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1. Introduction 
 

The research on the field of digital circuits through the decades, from the construction 

of the first computer to nowadays, has revised basic target many times. Primarily, the 

target of the scientist was the functionality of the circuits but later changed to the area, 

time, power etc of the circuit. 

In the past meeting area, timing, or power constraints was achievable but now with 

the technological advancement, competition and the growing complexity of the chips, 

make the design process a compound, interlaced and time-consuming procedure. In 

this process, many optimization goals and tight constraints must be addressed. 

A key task in chip design is placement, in which the positions of the modules have to 

be determined in a given chip area. Placement has a direct impact of the total 

wirelength needed to interconnect the modules, as well as and on the performance of 

the chip for timing and power. 

For these reasons placement’s requirements have been subjected to many 

modifications, as placement tools became an essential component in design flow at 

many stages. 

Because of all these reasons, powerful, flexible and fast placement algorithms are of 

particular interest more than ever. 

In this thesis the history of placement techniques and the state-of-art techniques are 

referenced and new placement algorithm, as well as, thoughts about power-aware 

driven placement and other considerations about placement are introduced. 
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2. Preliminaries 

 

In this chapter it is introduced the basic terminology of this thesis. Before the 

problem’s description we will present the basic flow of the chip design. 

2.1. Definitions 

Integrated Circuit (IC): or monolithic integrated circuit (also referred to as chip, or 

microchip) is an electronic circuit manufactured by the patterned diffusion of trace 

elements into the surface of a thin substrate of semiconductor material. [wikipedia] 

Very-Large-Scale Integration (VLSI):  is the process of creating integrated circuits by 

combining thousands of transistors into a single chip. [wikipedia] 

Application-Specific Integrated Circuit (ASIC): is an IC customized for a particular 

use, rather than intended for general-purpose use. [wikipedia] 

Standard-cell library: is a collection of low-level logic functions such as AND, OR, 

INVERT, flip-flops, latches, and buffers. These cells are realized as fixed-height, 

variable-width full-custom cells. The cells are fixed-height, variable-width full-

custom. The fixed-height enables them to be placed in rows. [wikipedia] 

Integrated circuit layout: also known IC layout, IC mask layout, or mask design, is the 

representation of an integrated circuit in terms of planar geometric shapes which 

correspond to the patterns of metal, oxide, or semiconductor layers that make up the 

components of the integrated circuit. [wikipedia] 

Core area/Die area: Core area is the area of silicon needed for the cell placement. Die 

area is the whole silicon area of the chip, as these areas may differ. 

Module: is defined as a block of cells, other modules or macros. The most used style 

is the standard cell layout because of its fixed height of the modules that decrease the 

time complexity and memory allocated for placement algorithms, which for big 

circuits of 10000000 gates is critical.    

There are five major styles of layout: 

1. Gate array: The gate array design consists of prefabricated silicon with 

identical modules distributed evenly on the real-estate. The function of a 

module is determined solely by its connections. Therefore the entire logic is 

determined by the wires. Space has been reserved for routing 

2. Sea-of-gates: The sea-of-gates layout is similar to gate array, but no space is 

reserved for routing. Instead the entire real estate has been filled with 

preferable transistors. Some of the transistors become unusable however since 

space must still be allocated for routing. 

3. Standard-cell: is a collection of low-level logic functions such as AND, OR, 

INVERT, flip-flops, latches, and buffers. These cells are realized as fixed-

height, variable-width full-custom cells. The cells are fixed-height, variable-
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width full-custom. The fixed-height enables them to be placed in rows. 

Originally routing was done between rows but multilayer technology now 

allows for routing anywhere on the real-estate.  

4. Mixed-cell: The mixed-cell model is similar to standard-cell layout, but allows 

large modules in the layout which may very is height and width 

5. General-cell(Macros):The final layout style which is also the only full-custom 

is the general-cell layout style. In this case modules are allowed any size and 

position on the real estate. [3] 

 

Overlap: Two modules overlap with respect to placement if the upper right corner 

coordinates of the first are smaller than the lower left corner of the second. 

Legal placement: A placement is legal when the following constraints are met: 

 There is no overlap between modules 

 All modules are within the core area 

 

 

2.2. Computer Aided Design 

Computer Aided Design (CAD) is the use of computer systems to design detailed 

physical objects, through the entire research and development process, thus for the 

creation, modification, analysis, optimization and final draw of a design. CAD 

software was created to assist the designer, deal with more complex designs, reduce 

their faults, and decrease the completion time. Moreover, the designer is allowed to 

keep documentations and create databases for manufacturing. CAD output is often in 

the form of electronic files for print or machine operations. 

CAD involves all the information needed for the manufacturing process, such as 

shapes, materials, processes, dimensions and tolerances according to application-

specific conventions. Furthermore it may be used to design curves and figures in two-

dimensional (2D) or three-dimensional (3D) space. 

 

Picture 1: 2D and 3D CAD model (wikipedia) 
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Nowadays, the number of industries turning to CAD is growing, because of its 

benefits such as lower cost of product development and a shortened design cycle. 

CAD software is extensively used in many applications such as automotive, 

shipbuilding, aerospace and microelectronic industries, industrial and architectural 

design.  

Those are the reasons of why the computer aided design has become an especially 

important technology within the scope of computer-aided technologies. It is one of 

many tools used by engineers and designers and is used in many ways depending on 

the profession of the user and the type of software in question.  

 

2.3. Electronic Design Automation 

Electronic Design Automation (EDA or ECAD) is a category of CAD tools for 

designing electronic systems such as printed circuit boards and integrated circuits. 

Before EDA, integrated circuits were designed by hand and manually laid out. The 

earliest EDA tools were produced academically. By the mid-70’s the first EDA tools 

for placement and routing were developed. One of the most famous was the "Berkeley 

VLSI Tools Tarball", a set of UNIX utilities used to design early VLSI systems. The 

beginning of industrial EDA was at 1981, as the larger electronic companies pursued 

EDA manually until then. Now EDA tools work together in a design flow that 

designers use to design and analyze entire semiconductor chips. 

EDA led to the development, massive production and cost reduction of high-tech 

conveniences such as cell phones, navigation systems, media players etc. Nowadays 

EDA has an extraordinary effect on human life, as almost everything and every daily 

task have been influenced by this. The progression of microprocessor technology in 

terms of performance and features made the computer an essential tool and part of 

everyday life.  

EDA has increased importance in the latest years, with the continuous scaling in 

semiconductor technology, because with the DSM era there are a lot of problems to 

be faced. Some of them are Design for Testability (DFT) and Automatic Test Pattern 

Generation (ATPG), lithography etc. Moreover, the evolution of the tools is necessary 

in order to overcome the difficulties of this era. 
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2.4. Design Flow 
Design flows are the explicit combination of EDA tools to accomplish the design of 

an integrated circuit. Moore’s Law has driven the entire IC implementation RTL to 

GDSII design flows from one which uses primarily standalone synthesis, placement, 

and routing algorithms to an integrated construction and analysis flows for design 

closure. [wikipedia] 

Due to the progress being made by the semiconductor industries, e.g. the transistors’ 

scaling, reducing the interconnection delay has become the great challenge. This fact 

led to a new way of thinking about integrating design closure tools and new scaling 

challenges for the current state of the art tools uprised, such as leakage power, 

variability, and reliability. There are two discrete flows for ASIC and FPGA designs. 

This thesis is based on the ASIC flow. 

As mentioned above all EDA tools work together in a design flow that chip designers 

use to design and analyze entire semiconductor chips. In this section is described a 

typical design flow, as there are some variations, e.g. for low-power design. The 

picture 2, below, illustrates the ASIC flow. 

 

Picture 2: Front-end and Back-end flow(asic-world.com) 

 

The whole process it can be separated in 2 domains: 

 Front-end flow 

 Back-end flow 
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2.4.1. Front-end flow 

The Front-end flow is the process that guides from the concept to the netlist of logic-

gates of a circuit. It includes steps, such as architectural design, simulation and 

synthesis. The front-end flow finishes at the Logic Synthesis step as depicted in the 

picture 2. 

 Specification: The step at which are described important parameters of the 

design, e.g. what the design should do. 

 High-level design: Various blocks are defined and description of the 

communication between them. Description is given in high-level languages 

(SystemC, C, C++). 

 Low-level design: It is described how each block is implemented. It contains 

details about FSMs, counters, registers etc. 

 RTL coding: The step at which Low-Level design is converted into Verilog / 

VHDL code, using synthesizable constructs of the language. 

 Functional Verification: It is verified that the design does its expected 

function. Testbenches are created to apply all possible stimuli at the input and 

check the output. 

 Logic Synthesis: Is the process in which synthesis tools take RTL code, target 

technology and constraints as inputs and maps the RTL to target technology 

primitives. After the gate-level netlist is created, timing analysis is done to 

check that the mapped design is meeting timing requirements. 

 Gate-level Simulation: Check if the Design Under Test (DUT) is functionally 

correct. 

Before passing the netlist to the back-end flow, usually it is done Formal verification 

and insertion of scan-chains. 

 Formal verification: Check if the RTL to gate mapping is correct 

 Scan-chain insertion: Insert scan-chain in case of ASIC for design-for-

testability(DFT) [asic-world] 

2.4.2. Back-end flow 

Back-end flow or physical implementation is the step in the standard design cycle 

which follows after the Front-end. At this step, circuit representations of the 

components (devices and interconnects) of the design are arranged on a piece of 

semiconductor material. More specifically they are converted into geometric 

representations of shapes which, when manufactured in the corresponding layers of 

materials, will ensure the required functionality of the design. The next step after 

Physical Design is the Manufacturing process or Fabrication Process that is done in 

the Wafer Fabrication Houses. 

The main steps of the back-end are described in the picture 3. 
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Picture 3: Detailed back-end design flow with EDA tools and file format 
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Gate-level netlist: Is the circuit’s synthesized netlist, produced after the completion of 

the front-end flow. It includes only standard-cells and their interconnections, as well 

and primary inputs and outputs of the circuit.  

Floorplanning: Is the process in which the area of the design, the IO structure and the 

aspect ratio are decided. The usual process is to find structures that should be placed 

close together, and allocates space for in order to meet the, sometimes, conflicting 

goals of available space (cost of the chip) and the required performance. During this 

process some components such as the macro's used in the design, memory, other IP 

cores and their placement needs, the routing possibilities and also the area of the 

entire design (core area/die area), are taken into account in order to find the most 

suitable place for them, as these components can have a dramatic effect on the 

performance of the chip. 

Partitioning: Is a process of dividing the chip into small blocks. This is done mainly to 

separate different functional blocks and also to make placement and routing easier. 

Partitioning can be done in the RTL design phase when the design engineer partitions 

the entire design into sub-blocks and then proceeds to design each module. These 

modules are linked together in the main module called the TOP LEVEL 

module.[wiki] 

Placement: Is the process of placing the modules of the design, described in the gate-

level netlist, in the core area decided in the floorplan step. 

Clock-Tree Synthesis (CTS): Before CTS, clock is not propagated and considered 

ideal. Clock tree begins at source clock and ends at pins of a flop. 

Routing: There are two types of routing in the physical design process, global routing 

and detailed routing. Global routing allocates routing resources that are used for 

connections. Detailed routing assigns routes to specific metal layers and routing tracks 

within the global routing resources.[wiki] 

Signoff: Checks the correctness of the layout design, before it can be taped-out. There 

are several categories of signoff checks: 

 DRC - Also known as geometric verification, this involves verifying if the 

design can be reliably manufactured given current photolithography 

limitations. In advanced process nodes, Design-for-Manufacture (DFM) rules 

are upgraded from optional (for better yield) to required. 

 LVS - Also known as schematic verification, this is used to verify that the 

placement and routing of the standard-cells in the design has not altered the 

functionality of the constructed circuit. 

 Formal Verification - The logical functionality of the post-layout netlist is 

verified against the pre-layout, post-synthesis netlist. 
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 Voltage-drop analysis - Also known as IR-drop analysis, verifies if the power-

grid is strong enough to ensure that the voltage representing the binary high 

value never dips lower than a set margin. 

 Signal-integrity analysis - Noise due to crosstalk and other issues is analyzed, 

and its effect on circuit functionality is checked. 

 Static-timing analysis (STA) - Is used to verify if all the logic data paths in the 

design can work at the intended clock-frequency. 

 Electromigration lifetime checks - To ensure a minimum lifetime of operation 

at the intended clock frequency without the circuit succumbing to 

electromigration. 

 Once the design has been physically verified, optical-lithography masks are 

generated for manufacturing. The layout is represented in the GDSII stream 

format that is sent to a semiconductor fabrication plant (fab). 
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3. Placement 

 

 In order to produce an ASIC, a robust architecture of sub-circuits that meets the 

specifications must be designed and standard techniques for transporting an 

architectural design to a physical design with timing, area and power limitations. The 

development of digital circuits must depend on a detailed design due to their 

incremental complexity and large cost of their creation of a lithographic photo-mask. 

Physical implementation starts given the physical design’s behavioral description 

language.  

Then the structure of a circuit must be specified in a structural Register Transfer 

Level (RTL) language, a high-level hardware description language (HDL) for 

defining digital circuits. RTL specifications are turned into gate-level netlists, and the 

circuits are described as a collection of registers, Boolean equations, control logic 

such as "if-then-else" statements as well as complex event sequences The most 

popular RTL languages are VHDL and Verilog. 

The circuit description does not contain the exact coordinates of every gate in the 

specified circuit area and does not contain the exact style of interconnections neither, 

so the next step is to determinate the placement decision of where to place all 

electronic components, circuitry, and logic elements in a generally limited amount of 

space and routing of the circuit, which decides the exact design of all the wires needed 

to connect the placed components. These two operations belong to the same step 

because the routing follows the placement description and builds up to it, in the way 

that a good placement can lead to an easier routing decision. Both of these operations 

are NP-hard problems, so there is a try to find approximate algorithms based on 

heuristics or branch and bound strategies. 

With the placement and routing step, the circuit is fully described. Therefore the 

characteristics of the design can be computed. The final step is to perform signoff, in 

order to test all the signoff constraints described in chapter 2. 

 

3.1 The Placement problem formulation 

 

The general purpose of solving the VLSI placement problem is to find the best 

position of each module of a circuit on a specific area with the respect to a cost 

function that must be minimized. 

More specifically, given: 

 A netlist of cells from a pre-defined semiconductor library 

 A mathematical expression of that netlist as a vertex, edgeweighted graph 

 Constraints on pin-locations expressed as constraints on vertex locations / 

aspect ratio that the placement needs to fit into 
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 One or more of the following: chip-level timing constraints, a list of critical 

nets, chip-level power constraints 

Placement process returns: 

 Cell/vertex locations to minimize placement objective subject to constraints 

 No two cells/vertexes overlap 

 Placement is routable 

 

An important part of the placement problem is to understand the critical cost functions 

that must be minimized. Some of these functions might be: 

 

 Minimization of the expected length of longest wire, or the sum of the length 

of all the wires in the design, which is the primary objective of most existing 

placers. This not only helps minimize chip size, and hence cost, but also 

minimizes power and delay, which are proportional to the wirelength. 

 Minimization of wire routing congestion. While it is necessary to minimize the 

total wirelength to meet the total routing resources, it is also necessary to meet 

the routing resources within various local regions of the chip’s core area. A 

congested region might lead to excessive routing detours, or make it 

impossible to complete all routes. 

 Minimization of timing delay. The clock cycle of a chip is determined by the 

delay of its longest path, usually referred to as the critical path. Given a 

performance specification, a placer must ensure that no path exists with delay 

exceeding the maximum specified delay. 

 Minimization of power. Power minimization typically involves distributing the 

locations of cell components so as to reduce the overall power consumption, 

alleviate hot spots, and smooth temperature gradients. 

 The minimization of the core area, die area, and other area constraints of the 

design, which come up for different reasons (remote devices, economical 

reasons etc.). 

 The minimization of the distance of modules that use the same clock. 

 A secondary objective is placement runtime minimization. 

   

The optimal is to minimize every function but this is impossible because some 

functions have conflicts thus when one minimizes a variable the other may maximizes 

its own variable, for example when timing delay is minimized the power is grown. A 

good placement analysis must respect the cost functions that must be optimized and 

find a close to the golden mean that keep the balance between the critical variables.  

Another issue with the cost functions is that the evolution of technology changes their 

importance in the export of results. For instance, before the 90 nm-node transistors the 

basic timing delay was existed by a bad minimization of a specific area, but now it is 

proved that total delay is determined in a very grate percentage by routing, and the 

cost function that matters more is the total wire-length minimization. 
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Placement problem is a NP-hard problem, which means that it cannot have a solution 

in polynomial upper time limit. If can be proved that the decision of a placement is a 

NP-complete problem then can be proved that the placement problem is an NP-hard 

problem. Below there is an explanation, but not the entire mathematical proof, as it is 

out of scope of this thesis: 

The placement decision problem can be defined as the algorithm that decides given 

some modules, pins, nets, a specified area, if all modules can be positioned correctly 

and legally in the placement area. Of course it cannot be decided in polynomial but in 

exponential time because every combination of two cells must be checked and that 

leads to a quadratic problem. Officially the placement decision problem can be 

retreaded to the subset sum problem, which decides given a set of integers, if there is 

a non-empty subset whose sum is exactly zero, and is a NP-complete problem.  

Therefore the decision of a placement is a NP-complete problem. 

Also it is proved that if an optimization problem H has an NP-complete decision 

version L, then H is NP-hard, thus the placement problem is NP-hard because it 

optimizes a cost function.  

 

 

3.2 Classification of placement algorithms 

 

The placement problem can be divided in two steps: 

Global placement: It has also mentioned as relative placement, because it uses 

constructive or iterative algorithms in order to find a near-optimal placement, as a fist 

attempt of placing the cells into the placement area, usually by dividing it into core 

bins. This placement has overlaps between cells.   

Final placement: It has also mentioned as detailed placement. Using the global 

placement as an input and a local final placement algorithm, it cuts the core area into 

core bins and finds a near-optimal placement solution for every core bin. Usually the 

output is a legal placement proposition, but the inner-solutions are not necessarily 

legal. If the output has overlaps then a legalization step is necessary to export a result 

that can be constructed in the psychical design. Additionally, in many final placement 

algorithms there is a last try to improve further a legal solution, calling post placement 

optimization. Wire or cell positions can be improved in this step, depend on the cost 

function, usually by swapping cells or wires movement.  A global post placement 

optimization is usually done as a separate design flow step, after placement 

completion, which can add buffers in the design or use biggest/shorter standard cells 

to improve placement’s objective subjects. No further discussion will be done for this 

last step because it is out of this thesis scope. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
05/05/2024 20:36:46 EEST - 3.135.189.236



 

20 

 
Picture 4: Global placement of a circuit 

 
Picture 5: Detailed placement and legalization for the same circuit 
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Placement algorithms can also be split into constructive and iterative.  

 

Constructive placement improvement algorithms deal with every cell once, but 

iterative algorithms have many reiterations of a curtain procedure and deal with every 

cell iteratively. Constructive algorithms are usually very fast and produce good results 

because of their global view of the problem. However, they are generally restricted in 

the choice of objectives and often do not yield the global optimum of the placement 

problem because of sacking in local minimums.  

 

Iterative placement improvement algorithms aim at improving existing solutions, 

especially initial placements usually obtained with constructive algorithms. Typically, 

in one iterative step they select a small and local subproblem to be solved by exact or 

heuristic methods. These algorithms also divide into two classes depending upon 

whether they apply random or deterministic techniques. Iterative improvement 

methods based on randomized algorithms never reject better solutions, but they also 

accept intermediate placements of inferior quality with low probabilities. Thus, they 

have the ability to escape local optima and to approach the global optimum arbitrarily 

close if sufficient computation time is provided. Since this is not always practicable, 

particularly for large circuits, layout quality is compromised. 

 

The philosophy of output produced by an algorithm is another way of classifying the 

placement algorithms. Some algorithms generate the same solution when presented 

with the same problem, i.e., the solution produced is repeatable. These algorithms are 

called deterministic placement algorithms. Fixed connectivity rules, cause and effect 

algorithms, or simultaneous equations solution are deterministic and always produce 

the same result for a particular placement problem and nothing else could be 

produced. Some algorithms, on the other hand, work by randomly examining 

configurations and may produce a different result each time they are presented with 

the same problem. Such algorithms are called as probabilistic placement algorithms.  

Placement algorithms can also be classified from their solution approach of netlength 

minimisation, to linear, quadratic or neither of the two.  But to understand the 

difference first there must be defined some netlength metrics that the algorithms deal 

with, in the next paragraph.  

 

3.3 Net metrics 

 

After implementing placement process in a design, cells obviously have standard 

coordinates inside the core area. This means that a close to absolute total wire length 

can be calculated, summarizing every net. Because of not having the exact net 

distance of nets before routing stage, there is a need to define some netlength metrics 

with which the wirelength can be calculated and then optimized. Before proceeding, 
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consider that in all distance metrics, cells are defined as points, with coordinates their 

lower left point or their center. 

 

3.3.1 Lk-norm induced distance metric 

 

 ,  

 

Let p and q be two modules, and px py, qx qy their coordinates in x and y axis. 

L1 is the Manhattan distance and L2 is the Euclidean distance which is mostly using 

as a netlength distance metric. Also, when  it gives: 

 

 
 

 

3.3.2 Rectilinear Steiner Tree and Minimum Spanning Tree 

 

Given n points in the plane, it is required to interconnect them all by a shortest 

network which consists only of vertical and horizontal line segments. It can be shown 

that such a network is a tree whose vertices are the input points plus some extra points 

(Steiner points). [wikipedia] 

Assuming that until nowadays only horizontal and vertical wires are used, the total 

minimal netlength is achieved by connecting pins in each net with a Steiner tree such 

that there is no intersect between trees. Although the routing of a whole net with 

multiple nodes is better represented by the rectilinear Steiner tree and it can be 

considered as the smallest wirelength measure, the rectilinear minimum spanning tree  

(RMST) provides a reasonable approximation and wire length estimate. rectilinear 

minimum spanning tree can be considered as a RSTM without extra (Steiner) points, 

so every node is interconnected in the shortest network which consists only of  

vertical and horizontal line segments. For the same number of nodes with specific 

coordinates, Hwang proved that: 

 

 

The RSMT is an NP-hard problem but proof is out of the scope of this thesis.  
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3.3.3 Clique 

The clique model is very popular in many VLSI problems. This model is based on 

proper conversion of nets into clique subgarphs. The given weight for every edge that 

builds the clique is computed by the following type: 

 

  Where i, j the nodes connected by an edge and k the total number of the cliques’ 

nodes. This type ensures that the effect of the total weight of big cliques is relatively 

decreased against small cliques that are usually the majority in physical designs. On 

the other hand this type ensures that the total weight effect is balanced to the size of 

every clique.   

Then, the length of a net  is the total distance of pairs of pins in the net: 

 

The clique netlength may be evaluated in time . For an improved 

approximation of the linear net model by the quadratic one, Gordian-L(Sigl, Doll and 

Johannes [1991]) use the following iterative net model: in iteration k = 2… one 

optimizes essentially: 

 

and  . 

Recall that linear clique was the model of choice for a-priori topologies, so in the limit 

one can obtain the best achievable result. But after all, one cannot expect more than 

linear convergence of this method, so in general this approximation method will be 

too slow. 

3.3.4 Star 

This model is similar to clique model, where the hyperedges of the graph are 

converted to star subgraphs. 

3.3.5 Bounding Box 

The bounding box is by far the simplest net metric, as it defines that that total 

netlength of a circuit is the summary of the half perimeter of the bounding box 

surrounding every net. 
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Complexity of calculating the total netlength using the bounding box metric is . 

Now considering and comparing the complexity of bounding box metric and the 

clique metric, it is obvious that algorithms that use bounding box metric called linear 

minimization algorithms, and algorithms that use the clique metric called quadratic 

minimization algorithms. The figures below can show the graph style of every metric 

and the graph style of the difference between linear and quadratic calculation. 

 

 

Picture 6: Rectilinear Steiner Tree and Minimum Spanning Tree(a,b), clique(c), star(d), bounding 

box(e) [3] 

  

3.4 Minimizing Quadratic Netlengths 

 

Both quadratic clique and star netlengths can be expressed by matrix notation. If the 

corresponding problem is relaxed by removing the no-overlap constraints the 

quadratic netlength we can be minimized many methods, with the most popular to be 

the Conjugate Gradient Method.  

The Conjugate Gradient Method works on parabolic functions by taking steps towards 

the global minimum. The method requires that the quadratic matrix is symmetric and 
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positive. In each step of this iterative procedure the current solution is moved in the 

direction of the eigenvalues of the matrix. When the solution is deemed close to 

minimum the procedure ends. The complexity of this method depends on the spectral 

condition number k of the matrix and it is  when m is the number of non-zero 

elements of the matrix and sparse matrix data structures are used. 

The matrix is in general sparse. Each row corresponds to a module. For the star model 

the number of non-zero elements in a row is roughly equal to the number of nets the 

module of that row is connected to. For the clique model this number is equal to the 

number of modules the module is connected to. It is generally assumed that the 

average number of nets each module is connected to is usually less than 5. 

 

 

3.4.1 Preconditioning  

As mentioned above the Conjugate Gradient Method depends on the spectral 

condition number k. This can be improved by using a preconditioner. The essence of 

the preconditioning method is that instead of solving a system of the form  one 

can solve an auxiliary system . If  is better conditioned than     

we may get faster convergence. The matrix  is called a preconditioner and the 

problem is of course determining  such that we can easily find  . Ideally one 

would pick  but since there is no information about , an alternative choise has to 

be taken. The simplest preconditioner is the diagonal of  and the most popular is an 

incomplete cholesky factorization of . We will not discuss preconditioning further 

here but even diagonal preconditioning can improve the order of convergence 

significantly. 

 

 

3.5 Minimizing Linear Netlength 

 

The unconstrained linear bounding-box formulation can also be solved in efficient 

time. Here the objective function is the dual of a minimum-cost-flow problem. The 

dual problem can be solved and by using LP-duality a solution to the primal problem 

can be determined, as it proposed by Weis and Mlynski. Nevertheless even the fastest 

algorithms of this kind have quandratic running time,  

Linear net models, approach better the actual post-route wirelength, but lead to 

various drawbacks during placement. The first reason is the optimization issue as 
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linear functions are not differentiable. Despite the fact that placement minimizing 

linear bounding-box netlength can be considered as the dual of a MinCostFlow 

problem and computed exactly, linear solutions stuck in local minima and it is 

difficult to compute global optima in acceptable time if the number of variables is in 

the millions. The second reason is that placements optimizing linear netlength are not 

unique in general. Those computed by such a MinCostFlow approach tend to implode 

cells in some particular corner of the core area and do show significant overlaps, 

which are solved with many arbitraries and cause worst wirelength solutions as a 

result. Such an effect does not show up for strictly convex net models. Nevertheless, 

many non-linear methods exist to approximate the linear netlength model, also called 

analytic. These approaches are introduced in next paragraphs. 

 

 

Picture 7: Linear (a) and quadratic (b) solution for wirelength minimization [3] 
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4. Placement methods and Algorithms 

 

As mentioned in the previous chapter, traditionally, placement is separated in two 

stages, global placement and final placement. In this chapter are presented, 

analytically, the methods of these two stages and the most known algorithms. 

 

4.1 Global placement Methods 

The main purpose of global placement is to distribute the cells evenly over the 

placement region and optimize certain objectives e.g. wirelength, timing, power etc. It 

pays attention to the relative positions of the cells globally. 

4.1.1 Graph partitioning 

The most used technique for global placement is based on graph partitioning. Given a 

gate-level circuit, the goal of circuit partitioning problem is to divide the circuit into K 

roughly equal-sized partitions. The main goal of this method is to minimize the 

number of hyperedges that connect nodes from one partition to another, which is 

typically called the “cutsize” in the literature. Other objectives include critical path 

delay, total power consumption, etc. Due to these objectives, partitioning algorithms 

can be divided into linear and analytic, that use linear solutions for the “cutsize” and 

quadratic approaches to compute other objectives. These two categories are analyzed 

further below: 

 

 
Picture 8: Cut-size example, institute of Microelectronics Systems (MES) 
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4.1.1.1 Linear based partitioning heuristics 

 

 Every module that has to be placed is defined as a node of a graph with specific 

weight. Weight of nodes is computed usually by the cell’s fanout and its area or other 

critical objectives. In this iterative method, each bisection has to be chosen such that 

the weight of nodes on either side is close to equal while at the same time the number 

of edges cut by the bisection is kept at a minimum. After the components are pre-

placed with an initial placement algorithm, partitioning starts with the hole graph as 

the first partition. In every step a partition with total weight W is cut in two other with 

weight W/2, and this is done recursively for every new partition until the number of 

edges cut by the bisection is the minimum. With this technique it is succeeds to keep 

close to each other all the highly connected components.  

Linear graph partitioning approaches do not accomplish wirelength minimization 

directly but in every, which can achieve placements inside a partition that is faster and 

dealing with a smaller number of components that are highly connected. If the 

Simulated Annealing approach will be combined with the graph partitioning 

technique, it will accept any kind of objective, in particular wirelength, but it can be 

applied only for tiny instances due to its huge complexity, so for large scale circuits 

another technique has to be used. Analytic approaches can cover this drawback, 

especially in global placement, as in detailed placement the core area can be 

partitioned and can be handled separately. Nevertheless this global placement problem 

is NP-hard (reduce from 2-partition) because of the balance requirement.   

Two famous linear graph-partitioning algorithms are of Kernighan-Lin[1979] and 

Fiduccia-Mattheyses[1982]. 

 

Kernighan-Lin: Given a netlist, the first step is to create an edge-weighted undirected 

graph G that represents the circuit. We typically use so called the k-clique model, 

where a net that contains k gates forms a k-clique in G, and each edge in the clique 

gets a weight of 1/(k − 1). In case an edge (x, y) already exists from a prior net 

conversion, it weight has to be updated properly. The KL algorithm is applied on this 

graph, so the cutsize and gain are computed based on it, instead of the original circuit. 

Next, an initial balanced bipartitioning solution (P1, P2) of G is acquired, usually 

randomly. For a cell x ∈  P1, the external cost of x is defined as follows: 

 
where c(x, i) is the weight of the edge e(x, i). This Ex is the expression for the sum of 

the weight of edges which connect x with nodes that are in other partition, where the 

neighbors of x are defined to be the nodes that are connected with x via an edge. 

Sequentially the internal cost of x is defined as follows: 
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This Ix is the expression of the sum of the weight of edges that connect x and its 

neighbors in the same partition. Finally, the gain of swapping x and y is defined as 

follows: 

gain(x, y) = (Ex − Ix) + (Ey − Iy) − 2c(x, y) 

Before the first pass starts all cells are considered as locked. Once the pass begins, the 

following procedure is repeated at every swap until all cells are locked. Firstly, the 

gain of all unlocked pairs is computed and then the pair with the maximum gain is 

swapped and the cells in the pair are getting locked. In the third step, the gain and the 

current cutsize are recorded. When the pass is finished, the first K swaps with the 

biggest gain are accepted, leading to the minimum cutsize discovered during the 

entire pass. If the initial cutsize has reduced during the current pass, it means that a 

better solution hs been discovered, and another pass is tried on using as initial solution 

the best solution discovered from the current pass; otherwise the algorithm is 

terminated considering that it cannot find a better solution. Since the cells’ swapping, 

the area is always balanced between the two partitions. Note also that the entire 

Kernighan and Lin algorithm can be repeated with another random initial solution. 

 

 
Picture 9: Kernighan-Lin algorithm, institute of Microelectronics Systems (MES) 

Fiduccia-Mattheyses: The algorithm starts with an initial balanced bipartitioning 

solution (P1, P2) of the given hypergraph, which is usually obtained randomly.  

For a cell x ∈  P1, FS(x) is defined as the number of nets that have x as the only cell in 

P1. 
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TE(x) is defined as the number of nets that contain x and are entirely located in P1, 

i.e., all cells in the net are partitioned in P1. Finally, the gain of moving x from P1 to 

P2 is simply: 

 

gain(x) = FS(x) − TE(x)  

 

Before the first pass starts all cells are considered as locked as in Kernighan and Lin 

algorithm, and the gain of all cells is computed based on the initial partitioning. Also 

the cells have to be added to the bucket structure. Once the pass begins four steps 

have to be repeated at every move until all cells are locked. Firstly, the cell with the 

maximum gain is considered as legal. A cell move is legal when while moving it to 

the other partition it does not violate the core area constraint. Secondly, the chosen 

cell is moved and locked it in the targeted partition. After these steps, the gain values 

of the moved cell’s neighbors their positions in the bucket are updated, and finally the 

gain and the current cutsize is recorded. At the end of the pass, the first K moves are 

identified, accepted and lead to the minimum cutsize during the entire pass. If the 

initial cutsize has reduced during the current pass, we attempt another pass using the 

best solution discovered from the current pass as the initial solution; otherwise the 

algorithm is terminated. Note that the entire FM algorithm can be repeated with 

another random initial solution. 

 

Picture 10: Fiduccia-Matheyses algorithm 
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Picture 11: Fiduccia-Matheyses example (wikipedia) 

 

4.1.1.2 Analytic based graph partitioning heuristics 

The analytic partitioning heuristics are closely related to the graph-partitioning 

heuristics. But instead of minimizing cuts they use the analytic placement to guide the 

position of the cut-lines. The oldest analytic method found in the literature is from 

1970 and by Hall, and the most popular algorithms are of Hagen and Kang (EIG), and 

of Yang and Wong (FBB). 

EIG: this algorithm utilizes the second smallest eigenvalue and its eigenvector of a 

netlist matrix to optimize so called the “ratio cut” metric. This ratio cut metric, 

defined as c(X, Y )/|X||Y |, where c(X, Y ) denotes the cutsize between the two 

partitions X and Y , managing to minimize the cutsize and balancing the area of the 

existing partitions. Given an undirected graph that represents the connectivity among 

the nodes, and its Laplacian matrix, the eigenvector of the second smallest eigenvalue 

of the matrix defines a one-dimensional placement of the graph’s nodes [Hall 1970]. 

In this placement solution, the quadratic length of every edge in the graph is 

minimized under the constraint , where xi is the x coordinate of node i. It is 

also shown that the second smallest eigenvalue of the matrix is the lowest bound of 

the ratio-cut metric. According this, their analytic partitioning algorithm computes 

bipartitioning solutions with minimum ratio-cut metric, using the one-dimensional 

placement. So, given a gate-level circuit, first its undirected graph representation must 

be derived, based on the standard k-clique model. In this model, a net with k gates 

forms a k-clique, and each edge in the clique gets a weight of 1/(k − 1). The 

remaining part of the algorithm proceeds as follows: 

1. Building of the n × n Laplacian matrix Q = D − A, where n is the number of nodes 

in graph G. A is the adjacency matrix, where each entry aij denotes the weight of edge 

e(i, j) in G. D is the degree matrix, where each entry dii is the sum of the weights of 

all edges incident to node i in G. 
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2. Computation of the second smallest eigenvalue and its eigenvector of Q using 

Lanczos method. 

3. Sort of the nodes in G based on their values in the eigenvector and obtain the node 

ordering Z = {v1, v2, ・ ・ ・ , vn}. 

4. Usage of Z to derive and evaluate n − 1 partitioning solutions. More specifically, 

we first obtain a bipartitioning solution ({v1}, {v2, ・ ・ ・ , vn}) and compute its 

ratio cut metric.4 Next, we evaluate the ratio cut metric of ({v1, v2}, {v3, ・ ・ ・ , 

vn}) from H, etc. Lastly, we choose the partitioning solution with the minimum ratio 

cut metric.  

 

FBB: FBB performs flow-based bipartitioning. Given a flow graph G and a pair of 

source and sink nodes (s, t), the Maximum FlowMinimum Cut Theorem [Ford and 

Fulkerson, 1962] states that the maximum flow from s to t defines a bipartitioning of 

G, and the weight of the cut is minimized among all cuts separating s and t. Yang and 

Wong proposed an iterative method to repeat max-flow computations to find balanced 

solutions for the partition cuts from s to t, with complexity that approach  

asymptotically the same as a single max-flow computation, recycling the growing 

paths from the previous iterations. When a circuit has multi-terminal nets, they 

proposed a way to transform them into a flow network G so that any cut in G 

preserves the correct cutsize information in the circuit. Lastly, they proposed an 

effective way to achieve the next cut if the current cut is not balanced, which is based 

on making a minor perturbation to the current flow network.  

 

More specifically, given a circuit H, the flow network G must be built, where each net 

is transformed as follows: 

Nodes were added into G if not added yet. Two auxiliary nodes n1 and 

n2 were added into G and are connected with bridging edge e(n1, n2) with its  

capacity value set to 1. Node n1 is connected with v1, v2, … , vk with edges of ∞ 

capacity. Node n2 is connected to v1, v2, … , vk with edges of ∞capacity. Next, a pair 

of source and sink (s, t) has to be chosen randomly. After these, the fllowing must me 

repeated until a balanced bipartitioning solution is found: 

 

The maximum flow from s to t using the growing path method must be found.  

Then we construct the partitioning solutions based on the max-flow computation, 

which is done by cutting some subset of the saturated nets. Simultaneously, the best 

solution for the area balancing C(X,X’) must be found. Note that all of these solutions 

have the same cut-size, which is equal to the max-flow value. If a solution that 

satisfies the area constraint is found, the algorithm is terminated. 

Nevertheless, the solution is not necessarily area-balanced. In this case must be 

examined if the area of X is smaller than the area lowest bound when a node 

that is contained in a cut net is chosen. Lastly, all nodes in X and v are merged 

into a single node, which becomes a new source s, and the algorithm starts again from 

the first step. Otherwise, if the area of X is bigger than the area upper bound, a node 
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that is contained in a cut net must be found, all nodes in X’ and v are merged 

into a single node, which becomes a new sink t and the algorithm starts again from the 

first step. 

When the algorithm is in step 1 of some iteration, some of the growing paths are 

already found in previous iterations. This slows down the process’ complexity by 

finding only the new additional growing paths, in order to obtain a new max-flow. 

Also, we choose v among the nodes in the cut net randomly, while we are finding a 

node v to merge with X or with X’. Thus, as the algorithm approaches closer to a 

balanced solution, we choose the best v among all the nodes in the cut nets. 

 

4.1.2. Analytic and Relaxation Based Placement 

The quadratic netlength formulations can be solved fast using numerical linear 

equations solvers, with the most popular the Conjugate Gradient Method, while the 

bounding-box formulation requires quadratic running time network-flow methods. 

 

4.1.3 Force-Based Methods 

The force-based methods can be defined as methods that handle modules as objects 

and nets as springs connecting the objects, and try to minimize the interconnection 

netlength by putting the “spring-system” into equilibrium, in respect to the Hooke's 

law. This kind of netlength minimization was introduced by Eisenmann and Johannes 

in 1998. The force-based method uses the analytic placement techniques to achieve an 

illegal overlapping placement which minimizes quadratic netlength. This heuristic 

proceeds iteratively introducing “repelling forces” between each module and bins on 

the placement area with overlap. In every iteration the current overlapping forces are 

added to the quadratic netlength and the combined quadratic function is minimized. 

The force at a location  is set to: 

 . 

To improve the netlength, Eisenmann and Johannes also used a variation of the 

linearization method. Finally the Domino local search method which will be discussed 

later was used for final placement. Eisenmann and Johannes only used the heuristic on 

standard-cell circuits but Mo extended the force-based heuristic to macro-cells, with 

no linearization scheme to be considered. Also instead of introducing repulsive forces, 

a filling force is introduced between modules and empty regions of the placement 

area. Mo also considers orientation of the macro-cells. For each cell the new 

orientation is determined by considering all eight possible orientations and selecting 

the one which minimizes the external force. Since changing orientation of one cell 

will affect the force on other cells, care must be taken not to change orientation of too 

many cells at once.  
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Finally Routing and pad positioning are meditated. Routing is meditated by estimating 

congestion in each bin and pad positions are computing according to modules 

position. Specifically, the pads are included in the quadratic matrixes, but they are 

allowed to move across on dimension only. The iterative flow is divided into three 

stages. Stage one gives initial positions of the macro-cells. Stage two optimizes 

orientation and routing. Finally stage three removes any additional overlap. 

Hu and Marek-Sadowska introduced a slight modification of Eisenmann and 

Johannes' method referred to as Fixed-point Addition and Relaxation (FAR). In their 

method they create an extra pseudo-module for each module and an extra pseudo-

connection between each module and its associated pseudo-module. They noticed that 

fixed-points are easier to control than the repelling forces, and that their analytic 

placements can also be contained into a specific region, in comparison to the constant 

forces. 

Attractor Repellor Approach (ARP) is another force-based method, proposed in 1999 

by Etawil. It is a completely different method that the previous, because instead of 

looking at overlapping regions a repelling force is introduced between directly 

connected modules. This alternate idea may have many drawbacks, like too much 

overlap that grows the total wirelength in legalization stage. Therefore Etawil 

introduces attractive forces in low density regions. 

 

4.1.4 Simulated Annealing for Global Placement 

Simulated annealing (SA) is a generic probabilistic method for the global 

optimization problem. It firstly proposed from Kirkpatrick, Gelett and Vecchi(1983) 

and Cerny (1985). It results a good approximation to the global optimum of an 

objective function in a large, discrete search space with many local minima. In many 

cases Simulated annealing may be more efficient than any other heuristic.  

Because of its simplicity, it has become the most famous meta-heuristic, used in many 

applications, including physical placement, if all else fails. However, simulated 

annealing applied to the placement problem has shown that it is high time costly when 

used for large scale circuits Nevertheless, it is used from the Dragon placer, for the 

global placement, and it is very used in final placement, even when it is used in 

partitions of the global placement.  

 

4.1.5 Clustering 

Some placement algorithms combine modules in clusters (clustering). Clustering is a 

powerful method dealing with sub-circuits, and can reduce the running time since 

there are fewer modules. Also, clustering can move a simple placement algorithm out 

of local minimum because it considers more than simple individual cell movement. 

Clustering methods have been used with the graph partitioning algorithms to improve 
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the speed of the partitioning. However clusters have also been used in detailed 

placement. Given a gate-level circuit, the goal of circuit clustering is to group gates 

and their interconnections into clusters and obtain the network of the clusters. Thus, 

after clustering, a cluster becomes a done of the graph, resulting reductions of the 

nodes and their interconnections. Sequentially, clustering is used before portioning 

and placement algorithms, to reduce of the run time complexity of any heuristic 

applied after it. Clustering objective functions is to minimize the connections from a 

cluster to another maximizing the number of connections inside a cluster, and to 

maximize the number of inter-cluster connections on any path. Typical constraints of 

this method may include the maximum cluster size and the maximum number of 

external connections for a cluster. The number of clusters to be obtained is not 

specified, and the area balance among the clusters is usually not 

required.

 

Picture 12: Clustering example 

There are two ways to consider clustering problem in physical placement, in order to 

organize the clusters better for this specific problem: 

 Produce the clusters strictly following the hypergraph representation of the 

circuit, as a general problem without considering placement. 

 Produce the clusters based on placement heuristics and comute weights 

according to the objective function. 

 

The most popular algorithms that use clustering based on placement heuristics are 

Rajaraman and Wong algorithm [Rajaraman and Wong, 1995], FlowMap algorithm 

[Cong and Ding, 1992] and Multi-level Coarsening algorithm [Karypis et al., 1997]. 

The first two are timing driven algorithms, where the longest path delay inside a 

cluster is minimized under a certain delay model. The last one minimizes the number 

of connections between clusters. 
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Rajaraman and Wong Algorithm: Given a directed acyclic graph which represents 

a gate-level circuit the algorithm produces a timing driven clustering solution. 

In respect to the “general delay model” that uses, below are introduced the delays in 

the circuit:  

 

 The delay inside each node of the cluster is computed.  

 The inter-cluster edges have constant delay.  

 The intra-cluster edges do not incur any delay.  

 The size of each cluster is bounded by another constant.  

 The critical paths delay from any primary input to primary output in the 

clustered network is minimized.  

 Some nodes in the original DAG may be duplicated in the clustering solution.  

 

The algorithm consists of two phases, labeling and clustering phase. During the 

labeling phase, the critical path delay from any primary input to each node is 

computed, adding both the node’s delay and the delay from the primary input to the 

node (inter-cluster edge). During the labeling process, the clustering information 

about the nodes that will be clustered in the same cluster-node is also collected, and in 

case a node is included in multiple clusters, it is duplicated to exist in both clusters. 

More specifically, a n × n matrix D that contains all-pair critical path delays is 

created. Each entry at row x and column v, denoted by D(x, v), is the critical path 

delay from the output of x to the output of v in the DAG using node delay values only 

and ignoring all interconnect delays. After this, the labels of all primary input nodes 

are initialized to their delay values and all other nodes are set to zero. We then visit 

non-primary inputs in a topological order to compute their labels.  

During the clustering phase, the nodes are visited in the opposite topological order, 

and the general clustering process takes place. 

 

 

FlowMap Algorithm: This algorithm produces also a timing driven clustering 

solution, but in difference to the Rajaraman and Wong algorithm it uses the “unit 

delay model”. In this model only the inter-cluster edges appear to have a unit delay 

while the nodes and intra-cluster edges do not incur any delay. The difference 

between the timing driven clustering using the unit delay model compared with the 

general delay model is that the number of external connections for each cluster is 

bounded by a constant. The maximum delay from any primary input to primary output 

in the clustered network is minimized in the solution. Some nodes in the original 

directed acyclic may be duplicated in the clustering solution. 

FlowMap algorithm consists of two phases, the labeling and the mapping phase. 

During the labeling phase all nodes are met in topological order. For each node n the 

clustering set Cn is computed, as the set of nodes that will be clustered together in the 

same cluster. Another variable has to be computed, named label l(n). This denotes the 

critical path delay from every primary input to v, where only the inter-cluster edges 

incur a unit delay. During the mapping phase, the nodes are visited in the opposite 

topological order, and the general clustering process takes place. 
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Multi-Level Coarsening Algorithm 

Multi-level coarsening is an algorithm for clustering that first introduced as a part of 

hMetis algorithm for placement. hMetis algorithm released as the best bipaartitioning 

algorithm in Design Automation Conference (DAC) in 1997 [Karypis et al., 1997]. It 

consists of two phases, clustering and partitioning, to solve the balanced bipartitioning 

problem, where the given circuit is divided into two roughly equal sized partitions. 

This algorithm’s target is to minimize interconnects from each cluster to another, 

respecting the “multi-level optimization” heuristic that obtains iterative clustering 

processes. During the first iteration, the highly connected nodes are grouped into level 

1 clusters, and create a graph that contains them. This graph has less nodes than the 

original graph. Next level-1 clusters are grouped together to form level-2 clusters and 

their graph is created. This process is repeated until we group the clusters together in 

the target level K, in the clustering hierarchy, and the size of the graph is reduced 

spectacularly. 

After the clustering, the level-K clusters have to be partitioned using any of the 

existing partitioning algorithms. After the partitioning process ends, every level-K 

cluster has to be decomposed to its level-K-1 clusters, and a partitioning algorithm is 

performed again to optimize further the current partitioning solution. This process of 

decomposing and optimizing the graphs’ solutions is repeated until there are no 

clusters but the partitioned circuit. This clustering algorithm, because of considering 

its high level cluster interconnections, and because of its iterative nature, gives better 

partitioning solution. 

More specifically, given a hypergraph that represents the original circuit, hMetis 

algorithm utilizes three algorithms to compute the multi-level cluster hierarchy, which 

are introduced below: 

 

 Edge coarsening (EC): Initially, the nodes in the graph are unmarked and 

visited in a random order. Given an unmarked node v, the “neighbors” of v 

must be collected, which is the set of nodes that are unmarked and are 

included in the edges that contain v. For each neighbor n of v, the weight of 

edge (v, n) is computed by assigning a value 1/(|h| by1), where h denotes the 

edge that contains both n and v. After examining all neighbors of v, the 

neighbor with the maximum edge weight must be selected and v and n must 

be merged together. Both n and v so are marked that these nodes are not 

clustered again later. This process completes when all nodes are visited. 

 Hyperedge coarsening (HEC): Initially, the nodes in the hypergraph are 

unmarked. If the hyperedges are not weighted they are sorted by size with an 

increasing order, otherwise are sorted by their weights decreasingly. In every 

case they are visited in the sorted order and there are examined if any of them 

contains any node that is already marked. If not, all nodes are grouped in the 

hyperedge to form a cluster. Otherwise, we skip to the next hyperedge. After 

visiting all hyperedges, each node that is not part of any cluster becomes a 

cluster of its own. 

 Modified hyperedge coarsening (MHEC): This algorithm first applies 

hyperedge coarsing to the given hypergraph and after the hyperedges to be 

clustered have been selected, the algorithm visits them again in the sorted 

order. Then, for each hyperedge that has not yet been clustered there is 

examined if it contains any node that is unmarked, to cluster them all together. 

MHEC achieves reduce further the number of the inter-connections among 

clusters after balance the size among the clusters. 
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4.2 Final placement Methods 

The aim of final placement subproblem, is to further improve the placement’s solution 

quality. It is more constrained than the global placement as it optimizes the objectives 

and produces a legal placement. It usually uses more accurate models such as half-

perimeter wirelength. Compared to legal placement there has been much less work in 

terms of final placement. At the following paragraphs there will be represented the 

most significant methods of final placement. 

A classification of final placement methods is difficult because they may utilize a 

number of different algorithms within the same method, and some amount of 

legalization may be inherent in the proceeding global placement. There tends to be 

five main categories of techniques used more frequently, or a combination of them.  

 The first is the network flow methods. In these methods a transportation 

problem is solved using a minimum cost flow or shortest path algorithm. The 

core area is divided into core bins, and density values are calculated for each 

bin based on the cell area in it. The cost of moving a cell to another bin is 

calculated according to the objective function. Generally, cells are moved 

from the densest bin to the less dense bins, following paths that result in the 

least degradation of placement quality.  

 The second category, min-cut methods, separates the global placement into 

sets of equal number of paths and uses partitioning techniques to minimize 

their interconnections.  

 The third category, linear placement methods, optimizes a linear arrangement 

of cells within a single row.  

 Another basic category, random methods, such as one based on simulated 

annealing, randomly moves around locally to improve some objective 

function. 

 At last, some greedy approaches are used for wirelength optimization in the 

final placement stage. 

More specifically, final placement can be divided in two steps, legalization and 

detailed placement wirelength optimization.  

4.2.1 Legalization 

Given an illegal placement (constraints described in chapter 1), legalization is the 

process that eliminates all overlaps by perturbing the modules as little as possible. 

Removing overlaps is the first challenge for a detailed algorithm. The common 

technique for removing overlaps is by stacking cells along rows or spreading out cells 

within all placement bins. Another approach is stacking cells row by row without 

inserting white space and without consideration of the imbalance. This approach was 

first met in Feng Shui algorithm.   
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In a different method that was met in Domino algorithm, an overlap-free compact 

placement is constructed by growing the placement like a crystal region by region 

from left to right.  

Another approach grows the placement cell by cell from left to right and it performs a 

less restrictive version of packing cells to the left, introduced in Tetris algorithm. 

Sometimes, detailed placement is separated in two stages with a coarse legalizer such 

as Mongrel making substantial improvements in overlap removal before a fine-grain 

legalizer is finally used. 

 

4.2.2 Local improvement 

Minimizing wirelength or other objectives during detailed placement stage often is 

done by swapping target cells from different rows. Other cells in these rows might 

have to be shifted in order to remove the possible overlap or white space. 

Some placement tools consider only any combination of cells’ order within one single 

row. Domino improves the current wirelength driven placement solution iteratively.It 

also reduces overlaps by separating the core area into bins and solve the problem 

locally, each of which is formulated as a transportation problem solved by network 

flow methods. Then only within a row cell swaps are allowed, avoiding extensive 

shifting of cells. Another placement technique proposes using dynamic programming 

approaches to separate the cells within a row into two groups dynamically changed, 

and finally rearrange them with a near optimal way in the row. However this 

technique has extra complexity for multiple numbers of rows.  Capo uses a branch-

and bound end placer to find the best permutation of cells in a small region. It divides 

and stitches white space with cells if there is white space with the region, thereby 

distribution the cells in the region evenly. 

Some placement use cells’ swapping between different rows. For instance, during the 

Dragon2000’s detailed placement swaps cells in different without any consideration 

of objective value’s changes, and in most of the cases other cells have to be shifted to 

refine the placement, which sometimes results worst placement solutions. Another 

approach that was met in FengShui, swaps cells in different rows only when this swap 

results in no overlap with other cells in order to avoid shifting other cells. However 

these movements limit the effectiveness of inter-row cell swaps. Another related issue 

is that the calculation of accurate wirelength changes for shifted cells might be 

computational expensive. Timberwolf uses estimated wirelength changes of those 

shifted cells to reduce computation cost. 
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4.2.3 Simulated annealing  

As introduced in previews paragraph Simulated annealing (SA) is a generic 

probabilistic method for the global optimization problem. It results a good 

approximation to the global optimum of an objective function in a large, discrete 

search space with many local minima. In many cases Simulated annealing may be 

more efficient than any other heuristic. 

 The main idea of this algorithm has its roots in annealing in metallurgy, a technique 

uses heating a material up to a critical temperature and controlled cooling it to 

increase the size of its crystals and change properties such as hardness and ductility. 

The heat treatment make the atoms unstuck from their electron shell with the 

minimum internal energy and wander randomly through states of higher energy. 

Then, with the controlling cooling, atoms try to return in low internat energy states 

and sometimes lower than the initial one. 

Simulated annealing is one of the most well developed placement methods available. 

It is used in placement as an iterative improvement algorithm. Given an initial 

placement, a change is made by moving a component or by swapping locations in two 

components.  

 

 

 

 

 

 

 

 

 

All moves that result in a decrease in cost are obviously accepted. Moves that result in 

an increase of cost are accepted with a probability that decreases over the iterations. 

The analogy to the actual annealing process is heightened with the use of a parameter 

called temperature T, which parameter controls the probability of accepting moves 

with increased cost. The initial value of the temperature in the algorithm is very high 

which gradually degrades during the process so that the moves that increase cost have 

lower probability of being accepted. Finally, the temperature reduces to a very low 

value which causes only moves that reduce cost to be accepted.     

By using this process simulated annealing can exceed local minimums and find the 

global minimum or near global minimum solutions. Parameters and functions used in 

Algorithm Simulated-Annealing 

Begin  

 temp=Init-Temp; 

 place=Init-Placement; 

 while(temp>Final-Temp)do    

  while(inner_loop_criterion = False) 

new_place=Pertrub(place); 

   ΔC=Cost(new_place)-Cost(place); 

   if(ΔC<0) then 

    place=new_place; 

   else if(Random(0,1)>e
ΔC/temp

)then 

    place=new_place; 

  temp=Schedule(temp); 

End  

 

    

  

Picture 13: Simulated Annealing algorithm. 
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a simulated annealing algorithm determine the quality of the placement. These include 

the cooling schedule consisting of initial temperature, final temperature and the 

function for changing temperature. A good choice of parameters and functions can 

result in a good placement in a relatively short time. 

The method was independently described by Scott Kirkpatrick, C. Daniel Gelatt and 

Mario P. Vecchi in 1983, and by Vlado Černý in 1985. The method is an adaptation 

of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample 

states of a thermodynamic system, invented by M.N. Rosenbluth in a paper by N. 

Metropolis in 1953. 

Simulated annealing is used mostly in detailed placement; nevertheless Sarrafzadeh 

and Wang use this method on a global placement after the placement area is 

partitioned into bins. Each move in the simulated annealing implementation of them is 

a swap of cells between bins. The size of the grid is determined from analysis of the 

circuit. 

The method was also used in Dragon algorithm also by Sarrafzadeh and Wang at the 

stage of the detailed placement. The first stage of the placer in consists of a 

hierarchical approach. The placement area is recursively divided into a 2x2 bin 

structure. This recursion ends when there are only seven components in each bin. At 

each level of the hierarchical algorithm a bin swapping algorithm attempts to swap the 

contents between neighboring bins to improve the placement. 

4.2.4 Greedy Approaches 

Greedy approaches, usually, check every possible swap of cell or group of cells, in 

order to find the best position for them by respecting the local constraints set. 

Detailed placement can also be met as final or absolute geometrical placement. The 

amount of detailed placement depends on the type of global placement algorithm 

used. In difference to the global placement stage, detailed placement does not attract 

much attention due to its relative low run-time complexity. However, a bad detailed 

placement may fail to preserve or improve the quality of a good global placement. In 

this chapter there will be reviewed several techniques that remove residual overlaps 

that remain after global placement and improve further the half the total wirelength 

locally, in the detailed placement stage. 
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4.3 Placement Algorithms 

In this section very significant placement algorithms, which are usually the basis of 

optimized ones, are described. Their main goal is to reduce total wirelength. 

4.3.1 Min-cut  

The min-cut algorithm developed by Breuer, in 1977, is based in partitioning to 

perform placement and it is a global placer. In this method the circuit given is 

repeatedly divided into submodules. Correspondingly the layout region is divided 

horizontally or vertically to accommodate the submodules. Partitioning is repeated 

until its partition is occupied by a single gate or a small submodule. In case of former, 

the placement is legal with no overlaps. In case of latter, legalization is performed in 

order to find unique location for the cells. The pseudocode is presented below 

 

 

 

 

 

 

 

 

 

Breuer suggested that the cutsize should be minimized during the partitioning, which 

minimizes the overall wirelength, and presented several “cut orientation sequences” to 

decide how to partition the region. In the following pictures it is presented how the 

min-cut works with quadrature placement, where the placement region is divided into 

four partitions by a pair of vertical and horizontal cut. 

 

Variables: queue of placement bins 

Initialize queue with top-level placement bin 

1. While (queue not empty) 
2.         Dequeue a bin 
3.         If(bin small enough) 
4.              Process bin with end-case placer 
5.         Else 
6.              Choose a cut-line for the bin (including        

direction) 

7.              Build partitioning hypergraph from netlist and 
cells contained in the bin 

8.              Partition the bin into smaller bins 
9.              Enqueue each child bin 

 

Picture 13: Min-Cut algorithm. 
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Picture 15: Min-Cut example [17] 
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4.3.2 Gordian 

Gordian developed by Kleinhans et al., in 1991, is one of the most successful 

algorithms that adopt quadratic methods into circuit placement problem and it is a 

global placer. In Gordian, the problem is formulated as sequence of quadratic 

programming, derived from the connectivity information of the circuit. Gordian is an 

iterative algorithm, so in every iteration, a new set of constraints are imposed in order 

to limit the freedom of movement of the cells, causing the placement solution to 

reduce the amount of overlap of the cells. During Gordian, top-down partitioning is 

performed. At this step the “center of gravity” constraint is satisfied by the cells 

grouped into the same partition, i.e. the center of the gates’ partition are drawn by 

location’s partition center. Iterations ate repeated until the size of the partitions is 

small enough. After Gordian terminates there may be overlap among the cells. 

Therefore a post-process such as Domino, which will be analyzed at a later stage, is 

performed in order to legalize the placement. The pseudocode is presented below 

 

 

 

 

 

 

 

 

The goal of Gordian is reduce the total wirelength. In order to do so, it uses a 

quadratic objective function, to minimize the squared wirelength among the cells. 

Gordian odds from other QP/partitioning based placers, as it uses QP as a global 

optimizer, instead of local regions. 

 

A run of Gordian placement is displayed in the pictures below. 

Gordian Procedure: 
l := 1 
global_optimize( l ); 
while ( there exists |Ml|>K ) 
      for each r 
      partition( r, r’, r’’ ); 

l ++; 
setup_constraints( l ); 
global_optimize( l ); 
re-partition( l ); 

final_placement( l ); 
end_procedure; 
 

Picture 16: Gordian algorithm. 
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Picture 17: Gordian example[17] 

 

 

4.3.3 TimberWolf 

TimberWolf algorithm developed by Sechen and Sangiovanni-Vincentelli in 1985 and 

is a detailed placer based on Simulated Annealing. A hierarchical placement approach 

is used, where the netlist is clustered twice in a recursive function. The second-level 

clusters are first placed during the high annealing temperature region. Then these 

clusters are decomposed to reveal first-level clusters, which are refined during mid 

annealing temperature region. Finally, first-level clusters are decomposed to the 

original gate level netlist, which is placed during the low annealing temperature. 

Since the overlap removal is a time-consuming process, TimberWolf allows cell 

overlap and tries to minimize it by utilizing a penalty function. In case the overlap is 
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not removed, cells are shifted at the end of the process to obtain a legal placement, 

therefore the solution quality degrades.  

Because of the degradation, the authors of TimberWolf 7.0, Sun and Sechen in 1995, 

proposed a way to maintain overlap-free placement during annealing, while 

performing cell shifting efficiently. Steps are presented below. 
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Picture 18: Timberwolf example[17] 

 

4.3.4 Domino 

Domino is a detail placer pioneered by Konrad Doll, Frank Johannes and Kurt 

Antreich in 1994.Domino uses as input a placed netlist, with or without overlap, such 

as the output of Gordian. Then an iterative process produces a sequence of 

intermediate placements. In each iteration, an improved placement is generated 

without overlap, as the placer divides the layout into regions and solves a set of local 

subproblems. For each region, cells are assigned into new positions by formulating a 

transportation problem, according to a cost function approximating wirelength. 

Domino pseudocode is described below. 
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The basic idea is that through iterations Domino can avoid local minimum that may 

degrade the final placement solution.  

 

 

Picture 20: Domino example 

4.3.5 FastDP 

Fast DP is a detail placer pioneered by Min Pan, Natarajan Viswanathan and Chris 

Chu in 2005.  FastDP uses a legalized placement as input and consists of 4 

techniques. The first one is Single-segment clustering to obtain a good starting 

solution for the main steps of the algorithm. Then there is a loop that performs Global 

swap, Vertical swap and Local reordering until there is no significant wirelength 

improvement. Finally Single-segment clustering is reapplied to get better position for 

the cells within the segments, without changing their order. 

Global swap is used to find the “optimal region”, that is the region where the 

wirelength is optimal. After the optimal region is found, penalty on overlap is 

introduced, as there may be the possibility that the gate cannot be moved to this area, 

as the initial placement is legal. 

Algorithm Domino 

Begin 

Initial placement; 

while(improvement) 

 for (all_regions) 

  get_cells; 

  provide_locations; 

  solve_transportation_problem; 

  move_cells; 

 end 

end 

adjust_row_lengths; 

swap_cells; 

End 

 
Picture 19: Domino algorithm. 
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To increase the possibility of a good swap, Vertical swap is a technique similar to 

Global swap but not such greedy. With this algorithm local vertical errors are fixed, 

but for local horizontal ones Global swap is too expensive. Therefore a Local 

reordering is introduced where all possible left-right ordering of the cells is tried and 

returns the best wirelength. The pseudocode of FastDP is presented below  

 

 

 

 

 

 

 

 

4.3.6 Proud 

The eigenvector analysis approach is far too slow on large circuits. Instead a faster 

quadratic clique formulation can be used. The main idea is based on reformulating the 

problem as a linear resistive network problem which can be optimized by solving a 

system of linear equations. This is done with Successive Over Relaxation (SOR), 

which method is a predecessor of optimizing by Conjugate Gradients. As mentioned 

earlier such a placement is likely overlapping and therefore a partitioning method is 

used. A vertical cut line is moved from left to right until the sum of the area of the 

modules on the left of the cut line is roughly half. This divides the set of modules in 

two groups. The modules are confined to two regions each corresponding to half the 

core area and the method now optimizes each group while considering the modules of 

the opposite group as fixed. Their coordinates are simply projected onto the region 

boundary. Proud is related to the graph partitioners but use the analytic placement to 

guide the cut instead of the min-cut objective. The method proceeds recursively on 

each region alternating between vertical and horizontal cut lines until only one 

module remains. A heuristic four-way partitioner is also proposed and test runs show 

that the four-way partitioner gives improved netlength but often uses twice the time or 

more. 

4.3.7 The Vygen’s Method 

Another partitioning method was published by Vygen. First a quadratic placement is 

calculated by minimizing the clique netlength. Then the circuit is divided into four 

parts and the position of the modules from the quadratic solution is used to determine 

into which of the four parts each module is to be placed. 

Algorithm FastDP 
Begin 
 
Perform Single-Segment Clustering 
Repeat 
 Perform Global Swap 
 Perform Vertical Swap 
 Perform Local Re-ordering 
Until no significant improvement of wirelength 
Repeat 
 Perform Single-Segment Clustering 
Until no significant improvement of wirelength 

Picture 14: Fast DP algorithm. 
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The splitting algorithm gives close to minimal total movement of the modules and 

runs in linear time. The process is repeated but for the subsequent quadratic 

optimizations the nets are split so that no net cross a region. If a net crosses a 

boundary of a region an artificial module is placed on that boundary. This leads to a 

new formulation 

for each net on each region containing only articial and ordinary modules of that 

region. 

Before partitioning at each level a re-partitioning step is also conducted on each 

sub-grid in the current grid. The modules of the   subgrid are thrown together 

again and a quadratic problem for the sub-grid is solved. After partitioning this 

leads to a new placement of the modules in the   sub-grid which is accepted if it is 

better than the old one. Extra care is taken to avoid situations where all modules in the 

same region end in the same spot. This is done by introducing a constraint that makes 

the center of gravity of the modules be at the center of each region. Vygen's algorithm 

can also place large macro modules in combination with standardcells. 

This is done by including them in the partioning step. When regions become too small 

to contain the macros a branch-and-bound algorithm is used to place all macros within 

the region while minimizing total movement. The algorithm is similar to that of 

Onodera et al., but here branching occurs on the two most overlapping modules. The 

nodes of the branch-and-bound algorithm are linear programs which are duals of 

minimum cost flow problems and can be solved in  time. 

The final phase of the algorithm considers moving modules between the final regions. 

Regions are characterized as having too many modules if they cannot contain the 

modules. Also some regions may have surplus space. The movement of modules is 

modeled as a minimum-cost-flow problem between adjacent regions. A knapsack 

problem determines which modules to move. Vygen’s method can handle both 

standard-cells and fixed-cell-layout. 

 

4.4. Performance driven Placement 

 

The delay at chip level, which depends on the interconnection network, has a major 

role in determining the performance of the chip. As technology advances, now it is at 

deep sub-micron designs, the size of the chip decreases and the wires become a major 

factor for high-performance chips. The placement algorithms for high performance 

chips have to generate placements that allow routers to route nets within the timing 

requirements. These problems are called performance driven placement. 

These algorithms can be classified into two categories: 
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 Net-based approach 

 Path-based approach 

Net based approach, tries to route the nets to meet the performance constraints on 

individual nets and the algorithm has to decide the performance requirement for each 

net. On the other hand, the path-based approach, takes account of the critical paths in 

the circuit and tries to place the blocks in such a manner, that the path length is within 

its performance constraint. 

 

4.5 Trends 

In Very Deep Sub-Micron designs, placement problem is considered much more than 

simply achieving the routability of the design and minimizing the chip die area. 

Several other critical issues such as timing, voltage drop, even power distribution are 

increasing the complexity of the placement problem exponentially. Since placement 

takes place in the early phase of the physical design, lot of attention it is paid. 

Algorithms to estimate the wirelength of the circuit are becoming part of placement 

algorithms, because the accurate estimation help to fix problems in placement step 

and not in routing step. Estimation of the wirelength helps to understand the 

routability of the design. 

The estimation of the wirelength is discussed in: 

1. Early placement to obtain better Wire Load Models (WLM) for synthesis, as it 

is a parameter for the delay estimation during synthesis. 

2. Placement for Crosstalk avoidance 

3. Placement for minimizing clock-skew 

4. Placement for even power distribution 
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5. Wirelength driven placement  

In the following chapter are presented the main features and important properties of 

the code that was implemented, in order to address some of the major problems seen 

in modern approaches of the placement problem. After that, our placement algorithm 

will be presented. 

 

5.1 Preparation 

In the following sections we will make a detailed description of the files that are used 

as input at the platform developed, and the output of it as well as industrial tools that 

were used. 

The algorithm was implemented using the programming language C.  

5.1.1 Input files 

The input of the algorithm we developed is according to the standards being used by 

industrial placement tools and described in chapter 2: 

 Verilog netlist 

 Technology library: Nangate 45nm Open Cell Library, which is an 

open cell library 

 I/O pin placement: The positions of I/O pins are being placed 

randomly by the algorithm or a file that described their position can be 

given as input. 

 

5.1.2. EDA Tools  

The tools being used by this thesis is Synopsys’s Design Compiler that synthesizes the 

RTL netlist and produces the Verilog netlist according to a usual script used for 

synthesis. 

For the placement of the circuit were used an industrial tool Cadence’s Encounter and 

an academic tool, Capo, which is among the best academic tools for placement. These 

tools were used for the comparison of the results.   

 

5.1.3 Output 

The output of our algorithm is a .txt file that describes the final position of the cells of 

the IC. The user has the capability to see the results through graphic representation by 

using the GLUT package. 

 

5.2 Levelization – A wirelength driven placer 

In this section we will present the approach we have followed to implement a 
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wirelength-driven placer, a tool responsible for the proper placement of the cells of a 

circuit in such way that the total wirelength required for the interconnection of 

components to be as minimum as possible. 

The algorithm receives as input a netlist and the technological library used for the 

synthesis. In the first step of the algorithm these files are parsed and the useful 

information they contain is being stored in appropriate data structures, in such way 

that they can be fast tracked. 

Thereafter, the size of the total surface, on which the placement algorithm is going to 

place the standard cells, is calculated. The input and output pins are considered as 

entities without actual dimensions which are placed in the region at the periphery of 

our space. 

The total surface location can either be defined by the user, or the default event to be 

calculated using the following formula: 

placement_area = (1+(1-utilization)) x total_cell_area 

where utilization is at 90% in our tests, because we want to push the algorithm and the 

tools to their limits. 

The calculation of the sides of the rectangle to be used is based on the 

placement_area. The gates to be placed are standard cells, i.e. the height is fixed and 

they differ only in their width. Therefore, the height of the rectangle must be a 

multiple of the height of the standard cells.  

At the next step the initialization of the coordinates of input and output pins is taking 

place, according to the methods described above. 

Then the basic code starts. As first step is the levelization process which is described 

later in this chapter. After finding the level of each gate, the gates are being placed in 

the area according to their level. Here it must be mentioned that the selection 

according to the level can be done with three different methods, from the first to last, 

from the last to the first or simultaneously. These three different methods provide 

different results, due to the complexity of the circuit. Therefore, it was decided that 

the algorithm should run all the methods and as result it provides the best. The 

algorithm’s steps will be presented at a later section. 

Thereafter a legalization step is taking place. The legalization being performed is 

similar to ABACUS legalizer. At the final step, a detail placer similar to FastDP, is 

being performed. 

All these steps will be analyzed in the sections following bellow. It must be 

mentioned that for the comparison of the results is done by comparing the total 

wirelength of the circuit, which is calculated by the bounding box metric described in 

chapter 3.  

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
05/05/2024 20:36:46 EEST - 3.135.189.236



 

55 

5.2.1 Levelization technique 

 

The levelization technique is used when logic gates must be evaluated in an order 

such that a gate will not be evaluated until all its driving gates have been evaluated. Fr 

circuit N, the evaluation order: 

G1→G2→G3→G4 

satisfies this requirement.  

The logic levelization algorithm can be utilized to produce the desired gate evaluation 

order. At the beginning of the algorithm, all the primary inputs are assigned level 0, 

and all the primary inputs fanout gates are appended to the first-in/first-out queue Q 

that stores the gates to be processed. While Q is non-empty, the first gate g in Q is 

popped out. If all the driving gates of g are levelized and the maximum level is l, g is 

assigned level l+1, and all the fanout gates of g are appended to Q; otherwise, g is put 

back in Q to be processed later. The levelization process repeats until Q is empty. 

Note that for gates assigned the same level, their order of evaluation does not matter. 

This levelization process is also referred as “rank ordering”.  

 

 

 
Picture 22: Levelization algorithm 

 

 

The levelization process for circuit N is shown step by step below. At the begging, 

primary inputs are assigned level 0, and their fanout gates G1 and G2 are appended to 
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Q. In step 1, G2 is not ready and put back to Q because G1 is not levelized yet. In step 

2, G1 is assigned level 1because it is driven by level 0 primary inputs only. At the end 

of the process, the following orders are produced: 

 

G1→G2→G3→G4 

 

G1→G3→G2→G4 

 

 

Picture 23: Levelization example [42] 

 

5.2.2 Level placer 

Lever placer is a constructive wirelength driven placer. The main idea of this 

algorithm is to start placing the standard cells according to their levelization value, 

increasingly. The explanation for that is that when primary inputs and outputs are 

placed, level 0 gates that are connected only with inputs are placed first, nearby the 

primary inputs, then level 1 gates that are highly connected with primary inputs and 

level 0 gates are placed closed to both etc. The effect of this algorithm, is that highly 

connected objects are placed closed, and with a constructive way it finds a near 

optimal wirelength solution. Further if primary inputs are placed-fixed on one side of 

the core area and the primary outputs are placed-fixed on the opposite, a vertical line 

could separate the core area into two parts, where ideally every module of the right 

part could have greated level value of every cell of the left part.  
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Picture 24: The first picture shows a cell placement. The second picture shows a cell placement and 

metal routing. The third picture shows the wires from inputs to cells. The commercial tool for this 

circuit gives great wirelength to these wires. 

 

Above is shown a fixed pins wirelength driven placement, from the Cadence 

SocEncounter tool. The most of net that connect the primary inputs with gates grow in 

the left half of the core area. This fact leads to the main idea of the levelization 

algorithm that brings the highly connected cells near the primary inputs, and the cells 

that have greater level value on the right of them. 

 

Level placer algorithm’s steps (step 4 changes according to the level selection 

mentioned earlier): 

 

 

1. Parsing the netlist, and computing the core area to 90% utilization of the total 

standard cell area calculated from the using standard cell area, and ratio 1.   
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2. Seperating the netlist's modules in levels, with the levelization technique 

described above. 

3. Pins are considered as fixed before the algorithm starts. The optimistic way for 

this algorithm leads to placing the primary inputs on one or two sides of the 

core area, and the outputs on the opposite side/sides. The pesimistic is placing 

the primary input and outputs randomly, peripherally of the core area. 

4. Start placing modules with the smallest level number first, finding a non-legal 

position with the smallest bounding box wirelength. These positions are 

calculated such as the x of the cell to be the expected value of its inputs’ x, and 

the y of the cell to be the legal expected value y of its inputs’ y – a legal 

standard row position-.   

5. After all modules are placed, a legalization algorithm is performed. 

 

The fourth step described above, is for the FIRST LEVEL placer. The second one 

called LAST LEVEL placer, makes exactly the same function but it starts for the last 

level to the first. Finally, there is the MIXED LEVEL placer that places 

simultaneously 2 levels one from the smallest and one from the higher level, until the 

middle level is reached.    

 

5.2.3 Legalizer 

The legalizer used is similar to ABACUS. The cells are placed by the LEVEL placer 

at a legal core row, but they may have overlap. In order to fix the overlap a legalizer is 

taking place. The legalizer starts by sorting the cells of a row and then tries to find a 

legal position in the row. If there is no space in the row the cell is sent one row up, 

with the same coordinate. This is repeated for each row until there is no overlap. The 

pseudocode is: 

  

 

 

 

 

 

 

Picture 15: Legalization algorithm. 

 

By using this algorithm, the final placement, is legalized and our circuit is ready to 

advance at the detailed placer for further improvement of the total wirelength. 

 

 

1. For each row: 
2. Sort the cells by their x-coordinate 
3. For each cell 

1. Place from the left to the right making the minimum movement, as possible 
2. If overlap, solve by moving both cells 
3. If no space in row, move the right cell one row up, with the same x-

coordinate. 
4. Until no overlap in row 
5.Repeat 
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5.2.4 Detail placer 

As last step of the algorithm we developed is a detail placer similar to FastDP. The 

algorithm has as input the legalized placement produced by the legalizer above. The 

first thing that does is a global swap, i.e. the cells are being replaced in the area 

according to the best position to be placed, as described in FastDP. Then a vertical 

swap is taking place, i.e. the cell is replaced at its best y-coordinate. After that, a local 

swap, in the row, is being performed in order to place the cell at its best position in the 

row. Finally, the legalizer described above takes place in order to make sure that there 

is no overlap. The pseudocode is: 

  

 

 

 

 

 
Picture 16: Detailed placement algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Perform Global swap, until no further wirelength 

improvement. 

2. Perform Vertical swap, until no further wirelength 

improvement. 

3. Perform Local swap, until no further improvement.  

4. Legalize 
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5.2.3. Synopsys 

 

At this section we present the algorithm as whole. 
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Picture 17: Our wirelength placement solution. 
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6. Benchmark Circuits 

 

The determination of the performance of an EDA tool is one of the major issues to be 

faced by a designer. One widely distributed way to control the final result is the 

selection of appropriate benchmark circuits, which will be given as input to the 

software. In this thesis are used the ISCAS '89 and ITC '99 benchmark circuits. In the 

remaining part of the chapter basic characteristics of these circuit designs will be 

presented, as well as, statistical data concerning the number and type of modules that 

the circuits are consisted of.  

ISCAS '89: The circuit descriptions of ISCAS '89 circuits are provided in both 

structural and behavioral in form. All these high-level design models have been 

proven very useful as research tools in many areas of digital circuit design and more 

particularly in test generation, the procedure of timing analysis and technology 

mapping. In the official documentation of the benchmarks is given a set of additional 

information, beyond the descriptions in language material. We will limit ourselves to 

present at table 1 the number of primary inputs / outputs and cells contained in each of 

the circuits in this group. 

 

Circuit FF’s PI’s PO’s 

S298 14 3 6 

S349 15 9 11 

S382 21 3 6 

S386 6 7 7 

S400 21 3 6 

S420 16 19 2 

S444 21 3 6 

S510 6 19 7 

S526 21 3 6 

S641 19 35 24 

S820 5 18 19 

S832 5 18 19 

S838 32 35 2 

S953 29 16 23 

S1196 18 14 14 

S1238 18 14 14 

S1423 74 17 5 
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S1488 6 8 19 

S1494 6 8 19 

S5378 179 35 49 

S9234 211 19 22 

S35932 1728 35 320 

Table 1: ISCAS circuits 

ITC ’99: The need for benchmark circuits which will not be quite small or quite 

simply, led to the creation of a suite that includes a set of digital designs, which were 

collected from companies whose research coinciding with the subject area of digital 

integrated circuit design. The key features of the ITC '99 benchmark circuits are: 

• Circuits are completely synthesizable using Synopsys Design Compiler. 

• Does not contain compiler specific instructions. 

• All packages required by the descriptions of circuits in HDL language is either 

arithmetic packages either IEEE standard logic packages. 

• The global reset signal is always available. 

The circuit descriptions, contained, vary from simple "monolithic" circuits (1 entity, 1 

process) to multiple circuits and processes. More specifically, one of the circuits 

contained in this group are three times larger than the largest ISCAS '89 (37 inputs, 

69.917 gates, 3.320 flip-flops). 

Below is a table showing the number of gates, primary inputs / outputs and flip-flops 

contained in each of the circuits. 

Circuit  Gates PI’s PO’s FF’s 

B01 49 2 2 5 

B02 28 1 1 4 

B03 160 4 4 30 

B04 737 8 11 66 

B05 998 1 36 34 

B06 56 2 6 9 

B07 441 1 8 49 

B08 183 9 4 21 

B09 170 1 1 28 

B10 206 11 6 17 

B11 770 7 6 31 

B12 1.076 5 6 121 
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B13 362 10 10 53 

B14 10.098 32 54 245 

B15 8.992 36 70 449 

B17 32.326 37 97 1.415 

B18 114.621 36 23 3.320 

B19 231.320 21 30 6.642 

B20 20.226 32 22 490 

B21 20.571 32 22 490 

B22 29.951 32 22 735 

Table 2: ITC circuits 
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7.  Experimental Results 

 

ISCAS Circuits MIXED FIRST LAST BEST 

S27 82,662941 78,941811 81,034996 FIRST 

S298 484,75824 489,660095 501,94043 MIXED 

S344 1366,25281 1417,90027 1366,77551 MIXED 

S349 1174,27332 1178,24194 1038,33289 LAST 

S382 810,147583 767,368469 849,434204 FIRST 

S386 928,044739 907,46637 877,853455 LAST 

S400 872,505493 877,608887 873,04248 MIXED 

S420 1322,49951 1366,70874 1299,15405 LAST 

S444 1111,41101 1126,54688 1026,45447 LAST 

S510 2247,78809 2226,97461 2234,17334 FIRST 

S526 1082,03125 1079,66345 1071,71106 LAST 

S641 2263,92554 2253,85767 2225,94605 LAST 

S713 2234,65845 2228,89575 2064,60107 LAST 

S820 2133,98071 2135,8667 2089,27026 LAST 

S832 2512,25293 2572,36523 2480,63281 LAST 

S838 3916,86548 3986,73535 3984,48096 MIXED 

S953 4031,30322 4125,55078 3904,25781 LAST 

S1196 5364,98438 5439,57031 5412,51563 LAST 

S1238 5581,46826 5512,43994 5449,56494 LAST 

S1423 6107,44092 6062,67773 6910,09229 FIRST 

S1488 5965,02637 5958,03223 5908,26514 LAST 

S1494 7431,26807 7426,18652 7337,23633 LAST 

Table 3: Levelization algorithm results 

 

ISCAS Circuits 

 

Capo Industrial placer LEVEL PLACER 

S27 69,946663 74,341652 78,941811 

S298 380,065338 402,505768 484,75824 

S344 877,462524 802,012634 1366,25281 

S349 882,345093 720,410034 1038,33289 

S382 576,385498 589,55542 767,368469 

S386 561,108459 554,263306 877,853455 
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S400 590,660645 582,493652 872,505493 

S420 820,19696 849,882202 1299,15405 

S444 765,115967 745,48584 1026,45447 

S510 1146,781494 1093,166382 2226,97461 

S526 732,682495 668,801941 1071,71106 

S641 1395,674927 1255,704224 2225,94605 

S713 1393,410156 1240,200928 2064,60107 

S820 1341,569336 1212,894043 2089,27026 

S832 1479,520142 1436,810181 2480,63281 

S838 1821,942749 1513,420532 3916,86548 

S953 2657,027344 2476,232666 3904,25781 

S1196 3191,276367 2729,357178 5412,51563 

S1238 3470,307861 2965,37915 5449,56494 

S1423 4178,119141 3505,828613 6062,67773 

S1488 3627,42627 3255,343994 5908,26514 

S1494 4140,110352 3648,336914 7337,23633 

Table 4: Results comparison 

Our results as are seen in the table above are not promising at first glance. 

Nevertheless let us give a clearer overview of the results as was understood of our 

experience.  

Capo was introduced in 1999, and the commercial tool in the decade of ’90. They 

have years of experience, work and improvement to achieve these results. However, 

comparing Capo editions we have seen great improvement in its results, up to 40%. 

We also can see from the table that Capo is better than the commercial tool. It can be 

explained by considering that commercial tool tries to find a multi-metal, free of 

violations result. It tries to leave space between nets and pins to avoid DRC and other 

violations.  

There are many reasons to explain our results. First of all the other tools use a 

combination of many global placement algorithms, to achieve a good result for 

placement, in difference with our placement tool that uses only one global placement 

algorithm, which is first introduced by our team.  
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On the other hand, our global placement algorithm is constructive. That means that it 

runs in O(n), in difference with iterative algorithms that that run in O(mn) where m is 

the number of iterations. Additionally, partitioning and clustering also have O(mn) 

complexity. The disadvantage of constructive algorithms is that they stack in local 

minima, which can get passed with iterative algorithms like simulated annealing, and 

lead to a better result.  

Another thing of consideration is that how pins are placed. Commercial tool firstly 

places the cells, and at the end places the pins in coordinates that give the minimum 

wirelength, and the same stands for Capo. Our tool uses fixed pins taken their 

coordinates from the commercial tool. This way our pin placement is not optimal. 

Moreover, levelization technique is stand in the fact that cells are placed from left to 

right for level 0 to n, so it would be for efficient if all input pins were left and all 

output pin were right. But we used commercial tools coordinates for pins to count the 

worst case of our placement tool, which exists by non-optimized pins. We wanted our 

results to be realistic about modern circuits which have many primary inputs and have 

them spread in every side of the circuit, and modern circuits that are not rectangle 

shaped. 

In chapter “Future work” we suggest some parts that could be inserted in our tool, in 

order to improve further wirelength, and give more competitive results for wirelength. 
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8. Power-aware driven placement 

 

In the context of IC power optimization there are two different ways to reduce the 

power consumption of a chip; static power and dynamic power. Static power is the 

power dissipation for DC supply and is due to leakage current. Dynamic power is the 

power dissipation from the change of a transistor’s state. 

Static power does not depend on the cell location; therefore placement cannot affect 

static power. Multiple voltages can be used in order to reduce the static power 

consumption, by changing voltage-island assignments. On the other hand, dynamic 

power depends on interconnect lengths, which are determined by placement. To 

support higher clock frequencies, modern designs are heavily pipelined. In order to 

support design scaling, placers must optimize 

 Hundreds of signal nets, each consuming a small amount of power. 

 Clock networks with significant power consumption. 

Static power reduction techniques are trading positive timing slack for power. When 

voltage-islands are present, cells can be moved closer to voltage sources in rows and 

in regions. When in rows are in interleaving rows of high and low Vdd rows. When in 

regions, cells are powered by the closest voltage island. There are and approaches that 

include cell hierarchy, clustering and locality. 

Dynamic power consumption can be accomplished by reducing net activity, or 

optimizing register locations, or optimizing the clock tree. These classes are not 

mutually exclusive. 

Later, in this thesis are referred only dynamic power techniques, as our idea is about 

reducing total wirelenght. 

8.1. Power aware placement review 

In this section are presented three algorithms based on weights on signal nets. 

8.1.1.”Temperature aware global placement” 

This algorithm, pioneered by Obermeier and Johannes at TUM, approaches the 

temperature awareness by the power dissipation. More specifically they try to 

minimize the total power dissipation and arrange the cells in a way such that the 

resulting temperature profile is flatten. 

So they expressed the power dissipation of a logic gate as  

P= 0.5*Cload*Vdd
2
*f*E 
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on average. Vdd is the voltage of the power source, f is the clock frequency and E is 

the switching rate. Cload = Cpin + Cnet, and Cnet = lnet * c, where lnet is the length of the 

Steiner tree and c is the capacity per unit length.  

Then a temperature analysis is performed, where power dissipation is used in the cost 

function. 

8.1.2. “Tabu search” 

Another approach for power driven placement is by using Tabu Search, thus by 

incorporating fuzzy logic in the design of aggregating function. 

At this algorithm, cost functions for wirelength and power consumption and timing 

are evaluated and co-exist in order to be optimized simultaneously. This is the reason 

of using fuzzy logic, to integrate these multiple, possibly conflicting objectives into a 

scalar cost function. The rule created is: 

IF a solution has 

SMALL wire length AND 

LOW power consumption AND 

SHORT delay 

THEN it is an GOOD solution. 

“Tabu Search is an elegant heuristic that proceeds by making iterative perturbations 

while preventing cycling to certain number of recently visited points in search 

space.”[45] 

 

Picture 18: Tabu search algorithm 
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8.1.3. Power aware placement 

One final approach for power placement is one that simultaneously performs activity-

based register clustering and activity-based net weighting. The first parameter reduces 

clock power by placing registers in the same leaf cluster of the clock trees close 

together and the second parameter reduces net switching power by assigning a 

combination of activity and timing weights to the nets with higher switching rates or 

critical timing.  

The net switching power dissipation can be modeled as P=kCV
2
a, where k is a 

constant, C is the total capacitance, V is the power supply and a is the activity factor. 

The power aware placement aims at reducing the net power by reducing the product 

Ca. 

So the power-aware algorithm combines the register clustering and the net activity-

based net weighting to simultaneously reduce the clock and signal net switching 

power. The picture 29 below represents the effect of the algorithm. 

 

Picture 199: Power aware placement steps. 

 

8.2 Our approach 

Our concept about the power aware driven placement is to try minimize  

P= V
2
 *f *Σk (Ck*afk) 

 where V is the supply voltage, f is the frequency, Σk Ck  is the summary of the 

capacitance for each node, called the total switch capacitance and af is the activity 

factor for each node. Additionally, Ck = Cgk +Cwk, where Cg is the capacitance of the 

gate and Cw is the capacitance of the wire of the interconnection of the gate. 

Therefore, the minimization can be done if we use af*wirelength as cost function. 

This can be achieved by using known placement algorithms such as GORDIAN and 

use as weight the cost function mentioned above. Unfortunately, we can’t present any 

results as our algorithm is not finished yet and the way of evaluation hasn’t been 

decided yet.  
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9. Future Work 

Our work can be used as a platform for developing new placement tools, academic or 

industrial. Nevertheless, there are a lot of things that can be implemented in order to 

improve this algorithm. All the work to be done is summed up bellow: 

 Implementation of additional methods for net modeling representation. 

 Use multi-net models while processing circuit. 

 Revise the existing placement algorithm and implement an iterative part, in 

order to avoid the local minimum that the constructive algorithm may have 

found. 

 Implementation of additional methods of legalization. 

 Implementation of an algorithm, that finds the global minimum wirelength. 

There is some work done about it, but we didn’t present any results, as there 

are a lot of things that must be reviewed. This algorithm can be used to check 

the quality of our final placement results. 

 Implementation of timing and power driven placement. 

 Creation of a graphical interface. 

 Implementation of a router for the design. 

 Parallelization of algorithms. 
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