intervals 

representing a compromise between the necessary stability and the long-term changes in observed dose distributions, 

and be specific to a country or region. Interestingly, the ICRP also recommended that DRLs need to be established only 

for common types of diagnostic examination and broad types of equipment. They are not intended to be used in a 

precise manner and a multiplicity of levels would reduce their usefulness. 

Wide variations in individual patient doses are to be expected and it is only sensible to compare the mean dose values (or 

perhaps the median, which is less influenced by extreme outliers) on representative groups of patients to monitor local 

trends with time, equipment or technique. Mean or median values, used as dose audit standards to monitor local trends, 

are not the same as third quartile values used to indicate abnormally high doses on a national or regional scale. 

 

1.6. Quality Assurance (QA) in Medicine 

1.6.1. QA in Radiotherapy 

According to the definition of International Standards Organization (ISO), quality assurance (QA) means all the planned 

or systematic actions necessary to provide adequate confidence that a product or service will satisfy given requirements 

for quality [22]. Specifically in radiation oncology, the quality can be defined as the totality of features or characteristics 

of the radiation oncology service that bear on its ability to satisfy the stated or implied goal of effective patient care [16].  

Presently, however, it is generally appreciated that the concept of quality in radiotherapy is broader than a restricted 

definition of technical maintenance and quality control of equipment and treatment delivery, and instead that it should 

encompass a comprehensive approach to all activities in the radiotherapy department; thus, it has clinical, physical, and 

administrative components. The clinical requirements for accuracy are based on evidence from dose-response curves 

An assessment of clinical requirements in radiotherapy shows that a high accuracy is necessary to produce the desired 

result of tumour control rates that are as high as possible, consistent with maintaining complication rates within 

acceptable levels [22]. Quality assurance procedures in radiotherapy can be characterized as follows: 

● Quality assurance reduces uncertainties and errors in dosimetry, treatment planning, equipment performance, 

treatment delivery, etc., thereby improving dosimetric and geometric accuracy and the precision of dose delivery. This 

improves radiotherapy results (treatment outcomes), raising tumour control rates as well as reducing complication and 

recurrence rates. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 00:59:49 EEST - 3.129.92.231



Chapter 1. Introduction 

 7

● Quality assurance not only reduces the likelihood of accidents and errors occurring, it also increases the probability 

that they will be recognized and rectified sooner if they do occur, thereby reducing their consequences for patient 

treatment. This is the case not only for larger incidents but also for the higher probability minor incidents. 

● Quality assurance allows a reliable inter-comparison of results among different radiotherapy centres, ensuring a more 

uniform and accurate dosimetry and treatment delivery. This is necessary for clinical trials and also for sharing clinical 

radiotherapy experience and transferring it between centres. 

● Improved technology and more complex treatments in modern radiotherapy can only be fully exploited if a high level 

of accuracy and consistency is achieved. 

Radiation therapy with external radiation beams the absorbed dose at the specification point in a patient should be 

known with an overall uncertainty of 3.5% (1sd) [4, 5] 

Geometric uncertainty relative to target volumes or organs at 

risk also leads to dose problems, either under dosage to the 

required volume (decreasing the TCP) or over dosage to  

nearby structures (increasing the NTCP). Consideration of 

these effects has led to recommendations on spatial 

uncertainty of between 5 and 10 mm (at the 95% confidence 

level).         

 

The ICRU recommendations [23] indicate that the error should not exceed 3-5%; and the recommended accuracy on 

dose delivery is generally 5–7% on the 95% confidence level, depending on the factors intended to be included [23]. On 

spatial accuracy, figures of 5–10 mm (95% confidence level) are usually given depending on the factors intended to be 

included. These are general requirements for routine clinical practice. In some specific applications, such as stereotactic 

radiotherapy, IMRT, or radiotherapy with ion beams, better accuracy might be demanded which consequently has an 

impact on increased QA efforts. 

 

1.6.1.1 Quality audit and continuous quality improvement 

Quality audit is a systematic and independent examination to determine whether or not quality activities and results 

comply with planned arrangements, and whether or not the arrangements are implemented effectively and are suitable to 

achieve the stated objectives. Any result of non-compliance found during the process of quality audit then must be feed 

back into quality manual [1, 16, 17, 22]. The important that the quality manual is be kept flexible in such a way that it 

allows the possibilities of changes and improvements based on regular audits and assessments. 

1.6.1.2 Quality audit tools 

i.  Postal audit with mailed dosimeters (usually TLD): these are generally organized by secondary standard 

dosimetry laboratory (SSDL) or agencies, such as the IAEA, Radiological Physics Center (RPC) in the U.S., 

ESTRO quality assurance laboratory (EQUAL), national societies, national quality networks, etc. They can 

be applied at various levels in the clinical dosimetry chain and can include procedural audit by using a 

questionnaire. 

Fig.4 Tumor control probability (TCP) and the probability of normal tissue 

complication (NTCP) as a function of radiation dose, in a hypothetical case. 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 00:59:49 EEST - 3.129.92.231



Chapter 1. Introduction 

 8 

ii. Quality audit visits can audit practical aspects in detail, limited only by time. They can audit procedural aspects 

by questioning staff and by inspection of procedures and records. 

iii. Finally, possible aims of a quality audit visit are to check: infrastructure, documentation, 

measurements of beam calibration geometry, measurements on other equipment, such as 

simulator, CT scanner, etc.  

 

1.6.2 Quality assurance in Diagnostic radiology 

QA means the planned and systematic actions that provide adequate confidence that a diagnostic x-ray facility will 

produce consistently high quality images with minimum exposure of the patients and healing arts personnel. The 

determination of what constitutes high quality will be made by the facility producing the images. QA actions include 

both “quality control” techniques and “quality administration” procedures. 

QA in diagnostic radiology has been systemically started in imaging departments since 1930s [24]. 

 “Quality control techniques” are those techniques used in the monitoring (or testing) and maintenance of the 

components of an x-ray system. The quality control techniques thus are concerned directly with the equipment. 

“Quality administration procedures” are those management actions intended to guarantee that monitoring techniques are 

properly performed and evaluated and that necessary corrective measures are taken in response to monitoring results. 

These procedures provide the organizational framework for the quality assurance program. 

1.7. Radiation dosimetry in medicine 

The concept of dosimetry covers the determination of absorbed dose to a medium both by measurement and by 

calculation [14]. Different instruments are used for absorbed dose measurements, all based on the detection of some of 

the physical and chemical changes caused by radiation. 

 Radiation dosimetry was originally developed as a tool to quantify biological effects for use in setting dose limits for 

radiation protection and to determine accurately the irradiation needed to treat tumours or to prevent from deterministic 

effects and radiation risks.  

Clinical radiation dosimetry involves the absolute dose calibration and quality assurance of radiation beams. In addition, 

the aims of clinical radiation dosimetry are to evaluate current clinical practice and to provide verification and 

improvements where these are required. This approach optimizes the benefits of a procedure or treatment (e.g. 

diagnostic integrity, tumour control), whilst minimizing the detriment (e.g. risk of inducing cancer, side effects). 

 

1.7.1 Radiation dosimetry in radiation therapy 

The aim of dosimetry in radiotherapy is to determine the absorbed dose to the irradiated tissues with sufficient accuracy. 

Difficulties arise due to nuclear reactions in which a broad variety of heavy ionizing particles and radioactive nuclei are 

created. 

Dosimetry has a vital role in dose distribution optimisation. It is important to verify the accurate delivery of a large 

amount of radiation to a defined tumor volume, which ensures minimal injury to normal or critical tissue. Deviations 
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from the intended dose distribution can affect treatment outcome, particularly for brachytherapy treatments where the 

dose gradient outside the target volume is steep [5, 18]. 

 

1.7.2 Radiation dosimetry in Radiology 

In diagnostic and interventional radiology, the aim of dosimetry is to quantify the doses delivered to the patient and staff 

during medical procedures and estimate risks of the radiation exposure. Furthermore using our knowledge of techniques 

and equipment, the diagnostic or therapeutic value of the procedure can be further optimized whilst minimizing 

unnecessary exposure. This is particularly important for more radiosensitive patients (e.g. neonates) and sensitive organs 

(e.g. thyroid, gonads, and lens). 

 

1.8. In vivo dosimetry in Medicine 

For both diagnosis and treatment, dose measurement during the course of interventions on real patients (i.e. in vivo 

dosimetry) is the most direct method to assess clinical practice. Phantom measurements do not account for dose 

variations due to differences in patient composition and size/weight. 

Several types of radiation detectors are available for this purpose. The three most widely used detectors in clinical 

radiation dosimetry are ionisation chambers, radiographic film and Thermoluminescence dosimeters (TLDs). Other 

detectors include radiochromic film, semiconductor diodes, diamond detectors, MOSFETs, scintillation detectors and 

gels.  

The detector types most commonly employed for in vivo dosimetry are: 

a) Thermoluminescence dosimeters (TLDs) 

b)  Semiconductor detectors 

c) 2D techniques (Radiographic films and Electronic Portal Imaging Devices (EPIDs)) 

d) Ionization chambers and DAP meters  

e) Diamond detectors 

f) Chemical dosimeters 

g) Scintillation detectors (Optical fiber dosimetry) 

Thermoluminescence dosimeters, semiconductor diodes and films are the tools most commonly used in in vivo 

dosimetry in radiotherapy to date. Some other detector types have also been tested for in vivo dosimetry purposes, but 

are not yet in routine clinical use. Other detectors, such as plastic scintillators, alanine and diamond detectors have also 

been studied for in vivo dosimetry purposes. Diamond detectors and plastic scintillators have the advantages of good 

stability, a high spatial resolution, nearly water equivalence, and linear response versus dose rate. They are much less 

energy and dose rate dependent than diodes, show less radiation damage and are not affected by temperature variations. 

Alanine detectors offer the possibility of measuring the integrated dose during the overall treatment series. However, 

these detectors require expensive and complicated reading equipment and have therefore mainly been used under 

laboratory conditions and not on a routine base in clinic. Metal oxide semiconductor field effect transistors (MOSFET) 

are also suitable for in vivo dosimetry purposes, because of minimal high-voltage and very small size. 
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In radiology, DAP meters and TLDs are more preferable than others detectors. Table 1.1, presents a brief overview of 

their characteristics, and their advantages and disadvantages. Properties and uses of the different detectors are also 

compared in Table 1.1 
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Table 1.1: The advantages and disadvantages of the most common radiation dosimeters, other than 

Thermoluminescence Dosimeters, used in medicine for phantom or in-vivo dosimetry [25-31].  
Detector  Radiology 

application 

Radiotherapy 
application 

Advantages Disadvantages 

Ionisation 
Chamber 

Calibration of 
output 

Absolute dosimetry, 
Beam data acquisition 
& QA 

High precision, gold 
standard 

Cables, high voltages 

Dose Area Product 
Meter 
(DAP) 

Monitoring of DAP 
for patients 

- Online measurements Doesn’t directly 
measure Entrance 
surface dose 

Semiconductor 
Diodes 

In vivo dosimetry  Water tank, In vivo 
dosimetry 

Small size, online 
measurements, arrays 

Cables , energy, 
temperature, dose 
rate, and directional 
dependence 

MOSEFET In vivo dosimetry Phantom 
measurements, In vivo 
dosimetry 

Small size i.e high 
special resolution, 
online measurements 
resolution, online 
measurements 
directional 
dependence 

Cables, destroyed by 
static, reproducibility, 
temperature and 
directional 
dependence 

Gels & NMR 
Dosimetry 

- Phantom 
measurements, ,3D 
dosimetry, Canter 
intercomparisons 

3-D dose 
distribution, Tissue 
equivalent detector & 
phantom shaped into 
any form 

Complicated readout  
using NMR( Nuclear 
magnetic resonance), 
Not reusable, 
detection limit of 
0.05 Gy ‘fading’ 

Radiographic Film Image quality 
assessments 

Phantom 
measurements, 
Qualitative dosimetry, 
dose distributions, 
dosimetry of dynamic 
treatments 

High spatial 
resolution 

Not reusable, require 
development, 
variability, energy 
and dose rate 
dependence 

Radiochromic 
Film 

- Phantom 
measurements, Dose 
distribution (incl. high 
dose rate 
brachytherapy sources)

High spatial 
resolution, self 
developing, tissue 
equivalence 

High dose(> 10Gy) 
dosimeter, stability, 
temperature 
dependence, not 
reusable 
 

Diamond Detector - Dose distributions, 
dosimetry of small 
fields 

High spatial 
resolution, online 
measurements, tissue 
equivalence 

Cables, dose rate 
dependence, 
expensive 

Scintillator Entrance surface 
dose for 
interventional 
radiology 

Potential for 
brachytherapy 

High spatial 
resolution, online 
measurements, good 
stability, water 
equivalence, high 
efficiency 

Cables, small 
temperature 
dependence, energy 
response at low 
energies expensive 
and complicated 
readings 

 
 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 00:59:49 EEST - 3.129.92.231



Chapter 1. Introduction 

 12

2. Thesis aims and outlines 

This PhD thesis is intended to measure radiation dose for both patients and staff during diagnostic and 

radiation therapy using TLDs. The thesis describes methods of radiation dose optimization during 

diagnostic and interventional radiology by measuring the entrance and pripheral doses to thyroid and skin 

for patients during breast, head and neck and prostate treatments. The use of build up caps constructed 

from materials with different atomic number enable us to measure high radiation energies with acceptable 

accuracy. The radiation risk for both patients and staff was also evaluated. The main objectives of the 

thesis are summarized as:  

 

(i) Evaluation of the radiation dose to patients and staff using TLDs during 

Hysterosalpingography (HSG), Micturating cystourethrography (MCU) and Endoscopic 

retrograde chollangiopancreatography (ERCP) procedures according to the protocol used 

by the Radiology Department of the University Hospital of Larissa (UHL), Greece. 

(ii) Estimation of the thyroid surface dose (TSD) and dose to radiosensitive organs located in an 

outside the irradiation field; 

(iii) Estimation of the risk due to the radiation dose. 

(iv) Comparison of the doses based on available data obtained by other researchers and 

reference levels recommended by international organizations. 

(v) Evaluation of the effects of different Buildup cap materials (Copper, Aluminum, stainless 

steel and Plexiglas) on the onset of supralinearity of the entire dosimeter and analysis of any 

perturbations arising through the use of various materials for 6 MV and 15 MV beams. The 

effect of different geometrical settings (source surface distance (SSD) and field size) was 

also studied so as to obtain a base line data set with continuing increase in the use of build 

up caps. 

(vi) Evaluation of the dose at entrance surfaces of the patient using LiF TLD accommodated in 

build up caps is performed to find the differences between the predicted and measured dose 

in different situation and geometry.  From the results the correction factors could be derived 

which are then applied to estimate the actual dose at the point of interest. 

 

The thesis was organized accordingly in the following chapters:  

Chapter 1.  Introduction, brief summary of the application of radiation dose in medicine, in vivo 

dosimetry and related radiation risks. 

Chapter 2.  Background, describes the radiation interactions, measurements and effects of direct relevance 

to this thesis with an explanation of the biological reasoning behind dosimetry applications. 

Chapter 3.  Describes the physical principles of TLDs and their manufacture, properties and limitations. 

Chapter 4.  Presents materials and calibration of TLDs in relation to beam parameters: the reproducibility, 

linearity, energy dependence, etc. It also provides an outline of equipment and methods used in this thesis. 
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Chapter 5.  Deals with the results and discussion of the usage of metallic build up caps, with particular 

focus on its application to entrance dose measurements in high energy beams. This chapter also contains 

thyroid absorbed dose measurements and skin dose during head and neck, breast, abdomen and pelvis  

treatments. 

Chapter 6.  The results and discussion of applying TLDs to dosimetry in diagnostic and interventional 

radiology. Measurement of radiation doses delivered to patients and staff during medical imaging 

procedures MCU, HSG and ERCP, is now possible using fluoroscopic captured image technique, 

allowing further optimization of radiation dose.  
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2. BACKGROUND 

 

2.1 Radiation classification: 

Radiation can be defined as the propagation of energy through matter or space. The released energy can 

be in the form of energetic particles or electromagnetic waves. Radiation is often separated into two 

categories, ionizing radiation (IR) and non-ionizing (NIR), to denote the energy and danger of the 

radiation. The practical threshold for radiation risk is 10 eV since the energy of a hydrogen atom is 13.6 

eV [32]. IR is divided into two major categories according to the interactions: charge particles and 

uncharged (Figure 2.1). 

 
Figure 2.1: Electromagnetic spectrum and its classification according to the frequency 

2.2. Radiation Measurement  

Radiation dosimetry is a technique used for evaluating the intensity and characteristics of ionizing 

radiation by measuring the dose at a certain point as a result of this incident radiation. Dosimetry of 

medical ionizing radiation is important.  It enables the amount of radiation delivered to patients to be 

measured.  In addition to this, the amount of radiation involved in occupational exposures can be 

measured. In diagnostic procedures such as x-ray examinations, nuclear medicine, CT scans, Positron 

Emission Tomography (PET) etc, this measurement is both for the optimisation of image quality, and for 

radiation protection purposes. However, the need for accurate dosimetry is greatest in radiation therapy 

for cancer. In radiotherapy, a high dose of radiation is delivered to a tumour and the effectiveness of the 

treatment depends on delivering the dose with an accuracy of 5% or better [5,18]. It is believed that a 

decrease of 10%–15% in dose delivery will result in a decrease in the chance of cure by a factor of 2 or 3 

while an increase in dose will similarly increase the chance of irreversible damage to healthy tissue [7].  
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Figure.2.2: Principle of radiation measurements 

2.2.1 Interaction of radiation with matter 

Radiation can be classified into two general groups, ionizing and non-ionizing; therefore, it may be 

expected that interactions with matter fall into two groups.   Charged particles directly ionize the media 

through which they pass, while uncharged particles and photons can cause ionization only indirectly or by 

secondary radiation (Figure 2.2). 

2.2.1.1 Direct ionizing radiation  

Directly Ionizing Radiation is composed of charged particles that produce ion pairs at small intervals along 

their path as a result of energy imparted to orbital electrons. Impulses are exerted at a distance through 

electrical forces between the charged particles and the orbital electrons. An electron is held in the atom by 

electrical forces, and energy is lost by the beta/alpha particle in overcoming these forces. The amount of 

energy lost by the charged particle depends upon its distance of approach to the electron and on its kinetic 

energy. The ejected electron may receive a significant amount of energy, enough to allow it to travel a long 

distance and to leave a trail of ion pairs. Because beta particles have the same mass as orbital electrons, they 

are easily deflected during collisions and thus beta particles follow a torturous path as they pass through 

matter. Alpha particles interact in much the same manner, however because of their high electrical charge 

and relatively low velocity; they have a very high specific ionization [25, 32]. 
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2.2.1.2 Indirect Ionizing Radiation  

Indirectly ionizing particles are uncharged and they collide with electrons, atoms, or nuclei, resulting in the 

liberation of energetic charged particles (e.g., -e). The charged particles that are thus liberated are directly 

ionizing, and it is through these that ionization in the medium occurs. The interaction occurs in a variety of 

alternative mechanisms, the three most important are photoelectric effect, Compton scattering and pair 

production. In the photoelectric effect, all of an x-/γ-ray photon’s energy is transferred to an atomic electron, 

which is ejected, from its parent atom. The photon in this case is completely absorbed. Compton scattering 

is an interaction between a photon and an essentially free electron whose binding energy is much less than 

the photon energy. Only part of the energy of the photon is transferred to an atomic electron and the photon 

is thereafter scattered with a reduced energy. Pair production occurs in the intense electric field close to a 

charged particle, usually a nucleus. An energetic (E > 1.02 MeV) γ-ray photon is converted into a positron-

electron pair and the two particles share the available energy in excess of the 1.02 MeV required to produce 

the pair. The probability of each of these interactions depends upon the photon energy and the atomic 

number [25, 32] (Figure 2.3). 

 

 

Figure 2.3 Interaction of radiation with matter 

   2.3 Biological effects of ionizing radiation 

This section reviews the biological effects of radiation exposure and highlights the important role of 

dosimetry in medicine. 
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 2.3.1 Mechanisms of radiation damages 

Ionizing radiation affects humans by ionizing atoms and molecules encountered along its path through the 

body tissue. The x-ray is characterized by deep penetration into tissue with a relatively low spatial rate of 

energy loss [33]. Radiation provides the energy necessary to add or remove an electron to or from an 

atom or molecule. The affected atom or molecule might be part of a strand of DNA or it might be a free 

particle which when ionized can react with cellular material. While the body has repair mechanisms for 

many types of DNA damage, the mechanism may not be sufficient if many radiation lesions occur to the 

DNA close together in time and space [33]. 

The common types of DNA damage following exposure to ionizing radiation are single strand breaks and  

'double strand breaks (Figure 2.4). Single strand breaks are produced by both low and high Linear Energy 

Transfer (LET) radiations and are repaired quickly and effectively. Double strand breaks are more lethal 

and repair is often incomplete and slow. High LET radiation is more effective at producing double strand 

breaks than the low LET radiation [33]. The potential mechanisms by which radiation produces 

carcinogenic changes in the cells include (i) mutations in a single gene or chromosome, (ii) changes in 

gene expression without mutations, and (iii) induction of oncogenic viruses, which in turn affect gene 

expression, leading to neoplasia [33]. Ionizing radiation is more effective at producing DNA-strand 

breaks than producing point mutations. Even though the single-strand breaks are rapidly repaired, the 

double-strand breaks can result in chromosomal rearrangements. 

If not lethal to the cells, such aberrations can lead to cancer due to changes in gene expression or 

inactivation of tumor suppressor 

genes [33]. Carcinogenic effects of 

radiation on bone marrow, breast, 

thyroid, and lung have been observed 

in studies of atom bomb survivors 

and other irradiated human 

populations. These tissues are highly 

radiosensitive and therefore more 

prone to the effects of ionizing radiation. 

The process of carcinogenesis is believed to be a 3-stage mechanism, involving initiation, promotion and 

progression [34]. The third stage is necessary before obviously malignant tumor cells are produced. It is 

assumed that a similar 3-stage mechanism exists for radiation carcinogenesis [35]. A synergistic 

interaction between the initiating effects of radiation and specific promoting agents has been reported in 

many different cell systems [36]. Radiation itself can enhance tumor promotion and tumor progression by 

the generation of free radicals, which in turn cause DNA damage [36].  

 There is a time course in cancer induction with a latency period between the exposure to radiation and 

the onset of observable cancers. 

 

Figure.2.4:  Types of DNA damages 
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2.3.1.1 Cancer/heritable effects (stochastic) 

Cancer effects are those for which the probability of an effect occurring is a function of dose without 

threshold and its severity is dose-independent [37]. Stochastic effects can be categorized as somatic 

(carcinogenic) effects and hereditary (genetic) effects, which may occur from injury to one or a small 

number of cells. Since a single cell may be enough to initiate the effect, there is a finite probability that the 

effect will occur however small the dose. Thus, stochastic effects are normally assumed to have no dose 

threshold below, which the effect cannot possibly occur. 

Since stochastic effects may occur at any level of radiation exposure, the exposure should be kept as low 

as reasonably achievable [37]. Unnecessary exposures should be avoided, and necessary exposures 

should be optimized to provide the maximum benefit to the patient. Total doses should be limited to the 

minimum amount consistent with the medical benefit to the individual patient [38]. In the case of 

optimizing medical procedures for the best dose-benefit outcome, the main concern should be the 

amount and type of information derived from the examination and its diagnostic value. Neonates and 

children have a risk probability, for developing a radiation-induced cancer, hereditary effects or other 

serious disorders, four times more than that of all adults 50 years of age, due to greater cell proliferation 

rate, the radiation field which covers a relatively large area of the infant, their long life span expectancy, 

and also of the difficulty to shield radiosensitive organs [36, 37]. 

A modified somatic cell may still retain its reproductive capacity and may give rise to a clone of modified 

cells, which may eventually result in cancer. 

A modified germ cell in the gonads, with the 

function of transmitting genetic information 

to the descendants of an exposed individual, 

may transmit incorrect hereditary 

information and may cause severe harm to 

some of those descendants (Figure 2.5). 

 

These somatic and hereditary effects, which may start from a single modified cell, are called stochastic 

effects [37]. Repair and defense mechanisms make cancer induction a very improbable outcome. 

Nevertheless, the probability of a cancer resulting from radiation exposure increases with increments of 

dose, and is assumed to have no low or high threshold (linear non-threshold model). If the damage occurs 

to a germ cell any resulting effects, of different types and severity, are expressed in the offspring of the 

exposed person [38, 39]. 

The probability of a fatal cancer was determined from studies of Japanese survivors of the atomic bombs. 

The estimates of severe hereditary effects are also based on genetic effects in animals. Stochastic effects 

are quantified using the probability of attributable fatal cancer, the weighted probability of attributed non-

Fig.2.5: Cell and radiation damage 
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fatal cancer, the weighted probability of severe hereditary effects and the length of life lost if the harm 

occurs [37]. 

Whole body irradiation or its equivalent as expressed by the effective dose equivalent or effective dose 

can be converted to a stochastic risk estimate using a total risk factor as determined by the ICRP [40] 

Table 2.1. 

 

    Table 2.1 Detriment adjusted nominal risk coefficients for cancer and hereditary effects (10-2 Sv-1) 
 

Exposed Cancer Heritable effects Total 
 

Population ICRP2007 ICRP60 ICRP 2007 ICRP60 ICRP2007 ICRP 60 
 

Whole 5.5 6.0 0.2 1.3 5.7 7.3 
 

Adult 4.1 4.8 0.1 0.8 4.2 5.6 
 

 
From the ICRP attempt to estimate absolute stochastic risks from whole-body irradiation, a risk 

coefficient of 5.5% cancers and genetic abnormalities per mSv of radiation dose was derived.  

Caution is given to the current uncertainties associated with the extrapolation of radiation risks from high 

doses to those normally encountered in diagnostic radiology [5, 10]. 

Although knowledge of the patient effective dose associated with radiologic procedure is helpful, it is 

important to note that any resultant detriment will depend on the age of the exposed individual.  As 

aforementioned the stochastic radiation risks of carcinogenesis and genetic effects are generally greater 

for children than for adults to at least a factor of two to three [37, 38]. These factors would need to be 

taken into account when converting any patient effective doses into a value of risk or detriment. As a 

result, direct comparisons of patient doses with those of adults need to be treated with circumspection. 

2.3.1.2 Tissue reactions (Deterministic Effects) 

Tissue reactions as a result of ionizing radiation include the types of injuries resulting from whole-body or 

local exposures to radiation that cause sufficient cell damage or cell killing to substantial numbers or 

proportions of cells, impairing the function of the irradiated tissues or organs [38]. Since a given number 

or proportion of cells must be affected, there is a threshold dose below which the number or proportion of 

cells affected is insufficient for the defined deterministic injury to occur [39]. The threshold dose depends 

on the level of injury or the sensitivity of the tissues or organs being irradiated. Any increase in dose 

above the threshold increases the level of injury, since fewer cells will survive at increased radiation dose. 

The effect will also increase with increased dose rate. Increased dose rate will accelerate cell damage 

without allowing enough time for more effective cell repair or repopulation [37]. 
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The doses that result in the clinical appearance of deterministic effects are generally of the order of a few 

Gray to tens of Gray. The time at which the effect becomes noticeable may range from a few hours to 

some years after exposure, depending on the type of effect and the characteristics of the irradiated tissue. 

The levels of radiation exposure and the irradiated tissues involved in diagnostic radiology are below the 

tissue reaction threshold but they may be reached in interventional radiology (Figure 2.6).  

Deterministic effects will often have a more severe impact on children, since tissues are actively growing 

in comparison to adults [38]. Additional deterministic effects that have been observed from irradiation 

during childhood include effects on growth and development, hormonal deficiencies, organ dysfunctions 

and effects on intellectual and cognitive functions. From current data available [38], there is no evidence 

that the threshold of deterministic effects to the skin and eyes are any different for children or adults.  

Radiological protection aims at avoiding deterministic effects (e.g. skin erythema, cataract formation and 

impaired fertility) by setting dose limits below their thresholds. Table 2.2 lists the estimated thresholds for 

deterministic effects in the adult gonads, lens and skin as stated in ICRP [18]. 

 

 
Figure.2.6: Appearance of radiation-induced skin injury approximately 18 to 21 months following 
multiple coronary angiography and angioplasty procedures – evidence of progressive tissue necrosis  
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Table 2.2: Projected threshold estimates of the acute absorbed doses for 1% incidences of morbidity and 

mortality involving adult human organs and tissues after whole body gamma ray exposures 

 

Effect  Organ/tissue  Time to develop  Absorbed  

  Effect  Dose (Gy)  

Morbidity:    1% Incidence  

Temporary sterility  Testes  3-9 weeks  ~0.1  

Permanent sterility  Testes  3 weeks  ~6  

Permanent sterility  Ovaries  < 1week  ~3  

Depression of blood- Bone marrow  3-7 days  ~0.5  

Forming process     

Main phase of skin  Skin (large areas)  1-4 weeks  <3-6  

Reddening     

Skin burns  Skin (large areas)  2-3 weeks  5-10  

Temporary hair loss  Skin  2-3 weeks  ~4  

Cataract (visual  Eye  Several years  ~1.5  

Impairment)     

    

Mortality:     

Bone marrow 

syndrome:  

   

- Without medical care  Bone marrow  30-60 days  ~1  

- With good medical 

care  

Bone marrow  30-60 days  2-3  

    

Gastro-intestinal     

Syndrome:     

- Without medical care  Small intestine  6-9 days  ~6  

- With conventional  Small intestine  6-9 days  >6  

Medical care     

Pneumonitis  Lung  1-7 months  6 
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 2.3.2 Radiation risk Assessment 

The most effective method of assessing the risks from exposure to radiation is by calculating the absorbed 

doses in individual tissues and subsequently determining the effective dose. The absorbed dose to a 

specific tissue has traditionally been difficult and time consuming to measure.  

The organs to be considered in radiologic risk assessment were standardized by the ICRP [6] with the 

introduction of the effective dose equivalent (EDE). Calculations of the EDE require knowledge of the 

absorbed dose (total energy deposited per unit mass) to the entire tissues. These absorbed doses, or more 

specifically, dose equivalents, are then multiplied by tissue weighting factors (wt), which represent the 

fraction of total radiation risk (cancer mortality and severe genetic damage) attributed to irradiation of that 

tissue. The EDE is calculated as a summation of these weighted doses and thus represents a single 

radiation dose proportional to the total radiation risk of the exposure, regardless of whether the irradiation 

is uniformly or non-uniformally delivered. 

This dosimetry concept was further expanded in 1990 with the introduction of the effective dose (E) in 

which tissue weighting factors were reassessed based on a more recent analysis of radiobiological effects 

[18]. While originally defined for radiation protection purposes, these quantities of EDE and E have been 

widely reported in the medical literature for both nuclear medicine procedures and for diagnostic 

radiology examinations. Their intended use in medicine is to provide physicians with a unified quantity 

for risk communication and a quantitive means for procedure optimization. As defined in ICRP 

Publications 26 and 60 [6,18], the tissue weighting factors are specific only to populations of adults and 

should not be applied in the estimation of radiation risk to individual patients [41](Poston 1993). For use 

in risk communication and/or procedure optimization, tissue weighting factors specific for children have 

been proposed by Almen and Mattsson [42]. 

The determination of organ doses in diagnostic radiology is typically a two-step process. First, an 

indicator dosimetry quantity is measured in the clinical setting. Examples include the ESD or the DAP. 

Second, these indicator quantities must be multiplied by an organ dose coefficient to obtain individual 

organ doses [43, 44]. These conversion factors are obtained either through experimental measurement 

within physical phantoms or through computer simulations within mathematical models of the patient.  

One may also estimate radiation risk for diagnostic procedures by measuring the total energy imparted to 

the patient for a given diagnostic exam (the integral dose). Extensive studies of energy imparted in 

diagnostic radiology have been made [18]. 
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2.4 In vivo dosimetry in radiation medicine 

In vivo dosimetry is the final stage in a long series of quality assurance (QA) procedures in radiation 

medicine. As the term in vivo indicates, these measurements are generally performed during patient 

treatment or diagnostic examination, and the measuring instrument is either positioned inside the patient, 

on the patient's skin or as close as possible. The other quality assurance procedures are performed in 

phantoms (Fig.2.7), (i.e., in the absence of the patient) in order to check the behavior of the medical 

apparatus (linear accelerator, or diagnostic imaging unit) or the validity of a computer-designed treatment 

plan. Today, the use of in vivo dosimetry is increasing following the recommendation by many national 

and international organizations [1, 10, 18, 20]. New diagnostic and treatment techniques introduce new 

challenges and requirements, such as the need to provide real-time dosimetry devices with high spatial 

resolution, sensitivity and accuracy. In view of the topic of this thesis work, the discussion will be limited 

to two sub fields: external radiation therapy and diagnostic and interventional radiology.  

ICRU [45] recommends that “all the procedures involved in the planning and excitation of radiotherapy 

can contribute to a significant uncertainty in the absorbed dose delivered to patient, and an ultimate check 

of the actual treatment given can only be made by using in vivo dosimetry’’ 

 

 

 
 

Figure 2.7. Anthropomorphic (Alderson-Rando) phantoms, adult male, adult female, and 6-year-old 
child. 
 

 

2.4.1 In vivo dosimetry in high energy energies 

The role of in vivo dosimetry in radiation therapy is: 

1. To verify the calculations of the Treatment Planning System (TPS) at interfaces, i.e. close to the skin. 

2. To evaluate the target dose in order to verify the treatment delivery process. 
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The former goal can be reached by using entrance and exit detectors, positioned on the patient's skin 

during treatment. In general, entrance dose measurements serve to check the output and performance of 

the treatment device, the accuracy of patient setup, and the calculation of the number of monitor units. 

Exit dose measurements serve, in addition, to check the relative dose calculation algorithm and to 

determine the influence of shape, size, and density variations of the patient on the dose calculation 

procedure [5,46] (Figure 2.7). 

 According to the European Society for Therapeutic Radiation Oncology (ESTRO), the latter condition 

can only be fulfilled when detectors are inserted in natural body cavities, because of all the potential errors 

associated with entrance and exit measurements [26]. In vivo checks can detect systematic errors as well 

as estimate the accuracy of the treatment delivery. 

The frequency of in vivo measurements varies greatly among institutions. However, the common practice 

is to perform in vivo entrance measurements for each patient, or only for specific groups of patients. 

Nonetheless, in vivo dosimetry is performed in relatively few institutions because of time or financial 

constraints.  

 
 

Figure. 2.8: Schematic representation of the characteristics of a single photon beam passes through a 

medium in     treatment situation showing different doses involved for in vivo and in vitro dose 

measurements in radiotherapy. Where Dentrance surface is the dose at ~ 0.05 cm below the skin surface, 

Dtarget is the target dose at depth of dose specification, Dexit surface is the dose at exit surface ~ 0.05 cm 

interior to the skin surface, ‘s’ is the electron backscatter range and ‘r’ is the photon backscatter range. 

 

2.4.2   In vivo dosimetry in low energies 

In vivo dosimetry of patient ESD during radiological procedures has been performed using ionisation 

chambers, TLDs  and DAP or using mathematical model calculations based on the X-ray tube output. 
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[47]. The average organ dose cannot be measured directly, but can be derived from the entrance surface 

dose using Monte Carlo simulation Data. 

The vast majority of these studies have used DAP more than other methods, because the patient position 

is less important so the measurements does not interfere with the examination of the patient and there is 

no need to disturb the patient with the measurements.  The disadvantage of DAP in pediatric treatments is 

that the dose can be low while the absorbed dose is high when a small area is irradiated.  The opposite can 

happen when a large area is irradiated [43,44]. 

TLDs are being widely used to estimate in vivo dose because of their small size, inexpensive, rugged, 

good spatial resolution and flexibility to position in various situation.  Moreover they are capable of 

detecting systemic errors during execution of the treatment.  Furthermore, TL dosimetry can be placed on 

different parts of the body and in cavities, which offers unique opportunity to measure the dose in 

complex situations. For these aforementioned reasons, TLDs are used in this study. 

 

2.5   Radiation dose measurements and unites 

Patient dose measurement in radiological procedures is an important and indispensable way of assessing 

the quality of procedures and the detriments of exposure to ionizing radiation. It is of particular application 

for interdepartmental comparison of the quality of procedures, of different protocols and of new 

techniques. 

2.5.1  ESD 

ESD, which is defined as: the absorbed dose to the entrance skin of the patient at the central point of 

irradiated area including back scatter radiation [43,44], is measured by different methods in literature.  The 

direct method: with small detectors attached in the skin of the patient at the beam entrance, including, 

TLD, films, and more recently diodes or Metal-Oxide Semiconductor Field- Effect (MOSFET) detectors 

[46].  The indirect method: with a DAP meter which is attached to a light beam diaphragm. A DAP meter 

uses a transmission type air ionisation chamber, which measures the radiation dose, as a function of the 

field size, or by using mathematical model calculations based on the X-ray tube output [46,48], (Figure 

2.8) 

 The ESD is estimated in order to assess the possibility of skin dose exceeding the threshold for 

deterministic effects [49]. The total values of imparted radiation dose from all fluoroscopic and 

radiographic exposures involved in the specific examination are measured. 

ESD surface dose is the simplest and most frequent method used to measure patient dose from radiologic 

examinations because direct measurements on patients can be performed easily at the skin surface. ESD 

can be obtained from detectors attached to the skin surface during the examination. (i.e., TLDs, or ion 

chambers). ESD may also be converted to organ doses with Monte Carlo software, although such an 

approach may result in errors of more than 20% [43, 49]. 
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Although simple to obtain, the surface dose is a poor indicator of the true significance of radiation 

exposure to the patient because it overlooks a number of important factors. For example, in a fluoroscopic 

exam the surface dose does not account for changes in the depth of the radiosensitive organs, changes in 

the exposed field size, changes in the position of the patient, changes in the beam qualities, overlaying 

exposure fields and partial exposure of organs [49]. More importantly, the surface dose does not account 

for the area of exposure or the penetrating ability of the x-ray beam as the energy of x-rays varies. 

The above factors make surface dose a quantity of limited dosimetric value when estimating stochastic 

risks. However, the surface dose is the quantity of choice when trying to predict the occurrence of 

deterministic radiation effects of the skin during high dose interventional radiologic procedures. ESD 

depends on the followings:  exposure parameters (Tube voltage, Total filtration, mAs and FFD), and 

patient’s conditions (patient positioning, field size, and film screen system). 

 

2.5.2. Organ dose 

Organ dose, which is used to determine the risk to the patient undergoing radiological examination, can 

be measured in vivo with TLDs, DAP and air kerma free in air by applying a dose conversion factor 

[18,49] or in vitro by using a tissue equivalent phantom, which represents a patient 

 

2.5.3 Equivalent and Effective Dose 

The fundamental quantity in radiation dosimetry is the absorbed dose, D, or energy absorbed per unit 

mass, in units of Gray, Gy. 

Equivalent dose extends the meaning of absorbed dose by taking into consideration the type and energy 

of radiation involved (Table 2.3). The absorbed dose is weighted by a radiation-weighting factor, which is 

selected to be representative of the relative biological effectiveness of that radiation in inducing stochastic 

effects at low doses. Radiation-weighting factors for different radiation types are given in Table 2.3 

(ICRP, 1991) [18]. 

Table 2.3: Radiation weighting factors [6] 

 

Type and energy range Radiation weighting factor, WR 
 

Photons (all energies) 1 
Neutrons (Factors dependent on energy) 5-20 

Protons (>2 MeV) 5 
Heavy nuclei 20 

 

Effective dose takes into account the distribution of absorbed dose within the body via radiation and tissue 

weighting factors. The SI unit of effective dose is the Sievert (Sv).  Effective dose provides the basis for 
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estimating the probability of stochastic effects of absorbed doses that are well below the thresholds for 

deterministic effects [18]. When the WR is 1, such as with x-rays, the relationship between the probability 

of stochastic effects and absorbed dose depends on the organ or tissue irradiated. Tissue-weighting factors 

shown in Table 2.4 represent the relative contribution of that organ or tissue to the total detriment due to 

these effects resulting from a uniform irradiation of the whole body. 

The tissue weighting factors, wT, are gender averaged and are for dose assessment of workers as well as 

members of the public, including children.  

 

Table 2. 4 Tissue weighting factors [6] 

Tissue  

 

WT ∑ wT 

Bone-marrow, Colon, Lung, Stomach, Breast, Remainder Tissues* 

(Nominal wT applied to the average dose to 14 tissues) 

0.12  

 

0.72 

Gonads 

 

0.08 

 

0.08 

Bladder, Oesophagus, Liver, Thyroid 

 

0.04  

 

0.16 

Bone surface, Brain, Salivary glands, Skin 

 

0.01 0.04 

          *Remainder Tissues (14 in total) 

Adrenals, Extrathoracic (ET) region, Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle,Oral 

mucosa, Pancreas, Prostate, Small intestine, Spleen, Thymus, Uterus/cervix. 

 

Evaluating the risk associated with a diagnostic radiological procedure has been acknowledged by the 

2005 draft recommendations from the ICRP [50]. The ICRP 2005 states "That exposure is not limited by 

any regulatory process, but is controlled by the physician, who therefore should be aware of the risks and 

benefits of the procedures involved".  The direct outcome of the ICRP recommendations is that a 

physician must then balance the risk versus benefit equation by maximizing the diagnostic information 

while maintaining the exposure to ionizing radiation as low as diagnostically achievable (ALARA). The 

physician and physicist that ignore ALARA have the potential of increasing patient dose unnecessarily. 
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Figure 2.9. Simple exposure arrangement for radiography showing some of the dosimetric and geometric 
quantities recommended in the present Report for determination of patient dose. 

 

2.6      DOSIMETRY TOOLS 

This section briefly reviews the dosimetry tools (dosimeters other than TLD) in diagnostic radiology. The 

ideal diagnostic radiology dosimeter is one that provides a immediate response to the radiation field (real-

time), is accurate, tissue-equivalent, inexpensive, easy to operate, exhibits no angular dependence and 

does not interfere with the diagnostic information in the image [48].. 

2.6.1 Ionisation Chambers  

Ionisation chambers are the gold standard in medical dosimetry. They provide accurate absolute dose 

determination, and are therefore used to calculate absorbed dose to air, in free air, in diagnostic radiology. 

The latter measurements are done on the axis of the x-ray beam without the patient or phantom present 

then corrected to entrance surface dose using appropriate backscatter factors and the inverse square law 

[47,51]. Ionisation chambers are not used for most direct patient measurements because they are bulky, 

require connecting cables and high voltages, are difficult to attach close enough to the patient's skin to 

completely measure the backscattered radiation, severely restrict patient mobility, and cast interfering 

shadows on radiographs [51]. 

Ionisation chambers consist of two electrodes with a potential difference maintained between them. Ions 

are produced in the sensitive volume of the chamber by the radiation beam and are collected by the 

electrode. The resulting ionisation current in the chamber's external circuit is proportional in magnitude to 

the measured beam intensity [48, 51]. 
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2.6.2  DAP meter 

DAP meter overcomes the difficulties of conventional ionisation chambers for on-line patient dose 

measurements. DAP meters are commonly used to monitor doses delivered to patients in diagnostic 

radiology and interventional radiology. Even though it is a large area, parallel-plate ionisation chamber, it 

is not considered to be as accurate as those used in radiotherapy. DAP meters can be mounted on the 

diaphragm housing of an x-ray unit to intercept the entire cross-section of the x-ray beam and integrate 

the absorbed dose over the whole beam area, for any number of exposures. These ionisation chambers 

are usually transparent so that when fitted to an over-couch x-ray tube the light beam diaphragm device 

can still be used. DAP quantity  (Gy.cm2) is defined as the absorbed dose to air averaged over the area of 

the x-ray beam in a plane perpendicular to the beam axis, multiplied by the area of the beam in the same 

plane. Radiation backscattered from the patient is excluded. DAP can be measured at any point between 

the diaphragm housing of the x-ray tube and the patient since it is invariant with distance from the tube 

focus, as long as the point of measurement is not close enough to the patient to receive significant 

backscattered radiation [51] 

DAP meters can provide a single measurement of the total amount of radiation used in even the most 

complex examinations involving radiography and fluoroscopy [51] Therefore, for calculation of dose, 

DAP  meters do not require the precise recording of all exposure factors for each examination, or the long 

processing time of TLDs [52]. 

The vast majority of the studies in the literature have used DAP for both the individual radiographic views 

and fluoroscopic procedures [49, 52, 53], because the patient position is less important, so the 

measurement does not interfere with the examination of the patient and there is no need to disturb the 

patient with the measurements [53]. On the other hand, the disadvantage of DAP in children is that the 

dose can be low while the absorbed dose is high when small area is irradiated, and the opposite happens 

when large area is irradiated. The scattered radiation from the collimator affects the reading, without 

affecting the radiation dose [53]. 

 

2.6.3 Radiographic Film 

For radiographic film, the degree of film blackening is related to the dose deposited and can be expressed 

in terms of optical density. The dose response curve is only linear within a certain range of optical 

densities and a calibration curve must be derived for quantitative dosimetry. Optical density can be 

quantitatively evaluated using an optical densitometer. 

Radiographic film is available with different sensitivities. In diagnostic radiology, film speed is always 

quoted when referring to patient doses. Faster film requires less dose to develop the same optical density 

as a slower film and thus avoids unnecessary exposure of the patient in diagnostic radiology [48]. 
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2.6.4   MOSFETs 

MOSFETs, or Metal Oxide Semiconductor Field Effect Transistors, are relatively new detectors in 

medicine.     

 Advantages include: 

• High spatial resolution (active area of 0.2x0.2mm2 [31]. 

• Active depth of l μm (for skin dose assessment). 

• Immediate dose read out. 

 

Disadvantages include: 

• Visible on diagnostic radiographs, 

• Limited capacity for accumulation of absorbed dose, 

• Poor reproducibility, 

• Temperature and directional dependence, and 

• Cables attached. 

The operation of a MOSFET dosimeter is based on the ionizing radiation causing a build-up of charge on 

the silicon oxide gate. The charge build-up will affect the threshold voltage at the gate required to allow 

current flow from source to drain. The voltage variation caused by the irradiation is most commonly 

evaluated by maintaining a constant current between source and drain and measuring the required gate 

bias, which is proportional to the absorbed radiation [54]. In clinical practice a voltage of typically 3 to 6V 

is applied during irradiation allowing the MOSFET to measure up to about 50Gy [54]. 

Fading makes MOSFETs unsuitable for the long screening times involved in interventional radiology 

procedures [31]. MOSFETs have been used for surface dose measurements [55], in-vivo dosimetry in 

radiotherapy [56] and diagnostic radiology [31]. However, to date there are few reports on the clinical 

application of MOSFETs. They would find application when steep dose gradients are present, i.e. in 

brachytherapy dosimetry. 

 

2.6.5 Diamond detectors 

The use of synthetic diamonds as in vivo radiation detectors has been reported as early as 1987 [57]. 

Diamonds have been considered suitable for clinical purposes because of their small size and good tissue 

equivalence. They are also resistant to radiation damage. However, their use for in vivo dosimetry can be 

impaired by their dose-rate dependence and the need for pre-irradiation [58]. Diamond detectors exhibit 

high sensitivity and high resolution (with a sensitive volume of 1 mm3), but their advantage over diodes is 

debated except in very small fields. 

Diamond detectors also have less angular dependence than diodes in electron beams Bucciolini et al [59] 

compared diamond detectors to diodes and ionization chambers, and concluded that in spite of their 
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positive characteristics, diamonds did not offer a significant advantage over diodes in photon beams in 

conventional radiation therapy. 

 

2.6.6 Optical fiber dosimetry 

Plastic scintillator systems also offer excellent tissue equivalence, but their present design makes it 

difficult to subtract the noise signal produced in the light-guide (Cerenkov radiation and fluorescence) 

from the signal originating from the actual plastic scintillator chip [60]. Several approaches have been 

reported to improve the signal-to- noise ratio. One approach consists in adding a blank optical fiber for 

sub-traction of the light-guide signal: this can compromise the size of the optical fiber and make the 

scintillator probe too bulky to be inserted in a patient. Another approach is the optimization of the 

coupling between the fiber and the scintillator, which, so far, has only had a limited success in reducing 

the influence of the noise signal from the light guide plastic scintillation dosimetry, may benefit from a 

renewed interest if this problem gets solved [60]. 

 

2.6.7 Optically stimulated luminescence 

 Optically stimulated luminescence is related to thermoluminescence, but uses light (e.g., from a laser) 

instead of heat as the stimulation source. Huston et al [61] described an OSL system for radiation therapy 

that uses two light guides (one for the laser light, the other for the signal) and copper-doped glass as the 

detector. This system demonstrated a very high sensitivity, dynamic range, and stability, no dose rate 

dependence, and little energy dependence. Though promising, this system has not been applied in internal 

in vivo dosimetry to date. Few results have been reported from this system, which seems to be designed 

for radioprotection dosimetry more than in vivo radiotherapy applications. 

  

2.7 Medical Linear Accelerators 

 
The Linear accelerator is the single most influential development in radiation oncology. The first medical 

linac (8 MV) was installed at Hammersmith Hospital in London 1952, with the first patient treated in 

August 1953 [62]. The development of mega-voltage radiation machines, that are capable to delivering 

adequate doses of radiation to tumors located in all areas of the body continues to improve treatments.  

 

2.7.1 Linear accelerator system 
An electron source arises from a hot filament or cathode in an evacuated tube. There is an accelerating 

voltage between the cathode and the target or anode. The accelerating voltages are fixed for a particular 

system and they normally range from about 4 MV to 35 MV. The system employs thick collimators to 

shape the beam. High-energy linacs (E > 7 MeV) have the potential to generate neutrons from interaction 

with heavy metals found in the target material, walls of the accelerator structure, wave-guide, filters, and 

collimators. While neutron activation of the air around the patient and of the patient is possible, it is very 
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little and only of minor concern. A maze is usually incorporated in the room design to prevent neutron 

scatter from reaching the control console. Because all medical linacs serve the same purpose, they tend to 

have similar components. Some of the major components in a linac are (Figure 2.9) the gantry, the stand, 

the control console, and the treatment couch. The two major structural components are the stand and the 

gantry. The stand is anchored firmly to the floor and the gantry rotates on bearings in the stand. The 

operational accelerator structure is housed in the gantry and rotates about a horizontal axis fixed by the 

stand. Other major components include: The klystron is the source of microwave power used to 

accelerate the electrons. This power is conveyed to the accelerator structure in the gantry by a wave-guide 

and there is a circulator inserted in the wave-guide, which isolates the klystron from any microwaves 

reflected back from the accelerator. The circulator diverts these reflected microwaves so they won't 

damage the klystron [25,46]. 

A cooling system is used to cool the various components that experience heat buildup and insures stable 

operating temperature sufficiently above room temperature to prevent condensation of moisture from the 

air. 

The accelerator structure is the component where electron acceleration takes place. It consists of a copper 

tube with its interior divided by copper disks or diaphragms of varying aperture and spacing (Figure 2.9) 

and is kept under a high vacuum. 

Electrons are injected into the accelerator structure with an initial energy of about 50 KeV by the electron 

gun (i.e., cathode) and are energized by the microwaves emitted by the klystron. 

The high-energy electrons emerge from the window of the accelerator structure in the form of a pencil-

thin beam about 3 mm in diameter. In low energy linacs (E < 6 MV) the electrons strike the tungsten 

target to produce x-rays. In high-energy linacs, the accelerator structure is so long that the electrons are 

sent through the field of a bending magnet in the treatment head which deflects the electrons in a loop 

(usually 90o or 270o) before they can strike the target and produce x-rays or be used for electron treatment. 

The treatment head also contains beam shaping and monitoring devices. 

X-rays are produced when the electrons hit a tungsten target. The target is water cooled and thick enough 

to absorb most of the electrons. The average photon energy of the beam is about one-third of the 

maximum electron energy. Directly opposite the collimator and extending from the bottom of the gantry 

may be a beam stopper. This is a large absorber, which reduces room-shielding requirements because it 

absorbs the radiation beam that emerges from the patient. 

Some linacs are also capable of producing electron beams for therapy. The electrons produced in an 

accelerator are usually monoenergetic, consequently their energy is designated in units of million electron 

volts (e.g., 10 MeV), whereas the x-ray beam is more heterogeneous and designated in units of megavolts 

(e.g., 18 MV) [25,46,63]. 
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Figure 2.10: Medical Linear accelerator 

 

2.7.2 Electron versus X-ray Beam Therapy Systems 

 
Not all tumors are deep. Some are either on the surface or just beneath the surface. Shallow tumors are 

often treated with electrons generated from the linac. Figure 2.11 compares the treatment head 

arrangement for an electron beam versus an x-ray beam. As the electrons exit the accelerator structure, the 

beam is pencil thin. For electron therapy, instead of striking a tungsten target, the beam of electrons is 

made to strike an electron scattering foil in order to spread the beam as well as get a uniform electron 

density throughout the treatment field. This foil is most often a thin lead foil which scatters the electron 

beam without producing a significant number of bremsstrahlung x-rays. 

Electrons are desirable for treating superficial tumors (< 5 cm deep). The types of tumors suitable for 

electron therapy are skin and lip cancers, chest wall irradiation in breast cancer, boost doses to lymph 

nodes, and head and neck cancers. Electron beam therapy is desirable because it produces a uniform dose 

in the target volume and minimizes dose to deeper tissues [25, 63]. 
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Figure 2.11:  Schematic illustration of the cut-away view of the collimator of a linear accelerator in (A) 

electron beam and (B) photon beam modes 

 

2.8 Diagnostic X-ray unit 

 
The x-rays produced by diagnostic x-ray systems (e.g., medical, dental, veterinary, etc.) usually possess 

higher energy, and thus are more penetrating than those produced by analytical machines. To generate 

these higher energies, special tubes are required. 

X-ray tubes (Figure 2.12) consist of a cathode and an anode. A low amperage cloud of electrons is 

generated at the cathode and the electrons are accelerated by a large voltage potential difference across the 

small gap toward the anode. In radiology, the cathode is usually referred to as the filament and the anode 

as the target. Except for dental x-ray tubes, which use stationary anodes, diagnostic x-ray units usually 

employ rotating anodes because they are usually three-phase systems. Older, single-phase systems 

produce x-ray pulses, which follow the sine wave of the electric current. A 3-phase system produces an x-

ray pulse, which is nearly flat, and ripple free resulting in more efficient x-ray production and higher 

effective x-ray energy. Rotating anodes are suited for 3-phase systems because: 
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• These units usually have the capability of operating at very high voltages. The peak kilovoltage 

(kVp), or x-ray tube potential, determines the maximum energy of the x-rays. Modern tubes are 

usually capable of operating at maximum tube potentials of 150 kVp. 

• The systems operate at very high tube currents. Some systems may be capable of operating at 

currents of 1000 mA. The rotating anode helps to remove the heat produced from absorbing the 

electrons in the anode. 

The x-rays are produced by bremsstrahlung. The efficiency of x-ray production is defined by the 

equation: 

 

                                                                       f = 7 x 10-4 Z l E                                                      (2.1) 

Where Z is the atomic number of the target and E the energy (in MeV) of the electrons (i.e., the tube 

potential). 

Most diagnostic units use tungsten as the target. Thus, for a tube potential of 100 kVp and a tungsten 

target (i.e., Z = 74), the fraction of bremsstrahlung x-rays produced would be 0.00518 per electron. Most 

(> 99%) of the electron beam energy is dissipated as heat and does not produce x-rays. A rotating anode 

spreads the electron beam over a much larger surface as it rotates than does a stationary anode. This 

allows these systems to absorb even more heat energy and to operate at higher tube potentials and tube 

currents. 

 
Figure 2.12: X ray tube 

The x-rays produced fall into two classes of x-rays (Figure 2.12). The bremsstrahlung spectrum is 

essentially continuous. However, some of the bombarding electrons interact with and eject orbital 

electrons from the inner orbits of the target atoms producing characteristic x-rays (Figure 2.11). The 

characteristic x-rays have energies characteristic of the element in which they were released. At diagnostic 

energies (> 70 kVp), tungsten produces both K- and L-shell x-rays. The K characteristic x-rays have 

possible energies of 57.4, 66.7, 68.9, 69.4 keV with an effective energy of 69 keV. The L-shell 

characteristic x-rays are emitted with an effective energy of 12 keV. 

The higher the energy of the electrons, the more penetrating the x-ray radiation produced. While x-rays 

with effective energies of 69 keV are good for imaging most body parts, they are too penetrating to easily 
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distinguish soft tissue anomalies. For that reason, mammography x-ray units usually operate at lower peak 

tube potentials (e.g., 20 - 35 kVp) and employ a molybdenum target. Molybdenum has an atomic number 

of 42 and has K characteristic x-rays of 17.5 and 19.6 KeV; energies very useful for soft tissue diagnosis. 

A tungsten target x-ray tube operated at the same tube potential would have characteristic x-rays about 12 

KeV, too low for diagnosis (Figure 2.12). 

The glass, diagnostic x-ray tube is enclosed in a protective (leaded) tube housing (Figure 2.12), which is 

designed to shield personnel from unnecessary (leakage) radiation and reduce the risk of electric shock. 

Some x-ray tubes have voltages as high as 150 kV. The protective housing incorporates specially 

designed high-voltage receptacles to protect against accidental electric shock. X-rays produced in the 

target are emitted isotropically, that is with nearly equal intensity in all directions. Those not directed 

toward the patient are useless. The tube housing contains lead to absorb most of the useless radiation and 

has a specially designed window or port to direct the x-ray beam toward the patient. 

X-rays emitted from the x-ray tube are categorized into primary, scatter, and leakage radiations. The 

primary radiation is the radiation beam, which passes through the window and is allowed to expose the 

patient or material. When addressing patient safety, the concern is with primary radiation. Scatter radiation 

is that part of the primary radiation beam which has been deflected in direction by air, the patient, or other 

material in the beam. Leakage radiation is the radiation, which escapes through the x-ray tube housing. 

The sum of scatter and leakage radiation is called stray radiation. When addressing operator and worker 

safety we are concerned with stray radiation. This radiation must be shielded so exposures are kept 

ALARA. 

 

 
Figure 2.13.radiation spectrum in an X ray tube 

Diagnostic x-ray units can be divided into several types of systems: radiographic (and dental), 

fluoroscopic, angiographic and cardiac, tomographic, mammographic and bone densitometry. Each has 

special uses and capabilities. 
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Radiographic units are by far the most common and include both fixed and portable x-ray units as well as 

dental units. The general concept of operation (Figure 2.13) is that a patient is placed at a certain distance 

from the tube (normally 40 - 48 inches, but chest radiographs are usually made at 72 inches and dental 

[bite wings] are normally made at 7 - 9 inches), in front of the image receptor (i.e., the x-ray film or digital 

image plate) where the x-ray image is produced. Most modern stationary radiographic systems have a 

radiation detector, called a phototimer or automatic exposure control, which automatically terminates the 

x-ray exposure when enough radiation has been given to produce a readable image on the film or other 

image receptor. Some exposures are made using manual techniques. In this mode the technician measures 

the thickness and density of the body part in question and, refers to a technique chart to determine the 

optimum technique factors (kVp, mA, sec) to obtain a quality film. 

 
Figure 2.14:Patient exposures during a radiological examination 

 

Fluoroscopic units are often used in the investigation of dynamic body functions and localization of 

devices (e.g., angiography and cardiology). Most fluoroscopic systems (Figure 2.14) consist of the x-ray 

tube, an image intensifier and a remote display. Until about 1960, most fluoroscopic units were direct 

view. In this system, the radiologist would dim the room lights and place a luminescent screen against the 

patient. 

The x-ray image would form on the screen and the radiologist would directly view the image to make a 

diagnosis. All of these systems have been replaced by image-intensified units. The image intensifier is a 

special amplifying tube which is used to increase the image brightness by as much as 6000-times the 

brightness of a regular (non-intensified) fluoroscopic screen (Figure 2.14). 
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Figure 2.15: fluoroscopic X ray machine 

This image can then be viewed under normal lighting conditions using either a series of mirrors (very 

rare) or by video pickup and projection or storage onto videotape. Radiographs (i.e., x-ray images), called 

spot films, may also be made to provide a hard copy of the area of interest to the radiologist. Often 

fluoroscopic exams use a dense contrast media such as iodine (Z = 53) or barium (Z = 56) to increase the 

density between the cavity of interest and the soft tissue (Z = 6 - 10) surrounding the cavity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 00:59:49 EEST - 3.129.92.231



Chapter 3. Thermoluminescence dosimetry 

 41

 

 3. THERMOLUMINESCENCE DOSIMETRY  

 
  3.1 Historical background  
 
 Luminescence is the generation of light without heat due to the movement   of electrons within a 

substance from more energetic states to less energetic states. There are many types of luminescence, 

including chemoluminescence, produced by certain chemical reactions, chiefly oxidations, at low 

temperatures; electro luminescence, produced by electric discharges, which may appear when silk or fur 

is stroked or when adhesive surfaces are separated; and triboluminescence, produced by rubbing or 

crushing crystals: bioluminescence is luminescence produced by living organisms such as glow worms, 

fireflies, and various fungi and bacteria found on rotting wood or decomposing flesh.  

There are two categories of luminescence: Fluorescence is emission of light during or immediately after 

irradiation (less than 10-8 s). This is not a particularly useful reaction for TLD use.  Phosphorescence is 

the emission of light after the irradiation period. The delay time can be from 10-8s) to weeks, months or 

years. 

Thermoluminescence (TL) is defined as the latent luminescence induced by ionizing or ultraviolet 

radiations in some materials, which is released at temperature significantly above the irradiation 

temperature [64]. The phenomenon of the Thermoluminescence of minerals was known empirically as 

early as 1663. It was in this year that sir Robert Boyle described how, upon warming a diamond in 

contact with his body in the dark, he saw a glimmering light. Wiedemann and Schmidt are the first used 

the term ‘thermoluminescence’’ in literature in 1895 for the observation of excess light emission over 

thermal background. They were also the first to synthesise CaSO4: Mn, TL, which was used for detection 

of radiation from electrical discharge [65]. Marie Curie reported the ability of Calcium fluoride to 

produce TL after being exposed to a radium source [65]. Prizbram recorded the first glow curve in 1923. 

At the same year, Farrington Daniels reported the first successful application of thermoluminescence in 

radiation dosimetry in 1953 during atomic bomb testing and in vivo measurements in patients following 

therapeutic doses of Iodine-131 [66]. The topic became more interesting after the introduction of TLD-

100 in 1963, which is the most popular in occupational and medical dosimetry. The wavelength of the 

emitted light is a characteristic of luminescent material [64-66].  

 

3.2 Theory of thermoluminescence 
 
3.2.1 Thermoluminescence Effect 
 
Theoretical evaluation of the thermoluminescence behavior was first considered by Randall and Wilkins 

[67] in their expression for the probability of an electron escaping a trap. Electrons in some solids can 

exist in two energy states, a lower energy state called the valence band and a higher energy state called 
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the conduction band. The difference (energy region) between the two bands is called the band gap. 

Electrons in the conduction band or in the band gap have more energy than the valence band electrons. 

Normally in a solid, no electrons exist in energy states contained in the band gap. This is a "forbidden 

region." 

The ionized electrons created by radiation passing through a TLD are trapped in molecular complexes 

created by the dopant atoms [65,67,68]. In order for the trapped electron to escape from its forbidden 

state it must gain energy from some outside source. After climbing out of the trap the electron can fall 

back to its ground state, a process that must be accompanied by the emission of a photon to remove the 

excess energy. The photon possesses an energy that is the difference between the electron energy when it 

is boosted out of the trap and the energy of its ground state, which is equivalent to a wavelength of 

primarily 410 to 415 nm in LiF: Mg, Ti [68,69]. If the material is heated at some later time, these 

metastable electrons return to their ground state, releasing the stored energy as visible light (0.4%)[66]. 

The probability per unit time p of the thermal release of an electron trapping is given by the Boltzman           

equation:               
( / ). E KTp s e −=                                                                                                      (3.1) 

With s is the frequency factor (sec-1), depending in the number of hits of an electron in the trap, E is the 

thermal activation energy (eV), k the Boltzman constant and T the absolute temperature (K). 

The wavelength of the emitted luminescence light is proportional to the energy difference ΔE between the 

traps and the luminescence centres. 

hc
E

λ =
Δ         (3.2) 

h = Planck’s constant, c = velocity of light 

If we assume that no released electron is retraped and if the temperature kept constant, the number of 

trapped electrons n decrease with time t according to the following expression: 

                                
.dn p n

dt
= −

                                                                                                                (3.3) 

The intensity I of the luminescence is time-dependent 

                            
( ) dnI t

dt
∝ −

                                                                                                                   (3.4)     

Integrating Eq. (3) and using Eq. (1) 

                        
.

E
n t kT

no to

dn s e dt
n

⎛ ⎞−⎜ ⎟
⎝ ⎠= −∫ ∫

                                                                                                 (3.5) 

Where no is the number of trapped electrons at time t0=0 

                  
0ln ln . .

E
n s t e kT

⎛ ⎞−− = − ⎜ ⎟
⎝ ⎠

                                                                                                 (3.6) 
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And   

                    

0n . . .
E

n e s t e kT

⎡ ⎤
⎛ ⎞⎢ ⎥−= − ⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥⎣ ⎦                                                                                              (3.7)   

             

The typical shape of a glow curve (I vs. T) can be deduced by solving this differential equation. A 

simplifying assumption of only one kind of trap present (with the energy depth E) and of recombination 

of all released charge carriers leads to first-order kinetics 

                        
( ) . . .

E
I t a s t e kT

⎛ ⎞−= − ⎜ ⎟
⎝ ⎠

                                                                                             (3.8) 

 

The total amount of light emitted when the electrons return to their ground state is proportional to the 

number of electrons that were trapped, and this is proportional to the radiation dose absorbed by the 

material. Therefore, the amount of light emitted when thermo luminescent material is heated is 

proportional to the total radiation dose absorbed (Figure 3.1). 

 

 
 

Figure 3.1: The scheme of luminescence, excitation and emission in solids. 

 

3.2.2 Method of manufacturing TLD-100 
TLD-100, in the form of powder and solid pellets, is recognized universally as the "golden standard" for 

applications in radiation protection dosimetry, monitoring of environmental radiation and medical 

dosimetry. 

Harshaw lithium fluoride based dosemeters have been in use for many years. The material is available in 

powder, extrusions and pressed chip forms. The pressed chips are produced in a variety of shapes and in 

several thicknesses. The manufacturing techniques used to produce these materials have been refined to 

the point where very consistent performance is obtained from batch to batch. The current method of 

producing these materials consists of the following steps [70, 71]: 
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(1) Purifying the raw material. 

(2) Growing doped LiF crystals. 

(3) Grinding the crystal to powder. 

(4) Blending different batches for sensitivity. 

(5) Pressing the powder to slug form. 

(6) Slicing the slug into discs. 

(7) Dicing the discs to the desired shape. 

 

3.3 Application of TLDs 

TLDs have three major uses: as personal dosimeters for people who work with or around radiation, 

environmental monitoring, and   for   verifying   the   radiation    doses    given   to patients [65, 66]. 

Personal dosimeters must be sensitive to small amounts of radiation, accurately record a wide range of 

doses and different types of radiation, and be stable for wearing periods of one to three months (Figure 

3.2). 

Environmental dosimeters should be especially sensitive to pick up the very low radiation they are 

exposed to and be rugged and stable enough to withstand months of exposure time outdoors in varying 

temperatures and humidity. 

In radiation therapy treatments for cancer the type and energy of the radiation is well known and a 

relatively large dose is delivered in a very short time. Also, medical TLDs must be very accurate. As little 

as a 5% difference in the dose delivered to a tumor can have adverse consequences in some treatments, 

so the measurement system must be at least this accurate [65, 67, 68]. In the medical field TLDs are also 

sometimes used to quantify the lower doses received by patients undergoing diagnostic X-ray, CT, or 

nuclear medicine procedures [66-69]. 

 

Figure 3.2 TLD materials 

There are several driving factors in the choice of a thermoluminescent material for a dosimeter. One 

important material characteristic is how close to tissue equivalent the crystalline material behaves. Tissue 
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equivalent materials will absorb the same amount of dose for a given energy and type of radiation within 

a constant factor. Another important characteristic, to maximize in this case, is the amount of light output 

for a given dose. One more factor is the range of doses over which the material can produce an accurate 

dose. This brings in many considerations such as the average atomic number, the concentration of traps, 

the band gap energy of the crystal, and the various energy levels of the traps. 

3.4 TLD Initialization 

Before beginning irradiations, the stability and sensitivity of each TLD should be established in order to 

obtain the maximum accuracy of the detector [65-67]. The TLDs were first selected according to their 

appearance. Only clean TLDs of excellent shape (no scratches) and no change in color were chosen. For 

initialization, the TLDs were annealed several times to stabilize their sensitivity. After this preparation, the 

TLDs were examined again and those showing obvious defects (cracks or coloration) were rejected. The 

finally selected TLDs were annealed once again before irradiation. 

Each TLD is annealed in an annealing oven according to the manufacturer recommendations [65]. At the 

end of the procedure, the dosimeters are read to check the background signal and to check batch 

homogeneity. If the background has remained low over theses cycles, the initialization is terminated and 

dosimeters are ready for use. The background signal depends on the voltage applied to the Photo 

multiplier Tube (PMT), its thermal history and the room temperature. This "initialization" process is 

repeated three times to ensure constancy of the dosimeters [65]. It is imperative to always use the same 

procedure for heating and cooling because the glow curve of the material is strongly affected by the 

cooling [65]. 

 

3.4.1 Sensitivity 

Sensitivity, defined as the TL output per unit mass and unit absorbed dose, is influenced by many factors 

(i.e., type of phosphor, the type and features of the reader, heat treatment, etc.). Typically, only the relative 

sensitivity is quantified. The sensitivity of CaF2: Dy relative to LiF: Mg, Ti is approximately a factor of 

100 up to 300 per unit mass. In general, there is a decrease in sensitivity for TLD phosphors after many 

reuses. For all TLD chips, a loss of sensitivity of less than 2% is expected during as many as 500 re-uses. 

In addition, all phosphors exhibit less than 0.8% degradation for every 100 re-uses, up to a total of 2000 

reads [72]. 

 

3.4.2 Individual calibration factor 

The amount of light given off by each individual TLD irradiated to the same dose will actually be a bit 

different because of several factors. To account for the differences, the light output of each TLD is 

normalized to the average light output of the entire batch.  
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Element correction factors (ECF) are calculated by subtracting the individual background from the TLD 

reading and then dividing that net individual reading by the average net reading for the entire set [65,66].   

The variation in the sensitivity within a batch of TLDs is the differences in mass and non-uniform mixing 

of dopants and non-uniform distribution of traps within the LiF [66]. A new set of TLDs manufactured 

from the same batch commonly exhibits a range of sensitivities from -10 to +10% of the average 

sensitivity of the set [65-67]. 

 

3.4.3 Pre irradiation annealing  

Before TLDs can be reused they must undergo a pre- irradiation anneal. The intent of this anneal is to 

remove any residual trapped electrons that were not released during the reading process. If not removed 

by annealing the residual trapped electrons could be released during a subsequent irradiation and readout 

resulting in possibly a several percent inaccuracy, particularly when high doses of radiation have been 

used [65-67].  

Even with a post-irradiation annealing, 1% residual signal remains. Variations in the annealing procedure 

have been tried to reduce this small possible source of error to even lower amounts.  

 

3.4.4   Post irradiation annealing 

The increased temperature in the oven increases the thermal vibrations of the molecules and the rate of 

electron release (Figure 3.3). The time and temperature of this so-called pre-readout anneal has been 

chosen to maximize the emptying of shallow traps and minimize the loss of electrons from the higher 

energy level dosimetric traps. 

 
Figure 3.3 TLD Oven  

 

 

3.4.5 TLD reading cycle 

The common TLD reader uses a tiny metal tray (planchet), which heats up the TLD placed on it by 

means of an electric current passing through the planchet wires. The electric current can be precisely 

controlled so that the temperature of the planchet can be determined within ±1°C [73]. The rate of 

heating and length of time of heating can also be varied accurately (Figure 3.4 & 3.5). 
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Figure 3.4:  shows that the maximum amount of light from LiF:Mg,Ti  is emitted at about 200°C, though 
there are several smaller peaks of light emission at other temperatures 
 
 

 
 
 

Figure 3.5: fading and pre heading effect 
 

 
3.4.6 TLD Reader 

The TLD system used to process TLD chips included the following component: The TLD reader consists 

of two main parts: the heating mechanism and the light-photon-collection components. The planchet and 

readout chamber are made as reflective as possible in order to make the reader more efficient. The 

photomultiplier tube (PMT) is used almost exclusively in TLD readers to do the light collection since it is 

the most sensitive known device for that purpose. The photomultiplier tube has two main parts, which are 

the photocathode and the dynodes. 
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                          A                                                                             B 

Figure 3.6 (A & B): Schematic diagram showing the typical arrangement for a TLD reader and PMT 
principles 

 
 

The electrons released from the photocathode are proportional to the number of photons, which strike it. 

The number of electrons is multiplied by several stages of dynodes to produce a current, which is large 

enough to read. The total amount of electric current produced and integrated over the read phase yields 

the TLD reading, in units of nC usually, since current multiplied by time equals charge and coulombs is 

the unit of charge. PMT's are usually cooled to keep them at a constant temperature since their response 

can be affected by up to 1% per 1°C change in their temperature [74]. 

The electronic reference lights built into TLD readers to help check the constancy of the reader response 

are also somewhat affected by heat [66, 75]. It is desirable to set up the TLD reader in a climate-controlled 

environment to keep readouts stable. It is also important to maintain a clean working area since chalk 

dust, dirt, and static electricity can alter TL readings [66, 76]. In order to obtain the same amount of light 

at all times, the planchet was cleaned with an alcohol. However, it was found that the alcohol residue 

increased background, readings of the empty planchet up to as much as possible (about 7 readings to get 

less than 1 nC). 

 

3.4.7 TLD dose response 

The ideal dosimeter would respond proportionally over a wide range of dose. Currently used TLDs are 

proportional over a limited range. The Lower detection limits (LDD) depends on the particular reader 

used as well as the TLD type [65, 66].  LiF: Mg, Ti starts to become non-linear at about 100 cGy (Figure 

2.7) and more noticeably so at 300 cGy [66, 67, 71]. 

The TL output may become supralinear. For LiF: Mg, Ti this supralinearity occurs at about 100 to 300 

cGy [65-67]. This is explained by the track interaction density effect model [77]. The idea is that at higher 

ionization densities (higher doses) more of the electron traps are filled, which increases the electrons' 

chances of finding a recombination center, where the electron can drop down to it's ground state when 

heated and produce thermoluminescence [66-68]. The supralinear response continues to about 10,000 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 00:59:49 EEST - 3.129.92.231



Chapter 3. Thermoluminescence dosimetry 

 49

cGy [66-68](Figure 3.7). At these high doses the TLD is becomes saturated; most of the electron traps 

have now been filled with electrons, and electrons produced by additional given dose face a decreasing 

probability of finding an empty trap to lodge in. 

 
Figure 3.7: TLD response versus radiation dose. 

3.4.8 TLD calibration 

Because it is so difficult to compute the expected TL for dosimeters theoretically, in practical dosimetry a 

set of calibration TLDs are always used. Several TLDs from the set are irradiated at known doses and 

energies and then read out using the same procedures as for the TLDs of interest. The calibration TLDs 

are exposed to a range of doses surrounding the dose the TLDs of interest are expected to receive. For 

example, a radiotherapy patient may be receiving 200 cGy per treatment. Two or three TLDs may be 

irradiated at each calibration point, which might be chosen at 150 cGy, 200 cGy, and 250 cGy. Within 

this limited range the linear approximation is a good one. When a TLD from the patient is read its TL 

output is converted to dose based on the calibration information. When a larger range of patient doses is 

expected or when the patient dose is unknown, a calibration curve with more calibration points and 

greater dose width must be constructed. The amount of TL output as the result of a particular radiation 

dose is the result of several probabilistic processes. Thus, it has a statistical nature. Therefore, the dose 

computed from any one TLD is not likely to coincide with the actual dose used for the irradiation, but it 

should be close to the true dose within average statistical variation. [66, 67, 78].  

 

3.4.8.1 Background signal: 

The background signal is the signal obtained from unirradiated TLDs. The background TLD reading is 

the result of several factors. Most of the background reading comes from the natural TL of oxygen in the 

air [68]. This can be eliminated by reading the TLDs in a non-oxygen atmosphere. The use of nitrogen 

can reduce this effect. Another source of background TL reading is electronic noise from the TLD reader 

[65, 66]. This originates from spurious electrons released and multiplied in the PMT and is called the dark 

current [65-67]. This current exists because of the dynode amplification of the stray electrons emitted 

even when no light is impinging on the photocathode. In this study, subtraction of the background 
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readings was applied from all the readings. It is important that the background TLDs be stored in the 

same place as the other TLDs in the set so that they will all be subjected to the same background 

conditions. 

 

3.4.9 TLD energy response 

The photon energy response of a TL phosphor depends primarily on its effective atomic number. The TL 

response of a phosphor is usually normalized to particular photon energy. This is the result of 

photoelectric absorption, which is a function of the atomic number (Z) of the TLD material to the third 

power and the energy of the photon inversely to the third power (Z3 / E3) [65-66]. 

The relatively low Z of TLD-100 (8.2) results in a relatively small over response in the photoelectric 

region since it is close to the Z of human tissue, about 7.6. For TLD-200, much higher photon energy 

dependence is observed because of the relatively high atomic number (16.3), compared with tissue [79]. 

However, the TLDs were calibrated at the same energy, as the patient TLDs, so there was no need for 

energy corrections.  

 
Figure 3.7. Energy response of different TLD Materials. 

 

3.410. TLD response: Fading    

Fading is the term given to a loss of TL output due to a chronological difference between when the 

TLDs are annealed, irradiated, calibrated, and read-out [65,66,79]. Some trapped electrons can escape 

their traps even at room temperature, particularly those in the lower energy levels. Therefore, there are 

differences in subsets of a batch of TLDs depending on storage time between annealing, irradiation and 
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readout. These widely dispersed findings suggest a medical center must conduct their own study of this 

TLD characteristic. 

The amount of environmental light the TLDs are exposed to can also have effect the dose readout [65, 

78]. Light energy, like thermal energy, can also release trapped electrons, especially ones in the lower-

energy traps corresponding to ultraviolet light found in sunlight or fluorescent lights. Additional fading 

has been reported at between 7 to 11% loss of TL for a 3-hour exposure to the sun or to ultraviolet lights 

[65, 66]. 

However, in this study annealing, irradiating, and reading of all TLDs was performed on the same day, 

avoiding the requirement of fading correction. 

 
 

 
 
 

 
3.4.11 TLD Response: Accuracy 
 
The use of TLD systems, taking the aforementioned factors into account, can lead to an uncertainty of 1% 

to 5% in the dose readout accuracy [66, 77]. Some residual inaccuracy will always be expected because 

the filling and emptying of electron traps are statistical processes. It is impossible to predict which 

particular traps and how many will capture electrons when a given dose of radiation is given since the 

process is "deterministically unpredictable" [66], but the mean number given by a Gaussian curve should 

be highly predictable. In other words, the precision (repeatability) of TLD measurements is very good, but 

not perfect. 

Figure 3.8: TLD-100 fading
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4. MATERIALS AND METHODS  

  

4.1 TLD materials 

Dose measurements were made using two groups of TL dosemeters from Harshaw TLD (Bicron-NE, 

Solon, Ohio, USA) of dimensions 3.1 x 3.1 x 0.89 mm3 and mass ~22.8 mg. TLDs made of natural 

lithium fluoride doped with magnesium and titanium (LiF: Mg, Ti, TLD-100).  TLDs were used to 

measure patient dose during radiology procedures and radiotherapy treatments. Calcium fluoride TLDs 

doped with dysprosium (CaF2: Dy, (TLD-200)) were used to measure staff doses during diagnostic and 

interventional radiology. Some of the TLD characteristics are presented in Table 4.1 

 

Table 4.1 detector characteristics [65, 66] 

Material Characteristics TLD-200 TLD-100 

Density  (g/cm3) 3.18 ~2.64  

Melting point (°C) 1423 846 

Sensitivity 300 1 

Spectral emission peaks 480-577 400 

Effective Z 16.3 8.2 

Energy gap (eV) 12.2 10 

Photon energy response (30 

keV/60Co) 

 

13-15 1.3 

Temperature of main glow peak 

at slow heating rate 

200-240 195 

Dynamic Range (Gy) 10-6-103 5x10-5-103 

Toxicity Low High if ingested 

Fading dosimetry peak at normal 

ambient temperature 

25% in 4 weeks  

(10% in first 24 hours) 
5 %I 3-12 month 

Residual TL - Less than 2 % 

Reusability Indefinitely >500 uses: <0.02% TL loss/use 

TL emission spectra 250-600 nm 350 - 600 nm 

Other characteristics 
Optically transparent, 

Mechanically rugged 

Inert, insoluble, relatively hard, unaffected 

(relatively) by environmental conditions 
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4.2 TLD calibration 

4.2.1 TLD calibration to high energy photon beams 

          

TLDs were calibrated in a Plexiglas phantom (30 x 30 x 30 cm3) at a depth of maximum dose using 6 

MV (dmax =1.6 cm) and 15 MV (dmax = 2.7 cm) photon beams. The first PMMA slab was used to 

accommodate the TLD chips in an array of slots 10x10. Each TLD was identified by its position in the 

array.  A field size of 10 x 10 cm2 at the phantom surface and a source to surface distance (SSD) of 100 

cm was employed for the calibration. The TLDs were placed at dmax (1.34 cm (6 MV), 2.30 cm (15 

MV)), on a Plexiglas phantom of 30x30x10 cm3, for full backscatter (Figure 4.1).  The specific density of 

the TL material was not considered. For each measurement, at least 4 TLD chips were irradiated and the 

mean value was considered as standard dose. A dose of 50 cGy at measurement depth, as determined by 

a calibrated ionization chamber, is given to calibrate the TLDs by applying the IAEA TRS 389 dosimetry 

protocol in accordance with the departmental calibration practice.  The calibration was performed under 

reproducible refernce conditions (Figure 4.1) using the same radiation source for both energies against a 

calibrated ionisation chamber (IC) model M30001-PTW- Freiburg, Germany.  The chamber was 

calibrated at the National Standard Laboratory, Greek Atomic Energy Commission (EEAE). Annealing 

and readout procedures were performed as illustrated in section 2 
 

 

 

Figure 4.1: TLD calibration for radiotherapy measurements. 

4.2.2 TLD calibration to low energy photon beams 

TLD calibration was according to international protocols for the range of energies used in the study.  The 

TLDs were calibrated under reproducible reference conditions using the same X ray machine (Philips 

Diagnost 93) against an ionisation chamber model 9060/10X5-60 connected to a Radiation Monitor 

Controller model 9010 (Radcal Corporation, Monrovia, CA, USA) (Figure.4.2 c). Both the chamber and 

the electrometer were calibrated for the energy range of 30-120 kV at the National Standard Laboratory. 

For the TLD and chamber irradiation, a polymethylmethacrylate (PMMA) calibration test bed has been 

constructed having dimensions 30 x 30 x 6 cm3, which simulates patient’s lateral and backscatter 
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conditions (Figure 4.2). The first PMMA slab was used to accommodate the TLD chips in an array of 

slots 10x10. Each TLD was identified by its position in the array (Figure.4.2 a). Individual calibration 

factors were obtained by irradiating the entire group to the same dose. 

This process was repeated three times to reduce the effect of statistical variations and to determine the 

stability and reproducibility of the signal. TLDs with sensitivity within 4% were used in this study. All the 

TLD chips had the same thermal history. Calibration cycle was carried out every month. 

 

 

 

 

                Figure 4.2: TLD calibration setup. (a) PMMA phantom with appropriate wholes for TLD measurements, 
(b) calibration setup to the diagnostic digital X-ray machine with the TLD phantom and (c) calibration 
setup to the diagnostic digital X-ray machine with the ion chamber dose measurement device. 
 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 00:59:49 EEST - 3.129.92.231



Chapter 4. Materials and Methods 

 56 

4.4 TLD oven 

 An annealing oven manufactured by PTW was used (Figure 4.3). This oven has an insulated annealing 

chamber of approximate dimensions 11 cm x 8 cm x 10 cm2 and contains a heating element producing a 

temperature-controlled hot air stream. A built-in fan circulates the hot air and ensures a uniform 

temperature distribution throughout the oven volume. For annealing, the TLDs were put on copper or 

stainless steel trays, which can be placed at three different levels. All TLDs were annealed (as 

recommended by the manufacturer) in annealing oven (TLDO, PTW, Freiburg, Germany) at 400 oC for 1 

hour, followed by fan forced cool down to 100 0C which was held for 2 hours in order to optimise its 

characteristics and to achieve better stability of the TL 

signal. The annealing process removes any residual 

signal from previous radiation exposure and sets the 

sensitivity of all of the chips to a uniform Level. 

 Post irradiation annealing was carried out for 10 

minutes at 100 0C to reduce fading effects by 

eliminating the unstable peaks. The average 

background was used because the background value 

was low (0.3-0.5 nC). 
 

 
 
           

                                                                                                   

4.5 TLD Reader 

The TLD system used to process TLD chips included the following component: Harshaw 3500 manual 

TLD reader, a personal computer with Windows NT and WinRems software. The instrument, which can 

be used with chips (ribbons), rods, micro cubes, or powder, includes the operational WinREMS software 

as a reader. The instrument allows a heating profile to be obtained.  It is possible to print and export results 

including glow curves.  Associated electronics make it possible to measure the TL light output (Figure 

4.4).  

 

 

 

 

 

 

 

 

Figure 4.3: TLD oven  

Figure 4.4: TLD reader and computer system 
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The software stores the data in a group file that allocates an identification number. It also holds the 

information used by reader. The system includes a reader and a DOS-based IBM-compatible computer, 

connected through a standard RS-232 serial communication port. Dosimetric data storage, instrument 

control and operator inputs are handled by the PC, while signal acquisition and conditioning are tasks 

performed by the reader. The software provides real-time monitoring of the instrument's operating 

conditions and displays glow curves and response values. A single dosimeter is read per loading. 

Thereby, the TLDs are put on an interchangeable heater pan. The reader uses contact heating with a 

closed loop feedback system that produces linearly ramped temperatures accurate to within ± 1 °C up to 

400 ° C with standard 1/4" x 1/4" planchet.   The time temperature profile has three segments (preheat, 

acquire, anneal), for each of which the user can choose time and temperature. During acquisition, the 

emitted light is detected by a photo-multiplier tube (PMT) connected with a 200 channel scalar to 

generate the glow curve. The stability of the reader was checked before any reading session. The 

performance of the light detection system can be monitored by a built-in test light source. Light source 

(light under the PMT) and dark current (the reading without TL material in the planchet) are read out to 

insure the consistency of the system 5 times prior the measurements. The reader provides nitrogen 

allowing it to flow around the heater pan. By eliminating oxygen in the pan area, the nitrogen flow 

eliminates unwanted oxygen-induced TL signals. However, a nitrogen source was not available during 

this study. Before its use, the reader was warmed up for 30 min. A typical readout cycle (time and 

temperature profile (TTP)) begun with preheat phase at 100°C. During the reading phase the planchet 

temperature is increased by 11°C/s up to 280°C (300 °C for TLD-200) in order to empty the entire 

electron trapped in the traps used for dosimetric purposes.   

 

4.6 TLD Handling Accessories  

TLDs were handled with vacuum tweezers to avoid contaminants and scratching, which influences the 

amount of the emitted light. Suction allows contact between the nozzle and the TLDs. When handling 

miniature TLDs, a finer nozzle with a narrower surface area was used for contact to prevent damage to 

the TLD and to prevent the TLD from being drawn up into the tweezers. When not in use the TLDs were 

stored in dedicated copper and stainless steel trays each of which could house up to 50 or 100 TLDs. 

 

4.7 Linear accelerators 

Two Philips linear accelerators, a SL-75 and a SL-18, installed in the University Hospital of Larissa 

(UHL) were used. The ELEKTA SL 75/5 is a single 6 MV accelerator, while the SL-18 produces 6 and 

15 MV photon beams, as well as electron beams of various energies. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 00:59:49 EEST - 3.129.92.231



Chapter 4. Materials and Methods 

 58 

4.8 X ray machines 

The radiological procedures were performed in two UHL X ray rooms equipped with Philips remote-

controlled  (+90o tilt) fluoroscopic units with an overcouch X ray tube an undercouch image intensifier 

and three fluoroscopic modes. A Diagnost 93 (Philips Medical Systems, Italy) unit with three 

magnification levels (38/31/23cm) is installed in suit A (the 38 cm field was mainly used in this study). A 

Diagnost 94 unit (Philips Medical Systems, The Netherlands) with three magnification levels (38/25/17) 

cm, three fluoroscopic modes (low, medium, and high) and two monitors; one at examination room and 

one at the control room was installed in suit B. The 38 cm field of view was used frequently during HSG 

procedures. The resolution of the image intensifier is 1.8 lp/mm and the geometrical distortion is 6% at 

the centre and 11% at the periphery resulting in very good image quality. The exposure factors were 

selected automatically by the machine, while the phantom used was the ETR-1(Wellhofer - Germany) . 

 The two units were equipped with Rotalix and super Rotalix X-ray tubes, with nominal focuses 0.6 

mm/1.3 mm, 0.6 mm and 1.2 mm, respectively.  The available range of the kVp and mAs are 40-125 kV, 

1-850 mAs .the maximum mA at 80 kV is 700 mA for machine B. 

 The nominal total filtration was 4.0 mm Al in both units at 80 kV. Both of the units are equipped with 

automatic brightness control and last image hold. The minimum screening time recorded by both 

machines is 0.1minute. Both machines were equipped with a pair of leg supports to be used in HSG 

procedures, constructed in 1996. The exposure factors were either selected manually or the kV was 

selected manually with the corresponding mAs and tube current selected automatically for radiography 

and fluoroscopy, respectively.  The latter option was used during this study. Focus to Image Receptor 

Distance (FID) was 110 cm.  

Quality assurance tests were performed regularly for exposure parameters (applied potential, tube current 

to the same dose level rent. and time) for both X ray machines and for image quality.  

 

4.9 Method of dose calculations 

Determination of detector correction factor (Ci): 

Due to the differences in thermoluminescent efficiency of the various dosimeters, a detector correction 

factor, Ci, has to be assigned to each of them.. After the TLD initialization procedures (section 2), all 

TLDs were irradiated to the same dose level. The Detector correction factor was called the quantity.  

                                           

TLsCi
TLm

=

                                                                                                 (4.1) 
Where:   TLs: TLD signal in nC for individual TLD after the subtraction of the background signal 

TLm  : The mean value of all the signals after the subtraction of the background signal 

The determination of Ci procedure was repeated three times and the mean value was used. The 

calibration factors were presented in annex A. 
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TLD dose calculation: 

A group of TLDs were exposed to a series of known doses (D) in the clinical range. Two accurately 

known dose values were selected to represent the “standard dose” (Do) to be used for unknown dose 

calculations and the “Test dose” to check the accuracy of the dose measurements. 

The radiation dose was determined according to the following equation: 

  

                   

( ) /( )
( ) /

TL BGR CiD Gy
TL BGR m Do

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠                                                                                 (4.2) 

Where:   

TL is TLD signal. 

D: dose in Gray. 

D0: standard dose. 

 

Correction factors  

Correction factors had to be used. For example, a linearity correction factor, F lin:   had to be introduced in 

radiotherapy since the dose to some patients was higher than 1.0 Gy. 

 

D  = Do. Fcal . F en . F fad.                                                                                                                     (4.4) 
 

Do:     Initial dose (Gy)  

Fen:    Energy correction factor  

F fad :  Fading correction factor 

In this study, there was no need for a fading correction factor, because the TLD readings were performed 

on the same day of exposure, and almost the same photon spectra were used for calibration and dose 

measurements. 

 

4.9.1 ESD 

The ESD is one of the simplest and most frequent parameters used to measure patient and staff doses 

from radiologic examinations. Four TLDs, packed on a thin envelope made of transparent plastic foil to 

protect the TLDs from any contamination were used to measure ESD. They were placed at different body 

sites to measure staff and co-patients doses.  

The organ equivalent dose (mSv) is given by:  

                    
,.R T R

T R
wH D=∑

     .                                                                                          (4.5)                                                            

                                                                          

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 00:59:49 EEST - 3.129.92.231



Chapter 4. Materials and Methods 

 60 

Where DT, R is the mean absorbed dose to tissue (T) from radiation (R) and wR is the radiation-weighting 

factor from the recent ICRP recommendations [18], which represents the biological effectiveness of the 

incident radiation. 

 

4.9.2 Equivalent Dose  

A number of radiobiological quantities are use to assess the probability of induction of stochastic radiation 

related effects and to ensure the avoidance of deterministic effects. Most of them related to the mean 

absorbed dose to a tissue or an organ DT, R, due to radiation of type R. The protection quantity equivalent 

dose in an organ or tissue, HT, is defined as 

                     (4.6) 

Where wR is the appropriate radiation-weighting factor. The sum is performed over all types of radiations 

involved. The unit of equivalent dose is J/ kg (sieverts (Sv)).  

Values of wR, given by ICRP [18] are mainly based upon experimental values of the relative biological 

effectiveness (RBE) for various types of radiations compared to the effects of x- and γ-rays at low doses 

for the induction of stochastic effects (see Chapter 2).  

 

4.9.3 Effective dose  

ICRP first introduced the protection quantity, effective dose equivalent, in Publication 26 [83] as proposed 

by Jacobi [84]. The basic principle was to use the absorbed dose as the fundamental physical quantity, to 

be averaged over specified organs and tissues using weighting factors to take into account the differences 

in biological effectiveness of different types of radiation in inducing stochastic effects and to quantify their 

severity.  The development of the effective dose equivalent and subsequently the effective dose made a 

significant contribution to radiological protection as it has enabled doses to be summed from whole and 

non-uniform irradiation of the human body with external radiation and from intakes of radionuclides. 

The effective dose, E, is defined by ICRP as   

                         (4.7) 

Where wT is the tissue weighting factor with Σ wT = 1. The sum is performed over all organs and tissues 

of the human body considered in the definition of effective dose [18]. The SI unit of effective dose is the 

Sievert (Sv) (Figure 4.5).  

While absorbed dose in a specified tissue is a physical quantity, the equivalent dose and effective dose 

include weighting factors, which are based on radiobiological findings. These weighting factors are 

selected for application in radiological protection by judgement and include simplifications, which are 

assumed by ICRP to be acceptable. Therefore, these quantities are not pure physical quantities. For 
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example, the tissue weighting factors, wT, are based on epidemiological studies of cancer induction and 

mortality after radiation exposures, as well as genetic data and judgements. Furthermore they are 

representing mean values for humans averaged over both sexes and all ages. 

 

 
Figure 4.5: System of dose quantities for use in radiological protection 

 

 

 4.9.4 Occupational Exposure  

4.9.4.1 Assessment of Effective Dose from Individual Monitoring Data  

Individual dose monitoring is usually performed using personal dosimeters and using this value for the 

assessment of the occupational effective dose. In fluoroscopic guided medical practices body exposure is 

not uniform. For example parts of the body are protected by the lead apron and other mobile screens, or 

lead shields. Therefore, the evaluation of the occupational effective dose is complicated and introduces 

uncertainties [85]. Some algorithms requires the use of two dosemeters, one worn over a 0.5 mm Pb 

equivalent apron at the neck level and under the apron at the waist level. Other algorithms require the use 

of a single dosimeter, worn over the apron at neck level. Moreover the algorithm accounts for the use of a 

thyroid collar shield. 

In the case of two dosemeters without a thyroid shield, [86] the effective dose is: 

           0.06( )U UOS
E H H H= − +

                                                                                            (4.8)                                        
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Where HOS is the dose measured by the dosemeter at the neck (shallow depth), HU is the dose measured 

by the dosemeter under the apron at waist level (deep). 

In the case where a single dosemeter is worn at collar level, HU  is often assumed to be equal to 0.01 HOS, 

[86]and the effective dose can be approximated as: 

              0.07 OSE H=                                                                                                                              (4.9)     

When a thyroid shield, a 0.5 mm Pb equivalent, is worn: 

             0.02( )U UOS
E H H H= − +

                                                                                         (4.10) 

In the case where a single dosemeter worn at the collar level, again assuming HU < 0.01 Hos, the effective 

dose can be approximated by 

                 0.03 OSE H=                                                                                                                          (4.11)                                        

                                                                                                     
However, in this study, the effective dose for the second examiner was derived from the TLDs at chest 

level. Effective dose estimation using two dosimeters results in a slightly higher effective dose than those 

result from applying a correction factor for a single neck dosimeter. However, the later equation was used 

in effective dose estimation.  

 It is worth mentioning that the conditions of examiner exposure during ERCP are different from those in 

conventional and interventional procedures i.e., during ERCP the examiners do not face the source of the 

X ray (primary beam and scatter radiation), while for other procedures examiners are always facing the 

source of X rays. This point should be considered in the estimation of the effective dose because it 

underestimates the effective doses. Also the formulae overestimate the dose because no tissue attenuation 

was assumed.                                                         

However, occupational effective dose is calculated to be the 10% of the Hp (10) dose recorded by the 

TLDs outside the lead apron. For the unprotected parts of the body, the absorbed dose was assumed to be 

the same as the dose recorded on the TLDs at chest level. The equivalent dose has been taken equal to the 

absorbed dose (applicable for low LET radiation). The effective dose to the organs and tissues has been 

calculated using the methodology and tissue weighting factors reported at ICRP 60 and NCRP 122 

(18,87). A computer program was developed by (Dr Theodorou (Medical Physics Department) allowing 

calculation of the dose to 14 organs and tissues for co patient and radiologist during MCU and HSG 

respectively (Annex C).   
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4.10 Patient dose assessments 
 
4.10.1 NRPB software (NRPB-SR262)  
 
NRPB-SR262 [44] is a software report, which includes a computer disk containing files of conversion 

coefficients, providing estimates of organ doses and effective doses to adult patients undergoing 

diagnostic x-ray exposures. It contains the results of Monte Carlo calculations modelling the conditions of 

exposure relevant to 68 common radiographic views on a mathematical phantom representing an average 

adult patient (with a mass of 70.9 kg and a height of 174 cm and body mass index (BMI (weight/height2)) 

of 23.12 kg/m2, which includes the female breasts, ovaries, uterus and testes). Each Monte Carlo run 

tracked the pattern of energy deposition in the anthropomorphic phantom from primary and scattered 

photons for total 4,000,000 photons used with each x-ray projection., Normalised doses are presented for 

26 organs or tissues along with the effective dose, as defined by ICRP in 1990 and the effective dose 

equivalent as defined by ICRP in 1977. The data are provided for 

40 x-ray spectra ranging from 50 kV to 120 kVp and beam 

filtration 2 mm A1 to 5 mm A1 The doses are normalised to both 

ESD (mGy) and DAP(Gy.cm2). Organs doses from HSG were 

obtained from the average value of conversion factors for 

anteroposterior pelvis view. However, as specific projections were 

not available for ERCP, organ doses (mGy) were obtained from 

the average value of the conversion factors for the most similar 

PA kidney, stomach and oblique duodenum views. These 

projections were selected because they simulate the ERCP 

exposed area within the patients, with the same exposure factors. 

Furthermore, during the procedure, the patient position might 

change from prone position to oblique or lateral position. 

                          Figure 4.6 Mathematical phantoms for Monte Carlo   calculations of patient dose 

4.10.2 CHILDOSE -SR279 

This computer data package provides estimates of organ doses and effective doses to paediatric patients 

undergoing diagnostic x-ray exposures. It contains the results of Monte Carlo simulations using five 

paediatric phantoms representing children aged 0, 1, 5, 10 and 15 years old [88]. The conditions of 

exposure relevant to about 20 common radiographic views were modelled, including views of the head, 

neck, chest, abdomen, lumbar spine, pelvis and bladder. 

The data are provided for 72 x-ray spectra ranging from 50 to 120 kVp and 2 mm A1 to 0.2 mm Cu with 

3 mm A1 total beam filtration. The doses are normalised to both entrance surface dose and dose-area 
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product. Organs doses from MCU were obtained from the average value of conversion factors for 

anteroposterior pelvis view. 
 

4.11 Cancer risk estimation  

The risk (RT) of developing cancer in a particular organ (T) following ERCP after irradiation was 

estimated by multiplying the mean organ equivalent (HT) dose with the risk coefficients (fT) obtained 

from ICRP [18,89,90] 

                                   
.T T TfR H=

                                                                                                       (4.12) 

The overall lifetime mortality risk (R) per procedure resulting from cancer/heritable was determined by 

multiplying the effective dose (E) by the risk factor (f). The risk of genetic effects in future generations 

was obtained by multiplying the mean dose to the ovaries by the risk factor [18, 89, 90]. The gender 

averaged risk coefficients were used in   

                                 
. TfR E R= =∑                                                                                           (4.13)         

Table 4. 2. Detriment adjusted nominal risk coefficients for cancer and hereditary effects (10-2 Sv-1)  
 

Cancer  Heritable effects  
 

Total 
 Exposed 

population  
ICRP 
2007 ICRP 60  ICRP 2007 ICRP 60  ICRP2007  ICRP 60 

Whole 
population♣ 5.5  6.0  0.2  1.3  6.0  7.3  

Adult workers* 4.1 4.8 0.1 0.8 4.0 5.6 

Children - 13 0.08 0.1 - - 

♣ age between 0-90 years old 
*Adult workers aged 18-64 
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5.  IN VIVO DOSIMETRY IN HIGH ENERGY BEAMS  
 
 
 
 
 
 
 
 
 
 
 

The scope of Chapter 5 is to present the methodology developed for in vivo dosimetry in teletherapy and 

the results of its clinical application at UHL. More specifically the aim of the study was to: 

 
1.  Evaluate the effect of different Buildup caps materials (Copper, Aluminum, Stainless steel and 

Plexiglas) in both the linear and the non-linear region of the TL efficiency of the dosimeters. 

Determine and the perturbation in 6 and 15 MV X-ray fields due to the presence of the build 

cups and the factors that modify this perturbation, such as the source to surface distance (SSD) 

and the field size.  

2. Measure the entrance and peripheral dose (skin and thyroid) during breast, head and neck, 

abdomen and pelvic treatments.  

3. Compare the results with the previously published values. 

 

5.1 Dose build-up region 

 
 

The dose region between the skin surface (depth = 0) and depth of maximum dose=dmax in high energy 

photon beams is referred to as the dose build-up region and results from the relatively long range of 

energetic secondary charged particles (electrons and positrons) ejected by photon interactions.  In 

addition, particles produced by photonuclear reaction have energy greater than the binding energy of the 

neutron in the nucleus. With few exceptions, nuclei have binding energies between 7-20 MV. Therefore, 

with photon energies above 7 MeV, there is likely to be neutron contamination in the beam. Neutrons can 

be generated at the target, collimator, build up material or the patient it self [25, 46]. 

The condition of charged - equilibrium (CPE) does not exist in the region immediately close to patients’ 

skin, the absorbed dose being lower than the collision kerma. However, as the depth, d, increases, CPE is 

reached at depth, = dmax approximately equal to the range of secondary charged particles and the dose 

becomes comparable to the collision kerma. Beyond dmax both the dose and collision kerma decrease 

because of the photon attenuation in the patient, resulting in a transient rather than true CPE 

[46] (Figure 5.1). 
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Figure 5.1: Central axis depth dose distribution for different photon beam energies. Field size is 10 
×10cm2; SSD is 100 cm for all beams except for 3.0 mm Cu HVL, the SSD is 50 cm [46]. 
 
As the high-energy photons interact with the patient or the phantom, high-speed electrons are ejected. 

These electrons deposit their energy at significant distances away from their site of origin (multiple 

scattering). 

 The electron fluence - and hence the absorbed dose close to the entrance surface increase with depth until 

they reach a maximum. The fluence of the incoming photons decreases with depth. The net effect is that 

beyond a certain depth the dose eventually begins to decrease with depth [25, 46]. The advantage with 

high-energy photon therapy is this dose build-up effect, which gives rise to what is clinically known as 

the skin sparing effect. This means that larger doses can be given to tumours located deep inside the body 

without injuring the skin. 

Head scattered electrons are produced by interactions of the primary X-rays prior to their entrance to the 

human body or phantom. The magnitude of electron contamination increases with an increase in the field 

size a decrease in the SSD or when a tray is place [91]. Secondary electrons arise mainly from the 

Compton interaction and at energies above 1.022 MeV - pair production at the field flattening filter, the 

primary and secondary collimator jaws in the treatment head and the air column between the source and 

the patient or phantom surface [25, 46, 63]. The dose contribution of contaminating electrons decreases 

almost exponentially with depth [92]. At lower energies, the dose due to contaminating electrons 

decreases more rapidly with increasing depth due to the smaller electron energy. At higher energies, the 

flattening filter is the main source of contaminating electrons and the dose variation in the build-up region 

with field size and/or treatment geometry (trays, blocks, wedges) is higher for high photon energies than 

at low photon energies [93]. As the presence of head scatter electrons is the cause of the dmax shift toward 

shallower depths when the field size is increased, the position of dmax varies more with treatment geometry 

at higher than at lower energies.  
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The larger the photon beam energy, the lower is the surface dose. For example, in 10×10 cm2 60Co fields 

it is about 30% of the dose at dmax, 15% of the dose in 6 MV x-ray beams and 10% of the dose in 18 MV 

x ray beams. For a given beam energy, the surface dose increases with field size (Table 5.1). The low 

surface dose compared to the maximum dose is often referred to as the skin sparing effect and represents 

an important advantage of megavoltage beams over orthovoltage and superficial beams when used for the 

treatment of deep-seated tumours.  

 

Table 5.1: Typical depths of dose maximum for different energies and field size [25, 29, 94] 

 

 dmax (cm)  

 Field size (cm2)  

Photon energy 

5 x 5 10 x10 30 x 30 

4 MV 1.0 1.0 0.8 

6 MV 1.7 1.5 1.5 

18 MV 3.5 3.2 2.0 

25 MV 4.4 - 2.5 

 

 
5.2 TLD and build up capsule 
 
TLDs and semiconductor diodes are the most popular tools used in in vivo dosimetry in radiotherapy to 

date. TLD-100, compared to other detectors is composed of tissue equivalent material beside other 

valuable advantages [64]. TLDs with build-up caps are previously reported as being suitable for in vivo 

dosimetry [95-99].  With tissue equivalent material (Plexiglas) [95,], Polystyrene [96] or high atomic 

build up caps materials with powder, Aluminium [97], polytetrafluoroethylene (PTFE) [98] or a mixture 

of different materials (S.Steel, Paraffin, Perspex) [99], an accuracy of ±2 was achieved (Table 5.2). No 

study as far as we know used the TLD chips with high Z build up cap material. Some published studies 

concerned about peripheral dose [100-104] used diodes [100], TLDs in build up caps [101-103] or pen 

dosimeters [104] Table 5.2.  
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Table 5.2. Physical data of build up caps in the literature 

Author Buildup cap Organ and 
energy used 

Parameters 
measured 

Accuracy 

Kalef-Ezra et 
al [95] 

10 mm of PMMA, 
capsule: 30 mm diameter 
and 20mm thickness, 3 
TLD 

Pelvis (54), 
Breast (34). 
6 MV and Co-60 
 

Entrance dose  
Exit dose  
Midline dose 
Output 

99% 

Swinan et al 
[97] 

2mm Cu. 
Cylenderical.27mm length, 
diameter 20 mm. 
1.3 AL build up cap for 
Co-60.diameter7.6 mm 
.LiF powder. 

 Open field 
patients. 
6 MV and Co-
60. 
 

Entrance dose 
for 18 
radiotherapy 
centers 
Build up cap 
perturbation 

98% 

Amor Duch 
et al [96] 

12 mm polystyrene 
buildup cap, 
hemispherical. Diameter 
40 mm, 1 TLD 

TBI, 18 MV 
 

Entrance and 
exit dose 
 

98% 

Venables et 
al [98] 

10 mm buildup cap from 
(PTFE), 20 mm length, 4 
TLDs 

 6MV Co-60 
Breast 

Entrance dose 
Phantoms and 
429 patients in 
33 hospital 

99% 

Loncol et al 
[99] 

2 mm hemispherical 
buildup cap for steel, 12 
mm diameter, inner cavity 
filled with paraffin, TLDs 
in Perspex box 

8 MV 
Head and neck, 
Brain 

Entrance and 
exit dose 
249 

99% 

 

5.2.1 Capsule design 

TLDs placed at skin level may be surrounded with adequate material to avoid the initial steep gradient in 

the depth dose curve and thus to be reproducible, i.e. with a build-up cap of specific thickness close to that 

of dmax [63]. However, at high photon energies the thickness of the build-up cap can be several cm of 

water equivalent material. This may cause patient discomfort and leads to an under-dosage of a broad part 

of the treatment volume, combined with loss of skin sparing close to the capsule.  Moreover, the 

perturbation of the primary photons by the build-up cap takes place over a large area. Therefore, it is 

necessary to reduce build-up cap dimensions by using high-density materials, but in this case, the build-

up cap can change the energy response of the detector. To reduce these errors and uncertainties, 

calibration should be performed by the TLD in its build-up cap. Minimal perturbation is usually achieved 

by materials with similar effective atomic number for photoelectric effect, pair production and and Z/A to 

that of water [25, 46, 97]. 

The electron density ρe is given by 

                           
Ae m

Zx x
Ap p N ⎛ ⎞= ⎜ ⎟

⎝ ⎠                                                                                               (5.1)    
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 ρm : the mass density (g/cm3) of material m 

NA : Avogadro's number (6.022 x 1023) (atoms/mole) 

Z : the atomic number 

A : the atomic mass  

Therefore, the following calculations are used to determine the water equivalent thickness dH2O of  build 

up cap of material m and thickness dm, assuming  Compton interaction to be the dominant one: 

2

2
2

( ) ( )/
( )/( )

m
m

x mm
OHx OHm OH

p Z Ad dZ Ap
= =                                            (5.2) 

 

           Table 5.3: Physical data of build up caps (all dimensions in mm). 

 

 

6 MV  

 

 15 MV        

 Material 

Atomic 

Number 

Density 

(g/cm3) 

Diameter Wall 

Thickness 

Height Diameter Wall 

Thickness 

Height 

Copper 29.0 8.29 18.0 1.8 7.0 20.0 3.0 8.0 

Stainless steel 25.6 8.20 18.0 2.3 7.5 23.0 4.0 9.0 

Aluminum 13.0 2.79 25.0 5.7 12.0 33.0 9.6 20.0 

Plexiglas 6.25 1.19 30 10.0 20.0 30 10 20 

* The build up cap used for 6 MV 

 

 

Five build up cylindrical caps for various sizes made of Plexiglas, Aluminum, Copper and Stainless steel 

were constructed for both energies to accommodate four TLD chips per cap (Figure 5.2, a and b, Table 

5.3). The inner pocket, 14 mm in diameter was constructed to accommodate four 3.1x3.1x 0.89 mm3 

TLDs per cap, but those made of Plexiglas of 10 mm pockets may accommodate up to three TLDs. The 

build caps were manufactured in a private workshop in Larissa, while the Plexiglas one is manufactured 

by Kalef-Ezra et al [95]. 
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5.2.2 Testing of the capsules 
 

A total of 33 build-up caps were manufactured, five for each high-density material (aluminium, copper 

and stainless steel) and three from Plexiglas. 

TLDs located in the build caps attached to the upper surface of the 30 x 30 x 12 cm3 Plexiglas phantom 

were irradiated in the central beam axis on the phantom using a 10 x 10 cm2 field at SSD of 100 cm. A 

dose of 500 mGy in water was given (Figure 5.2. 1,c). Each TLD was identified by its position in the cap, 

while each cap had specific number. The build up cap was positioned such that the beams central axis 

passed through its central axis. The applied dose values ranged between 0.25 cGy to 10 Gy while a dose 

of 0.5 Gy was used to detect the effect of geometrical settings (SSD, Field size, tray, and wedge). 

To test the similarities in the construction between the capsules, all the capsules of each kind were 

irradiated under identical conditions and the doses registered by the TLDs in the capsules of each kind 

were compared. 

 

5.3 TLD calibration for entrance dose measurements 

TLDs in the build-up cap have to be calibrated to measure entrance and peripheral dose i.e. when 

positioned on the patient's skin the measured dose should be correlated to the dose at some location inside 

the human body, such as at the depth of maximum dose. Therefore, the most straightforward calibration 

method could consist of comparing the dose given to TLDs in capsules to the doses measured with a 

calibrated ionization chamber (IC) at the point if interest (Figure 5.3). Therefore, factors (F cal) that 

correlate the doses registered at the two points have to be determined experimentally. This methodology 

A  B  

C   

Figure 5.2: A, build up cap calibration set up for 

radiotherapy measurements. B, C, Build up caps  
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was proposed and used at Ioannina University Hospital by Kalef-Ezra et al [95] and other studies (e.g. 

[97-99]. 

 
Figure 5.3: Experimental calibration set up for entrance and exit dose   

5.3.1 TLD calibration in build-up capsules 

Calibration factor (Fcal) is defined as the ratio of the dose in water measured with the IC in Plexiglas 

under reference conditions, and the dose of the TLD irradiated in build-up cap under the same conditions.  

IC
Cal

TLD

RF R
=

                                                                                                                              (5.3) 

The experiments for the assessment of Fcal were repeated three times and the mean value was used. More 

specifically, TLDs in the build-up cap were placed on top of about 10 cm thick Plexiglas (PMMA), and 

were irradiated under reference conditions (field size 10 x 10 cm2, source-surface-distance (SSD) = 100 

cm, 0.5 Gy) simultaneously with an IC located at dmax, i.e. at 1.6 and 2.7 cm depth for 6 and 15 mV 

beams)(Figure 5.4), outside the shadow of the build up cap. This technique has limitations related to non-

uniformities of the photon field. No trial was made by switching the locations of the TLD and the IC. 

 
Figure 5.4 . Copper build up caps for 6 and 15 MV. 
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5.3.2 Build up calibration for entrance dose measurements   

5.3.2.1 Determination of geometrical correction factors 

In order to obtain an accurate radiation dose in clinical conditions, a set of correction factors has to be 

established to account for variations in the TLD signal in situations deviating from the reference 

conditions. The ultimate factors influencing the TLD response are the field size, SSD, presence of beam 

modifiers such as filters or wedges, presence of tray and blocks and the beam incident angle. Correction 

factors accounting for the variations in response are determined as the ratio of the reading of IC and the 

reading of the TLD for a clinical irradiation situation normalized to the same ratio for the reference 

situation. 

Correction factors were calculated for the following clinical conditions (Table 5.4):  

1. SSD correction factor (CFSSD)   

2. Field size correction factor (CFFS) 

3. Tray correction factor (CFTray ) 

4. Wedge correction factor (CFWedge ) 

5.  Angle correction factor (CFAngle ) 

TLD irradiations in build up cups were performed with the caps located on the top of the Plexiglas 

phantoms under a variety of irradiation geometries (Table 5.3).  

 

Table 5.4: different beam geometries for calibration TLD in build up caps 

SSD (cm) Field size (cm) Tray Wedge (degree) Angle 

85 5x5 5x5 15 15 

90 10x10 10x10 30 30 

100 15x15 15x15 45 45 

110 20x20 20x20 60 60 

120 25x25 25x25   

130 30x30 30x30   

 

calTLD SSD FS wedge Tray
x x x xDose Dose xCF CF CF CFF=

        (5.4) 

 

 Total SSD FS wedge Tray
x x xCF CF CF CF CF=

                                          (5.5) 

 

The reference conditions influence the value of the correction factor for a second parameter (e.g. the 

presence of a tray). The ‘reference condition’ for the determination of this second correction factor is 
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adapted in order to avoid double inclusion of the first correction factor. This is made clear in the practical 

recommendations given below.  

 

,
/

/

( )
( )

TLDIC

SSD FS
TLDIC

clinical
reference

R R
CF R R

=

                                                                           (5.6) 

 

Beam modifiers correction factors: 

• Tray correction Factor 

Inserting a tray of 5 mm thickness between the source and the patient changes the amount of electrons 

that reaches the patient skin. The tray correction factor varies with field size. To determine the tray 

correction factor, tray transmission is needed for different field sizes for TLDs and ionization chambers. 

To determine CFTray, we measure the tray transmission for different field sizes at the depth of dose 

maximum, first with an ionisation chamber and then with the build up cap placed in the surface of the 

Plexiglas phantom. The transmission factors measured with the ionization chamber and with the build up 

cap are compared, and CFTray as a function of field size is obtained 

 

Tray

ICtransmission
TLDtransmissionCF =

                                                                                           (5.7) 

• Wedge correction factor 

Inserting wedge in the beam results in decrease of the dose rate and a hardening of the spectrum beam. 

Therefore, a correction factor is needed. The wedge correction factor is defined as the ration between the 

wedge transmission factors for a 10x10 cm2 field with the same field as that used for the TLD reading on 

the surface of the phantom. 

                     
wedge

ICtransmission
TLDtransmissionCF =

                                                    (5.8) 

Transmission is defined as the ration of clinical value to reference value 

• Angular dependence 

Different gantry angles were considered to determine the directional dependence of the build up caps to 

evaluate the influence of the angle in TLD accuracy. 

 

5.3.3.2 Determination of Physical Correction Factors 

Physical correction factors include: fading, energy and linearity correction factors [25, 26, 29, 64, 69]. 

Since the TLDs are calibrated at the same energy used for clinical investigation and the readout process 
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was performed in less than 24 hours, the energy and fading correction factors are considered to be equal 

to 1. 

 

• Linearity correction factor 

Lithium Fluoride, which is commonly used in TLDs, is linear up to 1 Gy, but after that becomes 

supralinear. The necessary correction factor can be established by plotting the TLD reading against dose. 

The dose response curves for the TLD phosphors are linear in the dose range form 10 –5 Gy to 1Gy 

followed, in the case of LiF, by a supra-linear range for higher doses. At saturation region the LiF TL 

yield decreases. 

Therefore, correction account for the supralinearity of LiF: Mg, Ti is needed.  

The supralinearity correction can be defined as: 

              0 0

( ) /( )
( ) /

TL D Df D
TL D D

=
                                                                                                           (5.9) 

 

TL (D): TL signal corresponding to dose D. 

TL (D0): TL signal corresponding to D0 being in the linear region of the TL dose response curve. 

The radiation dose was measured from TLD signal with build-up cap according to the following 

expression: 

, , ,0 SSD FS Tray wedge linearityCalibration
x xD xFDose CF CF=

                        (5.10)                 

5.4. Thyroid surface dose measurements (TSD) 

In radiotherapy it is important to measure the doses received by the critical organs, which are outside as 

well as inside the direct radiation field. In this work, the scattered radiation dose to the skin surface, 

thyroid was measured during external beam radiotherapy for breast cancer patients.  

TSD were measured during breast radiotherapy, in order to evaluate the risk of radiation dose and the 

probability of a secondary cancer effect. The TLDs were packed in plastic envelopes and attached on the 

middle surface of the thyroid in presence of radiotherapist (Figure 5.5,A). The measurements were 

performed per field and for two fields. Doses to the thyroid can be measured directly in an 

anthropomorphic phantom. However, the phantom was not available. Thyroid dose can be derived from 

the prescribed dose using data in the literature. The TSD is measured as indicator for the thyroid surface 

dose. 

As far as we know, there is no available data to convert the surface dose to thyroid dose during 

radiotherapy. Therefore, in this calculation we used surface dose as a thyroid dose. ICRP [25, 26] have 

quoted the probability of a fatal cancer to the general public due to irradiation of the thyroid as 20 x10–4 

Sv-1 giving a risk of fatality due to thyroid cancer per treatment course. 
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Secondary tumour induction may seem a relatively significant problem, since the patient has to survive 

the primary tumour long enough for a secondary one to become obvious [105]. It has been estimated that 

the probability of developing a solid tumour after receiving radiotherapy is increased by 1.4% (10 years 

post treatment, and compared to the surgical control group) to 1 patient out of 70 [105]. 

The thyroid is the largest pure endocrine gland and it normally weighs about 20 g. It consists of two lobes 

connected by the isthmus in the midline. Each lobe is about 3–4 cm long, about 2 cm wide, and only a 

few millimeters thick. The isthmus is 12–15 mm high and connects the two lobes. (Figure 5.5,A).  

Radiation is one of the few accepted risk factors for thyroid cancer. Numerous studies have confirmed 

that the thyroid gland is one of the most radiation-sensitive human organs and that thyroid cancer is one of 

the most common radiogenic malignancies [106]. Thyroid cancer is the most common endocrine 

malignancy, accounting for 1.9% of all new malignant tumors (0.92% of cancers in men;2.9% in 

women;) [106] 

 

                       A B 

Figure 5.5. A, Thyroid position, B , TLDs in a Plastic envelope 

 

5.5 Skin dose measurements 

The dose to skin close to the treatment head can be divided into two main components, the dose from the 

secondary electrons produced by interactions with air, collimator jaws, beam monitor chambers, target 

and any other scattering material and electrons ejected under the action of the incoming beam inside the 

patient body. 

 

 

5.6 TLD and build up caps results and discussion 

The ratios of the doses registered in TLDs located in capsules to the doses given at dmax and assessed with 

the calibrated IC under reference conditions are shown in Table 5.5. It was found that ratio of doses was 

close to 1.00 when the Plexiglas caps were used for both 6 and 15 MV X-ray beams.  In a similar study at 

IUH a ratio of 1.00 was found when 6 MV X-ray beams were used [95,107]. The TLDs over responded 

at 6 MV fields, when located in Cu or S.S. cups but not in Al. On the other hand at 15 MV photon fields, 

the TLDs underesponded in Al caps and overesponded in Cu caps.  This can be explained by the fact that 
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SS and Cu compared to Plexiglas and Al have a higher Z material and produce more pair production 

electrons at higher energies (See Chapter 2).  

 

                 Table 5.5: Test results for build up caps according to the atomic number 

Build up cap n Nominal 

Dose 

Mean 

measured dose 

Measured/No

minal dose 

6MV 50.00 1.000 Copper 

15 MV 51.04 1.0208 
S. Steel 6 MV 51.24 

1.0248 
 15 MV 50.42 1.0084 

Aluminum 6 MV 51.01 
1.0202 

 15 MV 49.03 0.9806 
Plexiglas 6 MV 49.84 

0.9968 
 15 MV 

3 50.00 

50.12 1.0024 
 

Table 5.6 Inter-build up caps variations (nC) 
 

Caps Copper Aluminum Stainless steel Plexiglas 

 6 MV 15 MV 6 MV 15 MV 6 MV 15 MV 6 MV 15 MV 

1 1331.2 1777.0 1194.4 1396.3 1286.5 1663.7 1005.5 1011.8 

2 1342.2 1765.2 1186.2 1387.2 1292.5 1660.2 1003.5 1013.3 

3 1325.9 1779.2 1193.1 1378.3 1301.2 1674.3 1004.1 1018.2 

4 1338.5 1772.3 1202.4 1378.4 1297.2 1667.4 - - 

5 1336.8 1767.6 1188.2 1382.6 1289.9 1669.8 - - 

Mean 1334.9 1772.3 1192.9 1384.5 1293.5 1667.1 1004.4 1014.4 

Sd 6.4 5.9 6.3 7.5 5.8 5.4 1.0 3.4 

 

5 .6.1 Perturbation behind the detector  

 Dose perturbation was determined using a radiographic film (Kodak-X Omat) at dmax of the Plexiglas 

phantom using standard irradiation conditions. The profile was obtained using a film densitometer 

(VIDAR system corporation, USA). The different build-up caps were calibrated to measure entrance 

dose.  
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The relative dose ratios of TLDs in build-up caps versus the dose at dmax in the corresponding open field, 

due attenuation and absorption in the TLDs and the capsule itself, is given in Table 5.7 

 

Energy Copper Aluminum Stainless steel Plexiglas 

6 MV 14.1% 14.7% 13.7% 16.8% 

15 MV 22.6% 15.6% 22.9% - 

Table 5.7: Dose perturbation due to the presence of the TLD in the build-up capsule   

These perturbation values are higher compared to results obtained by previous studies using TLDs 

[97,98] and diodes [26] From these results (19%), the reduction of the dose in some areas of the treatment 

fields and the reduction of tissue sparing are of clinical importance and have to be taken into account. 

Therefore, it is preferable to be applied only few times in each patient, for example during the two initial 

treatment fractions an possibly twice at a later stage. 

 

5.6.2 Calculated correction factors (Copper capsule)  

The calculated entrance correction factors for field size, SSD, angle of incidence, and wedge angle are 

given in Tables 5.8 and 5.9.  The reproducibility of the measurements has been found better than 2.0 % 

for the 108 beam geometries. Most of the correction factors are close to unity and fall most within the 

uncertainty of the measurements.  

The variation in correction factors and Fwedge is most extreme for 15 MV energies. The correction factor 

increases with increasing field size, which can be explained by the electron contamination increase in 

function of field size [108]. Moreover, the dose contribution of contaminant electrons in high-energy 

beams is relatively high at 3 cm depth for field sizes 10x10 cm2 and larger. Compared to water, the high-

atomic number build-up caps have different scattering properties for these electrons. In addition, if the 

field size increases, not only more head-scatter electrons but also head-scatter photons reach the cap and 

because of high Z, produce more pair production electrons at higher energies. Since these photons are 

scattered through small angles and have only small variation in energy, they have similar penetration 

characteristics to un-scattered components [92]. 
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Table 5.8 Entrance dose correction factors and standard error of the mean (SEM) 

Energy 6MV SEM 15MV SEM 
Geometry CF  CF  
FS (cm2) CF (FS) 0.008 CF (FS) 0.014 

5x5 1.002 0.017 0.975 0.018 
10x10 1.000 - 1.00 - 
15x15 1.003 0.005 1.031 0.017 
20x20 1.007 0.012 1.041 0.012 
30x30 1.016 0.015 1.049 0.024 

SSD (cm) CF(SSD)  CF(SSD)  
85 0.989 0.018 0.987 0.022 
90 0.998 0.012 0.988 0.019 
100 1.000 - 1.000 - 
110 1.016 0.012 1.013 0.014 
120 1.022 0.014 1.029 0.019 
130 1.028 0.018 1.031 0.015 

Angle Angle  Angle  
0 1.00 - 1.000 - 
15 0.939 0.016 0.90.23 0.019 
30 0.878 0.015 0.86.25 0.012 

 
 

Table 5.8: geometrical correction factors to account for variations in TLD response in situations 

deviating from the reference irradiating condition in 6 MV and 15 MV photon beam energies 

 
 

Wedge angle 
 

Field size 

15 30 45 60 

5x5 0.981 0.990 0.984 0.995 

10x10 0.997 1.067 0.998 1.009 

15x15 1.009 1.098 0.998 0.985 

20x20 0.998 1.047 1.032 1.023 

25x 25 1.006 1.049 0.988 1.013 
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5.6.3 Effect of the atomic number on the TLD signal  

The TLD signals measured in the copper, aluminum, stainless steel and plexiglas increase with beam 

energy (Figure 5.6). A qualitative explanation can be based on the following argumentation [97,107]. The 

mass densities of copper, stainless steel, aluminum, and Plexiglas are 8.29, 8.20 2.70 and 1.17 to 1.19 

(depending on the production technique) g/cm3 respectively, i.e. larger than that of water, 1.00 [109,110]. 

On the other hand, for the mass weighted (Z/A ratio), plexiglas (polymethyl meatacrylate) has Z/A 

0.53937, water 0.55509, aluminum 0.4818, copper 0.45636, SS (it depends on the way of its production), 

however is quite similar to that of Cu. The TLD signal for Cu and SS are higher than the one for Plexiglas 

and Al. 

From the higher number of electrons per volume in Cu it follows that the number of scattered electrons is 

higher, which results in a higher TL signal in Cu and SS than in water (Figure 5.6). When the beam 

energy increases (15 MV X-rays), the probability of pair production rises. Pair production is almost 

proportional to Z As the atomic number of Cu is high, even more secondary electrons are set in motion 

and can get to the LiF TL chips, which results in a higher signal. 

y = 33.728x - 1567
R2 = 0.9835

-10000

0

10000

20000

30000

40000

0 500 1000 1500

Radiation dose(cGy)

TL
 s

ig
na

l (
nC

) Plex

Steel

Al

Cu

Linear (Plex)

b

TL signal versus radiation dose

y = 33.728x - 1567
R2 = 0.9835

-10000

0

10000

20000

30000

40000

0 500 1000 1500

Radiation dose

TL
 s

ig
na

l

Plex

Steel

Al

Cu

Linear (Plex)

 
Figure 5.6.   Correlation between TLD-100 signal and radiation dose.  (a) for 6 MV and (b) for 15 MV. 

 
The TL supra-linearity effects are illustrated in Figure 5.7, A and B, for both energies. The onset of 

supralinearity occurred clearly above 1 Gy .This can be explained by the fact that an increase of TL signal 

per unit dose for high Z material is not accompanied by decrease the linearity region compared with low 

Z materials.  
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Figure 5.7.   A, TLD linearity for Copper build up cap for 6 MV, and B for 15 MV 
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5.7 In vivo dose measurements 

In vivo dosimetry was performed after the commissioning of the build up capsules, in 69 patients (183 

fields Table 5.11) to assess the accuracy in dose delivery, to evaluate and improve the accuracy in dose 

calculation and delivery. The measured quantities were entrance and peripheral dose using 6 and 15 MV 

X-ray photon beams. At least two fields were tested per treatment. More specifically, four   fields were 

tested in prostate patients (Anteroposterior (AP), Posteroanterior (PA), Right lateral (RL) and Left Lateral 

(LL). For tangential breast treatments both fields were measured. Therefore, repetitive in vivo dose 

measurements on a limited number of patients yield information on the influence of patient anatomy on 

the accuracy of the dose delivery as well as on the reproducibility of the treatment method in daily 

practice. 

The delivery of radiation according to a specific treatment plan is important to maximize tumor control 

and minimize normal tissue complications (26, 69). The limitation of QA procedures to one or a few 

sessions of a fractionated treatment is usually required due to a number of factors [69], such field 

perturbation. Therefore, it might be more important to concentrate the efforts on the detection of 

systematic errors, which will be repeated by definition (and thus need corrective action). However, in the 

present study in vivo dosemetry +was performed in patients treated for breast, head and neck, pelvis and 

abdominal cancer of a fractionated treatment, for two of the treatment fields in minimum.(Table 5.9) . 

5.7.1 Patient Setup 

The build up capsule was secured on patient skin with tape at centre of the field. In PA treatments the 

beam has to pass first though the treatment couch The SSD to the surface of the couch was therefore 

taken and the build up cap placed on the posterior side of the treatment couch (for patient comfort). The 

initial measurements in each patient were performed in presence of a radiotherapist. Annex B, shows the 

Patient data documents for each patient. 

The contribution of systemic errors can be calculated by comparing the mean of measurements of specific 

patients to corresponding planned values. By comparing the mean of the measured value, random daily 

variations may be cancelled out [26]. The expected dose at dmax was calculated using a TPS and the 

dosimetric data obtained from linear accelerator calibration for each field. Isocentric and non-isocentric 

irradiation techniques have been used.  

Before starting patient measurements, patient set-ups were simulated using a phantom.  The irradiations 

and TLDs within build up capsules measurements were performed in identical conditions as in the 

clinical situation.  

Initial patient measurements were made using treatment fields, where there was easy fixation of the Build 

up cap in the field centre (head and neck, pelvis and abdomen). Later, the measurements were also 

performed in breast and wedged fields, because these techniques are complex and require excellent 

modeling from the planning system and accurate placement of the build up caps (Table 5.9). 
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Table 5.9: Number of measurements in vivo per anatomic region and per type of the treatment. 

Anatomic Region  Field No of Patients  No of Measurements  

Head and neck LL, RL 16  45 

Abdomen  AP, PA 8 24 

Breast Field in, field out 24 70 

Pelvis AP, PA, LL, RL 21 44  

Total  69 183 
 

 

5.7.2 Action thresholds set in literature 
 
The choice of tolerance/action levels is very important since they will in practice determine the number of 

"errors" detected and will influence the associated workload to implement or to maintain in vivo entrance 

dose measurements at a departmental level.  

When in vivo dosimetry is used to check particular treatments, the value of the levels can vary according 

to the treatment type. Treatments with high dose - high precision techniques require narrow tolerance 

windows, while other treatments have less stringent accuracy demands. In certain centres, it could be 

realistic to set higher tolerance/action levels for patients treated with palliative intent in order to minimize 

the number of second measurements, paying more attention to the patients treated with curative or 

adjuvant intent. The determination of the actual value of the level is based on different factors, first of all 

on the uncertainty of the detector measurement method [111]. 

Tolerance Level: For a performance parameter that can be measured, a tolerance level is defined. If the 

difference between the measured value and its expected or defined value is at or below the stated 

tolerance level then no further action is required as regards that performance parameter. 

Action Level. If the difference between the measured value and its expected or defined value exceeds the 

action level then a response is required immediately. The ideal response is to bring the system back to a 

state of functioning that meets all tolerance levels [112]. 

In order to implement a proper in vivo dosimetry programme, the clinical setting uncertainties involved in 

the measurement should be defined. For this reason two thresholds are generally given. An investigation 

threshold above which, a repeat of the in vivo dosimetry measurements is made, and, an action threshold, 

above which patient setup and treatment delivery is checked [111,113]. The action threshold should not 

be chosen arbitrarily as choosing the wrong action threshold can lead to time wasted on investigations into 

treatment errors, which do not exist [114]. This in turn leads to lack of confidence in the new techniques 

being offered. Action levels are based on 2 standard deviations from the mean measurement [111,114]. 

For a centre with calibrated diodes and a program in place to implement in vivo dosimetry regularly this is 

about 5 to 8% [111]. Even though Leunens et al [114] found the average standard deviation for all 
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measurements was 3.1% (1SD) for corrected tangential breast treatments they chose 5% as the tolerance 

level. Not surprisingly 10% of patients had deviations greater than 5% (the chosen threshold). Wedged 

and blocked fields had higher standard deviations. Breasts had higher standard deviations than vertebrae 

[111].  

Action levels set in literature vary between the various studies for example ranging in Europe between 

2.5% to 10% (Table 5.10). Action levels also depend on the complexity of techniques. In general, 

techniques using tangential fields with wedges are hard to check and generally have higher action levels 

[111].  

 

Table 5.10: Action Levels for different radiotherapy departments  [111] 

Institution  Technique  Action Level 1 Action Level 2  
Leuven  All Techniques  5 -10%  5 -10% (6 MV -18 MV)  

Barcelona  All Techniques  5%  5%  
Nancy  All Techniques  5%  10%  

Copenhagen  Tangential Breast  8%  8%  
Copenhagen  Prostate  5%  5%  
Amsterdam  Prostate  2.5%  2.5%  

Milano  Tangential Wedge  7%  7%  
Edinburgh  Conformal prostate  2.5%  2.5%  
Edinburgh  General Entrance  5%  5%  

 

                    

 

 

 

 

5.8   In vivo dosimetry results and discussion 

 

10 build up cylindrical caps made of copper were used for both energies to accommodate four TLD chips 

per cap. The cap dimensions and physical construction are demonstrated in Table 5.2, Build-up caps 

made of Cu were found to be optimum for high-energy photon fields due to copper having a high density 

(8.29 g/cm3) and high atomic number (Z= 29); copper provides the minimal amount of metal needed to 

achieve full buildup at dmax.  To prevent friction from the metallic build up cap, a piece of plastic was 

placed over the TLD’s in the build up cap.  This was used in all steps of the dosimetry to ensure 

uniformity across the measurements. 
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5.8.1 Head and neck  

Forty-five entrance dose measurements were carried out in 16 patients who received fractionated 

radiotherapy treatments applying either isocentric or non-isocentric irradiation techniques with opposed 

lateral 6 MV fields at UHL. Due to the limited number of patients per group (larynx, nasopharynx and 

brain) the data was grouped together. Patients were treated in the supine position with a fixed individual 

thermoplastic mask for immobilization. Markers for patient set-up, field center and fields’ edges were 

indicated on this mask. Figure 5.8 illustrates a TLD capsule made of copper, attached to the patient’s 

mask in the central beam axis for the assessment of the entrance dose of the left field. The entrance dose 

for the studied fields ranged between 0.90 and 1.87 Gy in water. Beam modifiers (trays and wedges) were 

used for some of the fields.  

 
Figure 5.8: Placement of copper build up cap for in vivo entrance dose measurements, attached in a 

patient mask in central axis of the beam for entrance dose measurements. 

The mean value of the all dose measurement is presented in Figure 5.9. 
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Figure 5.9: Entrance dose ratio for head and neck cancer patients (left and right lateral fields) 

 

The global mean of all measured ratios of measured to stated entrance dose per patient during the two 

series of measurements are shown in Fig. 5.6 (series 1(right lateral)) and series 2(left lateral) The mean 

ratio is 1.017±0.05, and 1.016±0.06 for left and right lateral fields respectively .The number of patients are 
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16 patients with 32 fields, and because of some patients were measured more than two times, the total of 

fields are 45 (annex D.1 shows the details of dose measurements). The mean value of the fields is 

presented. No patient received a dose less than 5% percent of the prescribed one.  The large deviation can 

be explained by in accuracy in SSD, since the TLDs are placed in the masks a better accuracy is expected 

with analyzing all source of errors. 

Table 5.11 illustrates the accuracy obtained from different reported studies in the literature. The results are 

comparable to our results.  

The main reported reasons for the higher doses are (i) patient set up, (ii) error in indicator of the treatment 

couch (iii) inaccurate acquisition of body contours [9,57,108] and (iv) when the beam axis passed through 

air cavities or when the on-axis point was near bony structures (Inhomogeneous structures)[69]. Better 

fixation is going to reduce the random errors but not the systematic.  

Table 5.11: Results of in vivo dosimetry performed in head and neck cancer patients. 
 

Authors 
Number 

of 
patients 

No. 
Setups 

Detector Measurements Errors 
<5% 

Present study 16 45 TLD Entrance dose 5% 

Leunens et 
al[115] 

17 554 TLD/Diodes Entrance dose 3% 

Leunens et 
al[116] 

47 230 TLD/Diodes Entrance dose 20% 

Essers  [117] 23 261 Diodes Entrance +exit 9% 

Broggi et al [118] 16 116 Portal 
detectors/Diodes 

Midline dose 3.5% 

Tung et al [119] Phantoms - TLD/Diodes Midline dose 8% 
                      

In conclusion, these initial clinical tests demonstrated that high Z build up caps can be implemented in 

practice without an excessive increase in workload.  Accurate positioning of build up cap during 

treatment takes approximately 1 min and estimation of the agreement between estimated and calculated 

entrance doses need to be improved by further investigations although, the results are within the 

acceptable limits.  

5.8.2 Breast 

Seventy entrance dose measurements were carried out in 24 patients, which received fractionated breast 

radiotherapy treatments at LUH.  6 MV wedged tangential X-ray fields were used in all patients, but in 

patients with large breast that were treated with 15 MV X fields (Figure 5.10, A&B).               

After patient set-up, a pair of build up capsule was placed on the beam axis at the entrance and exit 

surface. The mean ratios of the measured to the expected entrance dose per patient ranged between 0.92 
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and 1.20 with mean values and standard deviation 1.011+0.04 and 1.002+0.04 for external and internal 

fields respectively (Figure 5.11) (Annex D.2). These findings are lower with those reported by other 

investigators using TLDs in capsules, taking into account the high Z build up caps characteristics 

[95,97,98] (Table 5.14). The entire breast in vivo dose measurements has an error of 0.4%, which 

indicates a problem in a placing the TLDs.   

 

 

 
A                                                                                                B 

 

 

Figure 5.10 , A Schematically representation of build-up cap positioning in lateral breast treatment field, 
B, Breast treatment plan using tangential fields 
 
 
 

 
Table 5.1:. Βreast dose results in some studies in literature (Mean value± SD), ratio of measured to 

prescribed doses. 
 
Authors Number 

of patients 
Detector Measurements (Mean value ± SD). 

Present study 24 TLD Entrance 1.011+0.04 

Kalef-Ezra et al [95] 69  

67 

TLD 

(Plexiglas capsule) 

Entrance dose (Internal) 

Entrance dose 
(External) 

1.013±0.041 

1.030±0.041 

Venables et al [98] 429 TLD Entrance, exit 0.99±0.04  
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Figure 5.11: Entrance dose ratio breast cancer patients  

5.8.2.1 Thyroid surface dose measurements 

In radiotherapy it is important to know the doses received by the critical organs. Recent developments in 

radiotherapy increase patient survival rate. For example, survival rates for breast cancer have been 

improving for more than twenty years and more women are being successfully treated than ever before 

[120].  These developments increase the importance of reducing the probability of induction of radiation 

late effects in the thyroid gland, such clinical hypothyroidism and thyroid cancer. For these reasons we 

have studied the thyroid dose due to scattered and leakage radiation in patients undergoing therapy with 

wedged tangential breast fields at UHL. 

Thyroid and skin doses were measured during breast radiation therapy of 24 patients using TLDs placed 

in a thin plastic film at center of the thyroid gland. The measurements were performed for single fields 

and for two fields.  Table 5.15 illustrates the percentage of thyroid dose per radiation field and skin dose 

due to primary, head scatter and leakage radiation. (The measurements were expressed as a percentages 

of the of the prescribed dose. Measurements were made during 2- 3 treatment sessions in minimum using  

TLD detectors taped appropriately to the neck.  

An average skin dose of 3.7% of the prescribed dose, which ranged between 90 to 133 cGy per field, was 

found (Table 5.13). These results are comparable in those of the in vivo of reported by Besbes et al [100]. 

Chougule [121] reduced the thyroid dose by 10 to 40 percent by using a 0.5 mm thick lead rubber cover 

over the thyroid during radiotherapy to breast.  
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Table5.13: Breast entrance, exit and peripheral dose 

Field internal Field external 

Parameter 
Thyroid 

surface dose 

Skin dose 

(total) Entrance 

dose 

Skin dose  

per field 

Entrance 

dose 2 

Skin dose 

per field 

Dose (cGy) 6.165 138.53 167.20 66.06 165.34 64.125 

% of entrance 

dose 
3.7% 83.95 % 1.013 40.03 1.002 38.86 

sd 0.132 1.235 0.142 1.42 0.213 1.642 

   

 

Besbes et al [100] measured the thyroid dose with diodes during breast and nasopharynx radiotherapy for 

12 and 18 patients respectively. The patients were treated with a Co-60 unit. The dose was 1.14 Gy during 

the treatment. The prescribed dose Gy was 50 or 51.2. Stevens et al [101] determined the absorbed dose 

received by thyroid during proplylatic cranial irradiation in childhood leukemia and the factors that affect 

the dose. The dosimetry was performed in a phantom for both energies; 6MV and Co-60. They estimated 

that the thyroid depth was 1-2 cm. The dose ranged between 0.7- 7.3% (13-132 cGy) of the prescribed 

dose. Thyroid superficial dose was also measured to be only 1.5% of the prescribed dose. Porlaluri et al 

[103] measured the scattered radiation during breast cancer radiation therapy using TLDs. The dose was 

measured for thyroid using Perspex holders. The measurements were performed for two lobes of the 

thyroid. The average scattered dose was 0.53-2.15 Gys for the thyroid and 0.14-0.19 Gy for the gonads 

(Table 5.15). Cigna et al [104] measured the radiation-scattered dose for 11 organs during breast 

radiotherapy. The mean equivalent dose was 91 mSv for the thyroid (Table 5.14).  
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Table 5.14: Peripheral dose results and dose descriptor used in different studies 

Author Organ Technique Dose descriptor 

Besbes et al [100] Thyroid 18 Nasopharynx,  

12 breast 

Diodes, Co-60 

Stevens et al [101] Thyroid Prophylactic cranial 

irradiation (Children) 

Phantom study 

TLD, 6 MV and Co-60 

Van der Geissen [102] Fetus Breast cancer 

And phantom 

Build up caps with 3 TLD. 

Mazonakis et al [122] Thyroid Phantom study  

Brain tumour 

TLD 

6 MV 

Portaluri et al [111] thyroid and 

gonads 

Breast 3TLDs in a hemispherical 

caps of polystyrene placed  

Cigna et al [103] 11 organ, 

thyroid, etc… 

Prostate Pen dosemeters 

6 MV 

 

. 

From previous studies, it is clear that the thyroid received a significant dose during breast radiotherapy. 

Therefore, the routine evaluation of the thyroid function is important in patients who have been treated 

with radiotherapy and whose treatment portals have included a large part of the thyroid gland. A suitable 

protection of the thyroid gland is important to be provided specially for the patient performing radical 

radiotherapy when young. A reduction in the thyroid function often occurs without any significant 

symptoms, and often remains clinically undetected. The incidence of thyroid dysfunction may be 

decreased by reducing the field size or the irradiated volume of the thyroid gland and by using modern 

radiation equipment with high precision. 

 

 

3.8.3 Abdomen  

In vivo entrance dose measurements were carried out on 8 patients with a total of 20 treatments fields, 

using 6 MV X ray beam for different treatment conditions.  

The reproducibility of TLD dose measurements was within 2%. Figure 5.12 represents the ratio of 

measured to expected entrance dose, treated for abdominal cancer, with the mean ratio of 1.0035 and 

standard deviation of ±0.04 and 1.009 with standard deviation of ±0.04 for Anteroposterior and PA fields, 

respectively (Figure 5.12(Annex D.3)). The measurements show good agreement between measured and 

expected dose in general. Large errors were detected on some patients assumed to be related with patient 

movement and respiratory motion. The maximum displacement was measured to be 24.0 mm and 34.0 
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for intrafractional motion for pelvic and abdominal region respectively [123] and the difficulty of 

placement of the capsule in PA field, which decreases the distance between the source to the surface of 

the build up cap and consequently might result in a higher dose. 

Table 5.15 illustrates the accuracy obtained from different reported studies in the literature. The results are 

comparable to our results. 
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Figure 5.12: Entrance dose ratio for abdominal cancer patients 

Table 5.15. Abdominal dose results in some studies in literature (Mean value± SD) 
 

Authors 
Number 

of 
patients 

No.setups Detector Measurements Errors <5% 

Present study 8 24 TLD Entrance 4% 

Briot et al 
[124]∗ 

28 - TLD Entrance+Exit 4% 

8-12% 

Greig et al 
[125]∗ 

8 - Diodes Entrance 3-4% 

Appleyard et 
al [126] 

- 712 Diodes Entrance 5% 

ESTRO [111] 46 640 Diodes Entrance 5% 

Adeyemi et al 
[127] 

550 - Dides Entrance 5% 

Fiorino et al 
[128] 

33 437 Diodes Entrance 7.6% 

∗ Total body irradiation 
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 3.8.4  Pelvis     

Patients with pelvic tumours are treated in supine or prone position according to the malignancy site. 

Pelvis treatments had results, which include different clinical conditions (prostate, cervix and rectum) 

distributed around a mean, with an average of 0.99 for all fields (AP, PA, RL and LL) with standard 

deviation of 3.6 %. In vivo entrance dose measurements were carried out on 21 patients, with a total of 44 

treatments fields, which received fractionated radiotherapy treatments using 6 MV and 15 MV X ray 

beams.  

 

 
Figure 5.14. Treatment plan for prostate  

 

The reproducibility of TLD dose measurements is within 2%. Figure 5.15 represents the ratio of 

measured to expected entrance dose of 21 patients, treated for abdominal cancer, with the mean ratio of 

0.9963 and standard deviation of ±0.0364 and 0.9902 with standard deviation of ±0.0546. The 

measurements show good agreement between measured and expected dose in general. Some patients 

have a big error, due to respiratory motion and the difficulty of placement the build up cap in PA field, 

which decreases the SSD and consequently results in a higher dose.  

This is higher compared to results found in other institutions (SD = 2.7% and 3.0% for Leuven and Milan 

respectively, Table 5.10).  To avoid the shadow effect, either the entrance detector or the exit detector 

should be shifted slightly off the beam axis. Since the exit dose is more sensitive to the position 

displacement, it is recommended to keep the exit detector on the axis and shift the entrance detector off 

the axis. 

For a dose this small build up cap would have a larger standard deviation. If all 3 fields are considered per 

treatment the mean is 1% and the standard deviation is 1.9%. This is comparable to the 1.5% S.D. 

reported by other studies [117].  

Table 5.16 illustrates the accuracy obtained from different reported studies in the literature. The results are 

comparable to our results 
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Figure 5.15: Entrance dose ratio for pelvic cancer patients 
 

 

 

 

Table 5.16. Pelvic dose results in some studies in literature (Mean value± SD) 
 

Authors 
Number 

of 
patients 

No.setups Detector Measurements Errors >5% 

Present study 21 44 TLD Entrance 0.9963±0.04 

Kalef-Ezra et 
al[95] ∗ 

35 

19 

160 

80 

TLD 

(Plexiglas capsule)  

PA/AP 

Lateral 

1.011 ±0.016 
1.009  ±0.017 

 

Heukelom  et 
all[129] 

11 35 Diode Entrance 

 

0.9% 

Scarantino et 
al[130] 

18 64 MOSFET Entrance 5-8% 

Lanson et 
al[131]∗ 

27 318 Diodes Entrance 1.005±0.013 

Fontenla et al 
[132] 

6 - Diodes Entrance+Exit ±4 

∗(Mean value ± SD). 

 
 

5.8.5 Thyroid surface dose and cancer risks 

Thyroid cancer is one of the least frequent causes of death from cancer. In the general population, it 

accounts for approximately 1% of the total cancer incidence [133]. The choice of energy also plays an 
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important role, because lower energies have been shown to result in lower risk for second malignancies 

[134]. In the case of higher energies, the neutron dose should be included in the calculation of the whole-

body dose, because it can contribute an increase of 4% – 10% to the risk for secondary cancer. If lower 

energies are used, more MUs are required because of the lesser penetrating power of these beams; hence, 

radiation leakage is increased. 

An average thyroid skin dose of 3.7% of the prescribed dose was measured. In order to estimate the total 

dose delivered over an entire treatment course (50 Gy over 25 fractions).   The skin dose overlying the 

thyroid will be ~1.85 Gy. As far as we know, no available data to convert the surface dose to thyroid dose 

during radiotherapy. 

Previous studies have shown that adjacent organs can receive a dose of radiation from both internal or 

external scatter as well as machine-dependent leakage when radiation is used to treat cancer [135] 

It therefore is of increasing importance to determine the possible carcinogenic effects of RT as a result of 

scattered radiation among patients with breast carcinoma. Previous studies have focused mainly on the 

possible increase in the incidence of carcinoma in the contralateral breast due to this scatter [135]. 

Reda et al [136] measured radiation dose to the left breast during radiotherapy using anthropomorphic 

phantoms and Monte Carlo calculations.  The thyroid dose was estimated to be.0.4% (0.213) Gy of the 

breast of total dose (50Gy) using cobalt 60. However, to our knowledge no data was available for higher 

energies. By using the same conversion factor used in a previous study, thyroid dose can be 0.2 Gy of the 

prescribed dose. The risk for radiotherapy-induced thyroid malignancies can be estimated equal to 2x 10-
5.   

Therefore, such risks should be considered during treatment and certain precautions such as shielding, 

should be taken to reduce the treatment- related complications. 

Fortunately, Age at exposure can modify the effectiveness of radiation to cause cancer; for example, 

radiogenic thyroid cancer is not apparent among adults exposed after age 20 and radiogenic breast cancer 

is not seen among women exposed past menopause [135] 

In the literature, many studies are published concerning thyroid risk due to head and neck cancer 

especially in children. 

Mazonakis et al [122] estimated the risk of the radiation-induced cancer from treatment of brain tumours 

in adults and children using a phantom. Thyroid dose was varied between 9.6 to 89.4 cGy depending in 

the field size and thyroid location. They estimated the excess of relative risk of thyroid cancer irradiation 

for exposed children to be 0.6 –14.9 while the adults risk is 0.1-1.1.  Mazonakis et al [122] also measured 

the radiation dose to unshielded thyroid and found it to vary between 2.6 and 4.4% of the prescribed dose 

depending upon the age of the child. The placement of a couch block reduced the thyroid dose to 1.2–

2.7% of the cranial dose. 

In contradicted study Haung et al [135] reported that, there was no significant increase in the risk of 

thyroid carcinoma in either the radiotherapy cohort or the non- radiotherapy cohort compared with the 
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general population; therefore, women who have received radiotherapy for breast carcinoma 

require no special surveillance for their thyroid gland. 

Careful consideration should be paid to treatment setup, as collimator orientation and the use of shadow 

trays with shielding blocks can alter scattered radiation, increasing the thyroid dose significantly. Due to 

the linear dose response relationship for induction of thyroid cancer at doses exceeding 10 cGy, attention 

to these steps will result in a significant reduction in the risk of thyroid cancer. 

  

5.8.4 Skin dose and risks 

High-energy photon beams, which are used for treating deep-seated tumors, have a skin-sparing effect but 

are contaminated with secondary electrons. Unacceptable normal tissue reactions remain in many cases 

and this is the limiting factor for delivering a tumorcidal dose in radiotherapy [25]. Acute radiation 

reactions typically appear between 10 and 14 days after the commencement of radiotherapy and continue 

to increase in severity until the completion of treatment [137]. 

In this study, measurement of skin dose of patients treated for breast cancer was performed using 4 TLDs 

placed in a plastic film. Skin dose can measured with better accuracy using extra thin thermoluminescent 

dosimeters. However, the TLDs were used according to the availability.  

The mean skin dose for a breast treatment session was estimated to be 42% of dmax in tangential breast 

fields. Therefore, the total skin dose delivered over an entire treatment course will be 2 Gy, which is 

higher than the threshold of erythema. Radiation thresholds are presented in Chapter 2, Table 2.12  

These results are similar to findings reported in the literature. Harber et al [138] estimated that 90% of 

patients treated with radiotherapy for breast cancer would develop a degree of radiation-induced 

dermatitis (radiation dermatitis). Acute skin reactions can range from mild erythema to moist 

desquamation in which the dermal injury is severe enough to cause skin slough (Figure 5.16) 

[139]. 

Before the development of modern megavoltage x-ray capability, skin toxicity limited the doses that 

could be safely delivered to the breast.. However, the dose of megavoltage x-rays builds up at a depth 

below the skin [139]. 

This Early effects such as erythema and desquamation usually appear during or immediately after 

radiotherapy therapy, whereas late effects develop some years afterwards. The acute side effects resolve 

rapidly without treatment [46, 95]. However, in a substantial group of patients, radiation-induced fibrosis, 

telangiectasia, and skin pigmentation disorders appear at different times after radiotherapy. 
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                            Figure 5.16. A photo skin reactions taken at 6 weeks of treatment [139] 
 

Generally, during the course of radiation sequelae follow a distinct clinical pattern. An erythematous rash 

can develop on the skin of treated patients within a few hours of exposure and can persist or slowly 

worsen until the end of radiotherapy treatment. 

The severity of skin reactions during and following breast irradiation is influenced by both treatment-

related factors and patient-related factors. Treatment-related factors include the fraction size (the dose 

delivered with each treatment), the total dose delivered, the volume of tissue treated, the type of radiation, 

and the addition of chemotherapy. Patient-related factors include breast size, axillary lymphocele drainage 

before treatment (suggesting poor lymphatic drainage), age, and infection of any surgical wound. 

[103,121,122] A patient's genomic constitution also influences their risk of normal tissue toxicity [138]. 

 

5.9 General discussion and conclusions 

 
The use of high Z material build up caps resulted in relatively high TL signal, but no affect was seen on 

the incidence of supra-linearity or the accuracy of the dose. Accuracy better or equal to >5 % on all 

measured fields was achieved (Table 5.17). Tissue equivalent material and low Z material gave better 

results, but the size of the build up cap is not suitable for small fields and high energies.  The results also 

showed that copper and steel are more suitable for in vivo dosimetry of small fields, while aluminum and 

Plexiglas can be used for large fields with a better accuracy due to their low atomic number but higher 

perturbation. The perturbation area, a circle of 18 mm diameter of the buildup cap, illustrated that it could 

be a limiting factor in entrance dose in-vivo dosimetry measurements by underdosing the tumour up to 

24%.  

Therefore, in agreement with previous suggestions, in vivo measurements of entrance dose can be 

performed three times during the course of treatment.  
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 In vivo entrance dose results for head and neck, breast abdomen and pelvis are comparable with the 

previous studies. Our results show lower values than previous studies. This can be attributed to the fact 

that we measured the dose only, while other studies measured the dose including setup errors, etc. It is 

important to note that the patient movement or any change on capsule angle can underestimate the dose. 

 

Table 5.17: Summery of the in vivo dosimetry results compared with action levels 
 

Anatomic Region 
Results from this study 

Global dose ratio 

No. patients 

>5% 

No.  Patients 

>8% 

Head and neck 1.017±0.05 13 3 

Breast 1.011+0.04 21 3 

Abdomen 1.004±0.04 6 2 

Pelvis 0.996±0.04 17 4 

 

The limitations of build up caps are time and effort required to set a calibration, and set the geometrical 

and physical correction factors. Furthermore, during this work, the TLDs might break or scratch due to 

friction with the metallic build up cap.  

The risk of thyroid dose due to breast cancer is considerable, due to increased life span of cancer patients. 

Therefore, a suitable protection of the thyroid gland is important and needs to be provided especially for 

patients receiving radical radiotherapy when young. 

Although, the patient risk due to radiotherapy is unavoidable, it is important to ensure that exposure of 

normal tissue during radiotherapy be kept as low as reasonably achievable (ALARA) consistent with 

delivering the required dose to the planning target volume (PTV). 
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6. IN VIVO DOSIMETRY IN LOW ENERGY BEAMS 

 

6.1 In vivo dosimetry in radiology 

The medical use of ionizing radiation continues to develop and more complex examinations now entail higher 

exposures. The average annual per caput effective dose is 1.3 mSv in level 1 of health care countries [19].  

Council Directive 97/43/Euratom [20] on the health protection of individuals against the dangers of ionizing 

radiation in relation to medical exposures recognizes these facts and, therefore, requests careful justification and 

optimization of radiological procedures. The latter means that the requested diagnostic information is obtained 

at the lowest possible dose. Practical implementation of this principle is only possible when suitable tools, such 

as diagnostic reference levels for radiological diagnostic examinations, are available. The ethics and research 

committee at UHL approved this study and informed consent was obtained from all patients prior to the 

procedure. 

The aim of this part is to:  

i. Quantify and evaluate the radiation doses for children and women undergoing Micturating 

cystourethrography (MCU), Hysterosalpingography (HSG) and Endoscopic retrograde 

cholangiopancreatography (ERCP) patients according to the protocol used at the Radiology 

Department. 

ii. Optimise the radiation dose for patients and staff. 

iii. Compare the doses based on available data obtained by other researchers and reference levels 

recommended by international organizations. 

iv. Evaluate the techniques applied in order to reduce patient and co-patient doses, and staff doses. 

v. Estimate the radiation risk to the sensitive organs, thyroid surface dose for both patients 

vi. Estimate the radiation risk to co-patients and staff. 

vii. To propose a local diagnostic reference level. 

 

6.1.1 Specific radiological procedures: 

        Radiation doses were measured for frequent procedures and considered as gold standard techniques for some 

sensitive groups. The first procedure is performed for infants and children.  The dose to patients and co-patients 

was measured during MCU because it is the most frequent examination and represents about 30–50% of all 

fluoroscopic examinations performed in children [140]. Infants and children constitute 10% of the total number 

of radiological examinations [18, 19]. Neonates and children are more sensitive to ionizing radiation than 

adults.  The risk of them developing a radiation-induced cancer, hereditary effects or other serious disorders is 2 

to 3 times that of adults due to their greater cell proliferation rate and long life span expectancy.  

The second procedure, is performed for women in childbearing age, and involves unavoidable radiation dose to 

the ovaries and genital organs of patient as well as to the staff. It has been estimated that HSG is performed in 
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90 % of female patients who undergo for infertility consultation. Infertility, which is defined as an inability to 

conceive after one year of unprotected intercourse, has been estimated to occur in 8-20 % of couples [141,142]. 

The third procedure is performed for the evaluation of pancreaticobiliary disorders and the treatment of many 

clinical situations with a high successful rate of up to 90% [143,144]. Gallstones are a common indication for 

ERCP with 5% to 20 % prevalence in the general population, increasing with age. Considerable radiation doses 

are delivered to entire patients groups. The examiners have always been required to stand close to the patient in 

order to oversee the procedure. As a consequence, the unprotected parts by the lead apron (hands, eye lens, 

thyroid), may receive significant radiation dose from scattered X-rays, which might later translate to tissue 

reaction (deterministic effects, (cataract)) and cancer/heritable effects (stochastic effects).  Although the 

radiation dose to examiners is very low, no radiation dose can be considered safe.  Furthermore this low dose 

accumulates with time when a high workload coexists [18, 19].  

 

6.1.1.1 MCU 

MCU is X-ray examination used to visualize the urethra and urinary bladder that takes place during micturating 

(voiding). MCU or voiding cystourethrography (VCUG in USA) has been performed since 1914, by 

Kretschmer to detect the reflux.  Urinary tract infection (UTI) is one of the most common sources of infection 

in children under 5 years of age. UTI incidence during childhood has been estimated to be 8% for girls and 2% 

for boys.  A large number of children may be considered for radiological investigation [142,145]. 

Vesicoureteric reflux (VUR), the retrograde flow of urine from the bladder to the ureters and renal pelvis, has 

been identified as the most important risk factor for the development of UTI. The prevalence of VUR has been 

estimated to be 18-40 % of the child population investigated for their first episode of UTI [145,146]. In 

uncircumcised boys there is a 10-fold increased incidence [147]. 

 

6.1.1.1.1 Investigation procedure: 

A standard protocol for MCU was established in order to ensure consistency of performance and application of 

radiation protection principles. An Ultrasound (U/S) was usually performed of the urinary system before the 

investigation.  200 ml of contrast medium (50 ml of ionised contrast medium (Ultravist) diluted in 150 ml of 

normal saline solution (0.9%)) was administered via urethral catheter using a gravity drip. Catheterisation was 

performed under strict septic conditions: the skin was carefully cleaned with anti septic solution (Bethadine) 

and then a 6F feeding tube was inserted in the urethra with the help of a sterile anaesthetic gel (Xylocine gel 

2%). After urine egression the catheter was advanced a few centimetres more and was secured to the skin 

surface with tape. The catheter was taped in the left inner thigh of the child, in order to avoid its projection over 

the male urethra in the lateral views.                                  

Intermittent fluoroscopy was performed with automatically selected kV and mAs exposure parameters to detect 

VUR or other abnormality. Radiographic images were taken in cases where there was a presence of reflux or of 

difficulty in evaluating a finding such as air filled intestinal loops obscuring the area of interest.  
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A fluoroscopic image was obtained before the administration of contrast to ensure the correct position of the 

catheter (scout view). After contrast administration, the examination has two phases, filling of the bladder and 

voiding. Fluoroscopic images are taken during early filling of the bladder (valuable in case of ureteroceles and 

grade 1 reflux that can be obscured by fully filled bladder), and with a full bladder (Figure 6.1). 

During voiding, fluoroscopic images of the urethra were taken (in the lateral position for males and supine 

position for females). Fluoroscopic images of the renal area and the bladder view were taken following voiding 

(for neurogenic bladder). Most small children (< 1 year) do not empty their bladder completely. Occasionally 

right of left oblique views were performed. Since VUR is an intermittent phenomenon, filling and voiding of 

the bladder is repeated at least three times. 

                                                                                                           

 

 

 

 

 

 

 

 

 

 

 

                                             Figure 6.1: A simple description of MCU procedure 

6.1.1.1.2 Patient dosimetry 

A total of 52 children (35 male and 17 female) were examined at UHL, with a mean age of 0.36 years (0.02-2 

years), and weight between 2.28 and 16.4 Kg. They were divided into two reference groups: Group 1, newborn 

(0-6 month) and Group 2, from 6 months to 2 years old. For each patient all the following parameters were 

recorded: radiographic data (kV, mAs and exposure time), fluoroscopic data (minimum and maximum kV and 

mA and total screening time) and patient data (name, gender, age, weight, height, date of birth, clinical 

indication, and radiologist, start and end time). The mean and the range of the patients’ physical data and the 

number of radiographic and fluoroscopic images are presented in Table 6.1. The radiographic and fluoroscopic 

exposure factors for each age group are shown in Table 6.1 and Table 6.2. 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 00:59:49 EEST - 3.129.92.231



Chapter 6. In vivo dosimetry in low energy beams 

 100 

 

 

Table 6.1: Number of patients included in the study, the mean and range values of weight, thickness, screening 

time and number of radiographic and fluoroscopic images. 

Age Group n Weight 

(kg) 

Mean (range) 

Height 

(cm) 

Mean (range)

Screening time 

(s) 

Mean (range) 

No. 

radiographic 

images 

Mean (range) 

No. 

fluoroscopic 

images 

Mean (range) 

Newborn (all) 39 6.0 (2.8-16.4) 61.1 (49-89) 42.7 (24-84) 1.70  (0-6) 6.4 (1-11) 

Male 29 5.6 (2.8-10.9) 60.2 (49-82) 42.6 (24-82) 1.60 (0-6) 6.3 (1-11) 

Female 10 7.7 (3.4-16.4) 65.7 (51-89) 44.0 (30-84) 1.60 (0-4) 6.5 (3-11) 

2 years old (all) 13 8.6 (6.5-11.5) 75.2 (66-80) 46.9 (24-126) 0.66 (0-3) 6.9 (4-10) 

Male 6 7.9 (6.5-10.8) 73.6 (66-80) 40.5 (24-48) 0.68 (0-2) 7.3 (5-10) 

Female 7 8.9 (7.1-11.5) 76.1 (69-80) 50.6 (24-126) 0.68 (0-3) 6.4 (4-8) 

 

Table 6.2: Exposure factors used for radiography and fluoroscopy during MCU examinations 

 

Radiography Fluoroscopy Age Group 

kVp 

Mean (range) 

mAs 

Mean (range) 

kVp 

Mean (range) 

mA 

Mean (range) 

Newborn 70 (65-80) 12.3 (4-21) 59 (40-78) 0.66 (0.1-1.6) 

2 years old 75 (70-80) 14 (14-16) 58 (40-77) 0.72 (0.1-1.2) 

 

6.1.1.1.3 Co-patient dosimetry 

TLDs were placed on the outside of the lead apron (0.5 mm thick lead equivalent) at the level of left breast 

towards the child’s head. The absorbed dose by the co-patient is calculated using specific software (see chapter 

3 ). 

 
 

Figure 6.2 a photo explains the 

patient’s position, TLDs locations and 

co-patient 
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6.1.1.2 Hysterosalpingography  

Hysterosalpingography (HSG), also called uterosalpingography, is an efficient, quick and non-invasive reliable 

radiologic procedure for evaluating the anatomy of the female genital tract and assessing the function of the 

fallopian tubes and structural abnormalities that can contribute to infertility [141,142]. Blockage of one or both 

fallopian tubes causes about 35% of cases of infertility in women. Infertility, which is defined as an inability to 

conceive after one year of unprotected intercourse, has been estimated to occur in 8-20 % of couples [142]. 

HSG, which is performed only for diagnostic purposes, can restore fertility due to the passage of the contrast 

medium under pressure into the tubes via uterine cavity and therefore enhance the fertility [141,142].  

6.1.1.2.1 Investigation procedure 

HSG was performed by two experienced radiologists, according to a standard protocol in order to ensure the 

consistency of the performance. In all patients, fluoroscopic digital images were mainly obtained (Figure 

1a&b).  

The patient was placed in the lithotomy position at the end of the X-ray couch in sterile towels. A scout image 

was obtained prior to the administration of the contrast solution to ensure the correct position of the cannula and 

patient preparation. Subsequently, digital images were acquired after each phase of contrast medium injection 

until the diagnosis was obtained or intraperitoneal spill was documented. Oblique images were acquired only if 

indicated. 

6.1.1.2.2 Patient dose measurement 

Thirty-seven patients were included in this study. The main indication for HSG was infertility (97%). i.e. 

primary infertility (91%) (no previous pregnancy) and secondary infertility (6%)(with previous history of 

pregnancy) and previous tubal surgery (3%). Findings were normal in 29 of the cases (78.4%). Tubal 

obstruction was found in 6 patients (16.2%) and uterine adhesions were found in 2 patients (5.4%). This result 

shows that most of the HSGs were simple without any need for further therapeutic procedures. Patient 

demographic data (age, weight, Height and BMI), screening time and number of radiographic and fluoroscopic 

images are presented in Table 6.1. 

Patients were divided into two groups according to the digital X-ray machine used. 23 patients were examined 

in the first machine (A), while 14 patients were examined in the second machine (B). The patients were 

randomly examined to machines A and B according to availability. 

The indications for the investigation that were included, specifically, infertility, follow up after tubal surgery, 

and women prior to in vitro fertilization. TLDs were packed on a thin envelope made of transparent plastic foil 

to protect the TLDs from any contamination. Each envelope contained 4 TLDs. Moreover, an envelope was 

placed directly on the thyroid to measure the TSD. TSD was measured because thyroid is radiosensitive organ 

and it lies on the surface of the patient.  The mean ESD was measured using 4 TLD envelopes placed at the 

following positions: at the center of the initial field, symphysis pubis and at the mid-point between symphysis 

pubis and antero-superior iliac spine (ASIS). These positions were selected in order to obtain accurate 

measurements because the center of the radiation field is not always constant. During the procedure, the TLDs 

were kept in place with adhesive tape.  
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For each patient the following parameters were recorded i.e. radiographic data: tube voltage, product of tube 

current and exposure time, fluoroscopic data: tube voltage, tube current and total screening time and patient 

data: name, age, weight, height, clinical indication, and radiologist name, start and end time. 

Patient demographic data (age, weight, Height and BMI), screening time and number of radiographic and 

fluoroscopic images are presented in Table 6.1. The radiographic and fluoroscopic exposure factors for each 

group are also shown in Table 6.3 and 6.4. 

 

Table 6.3: Patient physical characteristics (age, Height, BMI and weight), screening time and number of 

radiographic and fluoroscopic images. (Mean and the range in the parentheses) 

 

Group n 
Patient age 

(years) 

Height 

(cm) 

Weight 

(Kg) 

BMI 

(Kg/m2) 

Screening 

time 

(second) 

No. of 

radiograph

ic 

No. of 

fluoroscopic 

images 

All 
3

7 

34.0 

(20-43) 

165.8 

(153-178) 

66.3 

(52-85) 

24.1 

(20-31) 

18.2 

(6-66) 

0.2 

(0-1) 

6.0 

(3-9) 

A 
2

3 

34.2 

(20-43) 

164.7 

(153-175) 

66.6 

(52-85) 

24.5 

(20-31) 

17.4 

(12-36) 

0.2 

(0-1) 

5.3 

(3-8) 

B 
1

4 

29.3 

(23-39) 

166.3 

(155-178) 

61.7 

(52-73) 

22.1 

(20.3-30.8) 

19.3 

(6-66) 

0.2 

(0-1) 

7.6 

(6-9) 

 

 

 

  Table 6.4: The mean and range of the exposure parameters for radiography and fluoroscopy for both 

machines during HSG examination 

 

 

Radiography Fluoroscopy 

Machine Tube voltage 

(kVp) 

Current time product 

(mAs) 

Tube voltage 

(kVp) 

Tube current 

(mA) 

A 90 (80-110) 30 (25-45) 80 (70-110) 1.7 (0.8-3.2) 

B 85 (80-110) 20 (15-40) 81 (79-84) 1.6 (1.1-2.8) 

 

 

6.1.1.2.3 Staff dose measurement 

 An envelope containing TLDs was attached outside the lead apron (0.5 mm Lead equivalent thickness) at the 

chest level. Protective eyeglasses were worn frequently while the thyroid collar was always worn.  
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6.1.1.2.4 Endoscopic Retrograde cholangiopancreatography  

Endoscopic Retrograde Cholangiopancreatography (ERCP) is considered the gold standard procedure in the 

evaluation of pancreaticobiliary disorders and the treatment of many clinical situations with a high successful 

rate of up to 90% [143,144-148]. ERCP was developed in the late 1960’s.  Gallstones are a common indication 

for ERCP with 5% to 20 % prevalence in the general population, increasing with age [144]. ERCP has evolved 

from a diagnostic to an almost exclusively therapeutic procedure after the introduction of new, non invasive 

imaging techniques, such as magnetic resonance cholangiopancreatography (MRCP), computed tomography 

(CT) and endoscopic ultrasonography (EUS), which provide diagnostic information that allows the selection of 

patients for therapeutic ERCP [143]. 

 

6.1.1.2. 4.1 ERCP technique 

All cases were performed for therapeutic purposes. ERCP was performed with a duodenoscope (Olympus, 

exera CLE 145(Olympus Medical System Corp, Japan)). Prior procedural antibiotics coverage was usually 

administered in order to reduce the risk of infection. The patient was placed on an X-ray couch in the left 

anterior oblique position with right leg flexion.  A mouth guard was placed to protect the patient’s teeth and the 

endoscope.  A pulse oximeter (NPB-40) with finger clip sensor, or (BCI 3301) hand-held pulse oximeters were 

used for measurement of functional oxygen saturation of arterial haemoglobin and to monitor the patient’s vital 

signs.  

A Buscopan (Eoscine) injection was routinely given intravenously in order to decrease duodenal motility and 

facilitate visualization. Intravenous sedatives were also administered for comfort and relaxation prior to the 

procedure (Midazolam / Propofol). Intermittent fluoroscopy was always used for radiation dose optimization.  

During the procedure, radiographic and fluoroscopic images were obtained after injection of a contrast 

medium. Since the contrast medium normally remained in the biliary tree for several minutes following 

removal of the duodenoscope, a post procedure anteroposterior projection was also obtained, if required, for 

further evaluation of the stent placement or residual stones. The results of the ERCP procedure were classified 

into three categories: (1) Successful (satisfactory performance and completion of planned therapeutic measures) 

(2) partial success (the cannulation was successful, but patient condition or other factors did not allow the 

completion of the procedure) and (3) unsuccessful (failed cannulation). 

 

6.1.1.2.4.2 Patient dose measurement 

One hundred and fifty three consecutive ERCP procedures were evaluated, involving 62 males (40.5%) and 91 

females (59.5%) for both patient groups. One hundred and eleven patients underwent ERCP in group A, 43 

males (38.7%) and 68 females (61.3%). Forty-two patients underwent ERCP in-group B, 19 (45.2%) males 

and 23 (54.8%) females.  Clinical indications for the investigation of ERCP for both groups are presented in 

Table 6.5.  
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Table 6.5: ERCP indications 

Indications Group A Group B Total % 

CBD stones 66 20 86 56.2 

Post operation leakage 5 1 6 3.90 

Chollangitis 4 7 11 7.2 

Malignancy 22 6 28 18.3 

Benign CBD stricture 1 3 4 2.6 

Stent removal or exchange 4 2 6 3.9 

Pancreatitis 9 3 12 7.8 

Total 111 42 153 100 

 

 

TLDs were packed on a thin envelope made of transparent plastic film, to protect them from any 

contamination. Each envelope contained 3 TLDs. Three envelopes were used to measure the ESD, exit dose 

and thyroid surface dose accurately for each patient. It was considered important to determine the exit dose 

since it reflects the transmission of the radiation and the radiation dose to the anterior organs. During the 

procedure the TLDs were kept in the required positions and were stuck in place with adhesive tape. The 

examiners performed the investigations as their daily practice with a protocol that is designed to minimize 

patient and examiner dose (intermittent fluoroscopy, the fluoroscopic captured images, reduction of 

radiographic images, well patient positioning prior to procedure and optimum exposure factors). 

The data recorded for all procedures included demographic data, tube voltage (kV), tube load (mAs), 

fluoroscopic data: kV, tube current (mA), total screening time, clinical indication, start and end time. 

Patients’ demographic data, screening time, number of radiographic and fluoroscopic images, and the 

procedure duration are presented in Table 6.6. Considerable variations were observed among patient 

populations in terms of radiation dose, and fluoroscopic time. These variations are due to the different 

indications, patient characteristics and pathological findings (Table 6.7).  
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Table 6.6: Patient physical characteristics (age, Height, BMI and weight), screening time and number of 

radiographic and fluoroscopic images. (Mean and the range in the parentheses) 

Age 

Group 
n 

Patient 

age 

(year) 

Height 

(cm) 

Weight 

(Kg) 

BMI 

(Kg/m2) 

Screening 

time 

(minute) 

No. of 

radiogr

aphic 

Procedure 

duration 

(Minutes) 

All 153 
66.8 

(26-91) 

165.5 

(149-186) 

74.6 

(47-110) 

27.3 

(17.9-2.9) 

2.9 

(0.3-12.3) 

2.6 

(1-6) 

27 

(15-55) 

A 111 
64.9 

(26-86) 

165.4 

(149-186) 

74.9 

(47-106) 

27.5 

(17.9-0.6) 

2.6 

(0.3-12.3) 

2.3 

(1-5) 

25 

(15-50) 

B 42 
71.7 

(27-91) 

165.6 

(150-185) 

73.5 

(50-110) 

26.8 

(18.6-2.9) 

3.8 

(0.7-10) 

3.8 

(1-6) 

30 

(20-55) 

 

 

Table 6.7: The mean and range of the exposure parameters for radiography and fluoroscopy for both 

patients group. 

Radiography Fluoroscopy 
Group 

KV mAs KV mA 

A 84(70-100) 44(12-141) 75(52-110) 1.6(0.4-3.1) 

B 80(70-104) 58(10-171) 75(55-110) 2.2(1.3-3.1) 

 

6.1.1.3.4 Examiner dose measurement        

Two experienced gastroenterologists in group A and three in group B performed all the procedures. For the first 

examiner, the radiation dose was monitored at 7 sites: the forehead (eye lens), thyroid, chest, and left hand, 

waist (left side), back shoulder at the scapula and the left leg.  The examiner used a 0.25 mm lead equivalent 

thick apron, full wrap-around protection (Dr. Goos-Suprema GmbH, Heidelberg, Germany).  The second and 

the third examiners used 0.50 mm lead equivalent thickness, frontal protection (Rheix-srl, Milan, Italy).  TLDs 

were attached outside the lead apron at the chest level and at the left hand side of the second examiner, while for 

the third examiner; the radiation dose was monitored for the hand, chest, thyroid and forehead. Neither a 

protective eyeglass nor a thyroid collar was worn by either of the examiners. The examiner radiation dose in 

gastroenterology departments is routinely monitored by TLD dosemeters.  

During the procedure, the first examiner stood on the right side of the typical position of the patient. A lead 

apron (100 x 60 cm2) of 0.50 mm lead equivalent was placed on the side of the first examiner to reduce 

radiation scatter to the examiners standing to the side of the fluoroscopy couch.   
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Figure.6.3: Patient setup, lead apron and examiners positions during ERCP examination. 1., first 
examiner; 2., second examiner; 3., third examiner; M1., endoscopic monitor; M2., fluoroscopic 
monitor.,T1 X ray tube.,T2,Table, and L lead apron.  
 

 

The second examiner, who controlled the radiation exposure, stood on the right side of the first examiner. A 

fellow stood near the patient head to monitor the patient (group B). All procedures were performed with the 

examiners at the same locations (Figure 6.3). The nurses remained outside the X-ray room during the exposure; 

therefore, there was no need for radiation dose measurements for them.  

The transmission through 0.25 mm and 0.50 mm lead equivalent aprons was measured with different radiation 

qualities ranging from 50 kVp to 100 kVp. The aprons were placed in the primary beam and the entrance and 

exit doses were measured at source surface distance (SSD) of 1 meter using the ionisation chamber (Figure6.3).  

 

 
Figure. 6.4:Shows the transmission ratio versus the tube potential (kVp). 
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6.2 Results and discussion  

 
This part describes results of in vivo dosimetry in radiology for patient and staff.  

6.2.1 Micturating cystourethrography 

The mean and the range value of ESD obtained by TLD for MCU examination are presented in Table 6.8. The 

ESD and surface scattered doses to the thyroid, testes, ovaries and co-patient’s radiation dose values are also 

presented in the same table. Radiation dose values varied widely with X-ray tube potential, patient size, source 

to image receptor distance and filtration applied Table (6.9).  

Table 6.8: MCU  entrance surface dose and surface dose to the thyroid, testes and co-patient  (mGy)  

Age group n ESD  

Mean 

(range) 

Thyroid 

Mean 

(range) 

Testes/ovaries 

Mean 

(range) 

Co-patient 

Mean 

(range) 

All patients 52 1.13 

(0.37-2.36) 

0.15 

(0.02-0.53) 

0.47 

(0.05-1.78) 

0.14 

(0.03-0.50) 

Newborn (All) 39 1.15 

(0.37-2.36) 

0.15 

(0.03-0.35) 

0.43 

(0.05-1.78) 

0.15 

(0.03-0.50) 

Male 29 1.12 

(0.37-2.36) 

0.15 

(0.03-0.53) 

0.36 

(0.05-1.52) 

0.14 

(0.03-0.48) 

Female 10 1.28 

(0.86-2.21) 

0.19 

(0.05-0.38) 

0.65 

(0.13-1.78) 

0.21 

(0.06-0.50) 

2 years old (All) 13 1.18 

(0.41-2.05) 

0.14 

(0.02-0.38) 

0.64 

(0.14-1.25) 

0.13 

(0.03-0.27) 

Male 6 1.13 

(0.55-1.33) 

0.15 

(0.04-0.38) 

0.52 

(0.14-1.09) 

0.16 

(0.03-0.27 

Female 7 1.23 

(0.41-2.05) 

0.12 

(0.02-0.22) 

0.75 

(0.26-1.25) 

0.10 

(0.05-0.22) 
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Table 6.9:Radiation dose to the patients with negative and positive VUR (mGy) 

 

 

 

 

 

 

 

 

The risk probability of radiation induced cancer and the risk of genetic effects for MCU examination; thyroid, 

ovaries and testes are presented in Table 6.10. The risk coefficients and organ equivalent dose (mSv) values for 

previous mentioned organs are also presented at the same table. The risks are very small especially when 

compared with the benefits which accurate diagnosis and treatment can provide. 

Table 6.10:   Risk estimation for gonads and thyroid. The risk for radiation induced fatal cancer and hereditary 

effects was taken for whole population for each organ from ICRP 60. 

Organ Organ equivalent dose 

(mSv) 

Risk factor 

10-2  Sv-1 

Risk of malignancy 

x 10-7 

Genetic effect * 

x 10-7 

Thyroid 0.006 0.08 0.04 - 

Ovaries 0.44 0.1 4.4 44 

Testes 0.33 0.1 3.3 33 

*Probability for genetic effects =1.0x10-2Sv-1 (ICRP 60) 

Medical exposures to external radiation are commonly concerned with only limited parts of the body and it is 

important that operators should be fully aware of the doses to normal tissue in the irradiated fields. Fortunately, 

tissue-weighting factors for the skin and extremities exist.  In addition to this relatively low values for a number of 

other body tissues means that partial body exposure can result in appreciable equivalent doses to local tissues even 

though the overall effective dose may be small. Higher considerations are always made when the patients involved 

are infants and children. 

The potential risk from radiation exposure of the patients must be balanced against the diagnostic information. 

Attention to radiation risk for children has increased in recent years and several studies have been performed in 

the field of dose calculation and the related risk. [148-155].  

Paediatric ESD during MCU depends on patient parameters and exposure factors. Pediatrics physical 

parameters are subjected to large variations. Although, child size increases with age, individual variations can 

be great (Table 6.1).  

Category n ESD 

Mean 

(range) 

Thyroid 

Mean 

(range) 

Testes/Ovaries 

Mean 

(range) 

Co-patient 

Mean 

(range) 

Positive 11 1.45 

(0.57-2.36) 

0.22 

(0.04-0.53) 

0.44 

(0.11-1.52) 

0.17 

(0.03-0.48) 

Negative 41 1.05 

(0.37-2.21) 

0.14 

(0.02-0.38) 

0.57 

(0.05-1.78) 

0.14 

(0.03-0.50) 
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Radiographic exposure factors used in this study ranged from 65 to 80 kVp and from 4 to 16 mAs during the 

examination. Fluoroscopic applied voltage ranged from 40 to 78 kVp and tube current from 0.1 to 1.6 mA 

during image acquisition (Table 6.2).  The applied voltages of the current study are comparable with the values 

reported in literature [150,152]. 

 In this study, the mean ESD was 1.13 mGy for the all-patient populations. The mean radiation dose for the 

newborn group was found to be 1.15 mGy, whereas the mean measured value for the 2 years group was 1.05 

mGy (Table 6.8). ESD was lower by 50% compared to other studies. The difference could be due to imaging 

protocols, equipment and the number of radiographic images per MCU examination. This result indicates that a 

high degree of patient dose optimisation was achieved in this study. The mean ESD per AP radiographic image 

ranged between 0.54-0.73 mGy per exposure, which is slightly lower that the corresponding values reported in 

literature [152, 165,157]. In most non-reflux cases (negative) 45% the patients were examined using only 

fluoroscopic images.  

The mean ESD for patients with positive VUR is 1.45 mGy and for patients with negative VUR is 1.05 mGy 

(Table 6.9). ESD is higher for patients with positive VUR because the mean number of radiographic images is 

2.0, while the mean number of radiographic images is 0.5 for patients with negative VUR, for both sexes.  

Estimation of ovarian dose is very important because the ovaries contribute 20 % of the effective dose based on 

the weighting factor from ICRP 60 [18]. 

The mean organ equivalent dose was assessed from ESD using NRPB software [43], and was found to be for 

thyroid, ovaries, and testes, 0.0.006 mSv, 0.44 mSv and 0.33 mSv, respectively. The surface dose for ovaries 

(0.7 mGy) and testes (0.47 mGy) is similar to the equivalent dose, while there is a significant difference for the 

thyroid dose (0.15 mGy) (Table 6.9). This difference can be easily explained since the thyroid is away from the 

radiation field, while the gonads are always inside the field. 

For male patients, the European guidelines for paediatric radiology [159] recommended the use of testicle 

protective shielding during MCU. The ESD to the gonads is high because most of time they were inside the 

radiation field. 

The mean effective dose per procedure assessed using the same software from NRPB [43] is 0.20 mSv, while 

in the literature; Shultz et al [156] report a mean effective dose of 0.2 mSv for newborn and 0.4 mSv for 5 years 

old child. Fotakis et al [152] reported a mean effective dose of 0.91mSv for male and 0.71 mSv for females of 

the newborn group while the effective doses for a 1-year-old child were 0.89 and 0.83 mSv for male and 

female, respectively.  

The mean co-patient dose was 0.14mGy, with a range 0.03-0.5 mGy. The equivalent doses for thyroid and skin 

outside the lead apron are estimated to be 0.72 and 0.072 μSv respectively. Mantovani & Giroletti [150] 

reported a mean effective dose to the co-patient of 4±7 μSv, while the equivalent doses to the thyroid and eye 

lens were estimated to be 20±19 μGy. 

The overcouch X-ray tube is associated with a higher exposure to the hands and eyes of the co-patient 

compared with an undercouch X ray tube, which produces higher scatter beneath the couch arising from 

primary beam interactions from the bottom of the couch and patient [160]. Overcouch X-ray machines are 
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primarily intended for remote operation from the protected control area, or from behind a mobile protective 

screen. However, overcouch systems generally provide better access to the patient. In our study, this was the 

only type of equipment available. 

The risk, of thyroid, ovaries and testes malignancy and hereditary effects to the children, was both less than 1.0 

per million (Table 6.10). The radiation risk per examination was estimated from the effective dose to be 26 per 

million.  Therefore the risk of radiation-induced cancer can be considered to be negligible.  

The radiation dose results of this study are appropriate for adoption as local initial DRL values for this 

technique. Following the recommendations of the European guide [159] and ICRP [18]. We proposed a DRL 

of 1.7 mGy for ESD based on the third quartile for newborn and children up to 2 years old. 

In this study, MCU radiation dose was optimized using mainly fluoroscopic images. The main advantage of 

this is radiation dose reduction whilst maintaining the same level of VUR detection. The number of diagnosed 

cases with VUR is 21.15 % and is similar compared to those reported by Mantovani & Giroletti (20%) [150]. 

The MCU examination technique depends on the co-operation of the co-patient resulting in an increased 

examination time (20-24 minutes). The increase in examination time is also related to the difficulty in obtaining 

prompt micturation for children and due to the repetition of bladder filling (this disadvantage is avoided in 

adults). It is very important that the radiologist who performs this technique has adequate training in paediatric 

fluoroscopy and MCU procedure. 

            

 

6.2.2 Hysterosalpingography 

The radiographic and fluoroscopic exposure factors for each group are also shown in Table 6.4. 

Table 6.11 presents the minimum, median, mean, third quartile and the maximum values of the ESD. The 

mean and range of thyroid surface dose and staff doses per procedure for both patients groups are presented at 

the same Table. The mean ESD values received by patients in group B are relatively higher than those for 

group A. This is due to the X ray machine characteristics and filtration.  

 

 

 

Figure 6.5 Radiograph of 

MCU examination with 

Radiography, illustrates VUR 
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Table 6.11. Minimum, median, mean third quartile and maximum values of ESD. The mean  

and range of  TSD and staff radiation doses (mGy) during HSG are also presented. 

 

ESD (mGy) Group n 

Minimum Media

n 

Mean 3rd 

quartile 

Maxi

mum 

TSD 

Mean (range) 

 

All 37 0.7 3.40 3.60 4.94 8.17 0.17 

(0.06-0.51) 

0.18 

(0.04-0.46) 

Group 

A 

23 0.7 3.16 3.30 3.40 6.98 0.19 ( 

0.06-0.51) 

0.21 

(0.05-0.46) 

Group 

B 

14 1.11 4.01 3.90 5.48 8.17 0.14 

(0.06-0.14) 

0.14 

(0.04-0.25) 

 

Table 6.12:  The mean patient parameters, number of fluoroscopic and radiographic images, ESD, 

ovarian dose and effective dose in various studies.  The range in is presented in the parenthesis. ND: 

not detected. 

 

Author n 
Age 

(year) 

BMI 

(Kg/m2) 

Screening 

time 

(second) 

No. of 

Radiogr

aphic 

images 

ESD 

(mGy) 

Ovarian 

dose 

(mGy) 

Effectiv

e dose 

(mSv) 

Present study 37 
34.0 

(20-43) 

24.1 

(20-31) 

18.2 

(6-36) 

0.2 

(0-1) 

3.60 

(0.7-8.17) 
0.91 0.43 

Perisinakis et al 

[168] 

78 

 

27 

(18-39) 

24.8 

(17.6-35.8) 
20 3.2 9.7±4.2 2.7 1.2 

Calicchia et al 

[162] 
37 

32 

(22-40) 
ND 

13 

(6-30) 

6.5 

(6-7) 
25.2±3.8 4.66 1.95 

Gregan et al 

[163] 
21 

31.6 

(24-39) 
ND 

15 

(5-45) 

2 

(2-4) 

14.6 

(1.4-45.7) 
3.4 ND 

Khouri et al 

[164] 
25 21-45 ND ND 4-15 

12.6 

(4.99-36.6) 
2.94 ND 

 

Table 6.13 shows the doses for some radiosensitive organs and risk factors probabilities of the radiation induced cancer 

and hereditary effects from the recent ICRP recommendations (16,17). This group of patient is considered to be on a 

Staff dose 
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higher risk due to the repetition of the exam. Organs and tissues that received relatively high doses are uterus, ovaries and 

bone marrow. Organ dose equivalent was extrapolated from ESD using Monte Carlo calculation from NRPB (21). The 

radiation risk for cancer and hereditary effects due to the mean ESD for HSG procedure was estimated to be 24 x10-6. 

The radiation risk for hereditary effects for the future generation was found to be 2 x 10-6. Furthermore, the radiation risk 

for ovaries, bladder, bone marrow, uterus and thyroid is shown in Table 6.13 

 

 

Table 6.13 Mean and range of organ radiation dose (mSv) and radiation risk per HSG procedure. 

Organ 
Organ equivalent dose 

(mSv) 

Risk factor 

x10-4Sv-1 

Cancer probability 

x10-6 

Ovaries 0.91 16 1.46 

Uterus 1.28 6.3 0.81 

Bone morrow 0.14 22 0.31 

Bladder 1.22 39 4.76 

Breast 0.04 116 0.46 

Thyroid 0.03 20 0.06 

 

 

The main factors affecting patient dose in HSG are: exposure factors, filtration, source to surface distance 

(SSD), collimation, pathology and patient size. There were no significant differences between the two patients 

groups in terms of height, weight, BMI and number of radiographic and fluoroscopic images. Both excess and 

low BMI and increased age are associated with infertility in women (1). A correlation was found between ESD 

and patient weight and BMI (Fig.2a&b). The patients demographic data were comparable to the mean values 

reported in the literature (142,161-170) and also comparable to NRPB (44) standard phantom used for Monte 

Carlo modeling. Therefore, the anatomical differences between the two patients groups and the phantom is not 

significant and did not affect the estimated doses and risks, because the BMI for the phantom is 23.12 kg/m2 

and for both groups of patients are 24.1. 

The mean screening time was estimated to be 18.2 seconds, 17.4 seconds for group A and 12 seconds for the 

group B as shown in Table 6.3. The mean screening time is less than previously reported studies (161-166). 

Merkle et al (165) reported that, on average, fluoroscopy contributed 69% of total radiation dose during HSG, 

using of a computer program permitted accurate differentiation of the dose obtained by fluoroscopy and 

radiography. Abdullah et al (166) obtained a similar contribution of the fluoroscopy (70-90%) of the total dose. 

However, Fernandez et al (167) estimated the fluoroscopic contribution to be 26.8% of the total dose. This can 

be easily understood since they used a mean of 7 radiographic images per procedure. Therefore, reduction of 
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screening time will reduce the radiation dose significantly since it contributes most of the radiation dose. In 

addition, selection of low dose fluoroscopic mode also reduces the radiation dose.  

The mean radiographic images in this study were 0.2 images. The range was from 0-1 image per procedure and 

the mean fluoroscopic images were 6 images with a range of 3-9 images. The number of radiographic images 

is lower compared to various studies in the literature, which ranged between 2 –15 image per procedure (161-

165). This value also explains the higher ESD per procedure among previous studies. The number of X-ray 

images depends on the technique used in various departments. However, this study was designed to use the 

fluoroscopic image instead of radiologic image in order to reduce the patient and staff radiation dose without 

significantly affecting the image quality (Fig.1a&b).  

 

 
 
     Figure. 6.6:Radiographs of HSG examination with fluoroscopy, which illustrates fallopian 

tubes for A and B machines. 
 

The quality of the radiation depends on the tube voltage and the total filtration of the X-ray beam. X-ray beam 

filtration in both machines is relatively high compared with other studies in literature, which range between 2.5 

mm aluminum [164] and 3.9 mm aluminum [168].  

 However, the exposure factors (tube voltage and tube current) for both patient groups in this study were 

comparable as shown in Table 6.4. As expected, correlation was found between applied voltage and patient 

weight (Fig.2c). The mean exposure factors for both machines are higher than exposure factors reported by 

Calicchia et al [162], Gregan et al [163] and Khoury et al [164] and comparable to those reported by Perisinakis 

et al [168]. 

High tube voltage and low tube current are preferred in fluoroscopy in order to produce reasonable quality 

images with low patient radiation exposure since increasing of the photons energy results in more penetrating 

radiation [166] . 
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Figure6.7: correlation between patient weight, BMI, ESD and staff dose. (a) Correlation between patient dose 

and weigh. (b) Correlation between BMI and ESD.(c) Correlation between patient weight thyroid and staff 

dose and (d) Correlation between patient weight and applied voltage. 

In literature, many attempts were made in order to reduce the radiation dose during HSG. Kushner et al [161] 

studied the radiation dose reduction using low-mode scanning beam digital imaging system. A mean ESD of 

2.2 mGy per image was obtained. The number of images was ranged between 4 to 10 images per procedure. 

Haussler et al (14) achieved 47% dose reduction when digital images were used with no lack of diagnostic 

details when compared with conventional 100 mm films. In addition, Abdullah et al [166] made a comparison 

between conventional and high voltage techniques during HSG using conventional X-ray machine. The results 

showed that the DAP values for high voltage technique reduced the dose by only 5% and 2.5 % for the 

effective dose. However, Shultz et al [169] reported that, the implementation of digital radiography for HSG 

resulted in a reduction of 20% for effective dose when automatic mode was used. An overall reduction of 60 % 

was achieved by manual selection of higher tube voltage and when lower tube current was used. The previous 

trials indicate that radiation protection of patient still allows for wide margins of optimization. 
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Figure6.8 (a)  A comparison of ESD and ovarian dose for HSG with those published, previously.(b) 

Comparison of DAP values for HSG for previously published studies 
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In this study the mean ESD was found to be 3.60 mGy for the total patient population. The mean radiation dose 

for group A was found to be 3.30 mGy, whereas the mean measured value for group B was 3.90 mGy (Table 

6.11). The ESD per procedure depends, among other factors, on the fluoroscopic mode used. Machine B 

presented 30% higher values than machine A in all fields of views. The mean ESD result for both groups of 

patients is significantly lower compared to previous studies in literature, which were 3 to 7 times higher (Table 

6.12). This result indicates that a high degree on patients’ dose optimisation was achieved in this study. 

However, Gregan et al [163] reported an ESD of 2.5 mGy and 13.5 mGy using digital and conventional X ray 

machines, respectively. The digital value is lower than this study, but no details were reported about the 

technique used. Khouri et al [164] measured the ESD during HSG procedure in three different departments. 

The mean dose for each department was 8.44mGy, 17.36mGy and 31.74mGy. The use of different equipment 

and protocols by the various departments is sure to have influenced the radiation dose (Table 6.12).  

Effective doses were assessed from the ESD value using the NRPB software (44). The mean value of the 

effective dose for both groups was estimated to be 0.43 mSv. In comparison between effective doses from 

previous studies, these values are lower. The effective dose value from the literature ranged between 1.2 mSv 

and 3.1 mSv (162-164). 

HSG involves direct irradiation of the pelvic organs; therefore organ doses were estimated for the ovaries, 

uterus, bladder and bone marrow and to radiosensitive organs such as the thyroid and breast, (Table 6.13). 

These values are significantly lower than in previous studies (2,6). TSD was estimated by direct placement of 

the TLDs onto the organ site. A correlation was found between thyroid surface dose and patient weight 

(Fig.2d). The thyroid dose was found to be 3 times lower than TSD. 

Estimation of ovarian dose is very important because all patients are in childbearing age. The mean ovarian 

dose was estimated at 0.91 mGy (Table 6.13). Comparing this result with the previous data (Table 6.11), it is 

clear that this study reports the successful reduction of the radiation dose to the ovaries as well as all other dose 

values. However, the ovarian equivalent dose estimation, which is a good indicator for the expected stochastic 

risk of the HSG procedure, might contain some uncertainties. These uncertainties are related to the ovaries 

position, which varied in different patients and in the same patients at different times [161,168]. Kushner et al 

[161] assessed ovarian dose to be 30% of the ESD during HSG. In present study, ovarian dose was estimated to 

be 25% of the ESD, which is comparable with previous studies. The results obtained by Perisinakis et al [168] 

indicated the ovarian dose to be 28% and Gregan et al [163] 23 % of the ESD (Fig.3a). This approximation 

allows the estimation of the ovarian dose directly from ESD. On the other hand, Calicchia et al [163] estimated 

the uterus dose to be 5.7 mGy by placing TLDs inside the uterus. Uterus dose was also estimated at 4.03 mGy 

by Khouri et al [164] and at 4.06 mGy by Buls et al [170], which are also higher than this study. 

Staff absorbed doses are principally due to scattered radiation, and leakage from the X ray tube housing. 

Despite the fact that scatter radiation is only a small fraction of the dose that patient receives, it becomes 

significant over the working life [18,20,44]. The staff dose for group A (0.21mGy) is relatively higher than 

group B (0.14mGy) because machine B offered better access to the patient than machine A. The mean ESD for 
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the staff was measured to be 0.14 mGy per procedure, while eye lens dose and thyroid dose was estimated to be 

140 μSv, 0.6μSv, respectively. In literature, as far as we know, staff dose was measured only by Buls et al [170] 

during HSG procedure on an overcouch X ray machine. The ESD for the eye, thyroid and hand of the 

radiologist was measured by direct placing the TLDs at organ’s site. The absorbed dose was found to be 

0.22mGy, 0.15 mGy and 0.19 mGy for the eye, thyroid and hand, respectively.  

It is important to note that various operators performed HSG in literature. i.e. Radiologists in the present study, 

gynecologists [170], trainee doctors [164,166] and both radiologists and gynecologists [163]. However, HSG is 

operator dependent and the mean screening time was observed to be higher when gynecologist (58 seconds) 

[170] and trainee doctors (119 seconds) [166] performed the examination. Generally, Gynecologists and trainee 

doctors are not fully trained in radiation protection (clinically directing) while radiologists are physically 

directing, i.e. well trained in radiation protection [153].  

The use of an over couch X ray tube increases the scatter dose to the face, neck and the upper parts of the body, 

while undercouch X ray tube have higher exposure to the legs and lower parts of abdomen. Staff dose is very 

low under protective shielding, since the radiologists wear lead aprons with 0.5 mm lead equivalent with 

transmission 3.2% at 100 tube voltage and 0.36% at 70 tube voltages [171]. 

  Radiation risk estimation for fatal cancer and hereditary effects per procedure was found to be 24 x10-6 while 

the hereditary risk is estimated to be 2 x 10-6. This risk is lower than the risk estimated by Perisinakis et al [168]. 

They estimated a risk of radiation induced cancer between 145 x10-6 to 86 x10-6. Using aged related risk factors, 

they also estimated the hereditary effect per procedure to be 27 x10-6. To obtain a reasonable assessment of 

radiological risk for the patient, account should be taken of the irradiation of all the radiosensitive organs of the 

body.  

The estimated risk values for the uterus offer a better understanding of the radiation dose for the fetus and 

associated risks, because the reported prevalence of unexpected pregnancy during HSG is 0.6% [172] The 

radiation risk per HSG procedure for the radiologist is negligible. Further dose reduction could be achieved by 

wearing protective eyeglasses and thyroid shields which significantly attenuate scatter radiation.  

Despite these problems and the uncertainties involved, the estimation of the probability of radiation-induced 

cancers is needed for use in radiation protection to increase the awareness of medical personnel. 

Both the hereditary and somatic risks of diagnostic X-ray exposure are enhanced when the average patient age 

is lower, i.e. the younger the patient has higher child expectancy and a longer subsequent life expectancy 

[167,173]. Generally, the risk of tissue reactions is very small compared with the benefit of the examination. 

This allows a good safety margins for patient to proceed with further infertility investigations if needed, without 

significant risk. 

 Our study protocol was designed to use intermittent fluoroscopy with fluoroscopic image with last image hold 

to minimize exposures. Radiographic images were taken in cases that were not possible to evaluate a finding. 

Murase et al [174] noted that fluoroscopic images are adequate for detecting the tubal patency, although these 

images generally have inferior image quality compared with radiography. Patient radiation dose reduction was 

achieved in this study by using the fluoroscopic image technique, higher X ray machine filtration, precise 
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collimation of the radiation beam and radiologist experience. Further dose and screening time reductions were 

observed when the number of procedures increased. Techniques used for optimization of image quality to meet 

clinical requirements allow patient dose reduction without the loss of diagnostic accuracy, and are therefore of 

great interest (Fig.1a&b). 

The advantage of these techniques is the dose reduction up to 3 times less than the reported in aforementioned 

studies. This reduction also reduces the risk of the tissue reactions and offer further margins for further 

investigations and follows up. The disadvantage of this technique is that it needs a good level of clinical 

experience. Nevertheless, it is still advisable to avoid radiation exposure where possible for both patient and 

staff, by other alternatives, i.e., laproscopy, hysteroscopy, transvaginal, sonography and magnetic resonance 

imaging (MRI) when equivalent information can be obtained. 

DRLs can be used to verify the practices for typical examinations for groups of standardized patients in order to 

ensure that the dose should not be exceeded in normal practice without adequate justification (6). Nevertheless, 

the available data is still not enough to establish national reference levels, but this could be a baseline for further 

studies concerning dose optimisation. 

To the best of our knowledge, no values have been proposed to date for ESD during HSG procedure, while 

Broadhead et al [175] proposed a DAP value of 4.12 Gy.cm2. Therefore, a third quartile value of 4.94 mGy for 

ESD and 1.0 radiographic image associated with screening time of 30 seconds can be used as DRL in a local 

basis for HSG procedure.  

6.2.3 Endoscopic Retrograde cholangiopancreatography  

A total of 153 ERCP procedures were performed over 5 months. The total number of successful procedures 

was for 142 patients (93.5%) for both groups. In group A, the ERCP procedure was successful in 106 patients 

(95.5%), 2 procedures were partially successful (1.8%) and 3 procedures were unsuccessful (2.7%). Similarly, 

in group B, the procedure was successful in 38 patients (90.5%) and 4 procedures were partially successful. The 

above results lie within the range for successful procedures [143,144]. Patients’ demographic data, screening 

time, number of radiographic and fluoroscopic images, and the procedure duration are presented in Table 6.3. 

Considerable variations were observed among patient populations in terms of radiation dose, and fluoroscopic 

time. These variations are due to the different indications, patient characteristics and pathological findings.  

Although the vast majority of patients were elderly, it is interesting to note that 14% of patients in this study 

were below 50 years. Radiation risk may be significant for this age group. The mean exposure factors used 

during fluoroscopy screening and (radiography) image acquisition for both groups are shown in Table 6.6. The 

patient characteristics and exposure factors are comparable for both groups. 

 Table 6.11 presents the ESD (mGy) values for both patients groups. This data shows asymmetry in 

distribution. The mean, median, minimum, third quartile and the maximum values are presented. The ESD for 
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group A is 15% lower than group B. This can be attributed to inter-examiner differences, since the examiners 

were using the same X-ray machine.  

 

 
 

Figure. 6.9:Radiographs of HSG examination with fluoroscopy, which illustrates fallopian tubes 

for A and B machines. 

 

Table 6.14. Minimum, median, mean third quartile and maximum values of ESD. The mean and range of TSD 

and staff radiation doses (mGy)  

Patient group n Mean Minimum Median 3rd quartile Maximum 

All 153 68.75 10.17 44.79 86.81 289.1 

Group A 111 65.89 10.17 36.77 74.59 277.1 

Group B 42 77.4 14.44 59.41 88.81 289.1 

Exit dose 153 3.45 0.19 1.76 5.89        14.91 

Group A 111 2.43 0.19 1.56 4.32 32.27 

Group B 42 4.56 0.49 2.18 6.48 44.91 

TSD 153 0.67 0.10 0.46 0.89 5.03 

Group A  111 0.55 0.06 0.34 0.67 3.56 

Group B 42 0.82 0.10 0.57 1.04 5.03 

 

The mean transmission ratio between ESD and exit dose is 5%.  Exit dose value is higher compared to the 

values range in diagnostic radiology. However this results can be explained by the patient position, which 

changes from prone, oblique or lateral. The examiners dose (µGy) per procedure for both groups is presented in 

Table 6.15. The dose values received by both groups are comparable. The higher doses were for the waist and 

the shoulder, because the source of the scatter radiation is behind the examiner and also the attached lead apron 

does not reach the X-ray couch, so a considerable amount of stray radiation is expected. Table 6.17 shows the 

estimated organ dose using the conversion factors from NRPB software [44], risk factors from ICRP [87,88] 

and the estimated risk values.  
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Table 6.15:Minimum, Mean, median, third quartile and maximum values of staff radiation doses (μGy) both groups  

First examiner Group n Minimum Mean Median 3rd quartile Maximum 

Chest All 

A 

B 

153 

111 

42 

0.2 

0.2 

1.1 

6.2 

6.1 

6.4 

3.6 

3.5 

3.6 

6.6 

6.6 

7.1 

32.5 

32.5 

30.1 

Thyroid All 

A 

B 

153 

111 

42 

0.2 

0.2 

1.03 

5.40 

5.40 

5.52 

2.9 

3.8 

2.6 

5.6 

6.7 

5.6 

27.6 

27.6 

26.1 

Forehead All 

A 

B 

153 

111 

42 

0.2 

0.2 

0.7 

3.81 

3.51 

4.45 

2.4 

2.2 

3.2 

6.6 

6.6 

3.9 

26.3 

26.3 

21.0 

Hand All 

A 

B 

153 

111 

42 

1.02 

1.02 

2.9 

27.2 

27.3 

26.9 

13.8 

21.4 

21.3 

53.1 

49.2 

49.3 

223.2 

223.2 

171.5 

Back shoulder All 

A 

B 

85 

61 

36 

0.70 

0.70 

1.25 

38.7 

60.1 

39.3 

59.1 

35.6 

42.1 

54.1 

56.1 

52.3 

282.3 

282.3 

191.2 

Waist All 

A 

B 

85 

61 

36 

13.6 

13.6 

14.7 

100.5 

101.2 

99.5 

77.8 

79.1 

54.38 

120.9 

123.5 

113.7 

381.3 

381.3 

291.0 

Leg All 

A 

B 

54 

30 

24 

0.20 

0.20 

0.20 

1.60 

150 

2.00 

3.50 

3.80 

4.20 

8.20 

6.40 

10.0 

17.10 

15.90 

17.10 

Second examiner        

Chest All 

A 

B 

153 

111 

42 

0.2 

0.2 

1.1 

3.2 

2.5 

5.1 

2.1 

2.1 

1.7 

3.4 

3.9 

2.6 

17.3 

17.3 

15.8 

Hand All 

A 

B 

153 

111 

42 

0.2 

0.2 

0.2 

7.2 

8.4 

4.3 

3.2 

3.6 

2.6 

12.2 

12.3 

10.3 

32.5 

32.5 

25.8 

Third examiner        

Chest B 24 12.8 72 106 301 429.1 

Thyroid B 24 16.1 63 108 243 382.1 

Forehead B 24 13.4 65 114 242 317.8 

Hand B 24 32.1 162 259 421 739.5 
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Table 6.16 provides an estimation of the cancer risks associated with the organ dose. Not surprisingly, the 

pancreas had the highest dose due to its position always inside the radiation field. The risk of radiation-induced 

cancer for different organs was in the magnitude of 10-5 and 10-6 per procedure, whilst the annual examiner risk 

was in the magnitude of 10-3 and 10-4. 

 

Table 6.17: Mean organ radiation equivalent dose (mSv), risk factors and radiation risk per ERCP procedure. 

 

Organ Organ equivalent 

dose (mSv) 

 

 

Risk Factor 

x10-4Sv-1 

Cancer 

probability 

x 10-6 

Ovaries 1.29 16 2 

Uterus 1.42 6.3 1 

Breast 0.28 116 3.2 

Red bone marrow 0.91 23* 2.1 

Pancreas 8.52 6.3 5.4 

Bladder 0.36 39.5* 1.4 

Spleen 4.78 6.3 3 

Lung 0.83 129* 10.7 

Skin 1.91 670 128 

Effective dose 3.44 550 190 

 

* Gender average value 

 

 

This part of the study is intended to optimize and provide a detailed evaluation of radiation dose during ERCP 

and to analyse factors that might affect the radiation dose for both examiners and patients. Since techniques and 

equipment influence patient dose, fluoroscopy time and the number of images, and exposure factors were 

evaluated.  

In comparison with patient characteristics obtained by other studies [176-178], this study showed no significant 

differences between the two patients groups in terms of height, weight, BMI and number of radiographic and 

fluoroscopic images (Table 6.7). The patient demographic data were comparable to the mean values reported in 

the literature [176,178,179,180] and these values were higher compared to those of the NRPB standard 

phantom [44]. In general, variations in BMI and exposure factors influence the patient dose and image contrast.  
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The mean screening time (2.9 minutes) as shown in Table 6.7, was less than that previously reported, which 

ranged between 6 to 14 minutes [176,178,179,180]. The total fluoroscopic time is a good indicator for the 

radiation dose to both patients and examiners. It is important to note that; Larkin et al [176], Singhal et al [181] 

and Buls et al [178] estimated that fluoroscopic exposure contributes 90% of patient total dose during ERCP. In 

agreement with the aforementioned studies, strong correlation was found between the ESD and screening time 

(R2=0.91). Therefore, fluoroscopic time can be a good indicator of dose if radiographic images are controlled. 

Uradomo et al [182] achieved a reduction in screening time of 10% with pulsed fluoroscopy (5.2 minutes), 

which was adjusted to terminate the exposure in 3 seconds, compared to continuous fluoroscopy (4.7 minutes), 

while Singhal et al [181] reported a mean screening time of 1.6 minutes in 247 therapeutic ERCP. 

Unfortunately, they did not report the number of films taken. 

The exposure factors (kVp, mA) for both patient groups were comparable to exposure factors reported in 

previous studies [176,178,179,180]. In general, High kVp increases the scatter radiation thus also the examiners 

dose, while decreasing the contrast of the image [174]. Consequently, Heyd et al [183] reported that, a high 

kVp technique (80 kVp -100 kVp) could reduce the dose to a patient up to 50%, compared to the conventional 

technique (75 kVp -96 kVp). The mean number of radiographs in this study was 2.6 per procedure, which is 

also lower than in previous studies [176,178,179,180,183]. As expected, no significant correlation was found 

between patient dose, demographic characteristics, and exposure factors, but it should be noted that dose does 

depend on the complexity of the procedure.  Storing fluoroscopic images could reduce the number of 

radiographs; this may decrease the image quality but not the yield of the procedure. Selection of the low dose 

fluoroscopic mode and good patient positioning prior to the procedure could also reduce the radiation dose. 

Moreover, adequate filtration of an x-ray beam can substantially reduce patient dose up to 70% by improving 

the quality of the beam whilst largely maintaining adequate image quality [184].  The filtration of our machine 

(4.0 mm Al) was higher than that used in other studies (Buls et al [178] 2.9 mm AL and Tsalafoutas et al [179] 

3.5 mm Al). Therefore, a significant radiation dose reduction can be achieved by optimizing the 

aforementioned factors. 

In this study, the mean ESD, resulting from an ERCP procedure has been estimated to be 68.89 mGy for the 

total patient population. The mean ESD for group A was 65.89 mGy, whereas the mean measured value for 

group B was 77.4 mGy (Table 6.14). Examiner A has a lower dose by 15% compared to examiner B, which 

reflect the high degree of optimization. The mean ESD result for both groups of patients was significantly lower 

compared to previous studies for therapeutic ERCP (Table 6.18). However, the majority of the previous studies 

were mainly for dose surveys [76,178,179,180] and examiner protection [177,178,180]. Heyd et al [183] 

reported the highest ESD (733 mGy), number of radiographs (16 radiographs) and screening time (14 minutes). 

Our results are 60% lower than the lowest value (178.9 mGy) [178] of the reported studies. In addition, 

continuous considerable radiation dose reduction was observed concerning the recent published studies 

compared to the previous ones. This result indicates that a high degree of patient dose optimisation was 

achieved in the present study. This could be attributed to the presence of two experienced gastroenterologists, 

offering quick interpretation and decision-making, and to the low screening time, fluoroscopic captured images 
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and radiographs reduction. Interpretation of an image can produce a dilemma for the first examiner whose 

attention is divided between endoscopic and fluoroscopic monitors and patient [185] The first examiner always 

concentrates on the endoscopic screen, whilst the second one monitors the fluoroscopic screen and controls the 

radiation. Conversely, Buls et al [178] reported that the communication problem between the gastroenterologist 

and the radiographer affects the radiation dose.  

Effective dose enables us to evaluate the expected risk from the procedure and make a comparison between 

different studies using different dose descriptors (TLD, Dose Area Product (DAP), or IC). The mean value of 

the effective dose for both groups was estimated to be 3.44 mSv.  

 As ERCP involves direct irradiation of some of the internal and radiosensitive organs, equivalent doses for 

specific organs were estimated as shown in Table 6.19. In comparison with Buls et al [178], the radiation organ 

doses were also significantly lower. TSD was estimated by direct placement of the TLDs to organ site. Ovary 

dose, which has special concern due to the hereditary effect of radiation, was estimated to be 1.29 mGy while 

testis dose was negligible. The exit dose value was much higher than estimated dose values for the breast, while 

it was slightly higher than total skin dose. 

Previous authors have used different values of conversion factors to derive effective dose from ESD. Buls et al 

[178] (0.0.03 mSv.mGy-1) used NRPB software [44] whereas Tsalafoutas et al [179] (0.0.05 mSv.mGy-1) used 

a mean value derived from the conversion factors between the two studies [176, 179], which is similar to our 

result. These variations could be attributed to the X-ray machine characteristics and to projections used to derive 

the effective dose from ESD. However, it offers a good and simple indicator of the effective dose estimation. 

Variation of patient dose is in general due to differences in the protocols and exposure factors, X-ray 

equipment, patient pathology, field of view, geometry and examiners experience. 

In this study, the protocol was designed to use intermittent fluoroscopy with fluoroscopic image with last image 

hold to minimize exposures significantly without compromising clinical outcome. Even if these images 

generally have inferior image quality compared with radiography, they still contain the required information for 

diagnosis. This reduction also reduces the risk of the radiation effects and offers further margins for further 

investigations and follow-ups especially for young and pregnant patients.  

The measured examiner dose (µGy) for both groups is comparable as presented in Table 6.15. As expected, the 

first examiner was more exposed than the second one, while the radiation dose for the fellow was the highest 

because no protective shield was used in that direction and he was always facing the primary beam. The back 

shoulder and the waist were points of the highest dose for the first examiner, because these parts are always 

facing the source of the scatter radiation, although it can be considered not detrimental because they are 

protected by a lead apron and no radiosensitive organs are involved. The use of full wrap-around apron is more 

effective due to the full coverage of the back and waist area, than the frontal protection one. It should be noted 

that, the radiation dose for the first examiner was measured for 5 procedures without a protective shield. The 

mean and the range for waist and shoulder doses were measured to be 775.8 (387-1681) µGy and 615(229-

1518) µGy, respectively. Conversely, the examiner’s chest and thyroid dose has a lesser increment since the 

examiners are always concentrating on the fluoroscopic monitor during the screening. A dosimeter worn at the 
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front side will not appropriately assess the effective dose. Also in cases of partial body exposures the reading of 

a personal dosemeter may not provide a representative value for the assessment of effective dose. Therefore, the 

current effective dose estimation method is underestimating the dose, since the TLD should be placed on areas 

of the body with the highest exposure rate [87, 88,185]. 

 

Table 6.18: The mean patient parameters, screening time, number of radiographic images, ESD and effective 

dose in various therapeutic studies  (range is in parenthesis). 

Author n Age 

(year) 

BMI 

(Kg/m2) 

Screening 

time 

(Minutes) 

No. of 

Radiograph

ic images 

DAP 

Gy.cm2 

ESD 

(mGy) 

Effective 

dose 

(mSv) 

Present study 153 66.8 

(26-91) 

27.3 

(17.9-42.9) 

2.9 

(0.3-12.3) 

2.6 

(1-6) 

NR 68.75 3.44 

Larkin et al 

[176] 

12 74.8 

(60-89) 

NR 10.5 

(5.9-16.6) 

3.7 66.8 

 

NR 12.4 

Tsalafoutas et al 

[179] 

21 66 

34-92) 

NR 6 

(1.3-23.5) 

2.9 

(2-4) 

41.8 178.9 

 

8.7 

 

Heyd et al 

[183]* 

72 53.6 

(20.6-

86.5) 

26.11 

(17.5-61) 

14 

(2-63) 

16 

(6-45) 

NR 80 NR 

Chen et al [180] 12 60 

(22-89) 

NR 5.9 4 NR 262 NR 

Buls et al [178] 54 66.5 

(41.5-81) 

NR 6 4 49.9 347 9.9 

Singhal et al 

[181] 

247 NR NR 1.38 NR 8.1 NR NR 

 

NR: not reported  

*  Diagnostic procedures 
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Table 6.19.  The mean radiation doses for the first examiner during ERCP procedure (mGy). 

  

First examiner Hand Thyroid  Eye lens Chest No. of 

Film 

Exposure 

time (min) 

X-ray tube 

location 

Present study 0.027 0.005 0.003 0.006 2.6 2.9 Overcouch 

Buls et al [178] 0.64 0.45 0.55 nd 4 6 Overcouch 

Chen et al [180]* NR NR NR 0.0003 4 5.9 Overcouch 

Heyd et al [183] NR NR NR 0.0007 17 13.6 Undercouch 

Naidu et 

al[177]** 
NR 0.2 0.04 NR 4.6 5.97 Overcouch 

Johlin et al[186] 

♣ 
NR NR NR 1.3 NR 60 Undercouch 

♣Phantom study 

*I meter from the patient (1 R=0.087 mGy). 

** Extrapolated from annual effective dose (mSv) for 400 procedures per year.   NR: not reported 

The mean radiation dose to the unprotected parts was higher for the hand (27.2µGy) due to the stray radiation 

from the protective barrier (lead apron). As expected, the mean thyroid dose (5.40 µGy) was higher than the 

eye lens (3.81µGy) because the thyroid is near to the field scatter radiation, while the lowest dose was seen for 

the leg (1.60 µGy), Table 6.15. It is clearly considered that the radiation dose inside the lead apron is 

insignificant and the examiners are adequately protected. Transmissions through the lead apron (0.25 mm and 

0.50 mm lead equivalent) were 12.6 % and 5% at 80 kVp respectively, which was determined experimentally. 

Since scatter radiation is considered a very low energy, there could be even less transmission through the apron. 

However, in the current study the effective dose per procedure was estimated to be 2.04 µSv 1.0 µSv and 7.14 

µSv, for the first, second and third examiners respectively. In agreement with Johlin et al [186], the third 

examiner receives higher dose because he always facing the radiation source. In contrast with Heyd et al [183] 

and Buls et al [178], the third examiner received a higher dose than the first one. Buls et al [178] reported the 

mean second examiner (nurse) doses as 260 µGy, 200 µGy and 270 µGy for eye, neck (thyroid) and hand, 

respectively. The third examiner dose was higher up to 25%  more than that for the second one. A lower value 

was reported by Chen et al [180] 0.1 µGy for the third examiner without protection barrier. In a phantom study, 

Johlin et al [186] estimated the dose to examiners during 1 hour of fluoroscopy at 1 meter. The dose to the first, 

second and third examiner was 13 µGy, 12 µGy and 270 µGy, respectively. A reduction of dose up to 95% 

was obtained with rubberized 0.50 mm equivalent lead shield. 
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Dose differences to examiners can be explained in the light of patient dose differences, examiners location and 

the utility of radiation barriers. Phantom results are higher due to use of prolonged fluoroscopic exposure. 

Nevertheless, regarding the dose limits, examiners can perform over 1000 procedures annually without 

exceeding the limits [6] (20 mSv per year).  

It is worth to noting that, if we used the mean hand dose (tissue reactions) as a reference value, the equivalent 

dose would exceed the limits (500 mSv/year) in 20,000 procedures, whilst for the eye lens the dose would 

exceed the limits (150 mSv/year) in 40,000 the procedures. Assuming that each examiner could perform 500 

procedures throughout the year, the annual effective doses are 1.02 mSv, 0.50 mSv and 3.57 mSv for the first, 

second and third examiners, respectively. 

Published data have shown higher dose values (mGy) for the first examiners chest and unprotected thyroid, 

hand and eye lens compared with this study as shown in Table 6.19. The absorbed dose for gastroenterologists 

and the two assistants was significantly higher compared to our results. Limitation of staff number (group A) 

and adequate training in radiation protection is essential. Therefore, a greater need for further protection seems 

justified. We recommend the use of thyroid shield, and an additional barrier to protect the third examiner. 

Although, it might not offer good access to the patient, the risk of radiation due to chronic exposure must be 

considered. 

The effect of radiation dose differs widely between cases of exposure over a short time (acute irradiation-

patient) and those of slow and steady irradiation extended over a long period of time (chronic irradiation-

examiners) [6].  However, in this study, the patient radiation risk estimation for fatal cancer per procedure was 

found to be 19 x 10-5 while the female hereditary risk was estimated to be negligible (1 x 10-8). Larkin et al 

[176] and Nidu et al [177] estimated the risk of radiation-induced cancer between 1 in 1700 (3x10-4) to 1 in 

3500 (6x10-4) per procedure. The annual radiogenic risk to examiners in this study (500 procedures/year) was 

estimated to be 56 x10-6, 28 x10-6 and 196 x10-6 for the first, second and third examiners, respectively. The 

probability of cancer due to radiation dose depends on organ dose, age and tissue weighting factor, which 

represent the relative contribution of that organ or tissue to these effects. Radiation induced cancer probability is 

shown in Table 6.17. Generally, the risk of cancer is very small compared with the benefit of the examination.  

From previous studies, we can conclude that the radiation risk per ERCP procedure for the gastroenterologist 

can be significant especially in the busy departments for both patients and examiners unless optimization and 

dose reduction methods are applied. Further dose reduction can be achieved by wearing the protective 

eyeglasses and thyroid shields that significantly attenuate scatter radiation. However, the examiners believe that 

the use of lead glasses impairs vision and so increases the exposure time and that lead gloves are inconvenient 

for the first and the second examiners. Avoidance of unnecessary exposure is the best way to reduce the 

radiation risk. 

Reference dose levels may be used to verify the practices for typical examinations, for groups of standardized 

patients, in order to ensure that the dose is not exceeded in normal practice without adequate justification 

[18,20]. However, a reference dose for Therapeutic ERCP is complicated. The duration and complexity of the 
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fluoroscopic exposure is strongly dependent on the individual clinical conditions. Usually, procedures are 

clinically open-ended, continuing until the procedure is complete.  

However, the observed distribution of patient doses in this study is very broad (Table 6.6. Dose reference levels 

are not applicable to the management of tissue reaction risks from fluoroscopically guided interventional 

procedures. The objective is to avoid tissue reaction effects in individual patients undergoing justified, but long 

and complex procedures [6].  

Therefore, we propose a local reference dose level by using the 3rd quartile value (86.81 mGy associated with 2 

radiographs and 3.5 minutes screening time) as shown in the Tables 6.6 & 6.7, as a first step towards dose 

optimisation.  The available data is still not enough to establish dose reference levels, but this could be a 

baseline for further studies concerning the optimisation of dose with regard to avoiding unnecessary 

cancer/heritable risks. 

 

 

6.3 Conclusion  

The results of this study provide valuable data for establishing reference dose levels for previous examinations 

by a direct method using TLDs. However, additional measurements are necessary to improve the technique 

and the statistical information by including children of other age groups. Fluoroscopic captured image 

technique accompanied by reduced number of images has the lowest radiation dose without compromising the 

diagnostic findings. The radiation risks associated with staff and co-patient are negligible. The data presented in 

this work showed our doses to be lower by approximately up to three times lower compared to the lower mean 

values presented in the literature. We recommend fluoroscopic images technique is adequate to reduce the 

radiation dose to the patient. In agreement with published studies our study showed that ovarian dose to be 

equal to 25% of ESD. The unnecessary radiation detriment can be reduced significantly during ERCP by the 

presence of two experienced examiners. The radiation dose to the examiners is well within established safety 

limits, in light of the current practice.  Furthermore, the first examiner should put on a lead wrap-around 

protective apron, since he is not facing the scattered radiation. We believe that the available formulae to 

evaluate effective dose to examiners underestimates the effective dose for ERCP examiners. The results 

encourage examiners for further dose optimisation. Additional studies need to be conducted in order to establish 

reference dose levels for patients and effective dose estimation for examiners involved in radiologic procedures. 
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General conclusion 
 
In vivo dose measurements provide an estimate of the dose received by the patient during radiotherapy. For 

entrance dose measurements, the TLDs are enclosed with a high-density material build-up cap to enable 

measurements at a depth, corresponding to the build-up depth of the photon beam quality in use. The build-up 

caps of the TLDs perturb the radiation beam, but their effect is limited as the in vivo measurements are repeated 

only three times in maximum. The perturbation value can reach up to 20% of the Dmax. Kalef-Ezra et al 

proposed deliver of 50 cGy to the patient to verify the entrance dose, and then remove the detector to continue 

the treatment session. This is an excellent solution to overcome the perturbation issue, although it will increase 

the time required for in vivo dosimetry.  

By means of an IC at depth of build-up in a Plexiglas phantom, correction factors for various non-reference 

conditions were derived to verify if the build-up cap is of suitable thickness.  

In vivo entrance dose measurements have been performed in our radiotherapy department in order to test the 

build up caps and corresponding entrance dose determination methodology at the patient level.  

Regarding the in vivo study in the radiotherapy department of UH Larissa it was in only 10 out of the 69 

patients where the absorbed entrance dose deviated more than ± 5% from the prescribed dose. It is worth noting 

that, some of the poor dosimetric results reflect deficiencies in the build up placement in the patient or TLD 

placement inside the build up caps. 

High Z material Build up caps are useful and feasible to perform in vivo dosimetry with TLDs and this 

methodology is ready to be applied by Kalef-Ezra  [95]. The limitations of build up caps are time and efforts 

need to set a calibration, geometrical and physical correction factors. Further more, during this work, the TLD 

might break or scratch due to the friction with metallic build up cap.  

Patients undergoing radiological procedures receive significant radiation doses due to the complexity of such 

procedures and the amount of diagnostic information required to evaluate the pathologic findings. The median 

values for the recorded surface doses to the patients ranged between 1.13 mGy for paediatric patients up to 68.9 

mGy for ERCP patients. None of the patients exceeded the dose taken to be the threshold surface dose (2 Gy) 

for deterministic injuries of the skin. Most of the surface dose was contributed by radiographic acquisitions, 

which accounted for the 60% of the total dose. Fluoroscopy contributed only 40% to the total surface dose. 

Using the recent risk coefficient from ICRP [18, 19], the effective doses computed in this study can be 

converted to a stochastic detriment. In general, these stochastic risks are low compared to the life saving 

benefits the patients receive by undergoing radiographic procedures. 

The fact that stochastic risks associated with children are higher than the risks associated with adults requires 

that we should focus our attention to reducing doses to pediatric patients undergoing MCU procedures. 

The results of this study provide valuable data for dose optimisation and establishing reference dose levels for 

the mentioned examinations by a direct method using TLDs. However, additional measurements are necessary 

to improve the technique and the statistical information by including patients from different hospitals in order to 
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establish national reference levels. Fluoroscopic captured image techniques accompanied by reduced number 

of images results in the lowest radiation dose without compromising the capability of the diagnostic findings. 

However, some dose reduction does affect image quality, thus it is important not just to reduce doses but also to 

optimise each imaging technique, maximizing its efficiency and determine the right balance between dose and 

image quality. 

The radiation risks associated with staff and co-patient are negligible. Although the radiation dose to examiners 

is very low, no radiation dose can be considered safe and in addition it is accumulated when a high workload 

coexists.  

The data presented in this work showed our doses to be lower by approximately 50% to 300% compared to the 

lower mean values presented in the literature.  

 

 

 

 
Future work  
 
 
This project is complete for photons with high build up caps, electrons could be investigated for different build 

up caps materials and the design can be improved in order to be more convenient for mail dosimetry. Exit dose 

and midline dose is also recommended. Further studies are needed to improve the results for different energies. 

In radiology applications, it is clear that a lot of radiographic examinations and interventional procedures need 

to be optimized by introducing DRL and by encouraging staff to concentrate on more dose reduction. Further 

studies are required for CT scanning and interventional radiology for both patients and staff. 
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TLD correction factors for high energy beams 
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A. 1.  CORRECTION FACTORS (Ci) for 6 MV. 
 

No ID Ci 
1 A1 0.982351 
2 A2 0.973523 
3 A3 1.266533 
4 A4 1.072304 
5 A5 1.094096 
  6 A6 1.109254 
7 A7 1.116938 
8 A8 1.104492 
9 A9 1.135118 

10 A10 0.99791 
11 B1 1.194334 
12 B2 1.080733 
13 B3 1.079438 
14 B4 1.123132 
15 B5 1.076686 
16 B6 1.049839 
17 B7 1.036444 
18 B8 1.120789 
19 B9 1.050182 
20 B10 1.044839 
21 C1 0.920873 
22 C2 1.004425 
23 C3 0.999283 
24 C4             1.02691 
25 C5 0.980175 
26 C6 0.981853 
27 C7 0.885816 
28 C8 1.026137 
29 C9 0.88212 
30 C10 0.911712 
31 D1 0.823143 
32 D2 0.925832 
33 D3 1.028433 
34 D4 0.94328 
35 D5 0.952222 
36 D6 0.982859 
37 D7 1.012884 
38 D8 0.991935 
39 D9 1.053668 
40 D10 0.936612 
41 E1 0.908041 
42 E2 0.959 
43 E3 1.030468 
44 E4 0.909706 
45 E5 0.99235 
46 E6 1.015758 
47 E7 1.036227 
48 E8 0.905913 
49 E9 0.984737 
50 E10 0.910763 
51 K1 0.99733 
52 K2 0.826713 
53 K3 0.922143 
54 K4 0.918854 
55 K5 1.00721 
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A. 2. CORRECTION FACTORS (Ci) for 15 MV 
 

No ID Ci 
1 F1 0.987592 
2 F2 1.086674 
3 F3 0.98446 
4 F4 0.936635 
5 F5 0.872165 
6 F6 1.064949 
7 F7 0.88336 
8 F8 1.006307 
9 F9 1.029334 
10 F10 1.004239 
11 G1 0.989231 
12 G2 0.944708 
13 G3 1.027077 
14 G4 1.029842 
15 G5 0.981853 
16 G6 1.038335 
17 G7 1.00679 
18 G8 1.002834 
19 G9 0.96446 
20 G10 1.057187 
21 H1 0.966962 
22 H2 0.953165 
23 H3 0.984212 
24 H4 0.990936 
25 H5 1.022938 
26 H6 1.016514 
27 H7 0.952046 
28 H8 1.004307 
29 H9 0.981844 
30 H10 1.012551 
31 I1 1.044413 
32 I2 0.963651 
33 I3 1.048985 
34 I4 1.03682 
35 I5 1.020876 
36 I6 1.022268 
37 I7 0.987638 
38 I8 0.985916 
39 I9 0.975716 
40 I10 1.001345 
41 J1 0.889184 
42 J2 0.982408 
43 J3 1.023789 
44 J4 0.979074 
45 J5 1.108179 
46 J6 0.951554 
47 J7 1.02903 
48 J8 1.147776 
49 J9 1.056889 
50 J10 1.058996 
51 K6 0.949968 
52 K7 0.93847 
53 K8 0.985351 
54 K9 1.028308 
55 K10 0.989968 
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A. 3. TLD Correction Factors:  Radiology sample 
No ID Ci 
1 A1 0.995365 
2 A2 0.994744 
3 A3 0.985642 
4 A4 0.968746 
5 A5 1.034037 
6 A6 0.973383 
7 A7 1.039164 
8 A8 0.98062 
9 A9 1.053349 

10 A10 1.024843 
11 B1 0.950095 
12 B2 0.954831 
13 B3 0.975512 
14 B4 1.048047 
15 B5 0.980442 
16 B6 1.042228 
17 B7 1.053594 
18 B8 0.971455 
19 B9 0.983575 
20 B10 0.991914 
21 C1 1.019155 
22 C2 1.051585 
23 C3 1.038882 
24 C4 1.010608 
25 C5 0.967703 
26 C6 0.986683 
27 C7 0.958119 
28 C8 1.040773 
29 C9 1.022073 
30 C10 0.961701 
31 D1 0.964052 
32 D2 0.967259 
33 D3 0.97316 
34 D4 0.973703 
35 D5 0.961466 
36 D6 0.969658 
37 D7 1.046257 
38 D8 1.022705 
39 D9 1.032589 
40 D10 0.959008 
41 E1 0.994588 
42 E2 0.966824 
43 E3 1.014741 
44 E4 0.989617 
45 E5 1.02371 
46 E6 1.027726 
47 E7 1.059472 
48 E8 1.003783 
49 E9 0.997833 
50 E10 1.041297 
51 F1 0.963308 
52 F2 1.042576 
53 F3 1.054556 
54 F4 0.956637 
55 F5 0.960019 
56 F6 0.957343 
57 F7 1.012593 
58 F8 1.003365 
59 F9 1.023712 
60 F10 1.017296 
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Annex B 
Patient dosimetry data documents 
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        B.1.     Patient dosimetry data documents (radiotherapy) 
Patient No(       ) 

 
 Patient name …………………..  Age ………………Date ……………………. 
 Clinical Diagnosis………………………………………………………………. 
 Previous History……………………………………………………………….. 
 Therapy ………………………………………………………………………….. 
 Anatomical Site……………………………………………………………………. 
 
Field   In : Eso ( AP, RL)……………………….. 
SSD……………….. 
Energy…………………. 
Field size  
X1………….. Y1…………………..  Equal Field size   ………………………….  
X2………….. Y2………………….  
Gantry/table………………………… 
Collimator Rot……………………. 
Wedge……………………….Tray ……………………….Bolus……………….. 
Depth ……………………………….TMR/PDD………………………………….. 
Dose……………………………MU………………………………………………. 
 
Field   out: Exo (PA, LL) 
SSD……………………… 
Energy…………………. 
Field size  
X1………….. Y1…………………..  Equal Field size   ………………………….  
X2………….. Y2………………….  
Gantry/table………………………… 
Collimator Rot……………………. 
Wedge……………………….Tray ……………………….Bolus……………….. 
Depth ……………………………….TMR/PDD……………. 
Dose……………………………MU…………………………………….. 
 
Required Corrections Factors: 
 1…………………. 2……………3…………4…………. 
  
Skin ………………………..TLD…………………….comments…………… 
 
Thyroid …………………….TLD……………………comments…………… 
 
 
 
Anatomical 
positron  

TLDs Prescribed 
dose 

Measured 
dose  

Sd SEM 

Thyroid      
Skin      
Field In      
Field out      
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B.2 Radiation dosimetry data documents (Radiology) 

 
 

Exam (HSG,MCU, ERCP ) 
 
Date:………………….                               No…………………………… 
 

Patient’s data 
ID: …………………          Age: …… (years)             Height: .… ….(cm)  
Weight: ……Kg                  BMI……………..Kg/cm2 
Clinical Indications……………………………………… …………………. 
……………………………………………………………………………… 
TLD Positions 
Patient 
1. ESD…   1………………….2………………..3…………………….. 
2.   EXIT… 5………………….6………………..7…………………….. 
3. Throid.4………………. 
Staff doses measurements 
Staff 1:TLD position  
 1……………2……………..3…………………4…………………….. 
Staff 2:……………5…………….6………………7……………….. 
Staff 3:                    8…………..9…………10………..11……………. 

Radiographic data:                                                                     Projection 
 1.KV: …………          mA: ……………..  time(s): …………       …..………… 
 2. KV: …………          mA: ……………   time(s): ………… .……………… 
3. KV: …………          mA: ……………    time(s): …………   …..………….. 
4. KV: …………          mA: ……………    time(s): ………………………….  
5. KV: …………          mA: ……………    time(s): ………………………….  
 
Total films…………….FFD…………………Focal Spot……………… 

Fluoroscopic Data 

1.  KV………………..mA………………………………          Total time  
2.  KV………………..mA……………………………… 
3.  KV………………..mA……………………………… 
4.   KV………………..mA……………………………… 
5.   KV………………..mA……………………………… 
 
Total fluoroscopic time ………………….. Total fluoroscopic Films………………… 
X ray Unit: 
 
Company:…………       model: ………………      year: ………… 
Focal spot size (mm): …………       permanent filtration: ………….               Rectification: 
……………………………………………  
 
Comments: 
………………………………………………………………………………………………
…………………………………………………………………………………… 
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Annex C:   A program of staff dose measurements from the TLD placed outside the lead apron (Dr 
K.Theodorou, Medical Physics Department) [18,87] 

 
    Name      Staff dose  Estimated dose 0.14(mGy)  
Tissue or organ Wt Ht(mSv) E(mSv)   33.34 

Gonads* 0.2 0.014 0.0028   26.75 
Bone marrow* 0.12 0.014 0.00168   19.18 

Colon* 0.12 0.014 0.00168   9.46 
Lung* 0.12 0.014 0.00168   15.39 

Stomach* 0.12 0.014 0.00168    
Bladder* 0.05 0.014 0.0007    

brest* 0.05 0.014 0.0007    
Liver* 0.05 0.014 0.0007    

Oesophagus* 0.05 0.014 0.0007    
Thyroid* 0.05 0.014 0.0007    

Bone surface* 0.005 0.014 0.00007    
Bone surface 0.005 0.14 0.0007    

Skin* 0.005 0.014 0.00007    
Skin 0.005 0.14 0.0007    

Remainder 0.05 0.14 0.007    
Total 1  0.02156    

       
* Under protective shield=10% of dose     
       
Ισοδύναμη δόση ακρων: 0.14  οριο 500   
Ισοδύναμη δόση φακών: 0.014  οριο 150   
       
 
Name Staff dose Estimated dose 0.14(mGy)  
Tissue or organ Wt Ht(mSv) E(mSv)    

Gonads* 0.2 0.14 0.028    
Bone marrow* 0.12 0.14 0.0168    

Colon* 0.12 0.14 0.0168    
Lung* 0.12 0.14 0.0168    

Stomach* 0.12 0.14 0.0168    
Bladder* 0.05 0.14 0.007    
breast 0.05 0.14 0.007    

 0.05 0.14 0.007    
Oesophagus* 0.05 0.14 0.007    

Thyroid* 0.05 0.14 0.007    
Bone surface* 0.005 0.14 0.0007    
Bone surface 0.005 0.14 0.0007    

Skin* 0.005 0.14 0.0007    
Skin 0.005 0.14 0.0007    

Remainder 0.05 0.14 0.007    
total 1  0.14    

* under protective shield=10% of dose     
       
Ισοδύναμη δόση ακρων: 0.14  οριο 500   
Ισοδύναμη δόση φακών: 0.014  οριο 150   
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Annex D.  
Patient dosimetry results  
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                     D.1 Head and Neck 
 

No Dose (cGy) Depth 
Field 
size LL RL 

Expected dose 
(cGy) 

Dose 
ratio % sd  LL RL 

1 90 9 8x9 123.8 122.71 130 0.943 1.4 95.8 3.5 4.2 
2 90 10 8x10 133.2 134 135 0.992 2.1 98.6 1.3 1.2 
3 90 8 6x10 110 109.25 108 1.011 1.085 1.018 2.4 2.35 
4 100 8 8x9 113 121 117 1.0341 96.58 0.965 3.6 3.26 
5 100 7 7x7 108.23 124 105 1.180 1.02 1.030 2.1 1.03 
6 125 9 6x7 170 151 155 0.974         0.982 1.096 2.5 2.36 
7 100 7 8x13 140 133.5 130 1.026 1.02 1.0769 2.1 3.01 
8 120 7 8x9 145 143 140 1.021 1.035 1.035 3.4 4.21 
9 90 8 7x9 98 97.6 103 0.947 0.951 0.951 3.6 2.36 

10 90 6.5 12x8 107 113 110 1.027 0.972 0.972 2.45 4.95 
11 100 8 5x7 115 126 120 1.05 0.958 0.958 1.23 1.32 
12 120 7 9x6 148 136 140 0.971 1.057 1.057 4.32 4.36 
13 187 7.5 20x15 213.56 215.56 210 1.026 1.0169 1.016 1.54 2.36 
14 150 8 12x9 182 172 175 0.982 1.04 1.04 4.23 3.24 
15 100 7 8x9 130 112 114 0.982 1.140 1.140 3.54 4.01 
16 90 8 8x7 102 103 106 0.971 0.962 0.9624 3.36 1.23 
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                      D.2 Breast 
 

No Dose(cGy) Depth 
Field 
size Fin  Fout Expected dose(cGy) 

Dose 
ratio  sdin sdout 

1 90 2 and 7 6.5x17 87.2 108.8 91 103 0.956 1.04 1.23 2.04 
2 133 3.6 5x7 182.2 165 185 160 0.984 1.031 1.23 1.67 
3 133 9.5 12x19 193.5 180.6 189 176 1.023 1.026 1.23 1.06 
4 133 8-May 9.15.5 159.2 180.8 153 175 1.04 1.033 2.12 1.52 
5 90 6 and 8 8x16 123.26 119.25 120 120 1.03 99.32 2.31 1.83 
6 133 8 6 9x16 172.54 165.4 175 170.2 98.59 1.034 3.12 2.14 
7 90 3.6 4x7 95.2 104.3 100 106 0.952 0.983 4.2 2.6 
8 133 4.7 5x8 99.4 166.2 105 158 0.946 1.051 3.5 6.2 
9 90 4.8 6x8 104.7 116.8 100 111 1.047 1.052 2.3 5.2 
10 133 3.58 6x8 137.6 167.9 142 163 0.969 1.030 5.2 5.6 
11 133 5.7 4x5 156.2 154.2 152 163 1.027 0.946 3.7 2.3 
12 133 5.9 6x7 157.5 159.4 151 166 1.043 0.960 2.4 3.5 
13 266 8x10 dmax 274.6 259.2 266 266 1.032 0.974 4.2 4.6 
14 266 20x20 dmax 276.2 277.4 266 266 1.038 1.042 4.3 3.2 
15 200 7x10 dmax 195.2 192.5 200 200 0.976 0.9625 2.3 3.5 
16 200 20x20 dmax 207.9 195.2 200 200 1.039 0.976 2.6 3.5 
17 300 6x6 dmax 308.2 293.2 300 300 1.027 0.977 3.6 2.5 
18 90 10x18 8.6 94.2 106.3 102 98 0.923 1.084 4.2 3.6 
19 100 8x10 12 139.2 142.6 135 135 1.031 1.056 2.3 3.6 
20 100 8x10 5 119.9 107.6 112 112 1.070 0.960 3.5 2.7 
21 133 5x8 5 137.5 134.3 144 144 0.954 0.932 2.5 3.6 
22 133 4x8 4 158.4 142.7 150 150 1.056 0.951 4.1 2.9 
23 90 7x6 6 109.8 96.1 103 103 1.066 0.933 4.6 4.5 
24 100 5x7 7 129.5 125.1 123 123 1.052 1.017 4.6 3.6 
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                              D. 3. Abdomen  
 

No Dose(cGy) Depth 
Field 
size LL RL Expected dose(cGy) 

Dose 
ratio sdLL sdRL 

1 90 11 18x11 127.3 108.4 112 1.1366 0.967 2.14 3.6 
2 400 dmax 18x6 409.5 392.8 400 1.023 0.982 3.25 4.2 
3 500 dmax 17x6 515.2 492.5 500 1.030 0.985 4.23 5.2 
4 150 5 12x5 157.4 170.2 163 0.965 1.044 3.625 5.2 
5 400 dmax 12x11 405.2 395.7 400 1.013 0.989 4.25 3.6 
6 200 6 12x7 229.2 219.3 224 1.023 0.979 4.3 4.6 
7 150 11.5 14x6 193.2 19.6 193 1.001 0.101 5.21 5.9 
8 100 4 10x5 104.2 109.8 105 0.992 1.045 3.4 4.3 
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         D 4. Pelvis  
 

No Dose(cGy) Depth 
Field 
size Angle AP PA Expected dose(cGy) 

Dose 
ratio % sd LL sdRL 

1 150 10 12x12 0.18 218.2 226.4 220 220 0.9918 99.2 99.2 1.02 
2 90 9 9x10 90.27 202.8 198.6 205 205 0.9892 98.9 98.9 96.8 
3 120 13 8x12 0.18 158 157 165 165 0.9575 0.9515 2.31 2.31 
4 100 10 7x12 0.18 120 122 130 130 0.9230 0.938 3.21 2.31 
5 90 11 9x10 0.18 116 114 120 120 0.9666 0.95 2.31 2.12 
6 90 5 13x13 0.18 103.6 83.2 100 100 1.036 0.832 1.03 1.54 
7 150 12 12x14 0.18 195 180 202 202 0.9653 0.891 1.12 3.32 
8 167 12.5.8 7x8.4x3 90.27 228.3 195.3 220 220 1.036 97.5 1.2 2.1 
9 211 10 4.3 83 160 160 156.2 156.2 97.610 1.01 1.02 2.01 

10 200 12 9x8 0 210 208 212 212 0.9905 99.05 2.13 3.25 
11 150 14 8x9 0.18 223 210 215 215 1.0372 0.976 2.14 3.45 
12 200 10 7x12 0.18 263 251 257 257 1.0233 0.976 2.14 4.25 
13 160 9 7x8.4x3 180.27 187 203 195 195 0.9589 1.041 3.51 2.56 
14 200 14 12x10 180 218 226 222 222 0.9819 1.018 2.21 3.25 
15 140 10 10x7 180 147 159 154 154 0.9545 1.032 2.32 3.25 
16 180 12 12x14 27 185 201 190 190 0.9736 1.057 1.54 2.35 
17 200 13 8x8 27 222 219 215 215 1.0325 1.018 1.25 3.25 
18 200 13 7x10 270 213 223 210 210 1.0142 1.061 4.23 2.14 
19 150 10 10x6 90 162 173 168 168 0.9642 1.029 2.31 2.32 
20 150 10 10x8 90 176 179 170 170 1.0352 1.052 3.65 5.32 
21 200 14 8x9 90 246 249 240 240 1.025 1.03 3.25 5.32 
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