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Περίληψη 

Σήμερα είμαστε μάρτυρες μιας άνευ προηγουμένου σε όλο τον κόσμο ανάπτυξης 

των κινητών δεδομένων κίνησης που αναμένεται να συνεχιστεί με ετήσιο ποσοστό του 78 

τοις εκατό κατά τα επόμενα χρόνια, φτάνοντας  τα 10,8 exabytes / μήνα μέχρι το 2016. Οι 

εξελίξεις αυτές οδηγούν την ερευνητική κοινότητα να διερευνήσει τρόπους για την αύξηση 

της φασματικής απόδοσης των κυψελοειδών δικτύων. Ο πλέον υποσχόμενος τρόπος για να 

επιτευχθεί αυτό είναι η ανάπτυξη των μικρών σταθμών βάσης κοντά στους χρήστες που 

χειρίζονται ένα κλάσμα της κυκλοφορίας αντί για το συμβατικό σταθμό βάσης της κυψέλης. 

Το μειονέκτημα αυτής της προσέγγισης είναι η υψηλή τιμή των ζεύξεων που ενώνουν τους 

μικρότερους σταθμούς με τον κεντρικό σταθμό της κυψέλης. Πρόσφατα ερευνητικά 

αποτελέσματα  έδειξαν ότι εξοπλίζοντας αυτούς τους σταθμούς βάσης με δυνατότητες 

αποθήκευσης μειώνει  το παραπάνω κόστος.  

Σε αυτή την εργασία,  επιτρέπουμε τη χρήση κωδικοποίησης κατά την αποθήκευση 

των αρχείων στους σταθμούς βάσης. Αυτό σημαίνει ότι κωδικοποιημένες εκδόσεις του 

περιεχομένου αποθηκεύονται στις κρυφές μνήμες των σταθμών αντί των πρωτότυπων 

πακέτων δεδομένων. Με τη χρήση ενός κατάλληλου κώδικα, η επιτυχημένη παράδοση 

περιεχομένου επιτυγχάνεται όταν το συνολικό ποσό των ληφθέντων δεδομένων από τους 

σταθμούς βάσης που συναντά ο χρήστης εντός της προθεσμίας είναι τουλάχιστον ίσο με το 

μέγεθος του αιτούμενου αρχείου. Εάν το ποσό της πληροφορίας το οποίο λάβει ο χρήστης, 

δεν αρκεί για  να ανακτήσει το αρχείο που ζητήθηκε, ο κεντρικός σταθμός βάσης της 

κυψέλης εξυπηρετεί το αίτημα. Η τελευταία ενέργεια είναι η πλέον δαπανηρή για τον 

διαχειριστή του συστήματος.  

Στο πρώτο κεφάλαιο, θα επικεντρωθούμε στο παραπάνω πρόβλημα της κατανομής 

του αποθηκευτικού χώρου στους σταθμούς βάσης της κυψέλης. Στόχος μας είναι να 

ελαχιστοποιήσουμε το κλάσμα των αιτήσεων για περιεχόμενο που εξυπηρετούνται από τον 

κύριο σταθμό βάσης του συστήματος. Η συνολική ποσότητα του περιεχομένου που μπορεί 

να αποθηκευτεί σε ένα σταθμό βάσης περιορίζεται από τη χωρητικότητα της κρυφής 

μνήμης του.  Δείχνουμε πώς μπορούμε να εκμεταλλευτούμε την κινητικότητα των χρηστών 

για την αποτελεσματικότερη λήψη αποφάσεων αποθήκευσης. Υποθέτουμε ότι το πρότυπο 

της κινητικότητας των χρηστών ακολουθεί ένα διακριτού χρόνου Marκov στοχαστικό 

μοντέλο και προτείνουμε ένα νέο προσεγγιστικό αλγόριθμο. 

Στο δεύτερο κεφάλαιο,  μελετούμε την ρεαλιστική περίπτωση κατά την οποία 

απαιτείται μαζική παράδοση δεδομένων. Έτσι, οι περιορισμοί χωρητικότητας των ζεύξεων 

αυτών έρχονται στο προσκήνιο. Διατυπώνουμε το πρόβλημα της από κοινού αποθήκευσης 

και δρομολόγησης των αιτήσεων των χρηστών στους σταθμούς βάσης. Δείχνουμε ότι το 

πρόβλημα αυτό είναι ισοδύναμο με ένα από τα προβλήματα της ευρύτερης περιοχής των 

“facility location problems”. Η ισοδυναμία αυτή μας επιτρέπει να εξάγουμε μία οικογένεια 

προσεγγιστικών  αλγορίθμων για το αρχικό πρόβλημα. 

Το κύριο σώμα της διπλωματικής εργασίας ακολουθεί (ως παράρτημα) στην αγγλική 

γλώσσα 
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Small cells constitute a promising solution for managing the mobile data growth that

has overwhelmed network operators. Local caching of popular content items at the small

cell base stations has been proposed in order to decrease the capacity -and hence the cost-

of the backhaul links that connect these base stations with the core network. However,

deriving the optimal caching policy remains a challenging open problem.

In chapter 1, we allow coding in storage decisions at the base stations. This means that

encoded versions of the content are stored at the caches instead of the raw data packets.

By using an appropriate code, successful content delivery occurs when the total amount of

the downloaded data is at least the size of the original file. We then present a distributed

approximation algorithm based on a Markov chain analysis. We evaluate the proposed

scheme using traces of a data set of real mobile users.

In chapter 2, we consider the scenario that massive content delivery is required and

formulate the joint routing and caching problem aiming to maximize the fraction of content

requests served by the deployed base stations. We present a novel approximation framework

based on a reduction to a well-known variant of the facility location problem. This allows

us to exploit the rich literature in facility location problems, in order to establish bounded

approximation algorithms for our problem.
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Chapter 1:

Exploiting User Mobility for Wireless

Content Delivery

Abstract

We consider the problem of storing segments of encoded versions of content files in a set of

base stations located in a communication cell. These base stations work in conjunction with the

main base station of the cell. Users move randomly across the space based on a discrete-time

Markov chain model. At each time slot each user accesses a single base station based on it’s

current position and it can download only a part of the content stored in it, depending on the

time slot duration. We assume that file requests must be satisfied within a given time deadline

in order to be successful. If the amount of the downloaded (encoded) data by the accessed base

stations when the time deadline expires does not suffice to recover the requested file, the main

base station of the cell serves the request. Our aim is to find the storage allocation that minimizes

the probability of using the main base station for file delivery. This problem is intractable in

general. However, we show that the optimal solution of the problem can be efficiently attained

in case that the time deadline is small. To tackle the general case, we propose a distributed

approximation algorithm based on large deviation inequalities. Systematic experiments on a real

world data set demonstrate the effectiveness of our proposed algorithms.

I. INTRODUCTION

Today we are witnessing an unprecedented worldwide growth of mobile data traffic

that is expected to continue at an annual rate of 78 percent over the next years, reaching

10.8 exabytes/month by 2016 [10]. These developments lead the research community to

investigate ways for increasing area spectral efficiency of cellular networks. The most
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promising way to achieve this is the deployment of small base stations near to the users

that handle a fraction of wireless content traffic in place of the conventional base station

of the cell. The drawback of this approach is the high price of the required backhaul to

the main base station. The recent work in [1] showed that equipping these base stations

with storage capabilities alleviates the backhaul cost. However, little work has been done

on exploiting the user mobility in taking storage management decisions in these systems.

A user of these systems is connected to the base station that is currently in communica-

tion range based on it’s geographical position. The dense spatial deployment of the base

stations highlights the scenario that mobile users connect to more than one base stations

as they move over time. This transition can happen in a short time period of some minutes

taking into account the typical values of cell radius (≈ 400m) and the deployment of some

decades of base stations in the cell. Thus, only a fraction of the requested data may be

downloaded by the connected base station. Besides, depending on the user preferences, it

may be acceptable for it to wait a time period until the requested file is delivered. Thus, the

user can fetch the entire content file that wishes from different base stations that encounters

as it moves within a given time deadline.

In this work, we allow coding in storage decisions at the base stations. This means that

encoded versions of the content are stored at the caches instead of the raw data packets.

By using an appropriate code, successful content delivery occurs when the total amount

of the downloaded data by the encountered base stations within the time deadline is at

least the size of the requested file [4]. If the amount of the downloaded data when the

time deadline expires does not suffice to recover the requested file, the main base station

of the cell serves the request.

In this chapter, we focus on the above storage allocation problem at the base stations

of the cell. Our goal is to minimize the fraction of file requests that are served by the

main base station. The total amount of content stored at a base station is upper bounded

by the capacity of it’s cache. Traditionally, storage allocation at a cache node is performed

Institutional Repository - Library & Information Centre - University of Thessaly
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based on the average content popularity near that node. In contrast, we exploit the user

mobility in storage decision taking. We assume that the user mobility pattern follows a

discrete-time Markov model. This is a realistic assumption, as the future position of a

user highly depends on it’s current position. Thus, the user movement within a given time

deadline can be represented by a random walk on a Markov chain. The probabilities of

transition can be efficiently derived using learning mechanisms [7].

Our work builds upon the Femtocaching architecture proposed in [1] by exploiting user

mobility statistics for storage allocation decision taking. The technical contributions of this

chapter can be summarized as follows:

• Specifying the coded storage allocation problem.

• Presenting an optimal solution of the problem for short time deadline based on branch

and bound algorithms.

• Proposing a distributed approximation algorithm for arbitrarily large time deadline:

We minimize an appropriate probability bound.

• Evaluating the proposed schemes: We use traces of a data set of real mobile users.

The remainder of the chapter is organized as follows: Section II presents the related

work and Sec. III presents the system model and the problem formulation. In Sec. IV

we show that the problem is tractable for short time deadline case. Sec. V develops a

distributed approximation algorithm by minimizing an appropriate probability bound. In

Sec. VI we present our evaluation results. A summary concludes the chapter in Sec. VII.

II. RELATED WORK

The problem of storing segments of encoded versions of content in a distributed storage

system is a well studied one in literature. Ntranos et al. [2] studied the above problem

aiming to maximize the probability of recovery of the content after a random set of

nodes fail given a total storage budget. Their work generalizes the results in [4], where

homogeneous reliability parameters were assumed. Furthermore, recent works in [3] and [5]
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studied the above problem in a delay tolerant network setting assuming that data recovery

must be achieved within a given time deadline.

However, the methodologies used in all these works depend on the assumption of

independent access of the data stored at the nodes. Thus, they are suitable for representing

node failures scenarios or node encounters in delay-tolerant networks. In contrast, our work

assumes that data access follows a Markov chain random model, that naturally represents

the user movement in a cellular network. Besides, most of the existing work in the area

simply assumes that as long as a user contacts a storage node, the complete requested data

can be downloaded [3]. In contrast, we consider the realistic case that contact duration

limits bottleneck the data transmission. Finally, our work builds upon a novel network

architecture [1] by exploiting user mobility statistics for strategic data placement.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single cell in which the main base station (MBS) serves the content

requests of the mobile users that lie in it. A set of n smaller base stations are geographically

deployed in the cell. Following the notation in [1] we name these base stations as helpers.

Each helper h is endowed with a cache of size |Ch|. Let O denote a static collection of |O|

content files of sizes |Oi|, i = 1, ..., |O|. We consider the case that the coverage areas of

the helpers are non-overlapping. Thus, a user is in communication range with the nearest

helper each time. We denote by Pi/h the probability that a user generated request that

happens in the area around helper h, corresponds to file Oi.

As the users move in space they encounter different helpers over time. In order to

represent the system evolution we use a time-homogeneous discrete-time Markov chain

M of n states named as X1, ..., Xn, where state Xh denotes that a specific user accesses

helper h. The initial probability distribution of the chain is denoted by Pinit. Clearly, a large

value of Pinit(h) means that the area around helper h is highly populated. The probability

of transition Mh′,h, denotes the probability that a specific user encounters the helper h

Institutional Repository - Library & Information Centre - University of Thessaly
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at a time slot, given that the previous time slot the user was connected to the helper h′.

Typically, pairs of helpers that are neighbors will present higher probabilities of transition

than the remote pairs. The time slot duration is limited, resulting that at most bh bytes

of data can be downloaded each time slot a user contacts helper h. The different values

of the parameters bh reflect the bandwidth and the average workload heterogeneity of the

helpers [1].

Let v = (V1, V2, ..., Vd) denote a d−step random walk on M , where Vi ∈ {1, ..., n}.

Observe that a user can encounter more than one times the same helper within the time

deadline d. Thus, v is a multiset. The probability of accessing the set of helpers in v by

a mobile user within d equals to:

P (v) = pinit(V1)
d−1∏
h=1

MVh,Vh+1 (1)

Figure 1 depicts the discussed system model.

Figure 1. Graphical illustration of the discussed model. MBS lies on the center of the cell. The helpers

(triangles) are deployed around MBS. A mobile user (circle) connects to a subset of the helpers within a

given time deadline d. Here d = 4 and v consists of three distinct helpers, one of which appears twice in v.

In this work, we focus on determining the storage allocation of these |O| files at the n

helpers aiming to minimize the fraction of file requests that are served by the main base

station of the cell. Let the optimization variable xh,i indicate the fraction of (encoded) data

of file Oi stored at helper h to |Oi|. We denote with Mn,d the set of all possible multisets

consisted of elements in {1, 2, ..., n} of size d. We also denote with Sv the set of distinct

helpers that comes from the multiset v by removing the duplicate elements. Let ηhv denote

the number of times that helper h appears in v. Then, the probability of failed file delivery

Institutional Repository - Library & Information Centre - University of Thessaly
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corresponding to an allocation x equals:

Pf (x) =
∑

v∈Mn,d

P (v)
∑
i∈O

Pi/V1I{∑h∈Sv
∑ηhv
k=1 u

k
h,i<1}

(2)

where I{.} is the indicator function, i.e. I{S} = 1 iff S = true, else I{S} = 0. ukh,i

denotes the fraction of file i that can be downloaded from helper h when a user con-

tacts h for the kth time. Clearly, there is no benefit to download again the same data

already downloaded from h at previous contacts. Thus, u1h,i = min {xh,i, bh
|Oi|} and ukh,i =

min {xh,i −
∑k−1

l=1 u
l
h,i,

bh
|Oi|}, k = 2, 3, ..., d.

The problem of performing the storage allocation that minimizes the probability of failed

file delivery is the following:

min
x

Pf (x) (3)

s.t.

|O|∑
i=1

|Oi|xh,i ≤ |Ch|,∀h = 1, ..., n (4)

xh,i ∈ [0, 1],∀h = 1, ..., n, i = 1, ..., |O| (5)

,where inequalities in (4) denote the cache capacity constraints. Inequalities in (5) indicate

the non-negativeness of the optimization variables and that it is wasteful to allocate to a

cache more than one unit of the same file. The above problem is difficult to solve due to

it’s non-convex nature and the high number of different multisets of helpers that a user

can encounter within the time deadline d. Clearly, there exist nd such multisets.

IV. SMALL-SCALE OPTIMAL SOLUTION

In this section we show how to solve optimally the discussed storage allocation problem

in a small scale. In other words, we focus on scenarios consisted of a small number of

helpers (some decades) and a small deadline parameter d. Because of the small value of

nd, we can implicitly enumerate all the possible multisets of helpers encountered by a user

within d.

Institutional Repository - Library & Information Centre - University of Thessaly
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We first define the binary variable T vi (x) to denote whether a user can download sufficient

amount of data of file i from the helpers encountered according to the random walk v,

given the storage allocation x. Thus, T vi (x) is defined as follows:

T vi (x) =


1, if

∑
h∈Sv

∑ηhv
k=1 u

k
h,i ≥ 1

0, else

(6)

Then, we can formulate the discussed problem as a Mixed Integer Programming (MIP)

problem as below:

min
x,u,T

∑
v∈Mn,d

P (v)
∑
i∈O

Pi/V1(1− T vi ) (7)

s.t. (4)− (5),

ukh,i ∈ [0,
bh
|Oi|

], k = 1, ..., d, ∀h, i (8)

d∑
k=1

ukh,i ≤ xh,i, ∀h, i (9)

∑
h∈Sv

ηhv∑
k=1

ukh,i ≥ T vi ,∀i, v (10)

T vi ∈ {0, 1},∀i, v (11)

Inequalities (8)-(9) are added because of the definition of variables u. The number of

optimization variables is |O|(nd + nd + n). It is known that the above problem can

be efficiently solved using Branch and Bound algorithms [5] for a small number of

optimization variables.

V. LARGE-SCALE APPROXIMATE SOLUTION

In this section we establish an approximate solution of the discussed problem for

arbitrarily large problem instances by minimizing an appropriate probability bound. A

similar approach was used in [2]. We start with the following lemma:

Institutional Repository - Library & Information Centre - University of Thessaly
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Lemma 1: (Chernoff-Hoeffding probability bound [6])

Let E be an ergodic Markov chain with state space S and stationary distribution π. Let

(V1, ..., Vt) denote a t−step random walk on E starting from an initial distribution φ on

S. For every i ∈ {1, 2, ..., t}, let fi : S → [0, 1] be a weight function at step i such that

the expected weight Ev[fi(v)] = µ for all i. Define the total weight of the random walk

(V1, ..., Vt) by Xt =
∑t

i=1 fi(Vi). There exists some constant c (which is independent of µ

and δ), such that: Pr[Xt ≤ (1− δ)µt] ≤ c||φ||πexp(− δ2µt
72T

), for 0 ≤ δ ≤ 1, where T is the

mixing time of E, defined as T = min{t : maxq ||qEt−π||TV ≤ 1
8
}, q is an arbitrary initial

distribution over E, ||u−v||TV = maxA⊆V |
∑

i∈A ui−
∑

i∈Awi| and ||u||π =
√∑

x∈S
u2i
π(i)

.

Let Y be the random variable indicating the fraction of the requested file that can be

downloaded by a user within d, given the storage allocation x. Then, Pf (x) = P [Y < 1].

We use lemma 1 to derive an upper bound on the probability P [Y < 1] ≤ P [Y ≤ 1]

for an arbitrary allocation. Y can be interpreted as the total weight
∑d

i=1 fi(Vi) of the

random walk (V1, ..., Vd), on an appropriately constructed markov chain E. We construct

the Markov chain E as follows:

The state space S of E consists of 1 + |O|
∑d

i=1(n
i) states. We name one of the states

of S as the root, indexed by 0. We partition the other states into |O| groups, such that the

first group contains the first
∑d

i=i(n
i) states, the second group contains the next

∑d
i=i(n

i)

states etc. The states of these groups combined with the root form an hierarchy of d + 1

levels named as {0, 1, ..., d}. Root is the only state of level 0. Root is the unique parent of

the |O| ∗ n states of level 1, n states for each of the groups. Each state that is included in

the level l ∈ {1, ..., d−1} of the group g ∈ {1, ..., |O|} is the unique parent for n states of

the level l+1 of that group. We define by child(u, c) the cth child-state of state u. Besides,

let G(u) denote the group that contains state u and Pu denote the set of states that lie on

the path between state 0 and state u (including the two endpoints). A state u that belongs

to the level l > 1 and it is the cth child of another state, represents the connection of a user

requesting file G(u), to helper c at the time slot l. The n first states of level 1 represent

Institutional Repository - Library & Information Centre - University of Thessaly
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the connection to a node requesting file 1 at time slot 1, the next n states represent the

same but requesting file 2 etc. Figure 2 illustrates a simple example of E.

The initial probability φ of E is given by:

φ(u) =


PG(u)/c′Pinit(c

′), if ∃c∈{1,...,n∗|O|}:
u=child(0,c)

0, otherwise

where, for ease of presentation, we denoted by c′ = c − (G(u) − 1)n. According to φ(),

every walk starts at a state of level 1.

The probability of transition from state v to u is given by:

Ev,u =



1− α, if v = u = 0

αPG(u)/c′Pinit(c
′), if v=0,

∃c∈{1,...,n|O|}:u=child(0,c)

Mc′,e, if ∃c∈{1,...,n|O|},e∈{1,...,n}:
v=child(0,c),u=child(v,e)

Mc,e, if ∃c,e∈{1,...,n},w∈S\0:
v=child(w,c),u=child(v,e)

1, if |Pv| = d+ 1, u = 0

0, otherwise

where a ∈ (0, 1) is a fixed parameter. The transitions from the states of the dth level to

state 0 and from state 0 to itself are necessary for E to be ergodic. The weight of a state

u is defined as:

fi(u) =



u1c′,G(u), if ∃c ∈ {1, ..., n|O|} : u = child(0, c)

u1c,G(u), if ∃c∈{1,...,n},w∈S\0: u=child(w,c),6∃y∈Pu\u: fi(y)=u1c,G(u)

ukc,G(u), if
∃c∈{1,...,n},w∈S\0, k∈Z+: u=child(w,c),

k=max{k:∃y∈Pu\u: fi(y)=uk−1
c,G(u)}

0, else

Observe that according to the definition of the fi() function, the weight of a state u

matches the fraction of the requested file that a user can download during the associated
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contact. This weight depends only on the number of the previous contacts of the user to

the same helper, as explained in section III.

Figure 2. An example of the Markov chain E. The parameters are set as follows: n = 2, d = 3 and

|O| = 2. Circles represent the states and arrows the transitions of non zero probability. State labels

represent the state weights. Arrow labels represent the probabilities of transition. For ease of presentation

we omitted the transitions that start from states of level 3. In reality, for each of these states there is a

transition to the root state of probability 1.

By construction of E, every d−step walk starts at a state of level 1 and ends at a state

of level d, representing a walk of a user over the helpers within d. The requested file is

specified by the group that includes these states. Mh′,h and Pi/h may be equal to zero for

some values of i, h and h′. In order to ensure ergodicity of E, we exclude the states that

are reachable by the root state with zero probability. Let µ(u, x) be the expected weight

of a walk on E as a function of the weights. Set δ = 1− 1
µ(u,x)d

and require µ(u, x)d ≥ 1.

Then, lemma 1 yields:

P [Y < 1] ≤ c||φ||πexp(−
µ(u, x)d+ 1

µ(u,x)d
− 2

72T
) (12)

,where π is the stationary distribution of E, T is the mixing time of E and c is a constant.

By definition, it holds that:

µ(u, x) =
n∑
h=1

d∑
k=1

|O|∑
i=1

P [ukh,i]u
k
h,i (13)
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where P [ukh,i] denotes the probability of reaching any of the states of E with weight equal

to ukh,i according to π.

Note that π can be easily computed because of the special form of E; for any state

u ∈ S \ 0 it is π(u) = π(0) ∗E0,i1 ∗Ei1,i2 ∗ ... ∗Eil,u, where Pu = {0, i1, ..., il, u}. Besides,

it holds that
∑

u∈S π(u) = 1. Thus, after some computations we find that π(0) = 1
1+αd

.

P [ukh,i] can be defined as follows:

P [ukh,i]

π(0)α
= Pinit(h)Pi/h ∗

∑
l1+..+lk−1≤d−1

l1,..,lk−1≥1

(
k−1∏
i=1

rh,h(li))+

+
∑
h′ 6=h

(Pinit(h
′)Pi/h′ ∗

∑
l1+..+lk≤d−1
l1,..,lk≥1

rh′,h(l1)
k∏
i=2

rh,h(li))(14)

,where ri,j(l) denotes the probability that a user connects to the helper j for the first time

at the lth time slot conditioned on the event that it connects to the helper i at the first time

slot. ri,j(l) is defined by the following set of recursive equations:

ri,j(l) =
∑n

k=1,k 6=j ri,k(l − 1)Mk,j (15)

ri,j(1) =Mi,j (16)

Equations (15)-(16) are very similar to the Chapman-Kolmogorov equations. However,

Chapman-Kolmogorov equations do not require k 6= j over the above summation. Simply

speeking, equation (14) specifies that a user can initially be at helper h and then encounters

h again k−1 times, or the user can initially be at a different helper h′ and then encounters

h k times before the deadline d expires.

In order to derive an approximate solution of the problem described in (3)-(5) we

minimize the upper bound in (12). Lemma 2 shows that minimizing the aforementioned

bound is equivalent to maximizing the expected weight µ(u, x).
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Lemma 2: Let g(u, x) = c||φ||π exp(−
µ(u,x)d+ 1

µ(u,x)d
−2

72T
).

Then, argmin
(u,x)∈A

g(u, x) = argmax
(u,x)∈A

µ(u, x)

where A = {(u, x) ∈ Rn×|O|×d × Rn×|O| : (4)− (5), (8)− (9) are satisfied}.

Proof: Let (u∗, x∗) = argmin
(u,x)∈A

g(u, x). Then, g(u∗, x∗) ≤ g(u, x), ∀(u, x) ∈ A.

Dividing by c||φ||π and then taking the logarithm on both sides preserves the inequality

as c > 0, ||φ||π > 0 and log(x) is strictly increasing. Thus, we have:

−
µ(u∗, x∗)d+ 1

µ(u∗,x∗)d
− 2

72T
≤ −

µ(u, x)d+ 1
µ(u,x)d

− 2

72T

Dividing by −72T ≤ 0 and then adding 2 on both sides yields:

µ(u∗, x∗)d+
1

µ(u∗, x∗)d
≥ µ(u, x)d+

1

µ(u, x)d

However, it holds that: µ(u, x)d ≥ 1, resulting that: µ(u∗, x∗)d ≥ µ(u, x)d, ∀(u, x) ∈ A

The optimization problem becomes as follows:

max
u,x

µ(u, x) (17)

s.t. (4), (5), (8), (9)

By the structure of µ(u, x), that is defined in (13), and the above problem constraints, we

observe that the storage allocation decisions at a helper do not affect the storage allocation

decisions at the other helpers. Thus, we can decompose the problem to n independent linear

programming subproblems, one for each helper, and solve them in a distributed manner.

It is known that he numerical solution of a linear programming problem can be efficiently

attained using the simplex method. However, as we show below each of these subproblems

falls into a class of tractable problems, with known solution structure, alleviating the need

for applying the simplex method.
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Fractional knapsack problem asks for placing fractions of materials of different values

and weights in a knapsack of limited capacity in order to maximize the aggregate value of

the materials placed in it. The storage allocation at a helper h subproblem can be translated

to a restricted version of the fractional knapsack problem in which there exist |O| ∗ d

materials, one material for each variable ukh,i, i = 1, ..., |O|, k = 1, ..., d and a knapsack

of capacity |Ch|. The value of the material corresponding to ukh,i is P [ukh,i] and it’s weight

is |Oi|. The material placement must also satisfy the following two constraints: 1) We are

restricted to place in the knapsack at most a bh
|Oi| fraction of the material corresponding

to variable ukh,i. 2) The sum of the fractions of the materials corresponding to variables

ukh,i, k = 1, ..., d, placed in the knapsack must not be greater than 1. Using the exact

same arguments used in [8], we can prove that the optimal solution of this knapsack-type

problem can be attained by the following greedy algorithm:
Sort the materials in decreasing order of value per unit of weight. Then insert

them into the knapsack, starting with as large amount as possible of the first

material, without violating any of the above two constraints, until there is no

longer space in the knapsack for more.
The solution of this knapsack-type problem, attained by the greedy algorithm, translates

to a solution to the original storage allocation at helper h subproblem such that ukh,i variable

takes the value equal to the fraction of the associated material placed in the knapsack and

xh,i takes the value equal to
∑d

k=1 u
k
h,i. The solution is independent of the values of α

and π(0). The complexity of the greedy algorithm comes mainly to the sorting of the

values of the materials. Quicksort is the fastest sorting algorithm, resulting complexity of

|O|d log(|O|d).

VI. PERFORMANCE EVALUATION

In this section we present the numerical experiments that we have conducted to evaluate

the performance of the proposed algorithms. The algorithms have been applied to a cellular

network consisted of a single cell and n = 623 helpers. The geographical position of the
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helpers as well as the mobility pattern of the users were acquired by the recording of

wireless traffic logs included in the CRAWDAD data set [9]. The set contained 13888

logs, one for each mobile user, including details about the encountered helpers as well as

the time that each encounter happened. According to our model, location transitions of the

users happen in a time slotted fashion. We set the time slot duration to be equal to 100

seconds. Based on the data set, we set Pinit(h) to be equal to the frequency of time slots

at which a user starts it’s walk from helper h. Similarly, Mi,j takes as value the frequency

of time slots at which a user encounters sequentially within the same time slot the helpers

i and j. If the user does not encounter any other helpers by the end of the time slot, then

we assume that it encounters again the same helper increasing the value of Mi,i.

In all simulations, we assume a collection of |O| = 100 files each one of size 30

MB. We use a Zipf-Mandelbrot model to formulate the files request pattern with a shape

parameter alpha and a shift parameter q = 10. At each time slot at most bh = 15 MB of

the requested data file can be downloaded by the encountered helper h. A user is satisfied

when the requested file is delivered to it within a time deadline that is equal to 300 seconds,

i.e. d = 3 time slots. Such a time deadline is reasonable for a playback time for a typical

video file.

Throughout, we compare the probability of failed file delivery achieved by three algo-

rithms:

1) Heuristic Uncoded Algorithm (HUA): the standard mode of operation currently in

use in most storage systems. Each helper stores the most popular files that fit in it’s

cache independently from the others.

2) Approximation Coded Algorithm (ACA): The solution of the knapsack-type problem

described in section V.

3) Optimal Coded Algorithm (OCA): The solution of the MIP problem described in

section IV.

Figure 3(a) shows the results as a function of the cache size of the helpers for alpha = 1.
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Figure 3. Probability of failed file delivery as a function of a) the cache sizes and b) the Zipf-parameter
alpha.

The cache size of each helper is varied from 1% to 10% of the file set size. As expected,

increasing the cache size of each helper reduces the probability of failed file delivery.

Figure 3(b) shows the results as a function of the parameter alpha. The cache size of

each helper was set to 5% of the entire file set size. We can see from the graph that the

probability of failed file delivery decreases with increasing values of alpha, reflecting the

well known fact that caching effectiveness improves as the popularity distribution gets

steeper. In general, we observe that OCA is strictly better than ACA, which in turn is

better than the HUA. The performance achieved by the OCA and ACA are very close.

This indicates that helpers can independently take local storage decisions, and still have a

significant gain. In summary, our algorithms perform 20−50% better than the conventional

file placement scheme.

VII. CONCLUSION

In this chapter we introduced a new storage allocation scheme for offloading traffic

from the cellular network. Our work builds upon a recent network architecture [1], with

concerns on user mobility and limited contact duration time. Our main contribution is a

distributed light-weight storage allocation algorithm. We used a real trace of user move-

ments and demonstrated significant performance gains compared to conventional schemes.

Our algorithms can be easily extended to handle the case that the coverage areas of the

helpers are overlapping.
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Chapter 2:

Approximation Caching and Routing

Algorithms for Massive Mobile Data

Delivery

Abstract

Small cells constitute a promising solution for managing the mobile data growth that has

overwhelmed network operators. Local caching of popular content items at the small cell base

stations has been proposed in order to decrease the capacity -and hence the cost- of the backhaul

links that connect these base stations with the core network. However, deriving the optimal

caching policy remains a challenging open problem especially if one considers realistic param-

eters such as the bandwidth limitation of the base stations. The latter constraint is particularly

important for cases when users requests are massive. We consider such a scenario and formulate

the joint routing and caching problem aiming to maximize the fraction of content requests served

by the deployed base stations. This is an NP-hard problem and hence we cannot obtain exact

optimal solution. Thus, we present a novel approximation framework based on a reduction to a

well known variant of the facility location problem. This allows us to exploit the rich literature

in facility location problems, in order to establish bounded approximation algorithms for our

problem.

I. INTRODUCTION

In order to cope with the mobile data traffic explosion, network operators (MNO) deploy

small cell base stations which operate in conjunction with the macro-cellular base stations.

This architecture increases coverage density, optimizes the reuse of spectrum by exploiting
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spatial diversity (cell splitting) and benefits the users by offering them high-capacity,

energy-prudent communication links. However, the operation of these small cells presumes

the existence of high-speed backhaul links connecting the deployed base stations with the

core network of the MNO. This is currently one of the major operation cost component

for mobile network operators [1].

Distributed caching architectures have been recently proposed [2] and evaluated [1] with

the goal to minimize peak traffic - and subsequently the cost - of these backhaul links.

The idea is to cache in advance popular content items at the small-cell base stations so

as to reduce, especially during peak traffic hours, the requests that are routed over the

backhaul links to the core network. Given the vast set of the content items, the challenge

is to find the optimal caching policy, i.e., to decide which items should be cached at

each base station, so as to maximize the portion of user requests that are satisfied locally.

Unfortunately though, this has been proved to be an NP-hard problem [2].

Deriving the optimal caching policy becomes even more challenging if one considers

massive content delivery scenarios, e.g. in populated areas or during peak traffic hours. In

this case, mobile data delivery will be constrained by the limited transmission capacity of

the base stations. Clearly, in order to deliver a content item to a user, it does not suffice to

have it cached at a base station within the user’s transmission range, but additionally

the base station should have enough capacity to transmit it. Prior works assume that

transmission capacity is rarely the bottleneck for the caching base stations. Clearly, this is

not a realistic assumption for massive content demand scenarios.

In this work, we consider the realistic scenario of massive content delivery through small-

cell base stations with hard bandwidth constraints that bottleneck the data transmission to

mobile users. We explain through simple examples that, in this case, the MNO’s caching

policy has to take into account the capacity constraints. Additionally, user requests should

not be trivially routed to any base station that has cached the content items of interest.

Instead, the operator must explicitly devise the routing policy, i.e., determine which request
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to route to each base station. Even more interestingly, the routing and caching policy must

be jointly optimized. We provide an analytical framework for this joint caching and routing

(JCR) problem the solution of which maximizes the content requests that are satisfied by

the small-cell base stations.

Clearly, this problem is equally important and challenging to solve. Namely, the already

NP-hard caching problem [2] is further compounded due to the additional bandwidth

constraints of small-cell base stations. Besides, our model additionally takes into account

the heterogeneity of the base stations which may have different cache sizes and transmission

capacity and the variation of request patterns of the users which may ask for different

content with different probability/rate/density. Finally, we assume that user content requests

are unsplittable, i.e., each request is satisfied by one base station (no content splitting in

different base stations is assumed) which is the most challenging scenario in caching

problems.

To overcome these difficulties we propose a novel method for mapping the JCR problem

to a well-investigated variant of the facility location problem. This way we can use, after

proper modifications, the class of algorithms that have been derived for this problem.

Specifically, we present a set of novel bounded approximation algorithms for the JCR

problem. To the best of the authors knowledge, this is the first work that provides a

bounded approximation solution for the joint content placement and routing problem in a

wireless caching network. The contribution of this work is thus three-fold:

• We consider a realistic cellular model, which includes important features such as the

heterogeneity of network resources of the base stations and different content request

patterns for the users. We formulate the joint problem of caching and routing aiming

to maximize the requests that are served by the small-cell base stations.

• We reduce the above problem to the Unsplittable Hard-Capacitated Metric Facility

Location Problem (UHCMFL) [12]. This result reveals the potential for exploiting the

rich literature in facility location problem solutions to answer open questions for the
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problem under consideration.

• We present an approximation framework based on the aforementioned reduction. Par-

ticularly, we show that every approximation algorithm for UHCMFL can be translated

to an algorithm with a bounded approximation ratio for our problem.

The remainder of the chapter is organized as follows. Section II reviews our contribution

compared to related works. Sec. III describes the system model and the assumptions, and

introduces formally the problem. In Section IV, we reduce the problem to the UHCMFL

problem. Sec. V presents an approximation framework based on the above reduction. A

summary concludes the chapter in Section VI.

II. RELATED WORK

Cooperative caching in a wireline setting has long been investigated. Korupolu et al.

[4] developed a polynomial-time optimal algorithm for the hierarchical caching problem.

Their solution is based on a reduction to minimum cost flow problem. Subsequently, Borst

et al. [5] developed approximation caching algorithms aiming to minimize the bandwidth

cost. In our prior work [3], we presented a polynomial-time optimal algorithm for certain

instances of that problem, based on a reduction to a matching problem. However, all the

above results are based on the assumption that the link capacities are never the bottleneck

for the content delivery to the users. In contrast, we consider the realistic case that hard

bandwidth constraints limit the transmission of the caching base stations.

The potential of request routing for enhancing content delivery has also been investigated.

Betkas et al. [6] studied the joint caching and request routing problem in CDNs. Besides,

the same problem is studied for content delivery over IPTV wireline networks in [7]. Both

works employ the Lagrangian relaxation method and use iterative algorithms to reach a

solution that satisfies a certain optimality criterion. However, there is no guarantee about the

efficiency of the obtained result nor the running time of the algorithms, which are evaluated

by simulations only. In contrast, our algorithms provide a bounded approximation ratio and

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 08:11:26 EEST - 3.137.190.220



22

Fig. 1. Mobile users are randomly distributed in the coverage regions of the helpers. Each helper i has certain storage
and bandwidth capacity of Ci and Bi units respectively.

require bounded computational complexity.

Besides, our work considers a wireless setting and builds upon a novel architecture

[2]. Authors in [2] assume that the transmission bandwidth of the base stations in the

wireless network suffices to serve all the content requests of the users. Thus, they focus on

deriving the caching policy and simply associate each content item request to the nearest

base station that has a copy of it. In contrast, we consider the realistic case that the base

stations are congestible, which highlights the need for coupled request routing and caching

decisions in order to fully utilize the transmission capabilities of the base stations.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single macrocell in which the mobile network operator (MNO) serves

the content requests of its subscribers, the mobile users. A set of small base stations are

also deployed within the cell, working in conjunction with the main base station. This

two-layer architecture is depicted in Fig. 1. We assume that time is slotted and we study

the system for one time period T . Following the terminology in [2], we name these base

stations as helpers and denote with H the associated set. Each helper h ∈ H has a certain

transmission capacity, i.e. it can deliver Bh data bytes within period T 1. Besides, each

helper h is equipped with a cache of size Ch bytes.

1In different scenarios,Bh can capture other cost-related metrics such as the transmission energy cost for the helpers.
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Let the set O indicate a static collection of content items (or, files). For notational

convenience, we assume that all files have the same size s. This assumption can be easily

removed as, in real systems, files can be divided into blocks of the same length [2], [5].

Let K denote the set of mobile users within the cell in the considered time interval2.

Users are heterogeneous since they may have different content demands. We denote with

λki ∈ Z+ the estimated number of requests for file i ∈ O generated by user k ∈ K

within T . User requests may change over consecutive time periods but are considered

fixed within each period. This is a realistic assumption as the popularity distribution of

the files changes slowly [2]. The coverage areas of the helpers are overlapping in general.

We denote N (k) ⊆ H the set of helpers that are in communication range with user k.

Then, a request generated by k can be satisfied by any of the helpers in N (k) that owns

a copy of the requested item. We assume that unsatisfied requests are routed to the main

base station. This exactly is the quantity we need to minimize.

Before we proceed, let us provide a simple example which highlights how the limited

helper capacity impacts the caching policy.

Motivating Example. Consider the system depicted in Fig. 2 with two helpers (h1 and

h2) and three users (u1, u2 and u3). The circles represent the coverage areas of the helpers.

There are also two equal-sized files, named as f1 and f2. Each helper can cache at most

one file due to its limited storage capacity. Also, because of the bandwidth limitations, h1

can serve at most 5 requests and h2 can serve at most 10 requests. User u1 requests f1

1 time, u2 requests f1 2 times and u3 requests f2 10 times. The optimal strategy (which

maximizes the requests satisfied by h1 and h2) is to cache f1 to h1 and f2 to h2. Then, h1

serves the request for f1 generated by u1, and h2 serves all the requests for f2 generated

by u3. Hence, only 2 requests must by served by the main base station.

However, if we omit the transmission capacity constraints, then the optimal caching

policy changes; it places f2 to h1 and f1 to h2. Then, h1 handles all the requests of u3,

2A user k ∈ K may represent many users that are on the same location in the cell.
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Fig. 2. An example with 2 helpers (h1 and h2) and 3 users (u1, u2, u3). The circles denote the transmission range of
each helper.

and h2 handles all the requests of u2, letting only the request generated by u1 to be routed

to the main base station. Nevertheless, in practice, h1 will serve only half of incoming

requests (due to limited capacity) and redirect the rest to the main base station. Hence,

the main base station needs to serve 6 requests in total. This example demonstrated that

ignoring the helpers’ bandwidth capacities lead the system to inefficient operating points,

for the case of massive content requests where the capacity limits of the helpers are reached.

Problem Statement. Let us introduce the integer decision variable xhi = {0, 1} which

indicates whether file i ∈ O is placed at the cache of helper h ∈ H or not. We also define

the respective caching policy matrix x = (xhi : h ∈ H, i ∈ O). Besides, let the integer

decision variable ykhi ∈ Z+ indicate the number of requests for file i generated by user k

that are routed to helper h. Also, yk0i denotes the number of requests for file i generated by

user k ∈ K that are routed to the main base station of the cell. We define the routing policy

matrix y = (ykhi : h ∈ H ∪ {0}, i ∈ O, k ∈ K). Observe that each one of the λki requests

for file i generated by user k must be satisfied by exactly one helper, ∀i ∈ O, k ∈ K. This

integrality constraint makes the problem even harder compared to the simplified case that

any fraction of the total user demand for a file is allowed to be routed to multiple helpers

[6], [7].

The problem of devising the routing and caching policy which minimizes the load of

the main base station may then be formulated as follows:
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min
x,y

∑
k∈K

∑
i∈O y

k
0is (1)

s.t.
∑

i∈O xhis ≤ Ch, ∀h ∈ H (2)∑
k∈K

∑
i∈O y

k
his ≤ Bh, ∀h ∈ H (3)

ykhi ≤ xhiλki, ∀i ∈ O, k ∈ K, h ∈ H (4)

ykhi = 0, ∀i ∈ O, k ∈ K, h ∈ H \ N (k) (5)∑
h∈H∪{0} y

k
hi = λki, ∀i ∈ O, k ∈ K (6)

xhi ∈ {0, 1}, ∀h ∈ H, i ∈ O (7)

ykhi ∈ Z+, ∀h ∈ H ∪ {0}, i ∈ O, k ∈ K (8)

Inequalities (2) and (3) denote the cache capacity constraints and the bandwidth limitations

of the helpers respectively. Also, (4) indicates that helpers can not serve requests for files

that are not in their caches. Constraints (5) denote that helpers can not serve requests

generated by users located out of their coverage areas. Equalities (6) dictate that the system

must serve all the requests (inelastic demands). Finally, (7)-(8) indicate the discrete nature

of the optimization variables. We call the above the JCR problem.

Clearly, the above problem is NP-hard, as it is a generalization of the Helper Decision

Problem, described in [2], by incorporating hard bandwidth capacity constraints at the

helpers.

IV. REDUCTION TO A VARIANT OF THE FACILITY LOCATION PROBLEM

In this section, we describe a polynomial time reduction of the JCR problem to a

variant of the facility location problem [12]. The latter is formally defined as follows:

Definition 1: Unsplittable Hard-Capacitated Metric Facility Location Problem (UHCMFL):

A set of facilities A and clients B are given. Let di denote the demand of client i. Besides,

let fj and Sj denote the opening cost and the capacity of facility j respectively. Each client
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needs to assign it’s entire demand to a single open facility (unsplittable). Sj limits the total

sum of demands served by facility j (hard capacitated). We denote by cij the unit cost

incurred when serving one unit of demand of client i by facility j. We assume that these

costs form a metric, i.e. they are non-negative, symmetric (cij = cji), and satisfy the triangle

inequality cij + cjk ≥ cik, ∀i, j, k ∈ A∪B. The problem asks for specifying which subset

of facilities A∗ ⊆ A to open and to determine which clients each one of them will serve

(denoted by a function π : B → A∗) such that the overall cost
∑

j∈A∗(fj)+
∑

i∈B(dici π(i))

is minimized, without violating the capacity inequalities
∑
{i∈B:π(i)=j} di ≤ Sj , ∀j ∈ A.

The connection between UHCMFL and the JCR problem is non-trivial. In fact, pre-

vious works in the literature that established reductions of caching problems to facility

location problems, focused on the simplified case that only a single piece of content is

to be placed in the caches [12]. Our model substantially differs from these works, as it

considers the practical case that multiple content objects exist, while the cache size and

the bandwidth capacity of the helpers are limited. To the best of our knowledge this is the

first work that shows that such a connection exists. Theorem 1 describes this result.

Theorem 1: Given a unit time oracle for UHCMFL problem, we can solve the JCR

problem in polynomial time.

We describe in detail this reduction and prove it’s validity in the following two subsec-

tions.

A. The reduction

In this subsection, we analytically describe the reduction mentioned in Theorem 1.

Particularly, we reduce any instance of the JCR problem to an instance of the UHCMFL

problem. Let FJCR be that instance of the UHCMFL problem. Then, FJCR is constructed

as follows:

The set of facilities A consists of: (i) a facility named aBS and (ii) a facility named ahi

for every helper h and every file i. The set of clients B consists of the following: (i) λki

clients, denoted as bki1, bki2 . . . , bkiλki , ∀k ∈ K and ∀i ∈ O, (ii) |O|− bCh

s
c clients, named
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as b′h1, b
′
h2 etc, ∀h ∈ H and (iii) (bCh

s
c − 1)bBh

s
c clients, named as b′′h1, b

′′
h2 etc, ∀h ∈ H.

The capacity of the facility aBS is set to +∞ and to Bh

s
for each ahi, ∀h, i. The demand

of a client of the form b′hi is equal to Bh

s
, ∀h, i. Each of the remaining clients has demand

equal to 1. Let c be a small positive constant. Then, the unit serving cost for each pair of

a facility and a client is specified as follows: (i) each pair of the form (aBS, bkij), ∀k, i, j,

has cost equal to 1 + 1
2
+ c, (ii) each pair of the form (ahi, bkij), such that h ∈ N(k) and

j ∈ {1, ..., λki}, has cost equal to 1
2
+ c, (iii) each pair of the form (ahi, b

′
hj), ∀h, i, j, has

cost equal to 1
2
+ c, (iv) each pair of the form (ahi, b

′′
hj), ∀h, i, j, has cost equal to 1

2
+ c.

The cost value of each of the remaining pairs is equal to the cost of the shortest path that

unite this pair. Thus, the costs form a metric [12]. Finally, the facility opening cost is set

to zero for every facility.

Roughly speaking, the facility aBS represents the main base station of the cell and

facilities ahi, ∀i, the helper h. Clients of the type bkij , ∀k, i, j represent the actual user

requests, while b′h,j , ∀j and b′′h,j , ∀j denote virtual user requests that are necessary to

preserve the cache capacity and bandwidth constraints of the helpers, as it will become

clear in the following subsection.

Each solution for the FJCR problem can be mapped to a solution for the JCR problem

according to the following set of rules:
• Rule 1: For each facility ahi not serving any client of the form b′hj , ∀j, place

file i to the cache of helper h.

• Rule 2: For each facility of the form ahi serving a client of the form bkij ,

∀h, i, k, j route a request of user k for file i to helper h.

• Rule 3: The remaining requests are routed to the main base station of the

cell.

Figure 3 depicts the reduction for the toy-system of figure 2. Here, we set the system

values as follows: |O| = 4, s = 1, C1 = C2 = 2 and B1 = B2 = 2. Each of the two first

users requests every file once. User u3 performs two requests for the first file. Squares
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Fig. 3. The reduction of network of Fig. 2 to a respective UHCMFL problem.

represent the facilities and circles the clients. Solid lines unite clients to facilities with cost

1
2
+ c. Dashed lines mean that the corresponding cost is 1 + 1

2
+ c. The cost value of each

of the remaining pairs is equal to the cost of the shortest path that unite this pair. For

example, the cost between the client b′11 and facility a21 is 3
2
+ 3c. The demand of each

client is 1, except for the clients named as b′hi,∀h, i, whose demand is 2. The capacity of

each facility is 2, except for the aBS facility, whose capacity is +∞.

B. The reduction Proof

We now prove that the preceding reduction holds, by proving the next two lemmas. Let

D denote the total demand of the clients in FJCR. Then, we have:

Lemma 1: For every feasible solution of the JCR problem with total cost C, there is

a feasible solution to FJCR with total cost C +D(c+ 1
2
).

Proof: We construct the solution to FJCR as follows: (i) We open all the facilities at

zero cost. (ii) For each file i not cached at helper h, we assign the demand of one client

of type b′hj , j ∈ {1, ..., |O| − b
Ch

s
c} to the facility ahi. (iii) For each request generated

by a user k for a file i served by a helper h, we assign the demand of one client of

type bkij , j ∈ {1, ..., λki} to the facility ahi. (iv) The demand of a client of type b′′hj ,

j ∈ {1, ..., (bCh

s
c − 1)(bBh

s
c)}, is randomly assigned to one of the facilities of the form

ahi, ∀i, without violating their capacity constraints. (v) For each client bkij that has not

been covered yet, we assign it’s demand to the facility aBS . Thus, every unit of demand

of the clients was assigned to a facility. An assignment to the facility aBS incurs a per
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unit cost equal to 1 + 1
2
+ c, while all the other assignments incur a per unit cost equal

to c + 1
2
. By construction of the graph, the total demand assigned to aBS is equal to the

number of requests that are routed to the main base station of the cell. Thus, the solution

has cost equal to C +D(1
2
+ c).

Lemma 2: For every minimum cost solution of the FJCR instance with total cost C,

there is a feasible solution to the JCR problem with total cost C −D(1
2
+ c).

Proof: We construct the solution to JCR problem as follows:

(i) For each facility ahi not serving any client of type b′hj , ∀j, place file i to the cache

of helper h (Rule 1). Observe that each client b′hj , ∀j, must be assigned to a facility of

the form ahi, ∀i, at per unit cost 1
2
+ c. This is because each of the other choices incurs at

least 1 + 1
2
+ 3c per unit cost. Thus, the extra cost paid is at least 1 + 2c. From the other

hand, each client bkij , ∀k, i, j, can always be assigned to the facility aBS at per unit cost

1+ 1
2
+ c. This means that, the potential gain for assigning it to a facility of the form ahi,

∀i, at cost 1
2
+ c, is equal to 1, which is strictly lower than the extra cost paid above. We

also observe that, the demand of each of these clients is equal to the capacity of each of

the facilities of the form ahi, ∀i. There are |O| − bCh

s
c such clients. Thus, these clients

fully occupy the capacity of |O| − bCh

s
c of these facilities. Consequently, exactly bCh

s
c of

the above facilities will remain uncovered corresponding to the files placed at the cache

of helper h.

(ii) For each facility of the form ahi serving a client of the form bkij , ∀h, i, k, j, route

a request of user k for file i to helper h (Rule 2). Observe that each of the clients of

type b′′hj , ∀j, must be assigned to one of the bCh

s
c uncovered facilities of the form ahi,

∀i, similarly to the above case. The capacity of each of these facilities is equal to Bh

s
.

There exist (bCh

s
c − 1)bBh

s
c such clients, each of them with demand equal to 1. Thus,

the remaining capacity suffices for serving at most Bh

s
units of demand of the clients bkij ,

∀k, i, j. By construction, a client bkij can be served by a facility ahi with cost equal to

1
2
+ c iff h ∈ N(k). The cost for serving bkij by ahi, ∀h /∈ N(k) is more than the serving
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cost by aBS . Thus, at most Bh

s
requests generated by users in the coverage area of a helper

h will be routed to h,∀h. The remaining C−D(1
2
+ c) requests will be routed to the main

base station of the cell (Rule 3).

V. APPROXIMATION ALGORITHMS

In this section, we present an approximation framework for the JCR problem based on

the reduction described in Sec. IV. We first discuss the existing approximation algorithms

for the facility location problem and describe ways to extend them to tackle our problem.

Then, we derive improved approximation ratios for the special case of equal-capacity

helpers. This is an important case because in general helpers will be of the same type and

hence, they will have equal transmission capacity.

It is NP-hard even to approximate the solution of UHCMFL problem within a bounded

factor. Hence, previous works [8]-[13] focused on obtaining bicriteria approximation algo-

rithms. Formally, an (α, β)− bicriteria approximation algorithm finds an infeasible solution

with a cost at most α ≥ 1 times the optimal cost and aggregate demand assigned to each

facility at most β ≥ 1 times it’s capacity. Similarly, we can define an (α, β)−bicriteria ap-

proximation algorithm for the JCR problem, such that it’s solution violates the bandwidth

capacities of the helpers by at most a factor of β. Clearly, when β equals to one, a feasible

solution is attained. We call the corresponding algorithm simply as an α− approximation

algorithm. Table I summarizes the main results in this area. Notice that different results

are obtained for the case the facicilities have equal capacities (uniform case). Parameter

ε > 0 is arbitrarily small and n = |A| + |B|. A Quasi- polynomial time algorithm (QP.)

runs slower than polynomial time (P.), yet faster than exponential time [12].

Although JCR and UHCMFL problems are equivalent in terms of their optimal solu-

tion, the extension of approximation algorithms from one to the other is not straightforward.

Theorem 2 describes the way that the bicriteria bound changes when translating the solution

to handle the JCR case. Let c′ = D( 1
2
+c)∑

k∈K
∑

i∈O(λki)−
∑

h∈H(Bh/s)
. Then, we have:
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Theorem 2: For any (α, β)− bicriteria approximation algorithm for the UHCMFL

problem there is an (α+(α−1)c′, (β−1)|O|+1)−approximation algorithm for the JCR

problem, requiring the same computational complexity.

Proof: The overall traffic routed to a helper h ∈ H by the real users is β|O|Bh

s
−(|O|−

bCh

s
c)Bh

s
− (bCh

s
c− 1)bBh

s
c in the worst case. That is because, each helper corresponds to

|O| facilities, each of which has capacity equal to the capacity of the helper. The virtual

clients of the type b′hj and b′′hj , ∀j, must be served by ahi in any case, as explained in lemma

2. That is the reason that we subtracted the traffic sent to them in the above expression.

However, in reality, only Bh

s
amount of data can be transmitted by each helper. The fraction

of the two values, after some computations, can be written as (β − 1)|O|+ 1.

Besides, let opt and approx be the optimal and an approximate solution of the JCR

problem respectively. By lemma 1, it holds that: approx + D(1
2
+ c) ≤ α(opt + D(1

2
+

c)) or equivalently: approx ≤ (α +
D( 1

2
+c)(α−1)
opt

)opt. Finally, opt ≥
∑

k∈K
∑

i∈O(λki) −∑
h∈H(Bh/s).

Theorem 2 combined with the two first Algorithms in Table I, provides two bicriteria

approximation algorithms for the JCR problem. Corollary 1 describes this result:

Corollary 1: There exist a polynomial time (11+10c′, |O|+1)-approximation algorithm

and a quasi-polynomial time (log(n) + (log(n)− 1)c′, ε|O|+ 1)-approximation algorithm,

∀ε > 0, for the JCR problem, where n = |A|+ |B|.

We can use the above bicriteria solutions to perform the cache placement and the routing

of user requests in our problem. However, as the bandwidth capacities of the helpers may

be violated by the above factors, the operator may need to endow the base stations with

additional capacity, in order to ensure the described approximation ratio. However, in many

cases, the operator is unwilling to perform additional investments. Thus, the additional

requests that reach a helper will be rerouted to the main base station of the cell, increasing

it’s load. Theorem 3 characterizes the worst case scenario in terms of the quality of the

resulted solution.
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TABLE I
BICRITERIA BOUNDS FOR THE UHCMFL PROBLEM.

Algorithm Case Bound Complexity Reference
1 General (11, 2) P. [13],[10],[8]
2 General (log n, 1 + ε) QP. [11]
3 Uniform (9, 4) P. [8]
4 Uniform (O(1), 2) P. [9]
5 Uniform (5, 2) P. [13],[11],[8]
6 Uniform (log n, 1 + ε) P. [12]
7 Uniform (10.173, 3

2
) P. [13]

8 Uniform (30.432, 4
3
) P. [13]

Theorem 3: For any (α, β)− bicriteria approximation algorithm for the UHCMFL

problem there is an (α + (α − 1)c′)
∑

k∈K
∑

i∈O(λki)−
∑

h∈H(Bh/s)∑
k∈K

∑
i∈O(λki)−((β−1)|O|+1)

∑
h∈H(Bh/s)

−approximation

algorithm for the JCR problem, requiring the same computational complexity.

Proof: Let Hβ be the number of requests routed to the helpers and Mβ be the number

of requests routed to the main base station of the cell, according to the described reduction,

when the capacities of the facilities are violated by a factor of β. In reality, all the requests

beyond the capacities of the helpers will be rerouted to the main base station, as the

helpers can not serve them. Let H be the number of requests served by the helpers and M

the number of requests served by the main base station, after this rerouting. By definition,

Hβ+Mβ = H+M =
∑

k∈K
∑

i∈O(λki). Based on Theorem 2, it holds that: Hβ = H((β−

1)|O|+ 1). Besides, H =
∑

h∈Hb
Bh

s
c, as each helper will only serve as many requests as

it’s capacity allows, after the rerouting of requests. Let M = mMβ , where m ∈ R. Thus,

after some computations, we get that m =
∑

k∈K
∑

i∈O(λki)−
∑

h∈H(Bh/s)∑
k∈K

∑
i∈O(λki)−((β−1)|O|+1)

∑
h∈H(Bh/s)

.

Theorem 3 combined with the results in Table I, provides two approximation algorithms

for the JCR problem:

Corollary 2: There exists a polynomial time ((11+10c′)
∑

k∈K
∑

i∈O(λki)−
∑

h∈H(Bh/s)∑
k∈K

∑
i∈O(λki)−(|O|+1)

∑
h∈H(Bh/s)

)

-approximation algorithm and a quasi-polynomial time

((log(n)+(log(n)−1)c′)
∑

k∈K
∑

i∈O(λki)−
∑

h∈H(Bh/s)∑
k∈K

∑
i∈O(λki)−(ε|O|+1)

∑
h∈H(Bh/s)

) -approximation algorithm, ∀ε >

0, for the JCR problem, where n = |A|+ |B|.
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For example, as ε goes to zero, the approximation ratio of Algorithm 2 becomes log(n)+

(log(n) − 1)c′ ≈ 7, in the realistic system setting that |O| = 100, |H| = 32, Bh = 5,∀h,

s = 1 and
∑

k∈K
∑

i∈O(λki) = 10, 000. For smaller problem instances, this ratio is even

tighter.

Let us now focus on a special case of the JCR problem where the helpers have equal

transmission capacities, i.e. Bh = B, ∀h ∈ H. Notice though that still, cache sizes can

be different. We can map this problem to a certain UHCMFL problem in which all the

capacities of the facilities are equal and exploit the improved approximation ratios that are

known for this uniform capacity setting. According to the reduction described in Section

IV-A, for this special case of the problem, all the capacities of the facilities are equal,

i.e. Sj = B
s
,∀j ∈ A, except for the facility aBS , which has infinite capacity. aBS can

be replaced by d
∑

k∈K
∑

i∈O λki
bB/sc e facilities each one of capacity B

s
. Clearly, the aggregate

capacity of them suffices to serve all the demand of the clients of the form bkij , ∀k, i, j

and the new instance is equivalent to the initial. In the new instance, all the capacities are

equal.

Table I provides six approximation algorithms for the JCR problem, in which the

capacities of the helpers are equal. Corollary 3 describes the results:

Corollary 3: There exists an (α + (α − 1)c′, (β − 1)|O| + 1)-approximation algorithm

and an (α+(α−1)c′)
∑

k∈K
∑

i∈O(λki)−|H|(B/s)∑
k∈K

∑
i∈O(λki)−((β−1)|O|+1)|H|(B/s) -approximation algorithm, for each

pair (α, β) ∈ {(9, 4), (O(1), 2),

(5, 2), (log n, 1 + ε), (10.173, 3
2
), (30.432, 4

3
)}, ∀ε > 0 for the uniform-capacities JCR

problem, where n = |A|+ |B|.

VI. CONCLUSION

In this chapter we introduced a novel approximation framework for solving the joint

caching and routing problem faced by a mobile network operator. This is a problem of

increasing importance in order to achieve a smooth and balanced network response in
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the stressful situations that the mobile content demand growth brings. Our model differs

from previous works, as it explicitly takes into account the hard bandwidth constraints

that bottleneck content delivery when massive content requests are submitted, i.e., during

peak traffic hours and in highly populated areas. We provided a set of polynomial time

algorithms with various bounded approximation ratios for it’s solution. Our methodology

is based on a reduction to the UHCMFL variant of the facility location problem. We

believe that our work reveals a stronger relation among caching problems and facility

location problems and paves the road for exploiting the broad literature that is available

for the latter.
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