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ABSTRACT

The aim of this study is to assess and identify different types of hydrological
uncertainty in daily runoff simulation at Yermasoyia watershed, Cyprus. This is
achieved with the aid of a free online software called ‘HYDROMAD’ which is based
on the unit hydrograph theory of rainfall-runoff component separation. This implies
a two-component structure: a soil moisture accounting (SMA) module and a routing
or unit hydrograph module. The SMA module converts rainfall and temperature into
effective rainfall: The routing module converts effective rainfall into streamflow,

There is a number of different strategies that can be used to calibrate a model. The
typical approach is a joint optimization of all parameters or, alternatively, the unit
hydrograph could be estimated directly from streamflow data, using inverse filtering
or average event unit hydrograph estimation. Several well-known lumped
hydrological models (such as the GR4J, the IHACRES models and the AWBM) are
applied and tested for accurate runoff modeling using the split-sample test for
estimating model error uncertainty. Several local non-linear and global optimization
algorithms (i.e. Shuffled Complex Evolution, DiffeRential Evolution Adaptive
Metropolis, DiffeRential Evolution, Simulated Annealing, quasi-Newton) have been
deployed and compared for calibrating the different hydrological model structures
to observed streamflow data for identification of optimization error uncertainty and
model parameter uncertainty.

Finally, several objective functions (i.e. Nash-Sutcliffe Efficiency and variations or
adaptations) which address different parts of the hydrograph have been used to
identify parameter and model uncertainty. The model performance of the above
tests was evaluated with the use of fit statistics or metrics for calibration and
validation periods. Application of the tests in Yermasoyia watershed showed that the
primary source of uncertainty in rainfall-runoff modeling was the choice of the
hydrological model (model structure) followed by the parameter uncertainty caused
by the optimization algorithm and the choice of objective function.

KEYWORDS: Hydrological models, rainfall-runoff modeling, model structure
uncertainty, optimization algorithms, objective functions, parameter uncertainty,
streamflow modeling.
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NEPINHWH

ZKOTIOC QUTAG TNE Epyaoiag ival o mpoadloplopog Kat n agloAoynon twv dtadopwv
Tinywv uSpoloyikng afefaldtnTtag, oTnV NUEPNCLA TTPOCOUOLWGN TNG ATOPPONC, OTN
Aekdvn amoppong tng Yermasoyia otnv KOmpo. Auto emituyxavetal pe t Bonbela
€vog Swpedv SLadiktuakou AoyLlopkou Ttou ovopdaletat «<HYDROMAD» kalt To omoilo
Baoiletal otn Bswpia tou povadiaiov udpoypadruatog ya to Slaxwplopd Tou
udpoAoyikol Looluyiou kat Tng St6deuong TN pong. Me Baon To SLoXWPLOUO AUTO,
UTTOVOELTAL OTL KOlL TO UTTOAOYLOTIKO TTAaiolo (model framework) Ba amoteAeital ano
6V0 empépoug TUNMata otn Soun Ttou: TN povada AoyloTiknG €6adOAOYIKAG
vypaciog (SMA) kat tn povada Swodesuong pong (routing) B tn povada Ttou
povadiaiov udpoypadriuatoc. ITO TPWTO TUAHO YIVETOL N HETATPOTI TNG
Bpoxomtwong kat tng Bepuokpaciag oe evepyr) Bpoxomtwon, evw oto SeUTEPO
TUAMUO YIVETAL N LETATPOTIH TNG EVEPYNC BPOoXOMTWONG O eMLAVELAKN ATIOPPON).

MEVIKA, UTIAPXEL EVag HEYAAOCG aplOpOg SladopeTikwy peBodoloylwyv Tou pUnopouv
va xpnotpomnotnBouv otn Babuovounon evog poviélou. H Tumiki mpooéyylon ivat n
amnod kowou BeATiotonoinon OAwv TwWV MAPOUETPWY TOU HOVTEAOU 1, EVOAAOKTLKWG,
N ektipnon tou povadiaiou udpoypadnuatog pmopel va yivel ameuvbeiag amnod ta
6ebopéva TNG amoppong, xpnoluomowwvtag avtiotpodo ¢ktpaplopa (inverse
filtering)  tou péoou Opou Twv yeyovotwv. Alddopa nuepnola adpopepn
udpoAoylkd HoVTEAQ Bpoxomtwong — amoppon¢ (onw¢ to GR4J, to AWBM kat
napoaAlayEg Twyv poviéAwv IHACRES) dokipudotnkav kot HEAETABNKAY, W¢ TIPOG TNV
oKpiBela TNG TPOCOUOLWHEVNG AMOPPONG, XPNoLlomolwvtag tn HEBodo xwplotou
Selypatog otnv ektipnon tng udpoloykng apefatdtntag. Alddopol pn-ypappLkol
oAyoplBuol PBeAtiotomoinong TOMIKAG Kal KABOAKNG Tpoogyylong (omwg yua
napadeypa ol: Shuffled Complex Evolution, DiffeRential Evolution Adaptive
Metropolis, DiffeRential Evolution, Simulated Annealing «kat quasi-Newton)
avamntuxbnkav Kat cuykpibnkav katd tn Babuovounon twv Sladopetikwy Sopwv
TWV UOPOAOYIKWY HOVTEAWV WG TIpOG Tta apatnpnuéva dedopéva tng amoppong.
Méoa amd tn olykplon aut epdaviletat n ofeBadtnta oto odpAApA TG
BeAtioTomoinong, OTIC TIMEG TWV MOPAUETPWY TWV MOVTEAWV aAAd Kol otnv dla tn
doun Touc.

T€A0oG, S1APOPEC AVTIKELUEVIKEC ouvapThoelg (omwg n Nash-Sutcliffe Efficiency kat
mapoAAayEG | TPOCAPUOYEC AUTNAG), oL omoleg ameuBuvovtal oe SladopeTika
TUAMOTO Tou UdpoypadiuaTog, XPNOLUoTolOnkav ylo TOV EVIOTOMO TNG
ofeBalotnTog TWV TAPAUETPWY Kal TNG SOUNG Twv PovtéAwv. H amodoon twv
HOVTEAWV afloloynBnke He TN XPrion OTATIOTIKWY KAAAG TPOCAPUOYAG Yl TIG
neplodouc BabBuovounong kat emaAnBevong. H edappoyr Soklpwv otn Askavn
amoppon¢ tnG Yermasoyia Oeiyvel mwg n Baowkn mnyn apeBoaldtntog otn
povtehomoinon Ppoxomtwong — amoppong elvat n emhoyn ™G O6OUAG TOU
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udpoloylkoU povtélou, akoAouBoupevn amo tnv afeBaldTnTa TWV MOPAUETPWV
TIOU TIPOKaAE(tal amd Tnv emloyn Twv aAyopiBuwv PBeAtiotomoinong kot Twv
OVTIKELUEVLKWV CUVAPTHOEWV.

Né€erg-kKAeldLa: YOpoAoylkad pOVTEAQ, MOVTEAQ Ppoxomtwong — amnoppong ,
ofeBaotnta doung povtéAwv, aAyoplBuol PeATIOTONOINONG, OVTLKELUEVIKEC
OUVAPTAOELG, aBefaloTnTa MOPAUETPWY, LLOVIEAOTIOLNCN AMOPPONG.
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RESUME

Le but de cette étude est d’identifier et d’estimer les différentes sources
d’incertitude hydrologique associées aux simulations de ruissellement journalier
dans le bassin versant de Yermasoyia a Chypre. Pour ce faire, on utilise le
programme ‘HYDROMAD’, disponible gratuitement en ligne, basé sur la théorie de
I’hydrographe unitaire de séparation des composantes de ruisselement et
d’écoulement. Ceci implique une structure de modeéle constituée de deux éléments:
un module d’évolution de I'humidité du sol (EHS) ainsi qu’un module de routage
hydrologique ou un hydrographe unitaire. Le module EHS calcule la pluie nette a
partir des données de pluie totale et de température. Le module de routage
convertie ensuite cette pluie nette en débit. Il y a de nombreuses méthodes de
calibration différentes pour un tel modele.

L'approche usuelle consiste soit a optimiser simultanément I'ensemble des
parameétres soit a estimer directement I’hydrographe unitaire a partir des données
de débit en utilisant un filtrage inverse ou une estimation de I’"hydrographe unitaire
associé a un évenement moyen. Un grand nombre de modeles hydrologiques
empiriques (tels les modeles GR4J, IHQCRES et AWBM) sont appliqués et leurs
simulations du ruisselement sont évaluées par le biais du test de validation croisée
qui permet d’estimer l'incertitude associée a l'erreur modele. De nombreux
algorithmes d’optimisation non linéaires locaux ou globaux (c.a.d. Shuffled Complex
Evolution, DiffeRential Evolution Adaptive Metropolis, DiffeRential Evolution,
Simulated Annealing, quasi-Newton) sont déployés et leurs calibrations des
différentes structures du modele hydrologique par rapports aux données de débit
observées sont comparées afin d’identifier et de réduire les incertitudes liées a
I’erreur et aux parametres du modéle.

Enfin une série de fonctions objectives (par exemple : Nash-Sutcliffe Efficiency et
variantes ou adaptations) focalisées sur différentes caractéristiques de
I'hydrographe sont utilisées pour identifier ces sources d’incertitudes. Les
performances du modele par rapport aux tests précédents sont évaluées grace a des
statistiques ou mesures de la qualité des données simulées pour les périodes de
calibration et de validation. L’application de cette méthodologie sur le bassin versant
de Yermasoyia a prouvé que la premiére source d’incertitude des simulations pluie-
débit est le choix du modéle hydrologique (structure du modeéle) suivi par
I'incertitude sur les parametres engendrée par le choix de [Ialgorithme
d’optimisation et de la fonction objective.

MOTS CLES: modeles hydrologiques, simulation pluie-débit, incertitude liée a la
structure du modele, algorithme d’optimisation, fonction objective, incertitude liée
aux parametres, simulation de débit
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CHAPTER 1: Introduction

CHAPTER 1

1.1 Background and project overview:

Conceptual lumped Rainfall-Runoff models, (R-R models), have been coupled with
computing science since the early 1970s and have earned a central spot in
hydrological modeling. Among many other models that are referred in the literature,
some of the most representative “early” ones are undoubtedly the HBV (Bergstrom
& Forsman, 1973) and the Sacramento (Burnash, 1973) models. Most of such models
have surely undergone modifications or refinements over the years, through
continuous improvement processes by their developers or others. However, the
core physical and functional basis of the models has been kept intact and is still in
use nowadays as such.

R-R models usually have a relatively simple structure and use not too complex
mathematical equations. They all aim to interpret the physical processes that take
place within a catchment, through which rainfall is transformed into runoff. As far as
the lumped R-R models are concerned, their parameters cannot be directly
measured on site, although they represent physical processes and characteristics of
the catchments. Therefore, their values, or ranges of values have to be determined
through calibration techniques, (Wheater et al., 1993).

Initially, calibration was performed manually by trial and error approaches but this
soon proved to be a rather laborious and time consuming work (Madsen et al.,
2001). Inevitably scientific research on this area focused on the development of
different calibration approaches which were more automated. Such approaches
generally involve the selection of either a single “objective function” as a measure of
goodness of fit or a multi-objective calibration approach, as proposed by Gupta et
al., (1998). Furthermore, the Pareto optimal solution for parameter sets as proposed
by Gharari et al., 2012 give an indication of where research in this field focuses
more. The use of a single objective calibration procedure aims to develop models
that either focus on a particular characteristic of the hydrograph (peak / low flows)
or in case of multi-objective calibration, models are developed to represent an
overall behavior for all the parts of the hydrograph. Other research works have been
conducted considering multi-criteria in the calibration process, for example tracers’
concentrations or remotely sensed evaporation, (Weiler et al., 2003) and (Winsemius
etal., 2008).

Automated calibration procedures also include the selection of a parameter search
procedure, called “optimization algorithm”. Until recently, calibration has been
performed by local-search optimization algorithms (Yapo et al., 1996), i.e. using the
Nelder and Mead (1965) simplex algorithm and others. In 1992, Duan et al.
addressed the problem of the local search algorithms that likely produce a huge

1
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CHAPTER 1: Introduction

number of parameter values trapped as local optima within the objective function
optimum space. He and others suggested the use of a global search algorithm, the
SCE, which proved to be very effective and efficient at the same time, finding
consistently the region of global optimum solutions and requiring not many function
evaluations, (Duan et al., 1992, 1993, 1994; Sorooshian et al., 1993).

This study examines R-R models that predict a modeled streamflow and is then
compared to the observed one. The process of prediction requires that the model
parameters are estimated (calibrated) in a way that the modeled flows are as closely
related as possible to the observed flows. This implies that during the modeling
processes, uncertainty that result in poor predictions must be identified, evaluated
and reduced.

Uncertainty in R-R modeling can be described as the degree of confidence that
resides in the predictions after models have been calibrated. In general, uncertainty
is inherent due to the randomness and the variability in nature and cannot be
reduced. However, what can be reduced is the “epistemic” uncertainty which is
attributed to the choice of model, the model structure and the model parameters.
Parameter uncertainty is caused by the choice of the calibration procedure.

In this study, model calibration has been implemented by different parameter search
methods, called Optimization Algorithms, all of which optimize the value of
different “goodness of fit” measures, called Objective Functions. Therefore, the
selection of an appropriate optimization algorithm and a suitable objective function
is very significant and has been made on the grounds of reduced parameter
uncertainty. This type of uncertainty has been assessed by the use of “fit statistics”
in both calibration and validation periods.

1.2 Methodology:

Four different conceptual and spatially lumped R-R models have been assessed,
namely the GR4J (Perrin, 2000), the AWBM (Boughton, 2004) and two versions of
the IHACRES model, the IHACRES_CWI (Jakeman and Hornberger, 1993) and the
IHACRES_CMD (Croke and Jakeman, 2004). The same dataset consisting of 11 years
of daily Precipitation, Evapotranspiration and Observed streamflow was used for the
Yermasoyia watershed in Cyprus. Assessment has been performed during two
periods of the same length; one wet and one dry.

The modeling framework was exclusively provided by HYDROMAD, an open-source
software available in the R-statistical computing environment. Its structure is
consists of two components. First, a Soil Moisture Accounting (SMA) converts inputs
of rainfall, temperature, evapotranspiration and others into effective rainfall. The

2
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CHAPTER 1: Introduction

second component, Routing, is based on the unit hydrograph theory and converts
the effective rainfall into streamflow.

Rainfall
(SMA) _
Rit) Soil Moisture Routing
Accounting component
' Effective or UH Streamflow
) Rainfall, LIt Qi)
nan-linear _
module linear
LEET module
others

Figure 1. Rainfall - Runoff model framework

The objective of this study was to assess the uncertainty and the performance of
each model based on different calibration strategies for parameter estimation.
Sampling of the parameters was based on both local search and non-linear
optimization algorithms using multi-start or pre-sampling (i.e. Nelder-Mead, PORT:
Powerful-Outstanding-Reliable-Tested, BFGS: Broyden—Fletcher—Goldfarb—Shanno)
and global search algorithms (i.e. SANN: Simulated ANNealing, SCE: Shuffled
Complex Evolution, DE: Differential Evolution and DREAM: DiffeRential Evolution
Adaptive Metropolis). All algorithms were attempting to optimize four different
objective functions, namely: the classic NSE: Nash-Sutcliffe Efficiency, NSE?: a
transformed NSE where the absolute residuals are raised to cubic power and two
“bias constraint” objective functions, named Viney, as proposed by Viney et al.
(2009) and the other, named BL, proposed by Bergstrom and Lindstrom, (2002).

Finally, several fit statistics were used to evaluate model performance in both
calibration-validation periods. Indicatively, these include: the Relative Bias, the NSE
as fit statistic too, the NSEsqgr, and the AMAFE. Fit statistics indicate the amount of
uncertainty that persists to exist after calibration.

1.3 Study Area:

The watershed of Yermasoyia is a small catchment of approximately 157Km2 area
which is located in the mountain of Troodos, near Limassol, Cyprus. The mean
annual areal precipitation is about 640mm (450mm at lower elevations up to 850mm
at higher elevations) and the mean annual runoff at the catchment outlet is about
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CHAPTER 1: Introduction

150mm or 0.42 m3/s (for the 11years of observations). It was calculated that: for the
years ‘87-'92 runoff is 0.45 m3/s (WET period) and for the years ‘92-'97 is 0.35 m3/s
(DRY period). The catchment’s elevation ranges from 70m to 1400m, (Loukas, et al.
2003). The Mediterranean climate of the area produces mild winters and hot and dry
summers. Thus, the stream of the watershed is transient and ephemeral with
rainfall-induced peak flows being observed during winter months.

® [lelecrological Slalions
Yarmasoyia River

[ ] vermasoyia Watershed

. E— — ] T
[1] 2 00 4 00 a2 120 16 D00

Figure 2. Yermasoyia watershed, Cyprus (Loukas et al, 2003)

1.4 Available data and data check:

The available data consists of 11 years of daily precipitation, evapotranspiration and
streamflow measurements. Areal precipitation was estimated using the
measurements from two stations (at 70m and 995m elevation) by the method of
precipitation gradient. Evapotranspiration was estimated by the Hargreaves
approach.

Exploratory analysis of the input data is always important since it is a direct input in
the models and influences their performance. Although the selected models are,
apart from conceptual, also data-based, only an indicative data analysis has been
performed. This is because the scope of this study is to explore more the structure of
the models and their performance under different optimization methods.

Arguably the first check one should perform is a simple visualization of the available
dataset. This may assist in the identification of erroneous data, discontinuities in the
time-series, among others, all of which are potential sources of uncertainty in the
model assessment. By plotting the raw daily time-series one can assume the
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CHAPTER 1: Introduction

seasonal pattern of ET and a strong correlation between rainfall and streamflow
peaks, (Figure 3).

1 1 1 1 1 1
Areal rainfall immddayl

0 20 40 60 80 100

Evapo-transpiration {(mmJdday)

]
|

Streamflow (mmJdday)

14

1288 12930 1992 1924 1228 1298

Figure 3. Daily raw data

For the purposes of the calibration procedure, a wet period (form 01-10-1987 to 30-
09-1992) and a dry one (from 01-10-1992 to 30-09-1997) have been identified. This
is shown more clearly in Figure 4 where the time-series have been aggregated at a
monthly scale.

1
Areal rainfall Ommd

0 100 200 300 400

Evapo-transpiration {mrmdy

100 150 200

&0
|

Streamfloww (mmb

020 4 6
|

1228 ==l 182 1EDa 1B2s 1252

Figure 4. Monthly aggregated data
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CHAPTER 1: Introduction

Given that R-R models are being studied here, a simple data check can provide of an
estimation of the catchment runoff ratio. This is the percentage of catchment areal
precipitation that appears as observed streamflow. Therefore, runoff ratio = sum(Q)
/ sum(P) = 0.135. This number appears to be in accordance with what one would
expect for such a watershed.

Equally important to the runoff ratio is the estimation of the lag-time (or delay)
between rainfall and rises in the observed streamflow. In this case, the estimate

Delay = 1 day.
Cross-correlation with rises only
g |
g |
L
Q
* o |
= =" |'"|__|_"|"|'_J__ "__}‘_“__l'_T"I"'i"I'_T__."
T e —
-10 5 0] 5 10

Figure 5. Lag-time at maximum correlation of P and Q

The cross-correlation of P and Q can also be examined at given lags (0, 1, 2, etc.) and
over different periods (90 days, 365 days, etc).
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Figure 6. Cross-correlation of P and Q in different time windows

This graph also confirms the lag 1 (1 day delay) between rainfall and streamflow
where the highest correlations appear. Only in few cases of lag 0, correlation values
become higher than those of lag 1, meaning that the response time has changed
from 1 to O days. Correlation between the input variables was also examined in
order to check for non-stationarity issues and if there is linearity in their between

relationship.
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PET

15

10

a
0 20 40 60 80

2 4 6 8 0 20 40 60 &0 100

Figure 7. Correlation matrices of state variable P, Q and PET

Finally, a seasonal and trend decomposition of rainfall time-series was performed
using the STL algorithm (Cleveland et al. 1990).

|
data

seasanal

rainfall {mmimanth)

[=]
|
trend

remainder

T T T T T T T T
1887 1888 1889 18990 1881 1992 1553 1554 IBBF 18828 1887

Figure 8. STL decomposition of time-series
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CHAPTER 2: Rainfall — Runoff Models

CHAPTER 2

2.1 General:

Rainfall — Runoff models aim to relate rainfall estimations, (observed or forecast), to
the streamflow at a catchment outlet. They can either perform event-based or
continuous temporal simulations. Care should be taken into account when selecting
the criteria of what defines an event (i.e. thresholds of precipitation / streamflow
levels, durations etc). This study will focus only on continuous simulations.

Understanding the physical processes that take place during the rainfall
transformation into streamflow is not always easy, considering the variety of
hydrological (underground / surface) and climatological profiles that exist. However,
with the use of good quality and sufficient quantity of historical records of rainfall,
evapotranspiration, temperature and runoff observations, R-R models can produce
very satisfactory results requiring a relatively simple structure and only a few
parameters. This study will investigate the structure and then the performance of
four different R-R models, all of which ran at a continuous daily time-step and are
spatially aggregated.

2.2 GR4J) model description:

The GR4J model, as proposed by Perrin (2000), is a daily lumped Rainfall-Runoff
model. Daily because the input data required is a daily-step time series of raw areal
rainfall and daily estimate of potential evapotranspiration (PET) denoted by P (mm)
and E (mm) respectively. Lumped model, in contrast to a distributed model, because
the perceptual basis of the model does not take into account the spatial variability in
terms of the hydrological processes and characteristics and treats the catchment as a
single unit. (Fig. 9)

Figure 9. Spatial scales of R-R models

Given that this model is a result of a continuous improvement process over many
years and acknowledging the findings and suggestions of previous studies such as
Perrin et al. (2001), the four-parameter version was used with its existing model
structure (Fig. 10) as a starting point. The GR4J is an updated version of the GR3J
model initially developed by Edijatno and Michel (1989) and then further evolved by
Nascimento (1995) and Edijatno et al. (1999).

9
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CHAPTER 2: Rainfall — Runoff Models

Figure 10. GR4J model structure (Perrin et al. 2003).

The four parameters of the model which are calibrated are:
e x1: maximum capacity of production store (mm)
e x2: groundwater exchange coefficient, (mm)
e x3: 1-day ahead capacity of routing store, (mm)
e x4: time base of the unit hydrograph UH1, (days)

The structure of the model consists of two modules. The SMA (Soil Moisture
Accounting) or Production store and the Routing store.

First, the SMA is the part of the model which converts the rainfall and PET into
effective rainfall, i.e. rainfall that reaches the outlet of the catchment as streamflow.
By subtracting E from P, net values of precipitation (P,) or evapotranspiration
capacity (E,) are determined, assuming that there is no interception storage
capacity. Therefore,

10

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 10:55:44 EEST - 18.117.97.238



CHAPTER 2: Rainfall — Runoff Models

- IfP2E, then P,=P-E and E,=0 (1)
- IfP<E, then E,=E-P and P,=0 (2)

In the case P, # 0 a part P of P, fills the Production store given by the function:

2

, x1|11- ()%) tanhi?ﬁﬁ%)
s =
14 %tanhi@i@%)

(3)
where x1 is the maximum capacity of the production store (mm).

In the case E, # 0 the production store loses water due to evaporation at a rate Eg
given by the following formula:

S | cannifER
L s[ Sa)
S ,.}.(EEn
1+ [1 - ﬁ]tanh(ﬁ)
(4)
Therefore, the water content in the Production store is given by:
S=S—E +P; (5)

The GR4J model also considers water losses from the Production store due to
Percolation, Pe,c, as a power function of the store capacity:

| =

P S{1—-[1+ 25
erc = — —
(1-11+ G
(6)
The above mathematical formula implies that Pe is always < S and its contribution

to the final streamflow is not great and only important for low flow simulation,
Perrin et al. (2003).

The water content in the Production store then becomes:
S=S- Perc (7)

Finally, the total quantity of water that continues in the Routing part of the model is
determined by:

Pr=Perc + (Pn - Ps) (8)
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90% of P, is routed by the unit hydrograph UH1 to a non-linear routing store and
10% of P, is routed by the unit hydrograph UH2. Both UH1 and UH2 simulate the lag
time between rainfall events and peak streamflows and depend on the x4
parameter, time base of the unit hydrograph UH1, (days), with UH1 having x4 days as
time base and UH2 having 2x4 days (x4 > 0.5 days). The two unit hydrographs have
ordinates of n and m respectively, meaning that the water is spread over a period of
time into n and m unit hydrograph inputs for UH1 and UH2. These ordinates are
calculated by the related S-curves (cumulative proportion of the input with time) and
are denoted by SH1(t) and SH2(t) respectively.

Table 1. Ordinates of UH1 and UH2 for the GR4J routing component

For the SH1(t): For the SH2(t):
Ift<0: SH1(t)=0 Ift<0: SH2(t) =0
If 0 <t <x4: t.5 If 0 <t <x4: 1.t5
SH1(t) = [—]2 SH2(t) = =[—]2
® =] ® =50
If t > x4 SH1(t)=1 If x4 < t < 2x4: 1 t
SH2(t)=1—-—=[2 ——
® 2 [ x4
Ift>2x4 SH2(t) =1
Therefore, the ordinates for UH1 and UH2 can be calculated by:
UH1(j) = SH1(j) — SH1(j-1) (9)
and
UH2(j) = SH2(j) — SH2(j-1) (10)

with j and (j-1) being integers.

The two unit hydrographs provide two outputs, Qg and Q; at each time-step j and are
calculated by the following formulas:

l
Q9 = 0.9 Z UHA(k). Prifi — k + 1)

k=1
(11)
And
Q1 = 0.1 UH2(k).Prifi —k+ 1)
(12)
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Where | = int(x4) +1 and m = int(2x4) + 1.

Both Qg and Q; are subjected to a groundwater exchange term F which is calculated
by:

F= [x2e
= [x2 3]

NI

(13)

This term introduces the second and third parameter of the model. The 1-day ahead
capacity of the routing store, x3 and x2 the water exchange coefficient, i.e. how
much water is entering the deeper aquifer. R is the level in the non-linear routing
store and is estimated by:

R=max (0; R+ Qg+F) (14)
And the outflow Q, from this routing store is determined by:
R , -1
r =R{1-[1+(—)"]4
Qr = R{1- [1+ ()T}
(15)
With the level in the reservoir being:
R=R-Q, (16)

Similarly, for the Q; output of the UH2 being subjected to the exchange term F, a
direct flow component Qq is added to the total streamflow. This is estimated by:

Q¢=max (0;Q; +F) (17)
Finally, the total streamflow Quotal that the model calculates is:

Qiotal = Qr + Qq (18)

2.3 AWBM description:

As its name indicates, the AWBM (Australian Water Balance Model) as proposed by
Boughton, (2004) is a catchment water balance model that simulates runoff from
rainfall (Rainfall — Runoff model) at a daily or hourly time-step. The main concept of
the model is the runoff generation based on the “hortonian” saturation overland
flow. All excess rainfall becomes runoff after the catchment surface capacity has
been reached. This simple idea though generates two main issues: Firtly, the initial
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soil moisture conditions within a catchment influence the amount of rainfall which is
abstracted and, therefore, should be considered. Secondly, the spatial variability
within catchments influence both the rainfall abstraction and the runoff generation.
Thus, such a variable should also be incorporated to the model structure.

From simple to more complex model structure:

The development of the AWBM started from the simple structure of the 1-bucket
model, Fig. 11(a) to the more complex structures of multi-capacity Water Balance
(WB) models, Fig. 11(b)-(c).

'? -
D s
e
t
2
c n B
(b)
G1 t
Al B g
v
(o) .
A2 =" RAINFALL
1 2
(c)
B L
- T RAINFALL
Ty ¢l c2 c3

Figure 11. Single and multi-capacity WB models (Boughton, 2004)

In the 1-bucket model, the catchment surface storage capacity is signified by the
model storage capacity C and no spatial variability is considered. Any rainfall is
abstracted and runoff is generated only after the bucket is filled. This means that if
there were no initial soil moisture ammount at the start of a rainfall event, the
bucket would be completely empty and all rainfall would be consumed to fill it, as
line C indicates in the Runoff-Rainfall scheme. In the case of presence of initial soil
wetness at the start of a rainfall event, the amount of rainfall abstraction which
would be required to fill the bucket could be represented by the line D in the same
scheme. Finally, in the case of a fully saturated catchment, all excess rainfall would
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become runoff and, this is shown by the the 45° line from the origin of the axes of
the Runoff-Rainfall scheme.

The multi-capacity models aim to incorporate the spatial variability to their
strucuture by taking into account two, three or more different catchment capacities,
C1, C, G,...,C; (say C1<C,<C3<...<Cj) and their corresponding partial areas A;, Ay, Ag,...,
Ai. The sum of all areas: Aj+A,+As+...+A; = 100%Acatchment-

At a rainfall event, runoff occurs when the (smallest) storage capacity C; has been
reached. When the next larger capacity, C, has been reached too, all excess rainfall
becomes runoff. The Runoff-Rainfall relationship is again a 45° line and, if this line is
projected backwards to start at the origins of the axes, it would represent the
average storage capacity:

Cave = C1A; + CA,. (Fig.11(b))

The partitioning of the catchment into more partial areas and, therefore, storage
capacities whould have, as an effect, a smoother curve representing the runoff-
rainfall relationship as shown in Fig.11(c), Shifting this curve closer to the origins of
the axes would simply mean higher initial soil moisture conditions.

So far, the conventional multi-capacity accounting models were in fact trying to
estimate runoff by taking into account the precipitation and the soil moisture
deficiencies as weighted indices, considering neither the partial areas of the
catchment nor the saturation overland flow, (Boughton, 2003). Also, these models
were assuming that all runoff is surface runoff and that there was no contribution
from the baseflow. This, of course, is not always true in nature. For the
aforementioned hydrological issues, model structures, such as the ones developed in
the AWBM and the IHACRES (Evans and Jakeman, 1998) models, take account of the
baseflow contribution to runoff, the rational partitioning of the catchment and
evapotranspiration. Figure 12 illustrates the structure of the AWMB that has been
adopted for the purposes of this project.
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c3 SS

=(1-K)*SS

=(1-K)*BS

Figure 12. AWBM structure (Podger, 2004).

Similarly to a multi-capacity accounting model, the AWBM requires as inputs
precipitation and evapotranspiration at a daily or hourly time-step. Precipitation P
(mm) fills the three surface stores Cy, C; and C3 whereas evapotranspiration E (mm)
is reduced out of them. Once any of the three stores reaches its capacity, the excess
water is added together and separated into two stores.

A fraction of the excess denoted as Baseflow Recharge = BFI* Excess is transferred
to the Baseflow store with current capacity BS. BFI is the fraction of total flow that
appears as baseflow. The recession of the baseflow at any day is a fixed fraction K, of
flow at the previous day, where K} is the “recession constant”. Therefore, at each
time step, the amount of baseflow that is reduced from the baseflow store is:
Baseflow = (1-K,)*BS

The residual runoff volume that is the Surface Runoff = (1 — BFI)*Excess is
transferred to the Surface Store with current capacity SS. Similarly, the amount of
surface runoff that is reduced from the surface store is: Routed Surface Runoff = (1 -
Ks)*SS, where K is the recession constant of the surface runoff. Both baseflow and
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surface recession constants K, and K; can be determined directly from the
streamflow record, (Klaassen and Pilgrim, 1975).

2.4 IHACRES model description:

The IHACRES model as initially proposed by Jakeman et al. (1993) consists of two
modules. A non-linear or rainfall loss module through which Rainfall Ry is
transformed into “Excess” or Effective Rainfall Uy). The linear module converts /
routes the excess rainfall Uy into streamflow Q). A generic configuration of this
model structure is shown in Fig.13 below:

Mon-li

Rainfall en-linesr Effective Linear Streamflow
Module -
Rit) Rainfall, Lt} Meodule )

Figure.13 IHACRES model generic structure (Jakeman and Hornberger, 1993).

Developments and advancements of the original IHACRES model include different
approaches to deal with the non-linear part of the model, rendering it more flexible
to explain the hydrological processes or even the climate and land use changes. This
study explores two different versions of IHACRES, the more physically-based CWI
[Catchment Wetness Index, by Jakeman and Hornberger (1993)] and the CMD
[Catchment Moisture Deficit, by Croke and Jakeman, (2004)]. As far as the linear
part of IHACRES is concerned, different configurations of routing stores in parallel
and/or in series can be deployed depending on the catchment characteristics.

2.5 IHACRES model - CWI version:

In the original IHACRES model by Jakeman and Hornberger (1993), at a time step (t),
the excess or effective rainfall Uy is proportional to rainfall Py and scaled by a soil
moisture index Sg):

* Ug=c*sy* Py (1a)
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Where Py is the observed rainfall,

s©)= P+ (1 =1/ o)™ i) (2)

- sy is the catchment wetness index which decays exponentially backwards in
time

- cis a coefficient for the maintenance of the mass balance (Volume of excess
rainfall = total streamflow in calibration period) and

= Ty is the drying rate of the catchment, given by:

® Ty = TW*EXP(O.OGZ*E(t)*f (3),

Where 1y, is the drying rate at reference temperature (i.e. number of time steps to
reduce by 1/e or 37%), E() = (Trer— T(y) With Tree usually 20°C, T is the temperature
at time step (t) and f is a temperature modulation (i.e. how tq4y) changes with
temperature (Jakeman and Hornberger, (1993).

This version of IHACRES has been further extended to function for more ephemeral
catchments by Ye et al. (1997). This involved the introduction of a moisture
threshold parameter for producing flow, denoted by / and a non-linear relationship
between the catchment wetness index and the fraction of rainfall that becomes
effective rainfall, referred as power law with exponent parameter, p. Therefore, the
previous equation (1) can be revised to:

o Up=I[c*(sy-1)1°* Py (1b)*

* NOTE: in case I is set to zero and p to one, equation (1b) describes the original
Jakeman and Hornberger, (1993) IHACRES model.

2.6 IHACRES model - CMD version:
This version of IHACRES is a conceptual model and the main characteristic is the
portioning of the input rainfall into drainage (or effective rainfall), evapo-

transpiration and changes in catchment moisture (Croke and Jakeman, 2004).

The drainage (effective rainfall) Uy at a time-step (t) is given by the following
equation:

U =My = Mg.y) — ETg + Py (1)
Where My and M..1) are the CDM at time-steps (t) and (t-1), Py, is the catchment

areal rainfall and ET, is the evapo-transpiration, all in (mm).
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The ratio dU/dP represents the rainfall effectiveness (or the drainage proportion).
According to Croke and Jakeman, (2004), this ratio is a function of CDM, with a
threshold of CDM for producing flow, d and is described according to the dU/dP
relationship by the following equation:

M
u/dP =1 — min(l,z)d

for linear relationship, (2a)
M
dU/dP = 1 — min[{1, sin? (n’ ) ﬁ)]
for trigonometric, (2b)
M
dU/dP = 1 — min([1, (E)b]
for a power form (2¢)

The integration of these relations provides the actual drainage (effective rainfall) at
each time-step.

Finally, the evapotranspiration term ET is a proportion of the potential rate PEy
and is also a function of CMD, with a threshold of M’ =f* d and is calculated by the
following equation:

ET( = * PEy*/min(exp(2(1-M"/M))) (3)
where e is a temperature to PET conversion factor, f is a CMD stress threshold as a

proportion to the d threshold and M’ is the CMD after precipitation and drainage
have been accounted for.
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CHAPTER 3

3.1 General:

Before testing the model performance, the selected Rainfall-Runoff models had to
be specified. This is a crucial first step in hydrological modeling where important
decisions have to be taken regarding the following:

- The conceptual model formulation / structure (choice from a variety of
model versions)
- The way the models handle the physical processes
- The mathematical equations that resolve these natural processes
- The use of the available data
- The number, range or fixed parameter values that generate consistently
optimal model performance
- The scale of the model parts and parameters that are valid and finally,
- The application of the model and the use of the results.
A prudent “rule of thumb” when specifying models is to keep them not too simple
but not too complex as well. Oversimplified models obviously are not flexible enough
to explain adequately the physical processes involved. On the other hand, with too
complex models (over-parameterized, models with too many mathematical
functions or models trying to answer too complex questions etc.) comes the cost of
increasing uncertainty in the model predictions (Croke and Jakeman, 2004).

Therefore, ideal rainfall-runoff models are those encompassing a structure that best
explain the physical processes in catchment hydrology. Such model structure should
not be fixed but rather be flexible to include catchment behavior that varies. At the
same time, maintaining parsimony in the model parameters is also desirable. The
less parameters that suffice to describe the rainfall-runoff relationship the more
appealing the model is.

In this study, the same dataset of areal precipitation, evapotranspiration and
observed streamflow, for the Yermasoyia watershed, was used in all the models. All
inputs were in mm/day.

A general two-component structure was deployed in all models. Namely, an SMA
module that converts input data (P and E) into effective rainfall and a Routing
module that converts effective rainfall into streamflow. . All models were set to
function with a warmup period of 365days.

Where necessary, (see AWBM, IHACRES — CWI/CMD model specification) and based
on the unit hydrograph theory, the routing parameters were determined by fitting a
linear transfer function. In other words, an ARMAX-like model was specified,
(Autoregressive, Moving Average), with autoregressive terms =n and moving average
terms = m, i.e. the order of the transfer function. To ensure a good choice for the
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order of the ARMAX model, HYDROMAD provides a built-in command called
“tryModelOrders”, which tests different model structures (n, m ,delay between
effective rainfall and runoff). This command enables the fitting of the ARMAX models
with the SRIV (Simple Refined Instrumental Variable) algorithm as described by
Young et al. (2008). Trials in different model structures produce various values of R?,
criterion of determination, and %ARPE, (Average Relative Parameter Error). Best
values of these statistics indicate which order of the transfer function is best.

3.2 GR4J model specifications:

This model has a definite structure regarding its SMA component (as described
previously) and the default parameter ranges were taken from the 80% confidence
intervals (Perrin et al., 2003). The proposed “fixed” split of 10% and 90% of effective
rainfall was also selected. Initially, the choice for the model structure, the number of
parameters and their value ranges was founded on the empirical developments
(more than 200 different model versions) and the results of model performance in a
large sample of catchments (more than 400) with different climatic conditions
(Perrin et al., 2003).

However, during the initial attempts to calibrate the parameters, most of the
algorithms were converging towards the default lower bound of -5mm regarding the
X2 parameter (groundwater exchange coefficient), which is the amount of water that
enters the deeper aquifer. This possibly means that the algorithms were
“entrapped” to converge to a local minimum. Therefore, the bounds of x2 parameter
were extended from (-5, 3) to (-25, 5) mm, in order to overcome this constraint and
remove this type of possible uncertainty. (This is shown in the results section: 6.1.1).

The selected model specification is summarized in the next page:

Default model specification by (Perrinetal., 2003):

Hydromad model with "gr43j" SMA and "gr4jrouting" routing:
Simulation Start = 1986-10-01, End = 1992-09-30, warmup= 365 days

SMA Parameter Ranges:

lower upper
x1 100 1200 (mm) - SMA max. capacity
etmult 1 1 (multiplier for the E data)

Routing Parameters:
lower upper

X2 -25.0 3.0 (mm) - groundwater exchange coefficient.

%3 20.0 300.0 (mm) - Routing store capacity

x4 1.1 2.9 (days) - UH time base

Sop = 0 (initial soil moisture level as fraction of x1)

Rp = 0 (initial groundwater reservoir level as fraction of x3)
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3.3 AWBM model specifications:

The 3-bucket structure of the AWBM has been used in the model specification,
exactly as described previously. The excess water from three different capacities,
with weighted areas, is added together and then is divided into two stores. The
Routing component of the model has three parameters: BFIl, K, and K;. These
parameters are either directly provided to the model based on streamflow records,
or in this case, they were calculated using a transfer function (effective rainfall
transformed into component runoff) with exponentially decaying components.

This transfer function is denoted by “expuh”, i.e. exponential unit hydrograph and,
its decaying runoff components are described by a recession rate a and a peak
response B. In Hydromad, these characteristics are better explained by time
constants t (time-steps required to reduce to 1/e or 37%) and volume fractions v
respectively, where:

1=-1/log(a) (1)

v=p/(1-a) (2)

The routing runoff components are usually two (one quick and one slow component)
having time constants T _qg and 1 _s and fractional volumes v_qg and v_s. They can be
arranged in parallel or in series configuration*. In this study the model has two
stores in parallel and their sum is the total simulated runoff, calculated by following
transfer functions:

Q_s(t) = a_s Q_s(t-1) + B_s U(t) 3)
Q_q(t) = a_q Q_q(t-1) + B_q U(t) 4)

These transfer functions of order (2,1) were fitted by the Simple Refined
Instrumental Variable Method, SRIV (Young, 2008). Other methods include the Least
Squares or the Inverse Filtering fittings which were also tried but did not function as
good as the SRIV.

*Note : the AWBM can also be arranged to have three routing stores. In this case
their configuration can have four possible types: 3 parallel, 3 in series, 2 parallel and
1in series, 1 parallel and 2 in series, (Jakeman et al. 1990).

The model specification used in this study is based on the self-calibrating version of
the original model, the AWBM2002. According to Boughton et al. (2003), findings
from high quality datasets that demonstrated very high correlation between actual
and simulated runoff, reinforced the importance of the average surface storage
capacity, Cae = C1A1 + C2A; + C3As. Their study suggests an average pattern that
relates acceptably the three capacities and the three partial areas as followes:

22

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 10:55:44 EEST - 18.117.97.238



CHAPTER 3: Rainfall - Runoff Models Specifications

Al = 0.134: Partial area of smallest store

A2 = 0.433: Partial area of middle store

A3 = 0.433: Partial area of largest store

Cl = 0.01*Ave/Al = 0.075*Ave: Capacity of smallest store
C2 = 0.33*Ave/A2 = 0.762*Ave: Capacity of middle store
C3 = 0.66*Ave/A3 = 1.524*Ave: Capacity of largest store

The rest of the specifications given to the model in this study are summarized as
follows:

Hydromad model with "awbm" SMA and "expuh" routing:
Start = 1986-10-01, End = 1992-09-30, warmup = 365 days

SMA Parameters:
lower upper
cap.ave 1.00 1000 (mm)
etmult 0.01 1 (multiplier for the E data)

Routing Parameters:
NULL i.e (t g, t s and v_q, v_s) will be calculated by:
Routing fit spec.: list("sriv", order = c(2, 1))

The above order (2, 1) of the transfer function was calculated by fitting the ARMAX
model with the SRIV algorithm. The results are shown below:

Table 2. AWBM model, specification of routing structure. ARPE and fit statistics calculated by
fitting unit hydrograph transfer functions of different orders

ARPE r.squared r.sqg.log
(n=0, m=0, d=0) 0.000 0.277 -1.072
(n=1, m=0, d=0) 0.000 0.689 -0.131
(n=1, m=1, d=0) 0.006 0.483 -0.185
(n=2, m=0, d=0) NaN 0.501 0.724
(n=2, m=1, d=0) 0.000 0.756 0.854
(n=2, m=2, d=0) 0.012 -0.684 0.740
(n=3, m=0, d=0) NaN 0.499 0.750
(n=3, m=1, d=0) NaN 0.709 0.843
(n=3, m=2, d=0) NaN -26783.899 -0.238
(n=3, m=3, d=0) 55.692 0.325 0.587

Therefore, a structure of (2, 1) was selected because it appears to yield better
statistics.
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3.4 IHACRES model - CWI version specifications:

Similar to the AWBM, a structure of two runoff components in parallel has been
used in this study. The model specification is summarized below:

Hydromad model with "cwi" SMA and "expuh" routing:
Start = 1986-10-01, End = 1992-09-30

SMA Parameters:
lower upper

tw 0 100 (drying rate at 20°C)

f 0 8 (temperature modulation)

scale NA NA

1 0 0 (==) (As in the original IHACRES model)
P 1 1 (==) (As in the original IHACRES model)
t ref 20 20 (==)

Routing Parameters:
NULL i.e (t g, t s and v_q, v_s) will be calculated by:

Routing fit spec.: list("sriv", order = c(2, 1))

The above order (2, 1) of the transfer function was calculated by fitting the AMAX
model with the SRIV algorithm. The results are shown below:

Table 3. IHACRES model —CWI version, specification of routing structure. ARPE and fit
statistics calculated by fitting unit hydrograph transfer functions of different orders

ARPE r.squared r.sqg.log
(n=0, m=0, d=0) 0.000 0.258 -0.703
(n=1, m=0, d=0) 0.000 0.664 0.411
(n=1, m=1, d=0) 0.002 0.227 0.230
(n=2, m=0, d=0) NaN 0.613 0.589
(n=2, m=1, d=0) 0.001 0.690 0.754
(n=2, m=2, d=0) 0.006 -0.393 0.666
(n=3, m=0, d=0) NaN 0.610 0.596
(n=3, m=1, d=0) NaN 0.647 0.797
(n=3, m=2, d=0) NaN -0.165 0.672
(n=3, m=3, d=0) 52.759 0.354 0.530

Therefore, a structure of (2, 1) was selected because it appears to yield better
statistics.
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3.5 IHACRES model - CMD version specifications:

Similarly to the previous models, a two runoff component in parallel was used. The
rest of the model specification is summarized below:

Hydromad model with "cmd" SMA and "expuh" routing:
Start = 1986-10-01, End = 1992-09-30

SMA Parameters:
lower upper

f 0.01 3.0 (CMD stress threshold as a proportion of d)
e 0.01 1.5 (temperature to PET conversion factor)
d 50.00 550.0 (CMD threshold for producing flow)

(

shape 0.00 0.0 (==) (Linear dU/dP relationship)

Routing Parameters:
NULL i.e (t g, t s and v_q, v_s) will be calculated by:

Routing fit spec.: list("sriv", order = c(2, 1))

The above order (2, 1) of the transfer function was calculated by fitting the AMAX
model with the SRIV algorithm. The results are shown below:

Table 4. IHACRES model —CMD version, specification of routing structure. ARPE and fit
statistics calculated by fitting unit hydrograph transfer functions of different orders

ARPE r.squared r.sqg.log
(n=0, m=0, d=0) 0.000 0.343 -0.910
(n=1, m=0, d=0) 0.000 0.706 -0.278
(n=1, m=1, d=0) 0.001 -0.690 -0.343
(n=2, m=0, d=0) NaN 0.627 -0.040
(n=2, m=1, d=0) 0.000 0.706 0.563
(n=2, m=2, d=0) 2.160 0.569 0.523
(n=3, m=0, d=0) NaN 0.628 -0.046
(n=3, m=1, d=0) NaN 0.688 0.566
(n=3, m=2, d=0) NaN -16.299 -0.080
(n=3, m=3, d=0) NaN 0.161 0.417
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CHAPTER 4

4.1 Calibration of Models:

Calibration is the next step in the assessment of hydrological models. The selected
Rainfall-Runoff (R-R) models are spatially-aggregated (lumped) and their
mathematical structures are more conceptual-based. With these R-R models
streamflow was predicted from input time-series of P, PET and Qgps. The model
parameters that define the R-R relationship were estimated or adjusted in such a
way that the modeled runoff would match as much as possible the observed
streamflow and also, were assumed to be stationary during the calibration period.

The available input data consists of daily measurements for 11 hydrological years
between 01-10-1986 and 30-09-1997. Based on the streamflow observations, two
temporal different periods were identified. A wet period from 01-10-1987 to 30-09-
1992 and a dry period from 01-10-1992 to 30-09-1997. Using a split-sample test
based on the wet/dry periods, the models were calibrated for half of the years
during the wet and the dry periods leaving the rest half of the years for validation. A
warmup period of 365 days was used in all cases. This allowed the models to acquire
information of the rainfall and therefore, for the initial soil moisture conditions, prior
to the start. Therefore, two sets of Calibration-Validation periods were defined:

Set A:

Calibration period:

TS1 <- window(dataz, start="1986-10-01", end="1992-09-30")

Validation period:

TS2 <- window(dataz, start="1991-10-01", end="1997-09-30")
Set A:

Calibration period:

TS3 <- window(dataz, start="1991-10-01", end="1997-09-30")

Validation period:

TS4 <- window(dataz, start="1986-10-01", end="1992-09-30")

The performance of all four models had to be assessed both individually and in
comparison with each other, using seven different optimization techniques all of
which would try to optimize the value of four different objective functions.
Calculation of several fit statistics (which will be presented in the Validation chapter)
was the typical approach to assess the models during the specified (wet and dry)
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calibration periods. This rendered the automation of the calibration process
imperative.

4.2 Optimization Algorithms:

In general, the algorithms plot the objective function values against the model
parameters corresponding to the response surface. There are two main categories of
optimization algorithms: Local Search Algorithms, (LSA, finding a lowest value of OF
in the near vicinity) and Global Search Algorithms (GSA, finding the lowest value Of
the OF in the whole response area).

Seven different optimization algorithms were used at each calibration test for all
four R-R models. Using the command “fitByOptim” in R, one can select:

- the method/algorithm for the calibration,

- the objective function to be minimized,

- the sample/number of parameters to be tested (here, samples=100) and,

- the maximum evaluations/iterations to be performed (here, maxeval=1000)

This command also allows the choice between a single and a multi-start mode of
sampling the initial parameters. By trial, multi-start mode required a lot more time
for the algorithms to converge and at the same time it did not improve significantly
their performance in general and hence, single-mode sampling was selected.
Another important setting in the calibration process was to maintain the same
“seeding” by selecting set.seed(0) in R. This means that algorithms iterate in the
same way each time they run and give the same result.

The assessment and evaluation of each algorithm’s performance is performed by
plotting their optimization traces in a diagram of “Objective Function Value versus
Number of Function Evaluations”, (presented in the Results section).

A brief description of the all the optimization algorithms deployed and how they
function is summarized below:

e The “Nelder-Mead”: (source of images: www.scholarpedia.org)

NM is a non-linear optimization method that identifies points (simplices) in the
parameter space that produce an OF with one local minimum. It uses only the OF
values (direct search method) to the decision process. A simplex S is defined as the
set of n+1 points, Xo,....x» € R" (R" is the parameter space). This simply means that if
n=2 or n=3, then a simplex in R? or in R® would be a set of 3 points (o, X1, X2, forming
a triangle) or 4 points (xo, X1, X, X3 forming a tetrahedron) respectively.
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3-point Simplex 4-point Simplex
The x points are assigned with values of objective function, f), f;, f,, so that:
Xo< X1< X2(< X3) and can be re-written as: x,, X, Xn

The NM algorithm performs transformations (iteratively) to the initial size and shape
of the simplex by:

-Reflection: of the point with the highest OF value, x;, through the centroid ¢ formed
by the rest best points, at the opposite side of x,. The new point is called the
reflection point x, as shown below

, if fi < f, < f; then x, is accepted and the iteration
can be terminated, otherwise:

If f, < fithen the simplex is transformed by either:

- Expansion: of the reflection point x, on the c-x, line creating a new point x. as
shown below:

if fo < f, then x. is accepted and iteration
terminates, otherwise if f, < fo then x, is accepted and the iteration is terminated or,

alternatively, the algorithm can change direction in its search for a minimum value of
the OF by:

28

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 10:55:44 EEST - 18.117.97.238


http://www.scholarpedia.org/article/File:Simplex_1.jpg
http://www.scholarpedia.org/article/File:Simplex_2.jpg
http://www.scholarpedia.org/article/File:NelderMead_1.jpg
http://www.scholarpedia.org/article/File:NelderMead_2.jpg

CHAPTER 4: Optimization Procedures

- Contraction: of the xy or the x; to create a new point x., depending on which one
has bigger value of OF. If f,, < f, < f; (outside contraction), then the contracted
simplex shape becomes as the one shown below:

, if f. < f, then x. is accepted and the iteration
terminates. In the opposite case, a shrinkage transformation in the simplex will be
performed. If f, > f, > f; inside contraction), then the contracted simplex shape
becomes:

similarly, if f. < f, then x; is accepted and the
iteration terminates. Otherwise again, a shrinkage transformation should be done.
Shrinkage of the simplex is performed by moving each point (x, and x;) except x, by
half way towards x; as shown in the picture below:

and the algorithm follows the same procedures as before.

e The “PORT” functions describe a gradient search method for finding a local
minimum. It uses the OF f(x), the gradient G(x) (vector of 1°7 partial

derivatives of f(x), and the Hessian of the OF (matrix of 2" partial derivatives
of f(x).

e The “BFGS” is a quasi-Newton non-linear optimization method that uses both
OF values and gradients to identify local minimum. It builds a quadratic
model of the OF where G(xmin)=0 at the optimum value and requires the
calculation of the inverse Hessian matrix.
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The next four algorithms are Global Search

e The “SANN” algorithm (Simulated Annealing) belongs to the probabilistic
methods of optimization of a given objective function and returns a global
minimum solution.

e The SCE (Shuffled Complex Evolution) is a probabilistic population-sampling
evolutionary algorithm. Initially, the algorithm samples populations at
random and then divides them into complexes based on their objective
function value. Then, these complexes evolve and are being optimized using
techniques similar to the Nelder-Mead simplex method. When this procedure
stops, the partitioned populations are combined back together again, sharing
information and then they are divided similarly to the previous step. The
procedure is repeated until the algorithm converges to a global optimum.

e The DE (Differential Evolution) is a stochastic global optimization algorithm.
Similar to other evolutionary algorithms, DE optimization is suitable for
functions that are either continuous or differentiable.

e The DREAM is a multiple Markov Chains Monte Carlo method and searches
for global solution.

4.3 Objective Functions:

Objective functions are measures of how much model output and observed output
(in this study streamflows) differ. Optimization algorithms adjust the model
parameter values iteratively until they converge (i.e until optimum value of Objective
Function has been discovered). Four different Objective Functions were applied in
the calibration process.

e The Nash-Sutcliffe Efficiency, NSE:

This Objective Function (developed by Nash and Sutcliffe, 1970) is a traditional and
straight-forward method for model assessment. It measures the degree of
agreement between modeled and observed streamflow by the following formula:
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n

> (Qobs, —Qsim; )*
NSE =1— =

Z(Qobs —Qobs)

The numerator of the fraction is the residual variance or “Noise” and the
denominator is the variance of the flows from the mean observed. Calibration
methods, based on the maximization of the NSE criterion, aim to reduce the variance
error. Usually, a residual analysis should be performed to identify heteroscedastic
errors.

e The “Viney” Objective Function:

This OFs, proposed by Viney et al. (2009), include bias constraint terms in the NSE.
These are simply “penalty” terms subtracted from the NSE in a similar way to many
other modelers. In their work, Viney et al, tested three different OF in the model
calibration. The classic NSE, a biased constraint OF that assigns a penalty
(proportional to the % of the Bias, B = 3 ( X - Q )) to any prediction that has overall
bias (total model error / total observed flow) greater than 5% (called “bucket
constraint”) and a “log-bias”-penalty OF defined by:

F = NSE — 5* [In(1+B)]*®

They have found out that the log-bias constraint produced, in most model
assessments, better results that the bucket constraint OF. The difference between
them is that the later assigns an additively symmetrical penalty to predictions of the
same % of overestimation and underestimation (i.e. the same penalty will be
assigned to a 20% over-estimation and to 20% under-estimation of volume). On the
other hand, the log-bias constraint is a multiplicatively symmetrical penalty (i.e. the
same penalty will be applied to a prediction that is twice or half of the observation
volume). The following figure shows that the bucket constraint, as used by Chiew et
al. 2009 is much more severe than the log-bias. (Viney et al. 2009).
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Figure 14. Penalties induced by the bucket constraint (a) and the log-bias constraint
(b), (Viney et al. 2009).

For example, if the Bias is -0.5 the penalty in case (a) is 850 while in case (b) only 2.
This makes the log-bias OF a very challenging measure for this study’s model
assessment too.

e The “BL” Objective Function:

This is another multi-variable OF proposed by Bergstrom and Lindstrom, (2002) that
combines two classic OF, the NSE and the relative Bias with the following formula:

BL,y = NSE — w*abs(Vg)

NSE is the Nat-Sutcliffe efficiency, Ve =S (X -Q )/ 5 Q) is the relative volume error
and w is usually 0.1

This OF produces an optimal R? and practically no volume error, (Lindstrom, 1997).
e The “NSE*” Objective Function:

This is a transformation to the NSE where the absolute residuals are raised to cubic

power.
3" (Qobs, ~Qsim,
NSE® =1 =
Z(Qobsi — @)3
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CHAPTER 5

5.1 Validation

Validation or verification of the model is the next step in the model performance
assessment. The models were tested for the specified validation periods with the
same parameter estimates obtained from the calibration periods. This assumes
stationarity of the state variables over the entire time-series. Calibration and
validation periods are of approximately the same size and include both wet and dry
periods. Assessing the model performance outside the calibration period, as it is the
case in this study and, over periods with different climatic patterns, may indicate
how robust or not the models are.

5.2 Evaluation Metrics:

Several “goodness of fit” measures and fit statistics were calculated for the
validation periods (same as in calibration period). These criteria determine the
amount of uncertainty that remains in the models after they have been calibrated.
These include the following:

e Relative Bias: (rel.bias) :is the Bias as a fraction of the total observed flow,
(+/- values indicate over/under-estimation).

Z ( Qsim - Qobs ) /Z Qobs

o NSE: (r.squared): Nash-Sutcliffe Efficiency, (more weight on peak flows)

n

Z(QObSi —Qsim, )°
NSE =1- 2

Z(Qobsi - QTbs)2

® NSEsqrr: (r.sq.sqrt): Nash-Sutcliffe Efficiency using square-root transformed data
(less weight on peak flows),

> (Qobs, ~Qsim, |

—1— i=1

3 qobs, - JQabs

i=1

NSE
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Another important statistic that has been calculated is the:

® AMAFE: Average percent error of the Maximum Annual Flows,

where:
MaxQsim; is the simulated maximum annual flow of year j,

MaxQobs ; is the observed maximum annual flow of year j, and k is

the number of hydrological years of the simulation period.

k [ MaxQsim. — MaxQobs .
%AMAFE :1-2 osim, Qb5 100
k = MaxQobs;

The evaluation of the models has been done in a comparative way of different model
structures and different modelling approaches. As mentioned before, the split
sample test aims to demonstrate the versatility of the models while, the different
evaluation metrics aim to address the different parts of the hydrograph (peak or low
flows).

The next chapter contains a summary of the most important results and findings
from the calibration and validation of the models. For the complete set of results
one should refer to the appropriate Appendices. (APPENDIX A: GR4J model,
APPENDIX B: AWBM model, APPENDIX C: IHACRES model — CWI version and
APPENDIX D: IHACRES model — CMD version). For a better understanding and
interpretation of the results, it would be useful if Appendices and Results chapter are
viewed together.
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CHAPTER 6

6.1 Procedure

A standard procedure has been followed for the performance assessment of all four
models. This includes:

(1) The split of the test period into two, for calibration-validation:
(a) “Wet period” from 01-10-1987 to 30-09-1992
(b) “Dry period” from 01-10-1992 to 30-09-1997
(2) The check of model performance based on four different objective functions:
(a) NSE
(b) Viney
(c) BL
(d) NSE?

For every simulation based on the abovementioned criteria, the following aspects
have been examined:

- Performance of Optimization Algorithm

- Model performance and uncertainty caused by the model structure
- Parameter Values, Ranges and Stability

- Objective Function evaluation based on fit statistics

Performance of the algorithms was assessed based on the amount of iterations that
they perform (evaluations) until they converge. Plots of algorithm optimization
traces illustrate the effort required to optimize a given objective function.

Parameter Stability is shown in tables containing their calibrated values for every
optimization method.

Finally, several objective functions addressing the different parts of the hydrograph
are used to identify parameter and model uncertainty.

The following results, figures and findings refer to the most representative cases and
effort has been made to include the different behavior of all models tested under
different optimization functions and objective functions. The full set of results can be
viewed in the appendices.
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6.2 Model performance and model structure uncertainty:

In general, the modeled streamflows (in log-scale) produced by the different model
structures, appear to be closely related to the observed runoff in most of the cases.
The figures below demonstrate this finding by comparing some of the models that
were calibrated by different objective functions over the two different periods (wet /
dry).

by Viney: all models over the WET period ?,fffe“ﬁiﬂ —

mm{ day

rainfall

10°0 10°80 10°2 1071 1072 1071 1072 101 10%2 1071 10°2 1001
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Figure 15. AWBM calibration results for the wet period (objective function used: Viney).
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Figure 16. AWBM calibration results for the dry period (objective function used: Viney).
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Similar patterns for the other models can be seen in the appendices. In general, the
relative bias produced during the wet period is always smaller than the one during
the dry period (see fit statistics in appendices). This indicates that models perform
better during wet periods. To assess the quality of the fitted models, the Normal
Probability Quantile-Quantile plots have been produced. As the pictures below
indicate, the fitted models appear to follow very similar behavior in terms of
distribution shape, scale and location.
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Figure 17. AWBM Q-Q plot (normal distribution) for the dry period, objective function used: Viney
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Figure 18. AWBM Q-Q plot (normal distribution) for the wet period, objective function used: Viney
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A visual inspection of the Q-Q plots indicates that there is a small advantage in the
streamflow prediction when the model is calibrated over the Wet period. Another
important finding is that in all the cases, low flows are more difficult to be
“captured” by the models, in contrast to the peak flows that are always predicted
close to the observed ones.

Looking at the scatter plots again for the AWBM, calibrated by the Viney objective
function, all simulations underestimate the observed streamflow. Best results were
obtained for the wet period with the use of global search algorithms, although local
search algorithms also yielded similar results as in this case.

yermasoyia_Q_0
yermasoyia_2_0
yermasoyia_3_0

yermasoyia_2_0

yermasoyia_2_0
yermasaoyia_2_0

Figure 19. AWBM scatter plot of simulated streamflows for the dry period, objective
function used: Viney

yermasoyia_2_1
yermasoyia_2_1
yermasoyia_Q_1

yermasoyia_C2_1

yermasayia_2_1
yermasaoyia_Q_1

Figure 20. AWBM scatter plot of simulated streamflows for the wet period, objective
function used: Viney
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To assess the uncertainty caused by the structure of the model, the following graphs
were produced. These graphs simply represent the uncertainty bounds (upper —
lower) of the higher — lower value of the predicted (by any optimization algorithm)
streamflow for each objective function. For example, in the IHACRES — CMD the
uncertainty bounds are very narrow for both the wet and the dry periods, indicating
that this model predicts flows that are not affected by the different time periods or
their characteristics. However, again this model does not predict the low flows so
well, especially during the dry period.

BL: WET period UNCERTAINTY

min I
max —
yermasoyia_ Q. 0 ——

1070

mm/ day
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=

=7
7
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/i
=

104
1
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time

Figure 21. IHACRES model — CMD version, Wet period uncertainty bounds, objective function
used: BL

BL: DRY period UNCERTAINTY

min e
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Figure 22. IHACRES model — CMD version, Dry period uncertainty bounds, objective function
used: BL
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Looking at the models of IHCRES and AWBM (see appendices) one can observe a
similar behavior. Uncertainty bounds are narrow and models perform better for a
wet period rather than a dry period, based on the Objective Functions that have
been used in this study. Interestingly, for the GR4J model, uncertainty bounds are
larger in most cases, meaning that this model structure is more susceptible to the
choice of the optimization method and the period of calibration.

NSE*3: WET period UNCERTAINTY
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Figure 23. GR4J model, Wet period uncertainty bounds, objective function used: NSE’

NSE*3: DRY period UNCERTAINTY
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Figure 24. GR4J model, Dry period uncertainty bounds, objective function used: NSE’

This finding illustrates how important the model structure is in terms of uncertainty
in the models predictions. But selecting an appropriate objective function can
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provide improvements in modelling. For example, again fir the GR4) models,
simulations using the Viney (or the NSE) as objective functions reduce significantly
the amount of uncertainty in the predictions. Again the wet period yields better
results.

Viney: WET period UNCERTAINTY
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Figure 25. GR4J model, Wet period uncertainty bounds, objective function used: Viney

Viney: DRY period UNCERTAINTY
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Figure 26. GR4J model, Dry period uncertainty bounds, objective function used: Viney
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6.3

Assessment of Algorithm choice:

The optimization traces during the WET period suggest that all algorithms (except

SANN in all cases and DREAM when calibration is done by Viney), perform

satisfactorily. Global search algorithms SCE and DE appear to be the most insensitive

to the choice of the objective function used and always outperform, even slightly in

some cases, the local search algorithms PORT, NM and BFGS. (see also Calibration

statistics — Appendix A).
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Figure 27. GR4J model. Optimization traces for the wet period
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The term “insensitive” to the choice of the Objective Function may also translate that
the algorithm is robust for operational use for both low and peak flow simulations. A
very similar pattern appears also when calibration is performed during the DRY
period (Appendix A). However, in absolute values of Objective function, during
calibration, this model does not function so efficiently during the DRY period. For
example, comparing the NSE of SCE algorithm achieved in the wet period with that
obtained in the dry period is about 87% and 79% respectively. Moreover, when the
Validation period is dry, SCE achieves 78% in NSE and when the validation is a wet
period, the same algorithm achieves 84.3%. The use of the other algorithms also
result in similar fluctuations in the values of the Objective functions between wet and
dry periods, always having higher values in the wet.

Table 5. GR4J model Fit Statistics in Calibration: WET period

3

rel.bias r.sq.sqrt NSE viney BL NSE
PORT -0.270 0.794 0.871 0.594 0.844 0.981
BFGS -0.269 0.797 0.871 0.596 0.844 0.980
NM -0.268 0.795 0.871 0.598 0.845 0.981
SANN -0.568 0.662 0.734 -2.498 0.677 0.921
SCE -0.271 0.793 0.871 0.590 0.844 0.981
DE -0.257 0.796 0.870 0.630 0.844 0.980
DREAM -0.207 0.817 0.867 0.738 0.846 0.977

Table 6. GR4J model Fit Statistics in Calibration: DRY period

rel.bias r.sq.sqrt NSE viney BL NSE®
PORT -0.225 0.813 0.797 0.632 0.775 0.899
BFGS 0.077 0.787 0.731 0.724 0.723 0.873
NM 0.107 0.794 0.761 0.744 0.750 0.909
SANN -0.408 0.735 0.728 0.269 0.687 0.819
SCE -0.140 0.822 0.791 0.746 0.777 0.897
DE -0.176 0.819 0.785 0.701 0.767 0.886
DREAM -0.194 0.818 0.795 0.687 0.776 0.899

Table 7. GR4J model Fit Statistics in Validation: DRY period

rel.bias r.sqg.sqrt NSE viney BL  NSE®

PORT -0.303 0.791 0.777 0.386 0.747 0.873
BFGS -0.309 0.788 0.768 0.353 0.737 0.853
NM -0.301 0.792 0.778 0.393 0.748 0.874
SANN -0.622 0.568 0.542 -4.114 0.480 0.683
SCE -0.303 0.791 0.778 0.385 0.748 0.875
DE -0.281 0.796 0.780 0.468 0.752  0.887
DREAM -0.248 0.801 0.754 0.537 0.729 0.833
Table 8. GR4J model Fit Statistics in Validation: WET period
rel.bias r.sqg.sqrt NSE viney BL NSE®
PORT -0.206 0.814 0.862 0.734 0.842 0.977
BFGS 0.079 0.817 0.791 0.787 0.790 0.946
SANN  -0.367 0.756 0.849 0.138 0.813 0.973
SCE -0.127 0.828 0.843 0.809 0.830 0.966
DE -0.159 0.826 0.845 0.782 0.829 0.965
DREAM -0.177 0.820 0.859 0.775 0.841 0.975

43

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 10:55:44 EEST - 18.117.97.238



CHAPTER 6: Results and Discussion

6.4 Model Parameters Stability:

Looking at the model parameter stability below, for the GR4J model, one can assume
that x4 (time base of the UH) is almost invariable (approx. 1.1 days) and insensitive
to the choice of the algorithm and the choice of the Objective function. The other
parameters i.e. x2, (groundwater exchange coeff.), x1 (max. capacity of production
store) and x3 (1-day ahead routing capacity) are sensitive both to the optimization
method that is used and the objective function, especially in the wet period.

Table 9. GR4J model parameters for the WET period (Calibration)

Objective Function used = NSE
X2 x3 x4 x1 etmult
PORT -14.770 116.100 1.130 274.000 1
BFGS -11.430 97.100 1.150 307.000 1
NM -14.880 117.200 1.130 273.000 1
SANN -2.570 20.100 1.320 642.000 1
SCE -15.170 118.200 1.130 271.000 1
DE -18.070 136.800 1.140 243.000 1
DREAM -7.820 86.000 1.150 339.000 1
Objective Function used = Viney
X2 x3 x4 x1 etmult
PORT -5.000 92.300 1.110 357.000 1
BFGS -5.000 93.500 1.110 356.000 1
NM -5.000 91.500 1.110 357.000 1
SANN -2.470 62.000 1.190 413.000 1
SCE -5.000 92.300 1.110 357.000 1
DE -3.710 75.800 1.130 383.000 1
DREAM -4.920 59.000 1.180 406.000 1

Table 10. GR4J model parameters for the DRY period (Calibration)

Objective Function used = NSE
X2 x3 x4 x1 etmult

PORT -15.000 158.635 1.056 252.297 1
BFGS -14.998 142.246 1.074 262.663 1
NM -14.999 165.698 1.049 248.320 1
SANN -13.712 137.058 1.030 282.453 1
SCE -14.999 158.633 1.056 252.439 1
DE -13.529 154.495 1.041 262.42¢ 1
DREAM -9.724 118.458 1.026 301.581 1

Objective Function used = Viney

X2 x3 x4 x1 etmult

PORT -15.000 199.000 1.020 231.000 1
BFGS -15.000 195.000 1.030 231.000 1
NM -15.000 200.000 1.010 232.000 1
SANN -7.270 140.000 1.080 274.000 1
SCE -15.000 198.000 1.030 230.000 1
DE -13.000 173.000 1.070 236.000 1
DREAM -9.720 118.000 1.030 302.000 1
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An example of relatively more stable model parameters is demonstrated with the

CHAPTER 6: Results and Discussion

IHACRES model — CWI version, in the table below.

PORT
BFGS
NM
SANN
SCE
DE

PORT
BEGS
NM
SANN
SCE
DE

Table 11. IHACRES model — CWI version parameters for the DRY period (Calibration)

Objective Function used = NSE

tw f scale 1 p t ref tau s tau g vV S v g delay
0.015 8.000 0.001 O 1 20 13.424 0.689 0.619 0.381 1
0.121 6.133 0.001 0 1 20 13.064 0.684 0.622 0.378 1
0.870 4.298 0.001 O 1 20 13.059 0.677 0.624 0.376 1
0.318 4.988 0.001 O 1 20 14.113 0.681 0.619 0.381 1
0.015 8.000 0.001 O 1 20 13.425 0.689 0.619 0.381 1
1.067 4.156 0.001 0 1 20 12.914 0.677 0.625 0.375 1
Objective Function used = Viney
tw f scale 1 p t ref tau s tau g vV S v g delay
0.014 8.000 0.001 O 1 20 13.718 0.689 0.618 0.382 1
1.841 3.357 0.001 O 1 20 14.148 0.677 0.621 0.379 1
0.013 8.000 0.001 O 1 20 13.951 0.689 0.617 0.383 1
0.358 5.309 0.001 O 1 20 12.554 0.682 0.626 0.374 1
0.014 8.000 0.001 O 1 20 13.717 0.689 0.618 0.382 1
2.084 3.343 0.001 0 1 20 13.630 0.675 0.623 0.377 1
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6.5 Effect of the objective function:

Some models appear to perform in a similar way regardless the objective function
that has been used, and also, the optimization algorithms perform almost in the
same way. An example is given below, with the IHACRES — CWI model calibrated in a
dry period by NSE and by Viney as objective functions.

by NSE: Calibration over the DRY period
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Figure 28. IHACRES model calibrated by Viney & NSE (DRY period)

On the other hand, the GR4J model performs better when calibrated by Viney than
by NSE, for the same dry period. This is an indication that probably such models are
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not so reliable and versatile to cover hydrological variability and uncertainty. This is
demonstrated in Figure 16 in the next page.
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Figure 29. GR4J model calibrated by Viney & NSE (DRY period)
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6.6 Peak flow assessment:

CHAPTER 6: Results and Discussion

The AMAFE criterion is an indication of how well a model describes the peak flows.
The following table demonstrates the best AMAFE results that have been obtained

for every model, based on any objective function and any optimization algorithm.

Table 12. Lowest AMAFE values obtained for all models

Objective
Model Function Period Optimization algorithm
PORT NM BFGS SANN SCE DE

GRAJ NSE calibration 87-92 | -0.111 | -0.111 | -0.113 | 0.258 | -0.111 | -0.067
validation 92-97 | 0.040 | 0.051 | 0.057 | 0.470 | 0.039 | 0.074
3 calibration 92-97 0.461 0.461 0.462 0.513 0.461 0.470

AWBM NSE e
validation 87-92 | -0.003 | -0.003 | -0.003 | 0.032 | -0.003 | 0.002
IHACRES . calibration 92-97 | -0.091 | -0.091 | -0.096 | -0.100 | -0.091 | -0.097

Viney o
JCWI validation 87-92 -0.051 | -0.048 | -0.052 | -0.074 | -0.051 | -0.058
IHACRES NSE? calibration 87-92 | -0.118 | -0.117 | -0.005 | -0.002 | -0.117 | -0.064
/CMD validation 92-97 -0.088 | -0.087 | 0.181 0.266 | -0.089 | -0.008

For the GR4J and the IHACRES / CMD models, the AMAFE criterion gets its optimum value
when the models are calibrated during a wet period and then validated for the dry period. In
both cases, the global search algorithms have produced the best fits of simulated peak flows
that are closer to the peak observed flows. Also, the objective functions that yielded these
results are the NSE and the NSE?, as one would probably expect. On the other hand, for the
AWBM and the IHACRES / CWI models, the best results are obtained when the models are
calibrated for the dry period and then validated for a wet. For the AWBM the AMAFE

criterion is unacceptable for the wet period of calibration (46%).
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CHAPTER 7

7.1 Conclusions:

For conceptual R-R models, the most widely used approaches to estimate model
parameters are based on the calibration of the models during a specific period. The
models are then verified for another period with the use of fit statistics. The
following figure illustrates graphically the main steps and methods that were
followed for the calibration of four different conceptual lumped R-R models.

Figure 30. Project Outline and main calibration strategies

Any calibration strategy aims to create models that best reflect the physical
processes that take place in catchments. This implies that the model parameters
must be such so that they ensure a model behavior that is realistic. At the same
time, the number and the physical meaning behind the parameters must guarantee
optimal model performance. Reduced complexity in the models is indeed an
advantage while too many parameters would lead to overparametrization problems
and ultimately reduced model performance.

Therefore, the choice of the model structure plays a dominant role and, as it has
been shown, it is the fundamental aspect in the elimination of model uncertainty. As
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demonstrated in the Results section, different models, although similar in the
concept and the approach to explain the physical processes, perform differently
under the same conditions (i.e. optimization techniques and choice of objective
function).

Different efficiency criteria have been utilized to assess how well a model simulation
fits the available observations (Beven, 2001). Depending on the purpose or the
target of the study, different efficiency criteria place emphasis on different
hydrologic behaviors. For example, the higher portions of a hydrograph (peak flows)
can be better simulated at the expense of the lower portions (low flows), (Krause et
al. 2005). In this study, the NSE and the NSE? place emphasis to the high peaks at the
expense of the low flows, while the Viney and the BL objective functions
demonstrate a finer model behavior in all the segments of the hydrograph.

The choice of an optimization technique also affects the uncertainty in the model
parameters, but in a lower degree than the model structure itself. For example,
global search algorithms appear to outperform the local search algorithms in most
cases, with the SCE and the DE algorithms being almost in all cases the most
effective. Local search algorithms may improve the value of the objective function
given that they start at different parameter sets and not from a single sample. This
enables the algorithms to avoid being entrapped to a local minimum solution.
However, this has a significant cost in the computational resources required to
perform the model calibration. In general, local search algorithms also performed in
most of the cases, in a very satisfactory way.

Using the split sample test of different calibration / validation periods, in this case a
wet / dry period split, it was found that hydrologic variability affects significantly the
model performance. Different calibration periods produced different parameters
estimates. The more unstable and disperse the parameter values are, the worse the
model performs. For a model to be considered reliable and robust, it should perform
consistently during the different calibration periods. This is termed as parameter
transposability in time (Gharari et al., 2012) and is viewed as one of the most
important elements in R-R modeling. It has been demonstrated that hydrologically
different temporal periods (dry / wet) also increase the instability in some models
(i.e. the GR4J) and for others, such as the two IHACRES models and the AWBM, this
variability did not affect their performance significantly.

A good initial model specification is also crucial if the target is to reduce model
uncertainty. Trusting previous research and studies should always be the starting
point in model specification. However, as most models provide some flexibility in
their structure and parameter ranges, they should be tested more thoroughly in
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order to increase confidence and to select a model specification that will ultimately
function efficiently. It is also important to examine the scale of parameter ranges
that have a valid physical significance.

In many studies including this one, the search for optimum model parameters using
efficiency criteria may often lead to equifinality issues. This means that in the search
for optimum parameter values there are multiple optimum model predictions of
streamflow close to the observed flow. This does not necessarily mean that the
model is over-parameterized but it is due to the model itself and its properties, or
due to the characteristics of the catchment and the climate, (Hreiche et al.). Given as
an example below, the 3 parameters x1, x2, x3 of the GR4) model found by all
methods, (the fourth parameter x4 remains constant), were plotted against each
other in a 3D scatter plot. The plot gives an indication of the parameter value ranges
in the feasible parameter space
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Figure 31. The issue of equifinality, for the GR4J model parameters.
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7.2 Future work:

In this study, all model simulations have been performed using the observed raw
data of streamflow. Andrews et al. (2011) suggest that in similar R-R models
assessment and identification of model uncertainty, raw data can be transformed to
reduce possible data errors. “This is because streamflow data often tends to be
highly skewed and this may result in a large weighting put on large observations”.
For demonstration purposes only, the following figure shows different data
transformations and how these relate to the Normal distribution. In this case, a
simple log transformation (or a Box-Cox transformation) may result in less inherent
uncertainty in the dataset.
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Figure 32. Different data transformations showing deviations from normality

The same research study by Andrews et al., 2011, suggest also to perform
simulations based on rainfall-runoff events only, instead of using the whole raw rata
series. This of course has been widely used in the past when extreme value analysis
is the key issue, but it may well be used in general. One of the main issues here, is
the careful definition of what makes an event. For example, the minimum thresholds
of streamflow and rainfall values must be defined, as well as the durations that limit
one event. As an example, the next figure illustrates an event-based approach in
hydrological modelling. Rainfall events are defined when rainfall exceeds 5mm per
day until it remains below 1mm for 4 days. (evp_5). Similarly, the streamflow events
(evg_90 or evq_50) are defined when the observed streamflow exceeds the 90 or 50
percentile level for at least 2 time-steps.
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Figure 33. A typical event-based approach

Such an approach is likely to reduce the auto-correlation that is inherent in the raw
data, as shown in Fig. 30, (aggregation function used for the data: mean).
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Figure 34. Event-based / raw data approach and auto-correlation in the time series
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This work can be also used in Frequency Analysis and Extremes in order to estimate,
for example, the return levels of peak flows. This work also provides the basis for
application to multiple catchments for inter-comparison. Finally, to address the
issues of climatic variability, the developed models can be applied to identify the

impact of climate change on the hydrological cycle components and in particular
streamflow.
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APPENDIX A: GR4) model

GR4J model

(A) Simulated streamflows (in log scale) — all models

by NSE: all models over the WET period
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APPENDIX A: GR4) model

by Viney: all models over the WET period
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APPENDIX A: GR4) model

by BL: all models over the WET period
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APPENDIX A: GR4) model

by NSE*3: all models over the WET period
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APPENDIX A: GR4) model

(B) Normal distribution Q-Q plot — all models
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APPENDIX A: GR4) model

By Viney:
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APPENDIX A: GR4) model
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APPENDIX A: GR4) model
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APPENDIX A: GR4) model

( C) Scatterplots
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APPENDIX A: GR4) model

By Viney: wet period
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APPENDIX A: GR4) model

By BL: wet period
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APPENDIX A: GR4) model

By NSE>: wet period

=]
] ] =2,
— —
GI OI OI
m m m
. a o .3
& = g = =)
o 7] 7]
o} b b
E = E w=w E
[ b b
= = =
o o
] 9 w o
[ o T J
| I I
'% o '% o '%
o - o - o
o ] ]
o @ @
E w E w E
o b b
= = =
o o
[e] o
- = - = -
l::!I l:,I l::!I
[} = o] o o
2 = 2 = g
=) o =)
@ @ @
wy w
E E E
@ @O @
= = =
[ [
| [s] w
- o - - = o
I::’I I:,I I::’I
8 2 4 =z = m 2 4
=T = =
a @ a 2 @
o fir] o
E o o o Y E o E o Do a
z B0 R2=0.772 2 = (= R2=0.818
[=T [ [=T
T T T T T T T T
o 5 10 15 o 5 10 15
SAMMN_1 DE_1

71

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 10:55:44 EEST - 18.117.97.238



APPENDIX A: GR4) model

( D ) Model structure uncertainty
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APPENDIX A: GR4) model

Viney: WET period UNCERTAINTY
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APPENDIX A: GR4) model

BL: WET period UNCERTAINTY
|
min I
- max I
& - yermasoyia_0_0 ——
2
=)
7
z ¢ i
h=]
E
E 2]
'D_ |
L
?_ Ful
=)
T
< |
=
I I I I I I I
1987 1988 1989 1980 1891 1992 1993
time
BL: DRY period UNCERTAINTY
|
min —
max —
g_ yermasoyia_ 0.1 ——
2
o
52
o
E
1 |
m
.
a
T
¢
o
I I I I I I I
1852 1853 1554 1995 1836 1857 1556
time
74

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 10:55:44 EEST - 18.117.97.238



APPENDIX A: GR4) model
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APPENDIX A: GR4) model

(E) Objective Function and Optimization Algorithm uncertainty

CALIBRATION: WET — VALIDATION: DRY

Optimization traces:
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APPENDIX A: GR4) model

Validation FIT STATISTICS:

Objective Function = NSE

rel.bias r.sq.sgrt r.squared viney BL nse”3
PORT -0.303 0.791 0.777 0.386 0.747 0.873
BEFGS -0.309 0.788 0.768 0.353 0.737 0.853
NM -0.301 0.792 0.778 0.393 0.748 0.874
SANN -0.622 0.568 0.542 -4.114 0.480 0.683
SCE -0.303 0.791 0.778 0.385 0.748 0.875
DE -0.281 0.796 0.780 0.468 0.752 0.887
DREAM -0.248 0.801 0.754 0.537 0.729 0.833
Objective Function = Viney
rel.bias r.sg.sqgrt r.squared wviney BL nse”3
PORT -0.090 0.809 0.733 0.719 0.724 0.823
BFGS -0.084 0.809 0.730 0.719 0.722 0.822
NM -0.093 0.810 0.733 0.718 0.724 0.823
SANN -0.071 0.802 0.698 0.690 0.691 0.797
SCE -0.090 0.809 0.733 0.719 0.724 0.823
DE -0.090 0.807 0.725 0.711 0.716 0.816
DREAM -0.301 0.779 0.725 0.340 0.695 0.802
Objective Function = BL
rel.bias r.sq.sqgrt r.squared viney BL nse”3
PORT -0.207 0.815 0.777 0.649 0.757 0.872
BFGS -0.206 0.815 0.778 0.651 0.757 0.873
NM -0.203 0.814 0.774 0.651 0.754 0.865
SANN -0.409 0.737 0.752 -0.249 0.712 0.850
SCE -0.205 0.815 0.778 0.651 0.757 0.872
DE -0.192 0.816 0.775 0.670 0.756 0.877
DREAM -0.308 0.789 0.780 0.369 0.749 0.880
Objective Function = NSE?
rel.bias r.sqg.sqrt r.squared viney BL nse”3
PORT 0.608 0.529 0.551 -0.227 0.490 0.815
BEFGS 0.601 0.535 0.554 -0.207 0.494 0.816
NM -0.310 0.768 0.677 0.258 0.646 0.773
SANN -0.681 0.426 0.655 -6.304 0.587 0.814
SCE -0.338 0.778 0.781 0.234 0.747 0.883
DE -0.293 0.796 0.781 0.426 0.752 0.874
DREAM -0.308 0.789 0.780 0.369 0.749 0.880
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APPENDIX A: GR4) model

Parameter Stability:

Objective Function = NSE

X2 x3 x4 x1l etmult
PORT -14.77 1l1l6.1 1.13 274 1
BFGS -11.43 97.1 1.15 307 1
NM -14.88 117.2 1.13 273 1
SANN -2.57 20.1 1.32 0642 1
SCE -15.17 118.2 1.13 271 1
DE -18.07 136.8 1.14 243 1
DREAM -7.82 86.0 1.15 339 1

Objective Function = Viney

X2 x3 x4 x1 etmult
PORT -5.00 92.3 1.11 357 1
BFGS -5.00 93.5 1.11 356 1
NM -5.00 91.5 1.11 357 1
SANN -2.47 62.0 1.19 413 1
SCE -5.00 92.3 1.11 357 1
DE -3.71 75.8 1.13 383 1
DREAM -4.92 59.0 1.18 406 1
Objective Function = BL
X2 X3 x4 x1 etmult

PORT -12.312 124.090 112 277.803 1

1
BFGS -12.440 125.214 1.110 276.384 1
NM -11.197 117.924 1.114 288.558 1
SANN -11.810 76.829 1.182 320.338 1
SCE -12.399 124.971 1.110 276.781 1
DE -12.234 123.484 1.109 273.257 1
DREAM -16.403 122.988 1.129 261.423 1

Objective Function = NSE?

X2 x3 x4 x1 etmult
PORT -1.418 210.008 1.000 308.409 1
BFGS -1.425 206.931 1.000 309.410 1
NM -1.935 35.986 1.192 514.059 1
SANN -11.789 31.774 1.442 396.009 1
SCE -18.017 124.644 1.129 256.532 1
DE -15.238 123.484 1.123 270.180 1
DREAM -16.403 122.988 1.129 261.423 1
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APPENDIX A: GR4) model

(F) Objective Function and Optimization Algorithm uncertainty

CALIBRATION: DRY — VALIDATION: WET

Optimization traces:
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APPENDIX A: GR4) model

Validation FIT STATISTICS:

Objective Function = NSE

rel.bias r.sg.sgrt r.squared viney BL nse”3
PORT -0.206 0.814 0.862 0.734 0.842 0.977
BEFGS 0.079 0.817 0.791 0.787 0.790 0.946
SANN -0.367 0.756 0.849 0.138 0.813 0.973
SCE -0.127 0.828 0.843 0.809 0.830 0.966
DE -0.159 0.826 0.845 0.782 0.829 0.965
DREAM -0.177 0.820 0.859 0.775 0.841 0.975

Objective Function = Viney

rel.bias r.sg.sqrt r.squared viney BL nse”3
PORT -0.019 0.824 0.837 0.837 0.835 0.969
BFGS -0.026 0.825 0.839 0.838 0.836 0.970
NM -0.021 0.823 0.835 0.835 0.833 0.968
SANN 0.120 0.813 0.795 0.773 0.783 0.952
SCE -0.020 0.824 0.837 0.837 0.835 0.969
DE -0.001 0.82 0.836 0.836 0.836 0.968
DREAM -0.133 0.88 0.843 0.804 0.830 0.971

Objective Function = BL
rel.bias r.sqg.sqgrt r.squared viney BL nse”3

PORT 0.089 0.809 0.804 0.794 0.796 0.954
BFGS -0.010 0.822 0.829 0.829 0.828 0.964
NM 0.025 0.821 0.818 0.818 0.816 0.962
SANN -0.130 0.821 0.860 0.825 0.847 0.976
SCE 0.000 0.821 0.827 0.827 0.827 0.963
DE -0.082 0.829 0.837 0.826 0.829 0.965

Objective Function = NSE?

rel.bias r.sqg.sqgrt r.squared viney BL nse”3

PORT 0.017 0.816 0.823 0.823 0.821 0.961

BFGS 0.216 0.784 0.780 0.695 0.758 0.952

NM 0.125 0.804 0.802 0.778 0.789 0.957

SANN -0.040 0.829 0.840 0.838 0.836 0.970

SCE 0.047 0.812 0.820 0.817 0.815 0.961

DE 0.022 0.818 0.820 0.819 0.817 0.959
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APPENDIX A: GR4) model

Parameter Stability:

Objective Function = NSE

X2 x3 x4 x1 etmult
PORT -15.000 158.635 1.056 252.297 1
BFGS -14.998 142.246 1.074 262.663 1
NM -14.999 165.698 1.049 248.320 1
SANN -13.712 137.058 1.030 282.453 1
SCE -14.999 158.633 1.056 252.439 1
DE -13.529 154.495 1.041 262.426 1
DREAM -9.724 118.458 1.026 301.581 1
Objective Function = Viney
x2 X3 x4 x1 etmult
PORT -15.00 199 1.02 231 1
BFGS -15.00 195 1.03 231 1
NM -15.00 200 1.01 232 1
SANN -7.27 140 1.08 274 1
SCE -15.00 198 1.03 230 1
DE -13.00 173 1.07 236 1
DREAM -9.72 118 1.03 302 1
Objective Function = BL
x2 x3 x4 x1 etmult
PORT -20.0 216.3 1.10 203 1
BFGS -16.1 279.3 1.10 211 1
NM -20.0 236.0 1.10 195 1
SANN -11.8 76.8 1.28 320 1
SCE -20.0 231.8 1.10 194 1
DE -16.0 188.4 1.11 224 1
DREAM -19.6 179.9 1.10 224 1
Objective Function = NSE>
X2 x3 x4 x1 etmult
PORT -25.000 300.000 1.000 159.501 1
BFGS -15.716 282.162 1.002 182.173 1
NM -16.336 254.201 1.000 192.225 1
SANN -13.197 178.954 1.058 251.173 1
SCE -24.385 299.928 1.002 154.493 1
DE -23.314 293.179 1.016 170.050 1
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APPENDIX B: AWBM model

AWBM model

(A) Simulated streamflows (in log scale) — all models
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APPENDIX B: AWBM model

by Viney: all models over the WET period
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APPENDIX B: AWBM model

by BL: all models over the WET period
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APPENDIX B: AWBM model

. ; opseved ——
by NSE*3: all models over the WET period modelled ——
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APPENDIX B: AWBM model

(B) Normal distribution Q-Q plot — all models
By NSE:
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APPENDIX B: AWBM model

By Viney:

wet period
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By BL:

wet period
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APPENDIX B: AWBM model

( C) Scatterplots
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APPENDIX B: AWBM model

By Viney: wet period
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APPENDIX B: AWBM model

By BL: wet period
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APPENDIX B: AWBM model

By NSE>: wet period
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APPENDIX B: AWBM model

( D ) Model structure uncertainty

NSE: WET period UNCERTAINTY
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APPENDIX B: AWBM model

Viney: WET period UNCERTAINTY
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APPENDIX B: AWBM model

BL: WET period UNCERTAINTY
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APPENDIX B: AWBM model

NSE*3: WET period UNCERTAINTY
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APPENDIX B: AWBM model

(E) Objective Function and Optimization Algorithm uncertainty

CALIBRATION: WET — VALIDATION: DRY

Optimization traces:

Institutional Repository - Library & Information Centre - University of Thessaly

23/04/2024 10:55:44 EEST - 18.117.97.238

by NSE: Calibration over the WET period by VINEY: Calibration over the WET period
B L ' = ! 1 I
< o PORT EFGS SCE i
DE FEREFGE SCE SANN
BANN iy
R o o
w o =
= =
E c
2 o o
v g5
c M g a
3 d 3
2
£ N k-
B o PORT 5 8 PORT ——
33 Bres — | I 5 o BFOS ——
@ L — N —
SANN  —— SANN ——
o | SCE 2 SCE
o DE o DE
I I I I I I I I
200 400 €00 200 200 400 €00 500
Function evaluations Function evaluations
by BL: Calibration over the WET period by NSE*3: Calibration over the WET period
L ! o L L
— 2 _PoRT.
D FPRT EFG SCE AN ° E o i3 SN
" 54
g° g
2 T oo
5 g o
E o g -
= =
E -
8 PORT —— E a PORT —
5 ° BrGs — | |5 BFGS ——
o MM — 9 @ L —
SANN —— b SANN —
2 SCE 2 SCE
= DE a | DE
T T T T I I T I I I
200 400 800 500 200 400 800 200
Function evaluations Function evaluations
98




APPENDIX B: AWBM model

Validation FIT STATISTICS:

Objective Function = NSE

rel.bias r.sqg.sgrt r.squared viney BL nse”3

PORT -0.014 0.826 0.782 0.782 0.780 0.930
BFGS -0.013 0.826 0.782 0.782 0.781 0.930
NM -0.014 0.826 0.782 0.782 0.780 0.930
SANN -0.036 0.813 0.715 0.713 0.711 0.875
SCE -0.014 0.826 0.782 0.782 0.780 0.930
DE -0.025 0.825 0.774 0.773 0.772 0.923
Objective Function = Viney

rel.bias r.sqg.sgrt r.squared viney BL nse”3
PORT -0.026 0.825 0.777 0.777 0.775 0.925
BFGS -0.022 0.825 0.779 0.778 0.777 0.927
NM -0.026 0.825 0.777 0.777 0.775 0.925
SANN -0.042 0.824 0.767 0.765 0.763 0.915
SCE -0.026 0.825 0.777 0.777 0.775 0.925
DE -0.018 0.825 0.781 0.780 0.779 0.929

Objective Function = BL

rel.bias r.sqg.sqgrt r.squared viney BL nse”3

PORT -0.032 0.825 0.774 0.773 0.771 0.922
BEFGS -0.036 0.825 0.773 0.772 0.769 0.920
NM -0.034 0.825 0.773 0.772 0.770 0.921
SANN -0.012 0.824 0.773 0.773 0.772 0.924
SCE -0.035 0.825 0.773 0.772 0.770 0.921
DE -0.024 0.825 0.773 0.772 0.770 0.922

Objective Function = NSE?

rel.bias r.sqg.sqgrt r.squared viney BL nse”3

PORT 0.039 0.734 0.371 0.370 0.367 0.604

BFGS 0.039 0.734 0.371 0.370 0.367 0.604

NM 0.040 0.734 0.372 0.370 0.368 0.605

SANN 0.017 0.732 0.361 0.361 0.359 0.584

SCE 0.015 0.825 0.785 0.784 0.783 0.936

DE 0.015 0.825 0.785 0.785 0.783 0.936
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cap.

ave etmult

APPENDIX B: AWBM model

Parameter Stability:

Objective Function = NSE

tau s tau g vV S v q delay

PORT
BFGS
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SCE
DE

272.
272.
.829
3009.
272.
278.

272

790
621

238
791
833

1.
.000
.000
.892
.000
.990

O Or K

000

cap.ave etmult

46.845 2.126 0.548 0.452 0
46.861 2.128 0.547 0.453 0
46.843 2.126 0.548 0.452 0
43.831 2.065 0.558 0.442 0
46.845 2.126 0.548 0.452 0
46.408 2.103 0.550 0.450 0

Objective Function = Viney

tau s tau g vV S v q delay

PORT 276.683 1.000 46.494 2.105 0.551 0.449 0
BFGS 275.414 1.000 46.629 2.112 0.549 0.451 0
NM 276.572 1.000 46.506 2.105 0.550 0.450 0
SANN 283.632 0.994 45.812 2.077 0.556 0.444 0
SCE 276.681 1.000 46.495 2.105 0.551 0.449 0
DE 273.941 1.000 46.772 2.120 0.548 0.452 0
Objective Function = BL

cap.ave etmult tau s tau g vV S v g delay
PORT 278.810 1.000 46.265 2.093 0.552 0.448 0
BFGS 279.864 1.000 46.149 2.088 0.553 0.447 0
NM 279.501 1.000 46.188 2.090 0.553 0.447 0
SANN 278.986 0.972 46.671 2.121 0.546 0.454 0
SCE 279.540 1.000 46.184 2.089 0.553 0.447 0
DE 279.755 0.986 46.378 2.103 0.550 0.450 0

cap.ave etmult

Objective Function = NSE?

tau s tau g vV S v g delay
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38.942 1.779 0.544 0.456 0

38.941 1.779 0.544 0.456 0

38.960 1.780 0.544 0.456 0

37.908 1.754 0.550 0.450 0

47.482 2.189 0.541 0.459 0

47.479 2.189 0.541 0.459 0
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APPENDIX B: AWBM model

(E) Objective Function and Optimization Algorithm uncertainty

CALIBRATION: DRY — VALIDATION: WET

Optimization traces:
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APPENDIX B: AWBM model

Validation FIT STATISTICS:

Objective Function = NSE

rel.bias r.sqg.sqgrt r.squared viney BL nse”3
PORT 0.078 0.802 0.741 0.734 0.733 0.908
BFGS 0.065 0.805 0.745 0.740 0.738 0.909
NM 0.077 0.802 0.741 0.734 0.734 0.908
SANN 0.102 0.798 0.724 0.709 0.713 0.896
SCE 0.078 0.802 0.741 0.734 0.733 0.908
DE 0.068 0.805 0.742 0.736 0.735 0.907

Objective Function = Viney

rel.bias r.sqg.sqgrt r.squared viney BL nse”3
PORT 0.076 0.802 0.742 0.734 0.734 0.908
BFGS 0.050 0.808 0.747 0.744 0.742 0.909
NM 0.076 0.802 0.742 0.734 0.734 0.908
SANN 0.100 0.799 0.724 0.709 0.714 0.896
SCE 0.076 0.802 0.742 0.734 0.734 0.908
DE 0.077 0.802 0.741 0.734 0.734 0.908

Objective Function = BL

rel.bias r.sq.sqgrt r.squared viney BL nse”3
PORT 0.076 0.802 0.742 0.734 0.734 0.908
BFGS 0.070 0.804 0.744 0.738 0.737 0.909
NM 0.076 0.802 0.742 0.734 0.734 0.908
SANN 0.078 0.802 0.741 0.733 0.733 0.908
SCE 0.076 0.802 0.742 0.734 0.734 0.908
DE 0.079 0.802 0.740 0.732 0.732 0.907

rel.bias r.sqg.sqgrt r.squared

Objective Function = NSE?

BL nse”3

PORT
BFGS
NM
SANN
SCE
DE

0.
0.084
0.083
0.
0
0

083

118

.083
.086

0.
.801
.801
.795
.801
.801

O O O O o

801

0.
7
7
7
.7
.7

O O O O o

7

viney
39 0.730 0
38 0.729 0
39 0.730 0
19 0.698 0
39 0.730 O
37 0.727 O
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APPENDIX B: AWBM model

Parameter Stability:

Objective Function = NSE

cap.ave etmult tau s tau g vV S v q delay
PORT 263.067 1.000 74.398 1.838 0.514 0.48¢6 0
BFGS 266.566 0.999 74.276 1.830 0.514 0.486 0
NM 263.156 1.000 74.420 1.838 0.514 0.486 0
SANN 273.489 0.920 72.687 1.854 0.494 0.506 0
SCE 263.064 1.000 74.397 1.838 0.514 0.486 0
DE 270.252 0.977 73.722 1.833 0.508 0.492 0

Objective Function = Viney

cap.ave etmult tau s tau g vV S v g delay
PORT 263.349 1.000 74.469 1.837 0.514 0.48¢6 0
BFGS 270.584 0.999 74.067 1.823 0.513 0.487 0
NM 263.350 1.000 74.469 1.837 0.514 0.486 0
SANN 274.467 0.918 72.593 1.854 0.493 0.507 0
SCE 263.349 1.000 74.469 1.837 0.514 0.486 0
DE 263.853 0.997 74.389 1.837 0.514 0.486 0

cap.ave etmult

Objective Function = BL

tau s tau g vV S v g delay

PORT
BFGS
NM
SANN
SCE
DE

263.
265.
263.
263.
263.
262.

349
216
344
795
349
543

1.
.000
.000
.996
.000
.000

RO

000

cap.ave etmult

74.469 1.837 0.514 0.486 0
74.359 1.833 0.514 0.486 0
74.468 1.837 0.514 0.486 0
74.381 1.838 0.514 0.486 0
74.469 1.837 0.514 0.486 0
74.265 1.840 0.513 0.487 0

Objective Function = NSE?

tau s tau g vV S v g delay

PORT
BFGS
NM
SANN
SCE
DE

261.
261.
261.
260.
261.
262.

607
594
606
794
610
331

1.
.999
.000
.970
.000
.993

O O O

000

74.030 1.844 0.512 0.488 0

73.989 1.844 0.512 0.488 0

74.029 1.844 0.512 0.488 0

72.699 1.866 0.500 0.500 0

74.031 1.844 0.512 0.488 0

73.812 1.846 0.510 0.490 0
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APPENDIX C: IHACRES model — CWI version

IHACRES model - CWI version:

(A) Simulated streamflows (in log scale) — all models
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APPENDIX C

by Viney: all models over the WET period e
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APPENDIX C

by BL: all models over the WET period %bosdeerﬁgg _
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APPENDIX C

by NSE*3: all models over the WET period
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APPENDIX C

( B ) Normal distribution Q-Q plot - all models

By NSE:
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APPENDIX C

By Viney:
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APPENDIX C

By BL:
wet period
observed
modelled ——
K] 0 2
1 1 | 1 1 1
SCE 0 DE O
- - 1040
= 102
- - 1004
=
& PORT 0 M0 BFGS 0
100 —
1042
1074 —
T T T T T T T T
-2 0 2 2 0
qnaorm
dry period
observed
modelled ———
-z 0 z
1 1 | 1 1 1
SCE_1 DE_1
- - 1040
- 1002
- - 104
=
o PORT 1 M1 BFGS 1
100
10%-2
10%-4
| | I | | | I |
-2 0 2 2 0
qnaorm
110

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 10:55:44 EEST - 18.117.97.238




APPENDIX C

By NSE:
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APPENDIX C

( C) Scatterplots
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APPENDIX C

By Viney: wet period
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APPENDIX C

By BL: wet period
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APPENDIX C

By NSE>: wet period

[=] [=]

2w R2=0.737 2w R2=0.733 o 2w R2=0.738 o
I:,I I:,I I:,I

o o o

= = =

o o o

w w w

i) i) i)

E E E

@ @ @

e e e

DI DI DI

I;:,I I;:,I I;:,I

o o o}

E E E

o o o

w w w

m m m

E E E

@ @ @

= = =

DE_O
3 o
By NSE”: dry period
[x]
L L

™ o R2=0.0538 T T 7|°  R2=0.084%
I:,I I:!‘I OI

@ @ )

- == ==

o o (=]

w w w

m m L)

E E E

1] -] o

e = =

NM_1
Ea) Ea)

T o R2=0.0841 1 < 7|® R2=0.0854
OI OI C!|I

3 3 3

E = =

o o [=]

w ] i

m m m

E E E

@ [ o

= = =

DE_1

115

Institutional Repository - Library & Information Centre - University of Thessaly

23/04/2024 10:55:44 EEST - 18.117.97.238




APPENDIX C

( D ) Model structure uncertainty

NSE: WET period UNCERTAINTY
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APPENDIX C

Viney: WET period UNCERTAINTY
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APPENDIX C

BL: WET period UNCERTAINTY
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NSE*3: WET period UNCERTAINTY
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(E) Objective Function and Optimization Algorithm uncertainty

APPENDIX C

CALIBRATION: WET — VALIDATION: DRY

Optimization traces:
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APPENDIX C

Validation FIT STATISTICS:

Objective Function = NSE

rel.bias r.sq.sgrt r.squared viney BL nse”3
PORT 0.169 0.751 0.651 0.602 0.634 0.823
BEFGS 0.184 0.752 0.652 0.593 0.633 0.825
NM 0.200 0.746 0.656 0.585 0.636 0.832
SANN 0.187 0.748 0.664 0.603 0.645 0.846
SCE 0.169 0.751 0.651 0.602 0.634 0.823
DE 0.204 0.744 0.654 0.580 0.634 0.830
Objective Function = Viney
rel.bias r.sqg.sgrt r.squared viney BL nse”3
PORT 0.168 0.750 0.654 0.606 0.637 0.827
BFGS 0.202 0.742 0.666 0.594 0.646 0.852
NM 0.167 0.749 0.656 0.609 0.639 0.831
SANN 0.198 0.748 0.646 0.576 0.626 0.816
SCE 0.168 0.750 0.654 0.606 0.637 0.827
DE 0.205 0.742 0.663 0.588 0.642 0.846
Objective Function = BL
rel.bias r.sq.sqgrt r.squared viney BL nse”3
PORT 0.168 0.750 0.653 0.605 0.636 0.827
BFGS 0.174 0.751 0.654 0.603 0.637 0.829
NM 0.168 0.750 0.653 0.606 0.636 0.827
SANN 0.189 0.747 0.664 0.602 0.645 0.847
SCE 0.168 0.751 0.653 0.605 0.636 0.827
DE 0.204 0.744 0.653 0.578 0.633 0.828
Objective Function = NSE?
rel.bias r.sqg.sqgrt r.squared viney BL nse”3
PORT 0.422 0.685 0.746 0.378 0.704 0.946
BFGS 0.408 0.693 0.753 0.410 0.712 0.948
NM 0.401 0.694 0.754 0.424 0.714 0.947
SANN 0.400 0.698 0.757 0.428 0.717 0.950
SCE 0.388 0.703 0.761 0.454 0.722 0.950
DE 0.400 0.698 0.756 0.427 0.716 0.950
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APPENDIX C

Parameter Stability:

Objective Function = NSE

tw f scale 1 p t ref tau s tau g vV S v q delay
PORT 0.015 8.000 0.001 O 1 20 13.424 0.689 0.619 0.381 1
BFGS 0.121 6.133 0.001 O 1 20 13.064 0.684 0.622 0.378 1
NM 0.870 4.298 0.001 0 1 20 13.059 0.677 0.624 0.376 1
SANN 0.318 4.988 0.001 0 1 20 14.113 0.681 0.619 0.381 1
SCE 0.015 8.000 0.001 0 1 20 13.425 0.689 0.619 0.381 1
DE 1.067 4.156 0.001 0 1 20 12.914 0.677 0.625 0.375 1

Objective Function = Viney

tw f scale 1 p t ref tau s tau g vV S v q delay
PORT 0.014 8.000 0.001 0 1 20 13.718 0.689 0.618 0.382 1
BFGS 1.841 3.357 0.001 O 1 20 14.148 0.677 0.621 0.379 1
NM 0.013 8.000 0.001 O 1 20 13.951 0.689 0.617 0.383 1
SANN 0.358 5.309 0.001 0 1 20 12.554 0.682 0.626 0.374 1
SCE 0.014 8.000 0.001 O 1 20 13.717 0.689 0.618 0.382 1
DE 2.084 3.343 0.001 0 1 20 13.630 0.675 0.623 0.377 1

Objective Function = BL

tw f scale 1 p t ref tau s tau g Vv s v g delay
PORT 0.014 8.000 0.001 O 1 20 13.654 0.689 0.618 0.382 1
BFGS 0.038 7.092 0.001 O 1 20 13.535 0.686 0.619 0.381 1
NM 0.014 8.000 0.001 O 1 20 13.671 0.689 0.618 0.382 1
SANN 0.435 4.691 0.001 O 1 20 14.160 0.680 0.619 0.381 1
SCE 0.014 8.000 0.001 O 1 20 13.650 0.689 0.618 0.382 1
DE 1.067 4.175 0.001 0O 1 20 12.858 0.677 0.625 0.375 1

Objective Function = NSE?

tw f scale 1 p t ref tau s tau g v s v g Delay
PORT 3.028 1.817 0.002 O 1 20 57.070 2.505 0.482 0.518 0
BFGS 0.177 4.340 0.002 O 1 20 58.931 2.482 0.491 0.509 0
NM 0.003 7.999 0.002 0 1 20 61.528 2.406 0.515 0.485 0
SANN 0.959 2.983 0.002 0 1 20 56.843 2.557 0.467 0.533 0
SCE 0.005 7.488 0.002 0 1 20 60.319 2.465 0.496 0.504 0
DE 0.827 3.104 0.002 0 1 20 57.034 2.551 0.469 0.531 0
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APPENDIX C

(F) Objective Function and Optimization Algorithm uncertainty

CALIBRATION: DRY — VALIDATION: WET

Optimization traces:
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APPENDIX C

Validation FIT STATISTICS:

Objective Function = NSE

rel.bias r.sqg.sqgrt r.squared viney BL nse”3
PORT 0.053 0.802 0.726 0.723 0.720 0.788
BFGS 0.062 0.806 0.725 0.721 0.719 0.787
NM 0.073 0.805 0.724 0.718 0.717 0.788
SANN 0.061 0.802 0.724 0.719 0.718 0.790
SCE 0.053 0.802 0.726 0.723 0.720 0.788
DE 0.077 0.805 0.724 0.717 0.716 0.788
Objective Function = Viney
rel.bias r.sqg.sgrt r.squared viney BL nse”3
PORT 0.052 0.801 0.726 0.723 0.720 0.789
BFGS 0.069 0.802 0.722 0.716 0.715 0.790
NM 0.052 0.800 0.725 0.723 0.720 0.790
SANN 0.074 0.808 0.724 0.718 0.717 0.786
SCE 0.052 0.801 0.726 0.723 0.720 0.789
DE 0.073 0.803 0.723 0.716 0.716 0.789
Objective Function = BL
rel.bias r.sq.sqgrt r.squared viney BL nse”3
PORT 0.053 0.801 0.726 0.723 0.720 0.789
BFGS 0.056 0.802 0.725 0.722 0.720 0.789
NM 0.053 0.801 0.726 0.723 0.720 0.789
SANN 0.062 0.802 0.723 0.719 0.717 0.790
SCE 0.053 0.801 0.726 0.723 0.720 0.789
DE 0.078 0.805 0.724 0.716 0.716 0.788
Objective Function = NSE?
rel.bias r.sq.sgrt r.squared viney BL nse”3
PORT 0.202 0.747 0.707 0.634 0.686 0.885
BFGS 0.202 0.749 0.708 0.636 0.688 0.888
NM 0.200 0.749 0.706 0.635 0.686 0.891
SANN 0.202 0.753 0.711 0.639 0.691 0.886
SCE 0.201 0.753 0.711 0.639 0.691 0.891
DE 0.202 0.753 0.711 0.638 0.691 0.886
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APPENDIX C

Parameter Stability:

Objective Function = NSE

Parameters calibrated over Dry period:

tw f scale 1 p t ref tau s tau g vV S v g delay
PORT 0.015 8.000 0.001 O 1 20 13.424 0.689 0.619 0.381 1
BFGS 0.121 6.133 0.001 O 1 20 13.064 0.684 0.622 0.378 1
NM 0.870 4.298 0.001 0 1 20 13.059 0.677 0.624 0.376 1
SANN 0.318 4.988 0.001 O 1 20 14.113 0.681 0.619 0.381 1
SCE 0.015 8.000 0.001 0 1 20 13.425 0.689 0.619 0.381 1
DE 1.067 4.156 0.001 o0 1 20 12.914 0.677 0.625 0.375 1

Objective Function = Viney

tw f scale 1 p t ref tau s tau g vV S v g delay
PORT 0.014 8.000 0.001 0 1 20 13.718 0.689 0.618 0.382 1
BFGS 1.841 3.357 0.001 0 1 20 14.148 0.677 0.621 0.379 1
NM 0.013 8.000 0.001 O 1 20 13.951 0.689 0.617 0.383 1
SANN 0.358 5.309 0.001 0 1 20 12.554 0.682 0.626 0.374 1
SCE 0.014 8.000 0.001 O 1 20 13.717 0.689 0.618 0.382 1
DE 2.084 3.343 0.001 0 1 20 13.630 0.675 0.623 0.377 1

Objective Function = BL

tw f scale 1 p t ref tau s tau g Vv s v g delay
PORT 0.014 8.000 0.001 O 1 20 13.654 0.689 0.618 0.382 1
BFGS 0.038 7.092 0.001 O 1 20 13.535 0.686 0.619 0.381 1
NM 0.014 8.000 0.001 O 1 20 13.671 0.689 0.618 0.382 1
SANN 0.435 4.691 0.001 O 1 20 14.160 0.680 0.619 0.381 1
SCE 0.014 8.000 0.001 O 1 20 13.650 0.689 0.618 0.382 1
DE 1.067 4.175 0.001 O 1 20 12.858 0.677 0.625 0.375 1

Objective Function = NSE?

tw f scale 1 p t ref tau s tau g v s v g Delay
PORT 3.028 1.817 0.002 O 1 20 57.070 2.505 0.482 0.518 0
BFGS 0.177 4.340 0.002 0 1 20 58.931 2.482 0.491 0.509 0
NM 0.003 7.999 0.002 0 1 20 61.528 2.406 0.515 0.485 0
SANN 0.959 2.983 0.002 0 1 20 56.843 2.557 0.467 0.533 0
SCE 0.005 7.488 0.002 0 1 20 60.319 2.465 0.496 0.504 0
DE 0.827 3.104 0.002 0 1 20 57.034 2.551 0.469 0.531 0
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APPENDIX D: IHACRES model — CMD version

IHACRES model — CMD version

( A)) Simulated streamflows (in log scale) — all models

obsenved ——

by NSE: all models over the WET period modelled ——
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by Viney: all models over the WET period
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modelled ——
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by BL: all models over the WET period
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by NSE*3: all models over the WET period g,lbosdeemzﬂ -
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APPENDIX D

( B ) Normal distribution Q-Q plot - all models

By NSE:
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By Viney:
wet period
observed
madelled
E-} 0 z
1 1 1 1 1 1
SCE D DE O
- - 100
- - 10n-2
— - 104
o
o PORT 0 M O BFGS 0
1040 —
1042
1044 —
T I T T T T T I
2 0 z -2 0 z
qnaorm
dry period
observed
modelled ———
2 0 z
1 1 1 1 1 1
SCE_1 DE_1
= - 100
= - 102
= - 10%-4
o
o PORT 1 | BFGS 1
1040 —
1042
104
T T T T T T T T T
2 0 z 2 0 z
qnorm
131

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 10:55:44 EEST - 18.117.97.238



APPENDIX D

By BL:
wet period
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( C) Scatterplots
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By Viney: wet period
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By BL: wet period
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By NSE>: wet period
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( D ) Model structure uncertainty

NSE: WET period UNCERTAINTY
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Viney: WET period UNCERTAINTY
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BL: WET period UNCERTAINTY
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NSE*3: WET period UNCERTAINTY
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(E) Objective Function and Optimization Algorithm uncertainty

CALIBRATION: WET — VALIDATION: DRY

Optimization traces:
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Validation FIT STATISTICS:

Objective Function = NSE

rel.bias r.sqg.sgrt r.squared viney BL nse”3
PORT -0.155 0.595 0.640 0.582 0.625 0.845
BFGS -0.147 0.653 0.593 0.543 0.578 0.792
NM -0.130 0.618 0.646 0.610 0.633 0.850
SANN -0.108 0.625 0.635 0.613 0.624 0.844
SCE -0.155 0.595 0.640 0.582 0.625 0.845
DE -0.176 0.591 0.620 0.538 0.602 0.826

Objective Function = Viney

rel.bias r.sqg.sgrt r.squared wviney BL nse”3
PORT -0.152 0.597 0.641 0.586 0.626 0.847
BEGS -0.095 0.676 0.619 0.604 0.610 0.820
NM -0.127 0.619 0.648 0.614 0.635 0.852
SANN -0.131 0.632 0.586 0.549 0.572 0.795
SCE -0.153 0.596 0.641 0.585 0.626 0.847
DE -0.204 0.527 0.592 0.467 0.571 0.803
Objective Function = BL
rel.bias r.sq.sqgrt r.squared viney BL nse”3
PORT -0.146 0.604 0.643 0.593 0.628 0.847
BEFGS -0.118 0.660 0.618 0.590 0.606 0.818
NM -0.146 0.604 0.643 0.593 0.628 0.848
SANN -0.172 0.559 0.635 0.558 0.618 0.843
SCE -0.148 0.600 0.643 0.591 0.628 0.848
DE -0.149 0.55 0.614 0.562 0.599 0.829

Objective Function = NSE?

rel.bias r.sqg.sqgrt r.squared viney BL nse”3
PORT -0.151 0.577 0.649 0.596 0.634 0.856
BEFGS 0.009 0.713 0.659 0.659 0.659 0.864
NM -0.149 0.578 0.650 0.597 0.635 0.857
SANN 0.014 0.712 0.598 0.598 0.597 0.814
SCE -0.151 0.577 0.649 0.595 0.634 0.856
DE -0.078 0.637 0.671 0.661 0.663 0.875
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Parameter Stability:

Objective Function = NSE

f e d shape tau s tau g Vv s v g delay
PORT 0.895 1.500 178.366 O 60.999 2.121 0.484 0.516 O
BFGS 0.757 1.500 260.252 O 58.713 2.245 0.448 0.552 O
NM 0.861 1.500 188.704 O 61.055 2.150 0.479 0.521 O
SANN 0.850 1.458 196.701 O 60.753 2.178 0.470 0.530 O
SCE 0.895 1.500 178.349 O 60.999 2.121 0.484 0.516 O
DE 0.880 1.495 189.025 O 60.882 2.125 0.480 0.520 O
Objective Function = Viney

f e d shape tau s tau g Vv s v q delay
PORT 0.892 1.500 178.886 0 61.012 2.123 0.483 0.517 O
BFGS 0.745 1.499 258.479 O 58.613 2.271 0.446 0.554 0
NM 0.861 1.500 188.292 O 61.068 2.151 0.479 0.521 O
SANN 0.799 1.419 238.781 O 59.217 2.232 0.449 0.551 O
SCE 0.894 1.500 178.281 O 61.009 2.122 0.484 0.516 O
DE 0.955 1.451 171.543 O 60.721 2.085 0.484 0.516 O

Objective Function = BL
f e d shape tau s tau g Vv s v g delay
PORT 0.882 1.500 181.951 O 61.031 2.131 0.482 0.518 0
BFGS 0.769 1.499 243.365 O 59.346 2.238 0.453 0.547 0
NM 0.883 1.500 181.640 O 61.031 2.131 0.482 0.518 0
SANN 0.943 1.492 165.007 O 60.826 2.092 0.489 0.511 0
SCE 0.890 1.500 179.075 O 61.030 2.126 0.483 0.517 0
DE 0.955 1.422 167.231 O 60.852 2.114 0.481 0.519 0
Objective Function = NSE?

f e d shape tau s tau g Vv s v g delay
PORT 0.930 1.500 164.990 O 60.979 2.103 0.489 0.511 O
BFGS 0.722 1.499 253.271 O 58.585 2.310 0.444 0.556 O
NM 0.930 1.500 164.925 O 60.987 2.104 0.489 0.511 O
SANN 0.667 1.432 341.338 O 53.590 2.416 0.405 0.595 O
SCE 0.931 1.500 164.758 O 60.974 2.102 0.489 0.511 O
DE 0.856 1.498 182.361 O 61.333 2.168 0.479 0.521 O
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APPENDIX D

(F) Objective Function and Optimization Algorithm uncertainty

CALIBRATION: DRY — VALIDATION: WET

Optimization traces:

by NSE: Calibration over the DRY period by Viney: Calibration over the DRY period
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APPENDIX D

Validation FIT STATISTICS:

Objective Function = NSE

rel.bias r.sg.sgrt r.squared viney BL nse”3
PORT -0.006 0.776 0.771 0.771 0.770 0.933
BFGS -0.029 0.791 0.762 0.761 0.759 0.921
NM 0.010 0.782 0.771 0.771 0.770 0.933
SANN 0.027 0.782 0.766 0.766 0.763 0.931
SCE -0.006 0.776 0.771 0.771 0.770 0.933
DE -0.032 0.773 0.770 0.769 0.767 0.931

Objective Function = Viney

rel.bias r.sq.sgrt r.squared viney BL nse”3
PORT -0.003 0.776 0.771 0.771 0.771 0.933
BFGS 0.018 0.799 0.763 0.763 0.761 0.924
NM 0.012 0.782 0.771 0.770 0.769 0.933
SANN -0.005 0.783 0.759 0.759 0.758 0.923
SCE -0.004 0.776 0.771 0.771 0.771 0.933
DE -0.047 0.757 0.764 0.762 0.760 0.930

Objective Function = BL

rel.bias r.sq.sqgrt r.squared viney BL nse”3
PORT 0.000 0.778 0.771 0.771 0.771 0.933
BFGS 0.000 0.795 0.765 0.765 0.765 0.926
NM 0.000 0.778 0.771 0.771 0.771 0.933
SANN -0.012 0.770 0.770 0.769 0.768 0.933
SCE 0.000 0.777 0.771 0.771 0.771 0.933
DE 0.010 0.763 0.762 0.762 0.761 0.930

rel.bias r.sq.

Objective Function = NSE?

sgqrt r.squared viney

BL nse”3

PORT
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0.

0
0
0
0
0

008
111
.009
.106
.008
.061

174
.805
174
797
L7174
.789

O O O O oo

0.
.758
.770
.742
.770
.768

O O O O o

770

0.

O O O O o

770

. 740
.770
.726
.770
. 764

146

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 10:55:44 EEST - 18.117.97.238

O OO O oo

.769
. 747
.769
.731
.769
L7162

O O O O o O

.933
.926
.933
.915
.933
.933



APPENDIX D

Parameter Stability:

Objective Function = NSE

f e d shape tau s tau g Vv s v g delay
PORT 0.895 1.500 178.366 O 60.999 2.121 0.484 0.516 O
BFGS 0.757 1.500 260.252 O 58.713 2.245 0.448 0.552 O
NM 0.861 1.500 188.704 O 61.055 2.150 0.479 0.521 O
SANN 0.850 1.458 196.701 O 60.753 2.178 0.470 0.530 O
SCE 0.895 1.500 178.349 0 60.999 2.121 0.484 0.516 O
DE 0.880 1.495 189.025 O 60.882 2.125 0.480 0.520 O

Objective Function = Viney

f e d shape tau s tau g Vv s v g delay
PORT 0.882 1.500 181.951 O 61.031 2.131 0.482 0.518 O
BFGS 0.769 1.499 243.365 O 59.346 2.238 0.453 0.547 O
NM 0.883 1.500 181.640 O 61.031 2.131 0.482 0.518 O
SANN 0.943 1.492 165.007 O 60.826 2.092 0.489 0.511 O
SCE 0.890 1.500 179.075 O 61.030 2.126 0.483 0.517 O
DE 0.955 1.422 167.231 O 60.852 2.114 0.481 0.519 O

Objective Function = BL

f e d shape tau s tau g Vv s v g delay
PORT 0.882 1.500 181.951 O 61.031 2.131 0.482 0.518 O
BFGS 0.769 1.499 243.365 O 59.346 2.238 0.453 0.547 O
NM 0.883 1.500 181.640 O 61.031 2.131 0.482 0.518 O
SANN 0.943 1.492 165.007 O 60.826 2.092 0.489 0.511 O
SCE 0.890 1.500 179.075 O 61.030 2.126 0.483 0.517 O
DE 0.955 1.422 167.231 O 60.852 2.114 0.481 0.519 O

Objective Function = NSE?

f e d shape tau s tau g Vv s v q delay
PORT 0.930 1.500 164.990 O 60.979 2.103 0.489 0.511 O
BFGS 0.722 1.499 253.271 O 58.585 2.310 0.444 0.556 O
NM 0.930 1.500 164.925 O 60.987 2.104 0.489 0.511 O
SANN 0.667 1.432 341.338 O 53.590 2.416 0.405 0.595 O
SCE 0.931 1.500 164.758 O 60.974 2.102 0.489 0.511 O
DE 0.856 1.498 182.361 O 61.333 2.168 0.479 0.521 O
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