
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ

Η/Υ, ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΚΑΙ ∆ΙΚΤΥΩΝ

Χρήση Μοντέλου Παράλληλου Προγραµµατισµού για Σύνθεση

Αρχιτεκτονικων

Μια εργασία που εκπονήθηκε από

τον Muhsen Owaida για τις απαιτήσεις του

∆ιδακτορικού ∆ιπλώµατος.

Επιβλέπων Καθηγητής: Αν. Καθηγητής, Νικόλαος Μπέλλας

Βόλος, Αύγουστος 2012

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Acknowledgement

The work of this dissertation has been one of the most significant academic challenges I

have ever had to face. Without the support, patience and guidance of the kind people around

me this dissertation would not have been completed.

First of all, my enormous debt of gratitude goes to my thesis advisor and mentor, Professor

Nikolaos Bellas. Throughout the period of my PhD studies, Professor Bellas was there for me

to actively support and guide me toward taking the best possible decisions and to develop to a

much better researcher. I am thankful for his patience and immense knowledge and help in

writing this dissertation. I am especially thankful to him for his mentorship and friendship

throughout these years.

I owe sincere and earnest thankfulness to my committee member, Professor Christos D.

Antonopoulos for his constant guidance and insightful comments which have been invaluable

on both an academic and a personal level, for which I am extremely grateful. It has been a great

privilege for me to work under his guidance.

I would like to express my sincere gratitude to my committee member, Professor Georgios

Stamoulis for his assistance and guidance in getting my PhD studies started. I would like to

thank also my colleagues and fellow students, especially Konstantis Daloukas and

Charalambos Antoniadis for their help and cooperation in my research. I would like to thank

the staff of the Department of Computer and Communication Engineering at the University of

Thessaly for their support and constant encouragement.

Finally, I wish to thank my family, who have always believed in me and helped me to reach

my goals. Their support forged my desire to achieve all that I could in life.

I would like to acknowledge the financial support of the Greek State Scholarship

Foundation (IKY) throughout the period of my PhD studies, which without it this research

would not have begun.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

dedicated to my family

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 i

TABLE OF CONTENTS

TABLE OF CONTENTS..I

LIST OF FIGURES ...IV

LIST OF TABLES ...VI

LIST OF ALGORITHMS... VII

CHAPTER 1 ... 1

INTRODUCTION.. 1

1.1 Background ... 1
1.1.1 Modern Parallel and Heterogeneous Computing .. 1
1.1.2 FPGA-based Computing Platforms .. 3

1.2 RESEARCH OBJECTIVE AND CONTRIBUTION ... 5
1.3 THESIS STRUCTURE... 7

CHAPTER 2 ... 9

SILICON-OPENCL TOOL FLOW ... 9

2.1 TOOL FLOW AND INFRASTRUCTURE .. 9
2.2 OPENCL PROGRAMMING MODEL .. 11

2.2.1 Overview .. 11
2.2.2 Computation Model... 12
2.2.3 Synchronization... 14
2.2.4 OpenCL Memory Structure .. 15

2.3 OPENCL TO C TRANSFORMATION.. 16
2.3.1 Logical Threads Serialization ... 17
2.3.2 Loop Fission .. 17
2.3.3 Variable Privatization ... 18
2.3.4 Output C function structure.. 20

2.4 LLVM COMPILER INFRASTRUCTURE .. 21
2.4.1 LLVM Intermediate Representation (LLVM-IR)... 22

2.5 RELATED WORK.. 24

CHAPTER 3 ... 30

ARCHITECTURAL TEMPLATE... 30

3.1 OVERVIEW ... 30
3.2 HIGH LEVEL ARCHITECTURE... 31

3.2.1 Hierarchical Structure .. 31
3.2.2 Interconnection network ... 33

3.3 PROCESSING ELEMENT (PE) ARCHITECTURE ... 35
3.3.1 Datapath and AGU Modules... 36

3.3.1.1 Functional Units.. 37
3.3.1.2 Storage Units... 38
3.3.1.3 Control Unit .. 39

3.3.2 Stream Interface Unit.. 40
3.3.2.1 Input Streaming Units .. 40
3.3.2.2 Output Streaming Units.. 44
3.3.2.3 Local Cache... 45

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 ii

3.4 CONTROL ELEMENT (CE) ARCHITECTURE ... 46
3.4.1 Functional and Storage Units... 47
3.4.2 Control Unit... 48
3.4.3 Streaming Interface... 49

3.5 EXECUTION MODEL .. 50
3.6 RELATED WORK.. 53

CHAPTER 4 ... 58

SILICON OPENCL BACKEND .. 58

4.1 BITWIDTH OPTIMIZATION .. 58
4.2 PREDICATION .. 60

4.2.1 Overview .. 60
4.2.2 Prior Work... 61
4.2.3 Predication Algorithm... 61

4.2.3.1 If-conversion algorithm.. 61
4.2.3.2 Architectural Support for Predication ... 64

4.3 CODE SLICING ... 65
4.3.1 Overview .. 65
4.3.2 Slicing Algorithm .. 66

4.4 INSTRUCTION CLUSTERING .. 69
4.4.1 Overview .. 69
4.4.2 Grammar Generation .. 71

4.4.2.1 Grammar Representation.. 72
4.4.2.2 Generation of Grammar-based DFG representation... 73
4.4.2.3 Computational Complexity and Correctness .. 77

4.4.3 Grammar-Driven Datapath Synthesis Flow... 78
4.4.3.1 Data Flow Graph Slicing.. 79
4.4.3.2 Grammar Generation & Selection ... 80
4.4.3.3 Macro Functional Unit Pipelining ... 84
4.4.3.4 Scheduling and Implementation .. 91

4.5 SCHEDULING.. 92
4.5.1 Modulo Scheduling ... 92

4.5.1.1 Overview ... 92
4.5.1.2 Swing Modulo Scheduling... 94
4.5.1.3 Hardware Support... 95

4.6 CACHE INSTANTIATION... 96
4.6.1 Memory Addresses Profiling... 96
4.6.2 Cache Configuration Computation .. 97

4.7 LOCAL BUFFERS SYNCHRONIZATION... 99
4.8 RELATED WORK.. 103

CHAPTER 5 ... 110

EXPERIMENTAL EVALUATION ... 110

5.1 BENCHMARK SUITE... 110
5.2 METHODOLOGY .. 113
5.3 EXECUTION MODEL EVALUATION ... 114
5.4 BITWIDTH OPTIMIZATION EVALUATION ... 120
5.5 INSTRUCTION CLUSTERING EVALUATION.. 122
5.6 CACHE ALLOCATION EVALUATION ... 128
5.7 OVERALL PERFORMANCE ANALYSIS AND COMPARISONS................................... 130

CHAPTER 6 ... 134

CONCLUSIONS AND FUTURE WORK ... 134

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 iii

BIBLIOGRAPHY.. 137

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 iv

LIST OF FIGURES

Number Page

Figure 1.1: Heterogeneous System. ... 3
Figure 1.2: FPGA fabric basic components. .. 4
Figure 2.1: Silicon-OpenCL Tool Flow. .. 9
Figure 2.2: SOpenCL Low Level Compiler (SOpenCL-LLC).. .. 10
Figure 2.3: C-to-RTL backend... 11
Figure 2.4: OpenCL Platform Model. .. 12
Figure 2.5: 2-dimensional computations grid geometry (N = 2).. 12
Figure 2.6: Chroma Interpolation OpenCL kernel ... 13
Figure 2.7: Matrix Multiplication OpenCL kernel example. ... 14
Figure 2.8: OpenCL memory hierarchy. .. 15
Figure 2.9: Logical Threads Serialization.. .. 17
Figure 2.10: Loop Fission example.. 18
Figure 2.11: Barrier Elimination examples.. 19
Figure 2.12: Variable privatization example.. 19
Figure 2.13: OpenCL kernel for LU Decomposition. .. 21
Figure 2.14: LLVM compiler Infrastructure.. 22
Figure 2.15: SSA Representation... 23
Figure 2.16: LLVM-IR Example. .. 23
Figure 3.1: Motion Compensation Block Manual design. ... 31
Figure 3.2: Program structure of LU Decomposition kernel.. 32
Figure 3.3: Interconnect communication channels... 34
Figure 3.4: Processing Element (PE) architectural template.. 36
Figure 3.5: Datapath of the PE(L1_0) module in Figure 3.2b.. 37
Figure 3.6: L1_0 Loop C source code in Figure 3.2a... 39
Figure 3.7: RGU and SinAlign modules operations flow. .. 41
Figure 3.8: Local Address Encoding.. 42
Figure 3.9: RGU and SinAlign modules configurations ... 42
Figure 3.10: SoutAlign module.. 44
Figure 3.11: Control Element Architectural Template... 47
Figure 3.12: CE Register File allocation.. 48
Figure 3.13: CE Stream Unit Configurations... 49
Figure 3.14: Synopsis of the FSM of CE0.. ... 50
Figure 3.15: Timing for a work-item execution... 51
Figure 3.16. Nested loop execution model... 52
Figure 3.17: PICO-NPA system... 53
Figure 3.18: Trident system target architecture.. ... 54
Figure 3.19: Laura target architecture.. 55
Figure 3.20: (a) ROCCC Module architecture model. (b) Optimus Filter template.. 56
Figure 3.21: MARC System Architecture.. 57
Figure 4.1: SOpenCL backend transformations... 58
Figure 4.2: Bitwidth optimization example.. 59
Figure 4.3: IF-Conversion using LLVM assembly. ... 60
Figure 4.4: If-conversion transformation for value-clipping example.. 63
Figure 4.5: Predicated execution architectural support .. 64
Figure 4.6: Programm slicing... 65
Figure 4.7: Code Slicing Example.. ... 68
Figure 4.8: Scheduling and binding of a DFG. .. 70
Figure 4.9: Grammar representation .. 71

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 v

Figure 4.10: Motivational example showing the steps of Algorithm 4.3.. 75
Figure 4.11: Experimental evaluation of the computational complexity of Algorithm 4.3...... 77
Figure 4.12: Grammar based datapath synthesis flow. .. 79
Figure 4.13: DFG slicing example.. ... 80
Figure 4.14: The selection process of Rules in the grammar of Figure 4.10............................ 84
Figure 4.15: MFU Pipelining Example.. 84
Figure 4.16: Experimental method micro-benchmarks.. 90
Figure 4.17: Modulo Scheduling.. ... 93
Figure 4.18: Valid-bit flow over the loop execution duration for the kernel of Table 4.4. 95
Figure 4.19: Example of data reuse across outer loop iterations.. 97
Figure 4.20: Memory Dependency Graphs for LUD OpenCL architecture........................... 100
Figure 5.1: Sub-pixel Chroma interpolation in AVS Motion Compensation......................... 111
Figure 5.2: Simulation and Verification Testbench. .. 114
Figure 5.3: Execution Time (bars in ms) And clock frequency (lines in MHz) for concurrent
and sequential configurations... 117
Figure 5.4: Execution time (bars, in ms) And clock frequency (lines in MHz) for concurrent
and sequential configurations... 118
Figure 5.5: Concurrent operation performance gain and area overhead 119
Figure 5.6: Area results for Bitwidth optimization.. .. 121
Figure 5.7: Area (slices) and Synthesis, Placement & Routing time. 124
Figure 5.8: Synthesis, Placement & Routing (SPR) Speedup.. .. 126
Figure 5.9: Area Reduction (AR) correlation with the number of macro-instructions per
grammar rule (a, c, e) and the DFG coverage (b, d, f). .. 127
Figure 5.10: Luma (LMC) and Chroma (CMC) kernels data reuse pattern.. 129
Figure 5.11: Execution time for LMC and CMC configurations with and without cache.. ... 130
Figure 5.12: Comparison of execution time for Memory transfers plus computations and
computations only.. .. 131

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 vi

LIST OF TABLES

Number Page

Table 4.1: Experimentally derived values of the Al parameter... 88
Table 4.2: Examples of the area consumed by a set of micro-benchmarks.............................. 89
Table 4.3: Examples of some micro-benchmarks critical path (ns). .. 91
Table 4.4: Modulo Scheduled kernel example... 95
Table 5.1: Applications used for experimental evaluation... 110
Table 5.2: Experimentation Data Set Size. .. 113
Table 5.3: Concurrent/Sequential modes area results for the benchmarks implemented on
Xilinx Virtex-6 LX760 device. .. 115
Table 5.4: Bitwidth optimization Frequency (MHz) results for the test kernels on Xilinx
Virtex-6 LX760.. 122
Table 5.5: Grammar generation results on the kernels DFGs. ... 122
Table 5.6: Instruction Clustering Frequency (MHz) results for the test kernels on Xilinx
Virtex-6 LX760.. 128
Table 5.7: FPGA Slices for CMC and LMC kernels with and without cache........................ 129
Table 5.8: SOpenCL based design of Deblocking filter compared to manual design............ 132
Table 5.9: SOpenCL based design of SEAL kernel compared to manual design.. 132

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 vii

LIST OF ALGORITHMS

Number Page

Algorithm 4.1: If-conversion algorithm.. 62
Algorithm 4.2: Code slicing algorithm.. ... 66
Algorithm 4.3: Grammar Extraction Algorithm ... 73
Algorithm 4.4: Grammar Rules Selection .. 81
Algorithm 4.5: Custom Instruction Pipelining.. 85
Algorithm 4.6: Al parameters estimation. ... 87
Algorithm 4.7: Redundant Dependency Elimination.. 101

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 1

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Modern Parallel and Heterogeneous Computing

The ever increasing demand for more efficient computing has pushed the

evolution of computing systems to spectacular levels over the last few decades.

Advances in computing systems are the key to the development of new domains and

revolutionary technologies, such as personalized medicine, online social interaction,

and immersive entertainment experiences.

While appetite for high performance and more efficient computing is increasing,

today's computing systems are struggling with technology limitations. The traditional

way to improve performance by increasing clock frequency has already come to an

end. As a result, computing systems are shifting towards energy-efficient parallel

computation models. Using many slower parallel processors instead of a single high

speed core has provided higher energy efficiency.

Parallel architectures developed over the last decade, can be classified into

different categories. The first category includes multiple instances of the traditional

general purpose processor have been arranged within the same chip to produce multi

core processors (MCPs). Another category includes the Graphic Processing Units

(GPUs) with hundreds of simple processing cores. Nvidia GeForce256 was the first

GPU released on 1999 [1]. Finally, streaming/Vector processors are multi-core

processors, specially designed for streaming applications. Streaming processors like

RSVP, Imagine, Raw, and Merrimac [2, 3, 4, 5] promoted high performance

computing by exploiting heavy data parallelism in streaming applications and

employing a distributed memory model.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 2

While the many-core processing hardware technology is progressing rapidly,

software development for parallel computing is falling behind. The challenge rising

with parallel computing systems is to port already developed software for sequential

processors on the newly introduced multi- or many-core processors. To cope with the

new architectural trends, the parallel computing industry has developed a variety of

parallel programming languages to allow programmers to exploit the multiple

execution contexts available in the new multi-core architectures. The first class of

parallel programming languages like OpenMP and Posix threads are extensions of

sequential programming models, suitable for systems with few processing cores, and

are widely used in the industry. New parallel programming models have been

invented in the last few years to better suit systems with hundred or thousands of

cores. Languages such as OpenCL, CUDA or various streaming languages fit the

second category.

Yet even the shift to parallel computing is not enough. Many-core chips suffer

from high power density which restricts the number of cores that can be

simultaneously active, a phenomenon called dark silicon [6, 7]. The dark silicon

phenomenon puts limits on the prospect of building many-core chips with tens or

hundreds of cores without significant degradation in efficiency. This inefficiency is

promoting heterogeneous parallel computing systems.

Instead of a parallel computing system built only from many-core chips, a

heterogeneous computing system comprises multiple different computing

components (Figure 1.1) each carefully optimized to efficiently execute a particular

type of task. This heterogeneous parallel computing model presents an even greater

challenge for developers. Now they must not only develop parallel applications, but

they are responsible for deciding what types of processors to use for which

calculations [6].

Heterogeneous systems development represents the best approach on energy-

efficient high performance computing. However, it is a new technology that requires

extensive research and effort mostly in developing tools and compilers to help

software developers to deal with the large pool of architectural variables and

parameters of heterogeneous systems. Other than the architectural differences of

heterogeneous system components, their programming tools and languages exhibit

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 3

vast differences making it extremely difficult to develop applications that can be

executed on all components. For example, porting an application on a heterogeneous

system comprising MCPs, GPUs and FPGAs, requires the use of completely different

programming languages; for example OpenMP for MCPs, CUDA for GPUs, and

Verilog/VHDL for FPGAs

Recently, researchers in the parallel computing community have been moving

towards unified programming models to support the heterogeneity of parallel

computing platforms. OpenCL [22] is an industry-supported standard for building

parallel applications that are portable across heterogeneous parallel systems. OpenCL

adopts an architecture-agnostic computations model, promoting application

portability across different platforms.

1.1.2 FPGA-based Computing Platforms

The recent advances in FPGA technology have placed reconfigurable platforms on

the map of heterogeneous computing. FPGA accelerators offer superior performance,

power and cost characteristics compared to a homogeneous CPU-based platform, at

the expense of complex and expensive software infrastructure. For instance, FPGAs

have been shown to offer two orders of magnitude superior performance than

conventional CPUs for a variety of data-intensive applications [8].

FPGAFPGA

GPUGPU

CPUCPU

Figure 1.1: Heterogeneous System.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 4

Research in the last few years provided strong evidence on FPGA high

performance computing capabilities. Applications in medical imaging [9], networking

[10], multimedia [11], and financial applications [12], have been successfully

implemented on FPGA platforms achieving orders of magnitude speedup and energy-

consumption reductions over CPU- and GPU-based solutions.

Distributed logic and memory components of FPGA devices bear a significant

resemblance to many-core processors. FPGA reconfigurable fabric consists of a sea

of programmable logic cells and interconnects organized in rows and columns (Figure

1.2). Recently, FPGA manufacturers have included hard IP cores, like multipliers and

SRAM blocks, distributed within the logic cells to improve designs efficiency. The

distributed memory blocks over the FPGA architecture, provide the necessary

memory bandwidth for building parallel computing architectures.

Developing FPGA-based systems is a hard undertaking and a time consuming

process. The designer requires firstly analyzing the problem under consideration,

partition it into multiple tasks, each then implemented carefully to fulfill the

performance requirements. The design then has to be implemented using a hardware

description language like Verilog or VHDL before programming the FPGA device.

Even with FPGA-based computing being up to the expectations of the high

performance community, the integration of FPGAs in heterogeneous systems

composed of CPUs and GPUs is far from mainstream. The main obstacle in the way

of FPGAs being used in heterogeneous platforms is the need for hardware expertise

Figure 1.2: FPGA fabric basic components.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 5

to program the FPGA. The community of software programmers and especially

programmers of parallel systems will resist a platform with its own programming

language when the industry is moving towards unified higher-level programming

models for multi-core and heterogeneous platforms. Using FPGAs in heterogeneous

platforms ideally requires enabling FPGA programming using high level parallel

programming languages like CUDA, and OpenCL.

1.2 Research Objective and Contribution

The problem of automatically generating system architectures from high level

programming languages has been at the forefront of academic and industrial research

in the last few decades. Generating system designs from high level programming

languages such as C/C++ or Matlab has been investigated to increase design

productivity and enable rapid design space exploration [13, 14, 15, 16, 17]. However,

High Level Synthesis tools have not been so well adopted by the software engineer

community because the design flow of the current commercial tools is more suited for

the hardware rather than the software engineer. The designer is required to tune the

application source code specifically for hardware design, and may have to intervene

to specify low level details which may discourage most software engineers from

using the technology. A successful high level synthesis tool targeting software

engineers and parallel programmers will have to hide the architectural details from

the programmer.

Using parallel programming models like OpenCL, to generate FPGA-based

systems, open up system hardware design for the large community of software

engineers to exploit the capabilities of high-end FPGA devices without the need for

hardware expertise.

OpenCL programs express parallelism at its finest granularity. This is a

particularly convenient feature for hardware generation, as the programmer explicitly

exposes all available parallelism of the application. Exposing parallelism at its finest

granularity allows hardware generation at different levels of granularity. Another

favorable feature of OpenCL is the explicit expression of data movement in the form

of buffer transfers between compute devices. Languages with C-like semantics, as

well as traditional parallel programming models such as POSIX Threads or OpenMP,

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 6

express parallelism at a coarser granularity and at the same time ignore or obfuscate

communication, thus placing the burden of re-discovering parallelism and

communication patterns to an optimizing compiler and/or the user – usually with

limited success.

 Our research develops algorithms, and architectures to generate automatically

hardware accelerators from OpenCL kernels. Our synthesis tool, Silicon OpenCL

(SOpenCL), generates a hardware accelerator from a single OpenCL kernel using two

phases: OpenCL to C source to source transformation and C to RTL generation. Our

research concerns the second phase. A C function generated by the source to source

transformation consists of one or more nested loops that encapsulate the

computationally intensive parts of the OpenCL kernel.

The contributions [18, 19, 20] of our research can be summarized as follows:

1. Code Transformations: The tool flow performs novel transformations specific

for architectural synthesis. Bitwidth analysis transforms variable bitwidth from

the standard size (char, int, etc.) into arbitrary sizes to minimize the amount of

hardware resources. Predication replaces control dependencies with data

dependencies, thus increasing the size of basic blocks and the potential of

instruction schedulers to find an optimal instruction schedule. Code slicing

decouples data movement from data computations, and overlaps their

execution. A major transformation introduced in the tool flow is Code

Clustering. SOpenCL analyzes patterns of instructions and produces

application specific macroinstructions, where a macroinstruction consists of

multiple basic arithmetic and logic operations. Macroinstructions provide a

compact form of computation that can be implemented more efficiently than

basic arithmetic and logic operations.

2. Architectural Template: SOpenCL utilizes an architectural template designed

and configured to meet user performance requirements and fit the target

device. The architecture of a hardware accelerator of an OpenCL kernel has a

hierarchal structure which resembles the loop hierarchy in the generated C

function. Each nested loop is allocated a single cluster of hardware which

allows pipelining the nested loops execution. The architectural template

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 7

decouples and overlaps the execution of data computation and data movement

by allocating separated modules for data computations (Datapath) and data

movement to and from memories (Streaming Interface Unit).

3. Concurrent Execution Model: To exploit the separate hardware components in

the architectural template, an asynchronous execution model is adopted. The

operation of the streaming units and the computational datapaths is fully

asynchronous, even across the boundaries of different loops and loop nests.

Asynchronous execution model allows pipelined and parallel execution of

multiple nested loops, and increases hardware utilization.

The current state of the tool produces a single accelerator per OpenCL kernel. The

supported kernels may consist of arbitrary loop nests and shapes. They may contain

synchronization and any kind of standard arithmetic operations. The tool flow also

provides an IP library for floating point operators and math functions optimized to

enhance the performance of the accelerator. OpenCL kernels that include dynamic

memory allocation or function call are not supported.

1.3 Thesis Structure

The structure of the thesis is as follows:

Chapter 2 covers the background material necessary to understand the proposed

algorithms and design techniques. More precisely, Chapter 2 presents the framework

and infrastructure used by our tool flow..

Chapter 3 introduces the proposed architectural template for architectural

synthesis. It describes the skeleton of the template, its basic structure and how an

OpenCL kernel is mapped on the template components. The chapter addresses the

architectural techniques used in handling synchronization and exploiting data reuse to

reduce memory access overhead. The execution model of OpenCL kernel on the

generated hardware accelerator is also discussed.

Chapter 4 describes the low level transformations/optimizations and hardware

generation methods applied on the OpenCL kernel source code to provide

architectural optimizations. Transformations include bitwidth optimization,

predication, code slicing and instruction clustering. Code slicing separates portions of

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 8

code responsible for addresses generation from computations to decouple and overlap

their execution. Instruction clustering generates application specific instructions to

build custom functional units. Later in the chapter we introduce methods used in

taking architectural synthesis decisions. More precisely, scheduling instructions on

allocated resources, data caching configurations, and synchronization/interconnect

data channels generation. Two scheduling algorithms are described: modulo

scheduling and as soon as possible scheduling.

Chapter 5 presents the experimental evaluation of the proposed techniques and

architectural template. Finally, Chapter 6 completes this dissertation with the

presentation of the conclusions and reference to future work.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 9

CHAPTER 2

SILICON-OPENCL TOOL FLOW

2.1 Tool Flow and Infrastructure

Silicon-OpenCL (SOpenCL) is an architectural synthesis CAD tool targeting

heterogeneous parallel computing platforms (Figure 2.1). The objective is to allow a

software programmer to develop an OpenCL application once, and deploy it on any

platform, without the need for modifications. The tool consists of a two levels

compilation process: High Level Compilation (HLC) and Low Level Compilation

(LLC).

The high level compiler processes an OpenCL application and partitions its

kernels as appropriate across the available computing platforms (CPU, GPU, and

FPGA). The low level compiler processes OpenCL kernels selected to run on FPGA

platforms. The task of the LLC is to compile an OpenCL kernel, and generate an

equivalent hardware design that fits the target FPGA device and fulfills performance

requirements. SOpenCL tool infrastructure also provides runtime environments for

each of the target platforms to facilitate their integration and the execution of

FPGAFPGAGPUGPU
CPUCPU

HLC

LLC

(OpenCL to RTL)

OpenCL Application

Figure 2.1: Silicon-OpenCL Tool Flow.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 10

OpenCL kernels.

Figure 2.2 shows the low level compiler flow. The LLC converts unmodified

OpenCL kernels into a system on chip (SoC) with hardware and software

components. The tool flow generates a hardware accelerator for each OpenCL kernel

in two phases: OpenCL-to-C transformation, and C-to-RTL. The tool flow also

generates the runtime environment and drivers, in addition to the testbench generated

for simulation and verification purposes. The OpenCL-to-C frontend developed by

Daloukas [21] generates a C function from an OpenCL kernel by coarsening the

computation granularity as will be detailed in section 2.3. The C-to-RTL backend

developed in this thesis generates a hardware accelerator RTL description for each

OpenCL kernel.

Figure 2.3 shows the C to RTL back end tool flow which-along with the front end

is based on the LLVM compiler infrastructure. LLVM compiler translates the input C

function into an assembly-like intermediate representation, called LLVM-IR. The

LLVM compiler provides conventional optimizations and transformations such as

dead code elimination, redundant code elimination, constants propagation, algebraic

transformations, loop transformations, loop unroll, and loop invariant code motion.

Given the LLVM-IR, the backend performs two sets of tasks, low level

transformations and optimizations, and hardware allocation and generation.

Figure 2.2: SOpenCL Low Level Compiler (SOpenCL-LLC). (C-to-RTL
backend is the result of this thesis research).

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 11

2.2 OpenCL Programming Model

2.2.1 Overview

OpenCL [22] is a programming framework for heterogeneous computing

platforms. OpenCL was initially developed by Apple Inc. as a portable programming

framework for the vast number of multi-core CPUs and GPUs. Apple submitted an

initial proposal in collaboration with technical teams at AMD, IBM, Intel, and Nvidia,

to the Khronos group. Within six months Khronos group released the first OpenCL

specification for the public. OpenCL programming language is based on ISO C99

with some limitations and extensions. The language is extended to provide explicit

representation of parallelism, synchronization and memory regions.

OpenCL programming framework was designed with software portability in mind.

The vision is to write a single application that can run on a variety of potentially

heterogeneous platforms, from embedded systems to workstations and

supercomputers. The OpenCL platform model comprises a host processor and a

number of compute devices (Figure 2.4). Each device consists of a number of

compute units, which are subsequently divided into a number of processing elements.

An OpenCL application consists of a host program and a number of kernel functions.

The host part executes on the host processor and submits commands that can refer

either to execution of a kernel function or to manipulation of memory objects. A

kernel function contains the computational part of an application and is executed on

the compute devices.

Figure 2.3: C-to-RTL backend.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 12

A key feature in OpenCL is that the compiler is built into the runtime system,

which provides flexibility and portability, and allows OpenCL applications to select

and use different compute devices in the system at runtime.

2.2.2 Computation Model

The work corresponding to a single invocation of an OpenCL kernel is called a

work-item. Multiple work-items can be organized in a work-group. OpenCL allows

for geometrical partitioning of the grid of computations to an N-dimensional space of

work-groups, with each work-group being subsequently partitioned to an N-

dimensional space of work-items, where 1 ≤ N ≤ 3 (Figure 2.5). Once a command

that refers to execution of a kernel function is submitted, the host part of the

application defines an abstract index space, with a maximum of 3 dimensions of work

groups and 3 dimensions of work items in each work group. A work-item is identified

Figure 2.4: OpenCL Platform Model.

Figure 2.5: 2-dimensional computations grid geometry (N = 2).

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 13

by a tuple of IDs defining its position within the work group, as well as the position

of the workgroup within the computation grid. Based on these IDs, a work-item is

able to access different data (SIMD style) or follow a different path of execution.

Figure 2.6 shows an example of Chroma interpolation OpenCL kernel. Chroma

interpolation computes sub-pixels from chrominance components in a video frame.

Each work item (one kernel invocation) computes one sub-pixel by applying a 4-tap

filter on 4 chrominance pixels. The filter output is then clipped to the value range

[0,255]. The kernel utilizes 2-dimentional computations grid like the one shown in

Figure 2.5. The get_global_id(0) and get_global_id(1) runtime functions return the

unique global x- and y-coordinates of the work-item, respectively.

OpenCL also provides runtime functions to return local work-item coordinates

within a work group (Figure 2.7). For example, get_local_id(0) and get_local_id(1)

return the x- and y-coordinates (Sx and Sy in Figure 2.5) of the work-item within the

work-group.

The programmer explicitly defines the dimensions of a single work group when

she invokes the kernel function. The number of work groups is determined implicitly

in the runtime depending on the size of the computation problem. For example, the

chroma interpolation kernel of Figure 2.6 has 2-dimensional work group of size 4×4,

i.e. 16 work-items, where each work-item processes a single pixel. The number of

work groups depends on the grid size, i.e. the video frame size. For 640×480 VGA

frame, the grid includes 80×60 work-groups.

Figure 2.6: Chroma Interpolation OpenCL kernel

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 14

2.2.3 Synchronization

OpenCL uses what is called a relaxed memory consistency model which means

that different work-items may see a different view of global memory as the

computation progresses. Synchronization is required to ensure data consistency

within the work items of a work group, while reads and writes to all memory spaces

are consistently ordered within work-items.

OpenCL programming model provides two types of synchronization functions

among work-items inside a work-group, memory-fence and barrier function. A barrier

function requires all work-items inside a work-group to rendevouz at the barrier call.

In other words, every work-item in the same work group must execute the barrier

function before any work-item is allowed to continue execution beyond the barrier

command. A memory-fence only requires that loads and stores preceding the

mem_fence all be committed to memory. On the other hand, there is no

synchronization mechanism among work-groups, which means that work-groups can

be executed in parallel.

Figure 2.7, depicts an OpenCL kernel for naive matrix multiplication. Each work-

item first prefetches an entry from each matrix and stores it in local memory. After

the barrier function, each work item computes an entry in the output matrix. The

barrier (CLK_LOCAL_MEM_FENCE) function stalls the execution of every work-

Figure 2.7: Matrix Multiplication OpenCL kernel example.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 15

item in the work group before allowing any work-item to execute the last statements

in the kernel. The barrier synchronization here is necessary to enforce memory

dependencies between work-items in the same work group; loaded matrices entries by

each work item are used by the rest of work items to perform their computations.

2.2.4 OpenCL Memory Structure

OpenCL defines a memory hierarchy of four types: global memory, constant

memory, local memory, and private memory (Figure 2.8). OpenCL standard only

specifies the access level of different type of memory. Programmers can use memory

region address qualifiers; __global, __constant, __local, and __private to specify the

type of memory hosting data as in Figure 2.6 and Figure 2.7.

Global memory has the largest size on a compute device. Global memory is visible

to all work-items in the computations grid. While the largest and visible to all work-

items, global memory is considered the slowest memory. Constant memory is a read-

only section of the global memory visible to all work-items. Constant memory can be

associated with specialized hardware optimizations to broadcast data. Local memory

is much faster than global memory, and is typically located on-chip. A local memory

is a shared section of memory within the work-items of the same work-group.

Synchronization of memory accesses in the local memory is the responsibility of the

programmer. A private memory is used within a work-item, and implemented

generally using registers in a GPU or CPU core. A private memory is fast and can be

Figure 2.8: OpenCL memory hierarchy.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 16

used without the need for synchronization primitives. In situations where the compute

device has inadequate number of registers, variables stored in private memory are

spilled to global memory space causing significant performance drop.

2.3 OpenCL to C transformation

As explained in the previous section, OpenCL exposes parallelism at a fine level

of granularity by allowing the programmer to embody the task executed by a single

logical thread in an OpenCL kernel. For example, the OpenCL code for chroma

interpolation (shown in Figure 2.6) describes the computation of a single loop

iteration which comprises an OpenCL work-item in this case. Depending on

performance requirements, and resource availability, any number of hardware

accelerators can be generated spanning from a simple interpolator, executing a single

thread per invocation, to an accelerator that produces the complete interpolated frame

every time it is invoked. Between these two extremes, a hardware generation tool can

generate any number of accelerators, each, potentially, being assigned a different

amount of workload per invocation.

In order to enable efficient mapping of OpenCL kernel functions to the underlying

platform while at the same time taking into account any hardware constraint,

SOpenCL tool applies a series of source-to-source transformations in the high level

compiler frontend (Figure 2.2) that collectively aim at coarsening the granularity of a

kernel function from the work-item to the work-group level.

Daloukas [21] explains that the selection of a work-group as the preferred degree

of granularity for logical threads serialization may seem arbitrary. However, taking

synchronization within a work group into account, it will become evident that other

options may present hard to overcome complications in the presence of

synchronization operations or multiple exit points within the kernel. At the same time,

work-group granularity is usually explicitly set by OpenCL programmers, often

considering data reuse, or matching the work-group data footprint to the capacity of

specific levels of the memory hierarchy. Therefore, introducing different degrees of

work granularity at the runtime, despite being semantically correct, might introduce

performance side-effects.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 17

OpenCL-to-C frontend applies three source-to-source transformations: threads

serialization, elimination of synchronization functions, and variable privatization,

each one explained in the remainder of the chapter.

2.3.1 Logical Threads Serialization

The main step in the OpenCL-to-C frontend is logical thread serialization. Work-

items inside a work-group can be executed in any sequence, provided that no

synchronization operation is present inside a kernel function. Based on this

observation, execution of work-items is serialized by enclosing the instructions in the

body of a kernel function into a triple nested loop, given that the maximum number of

dimensions in the abstract index space within a workgroup is three. Each loop nest

enumerates the work-items in the corresponding dimension, thus serializing their

execution.

Threads serialization of kernel Add_3D (Figure 2.9a) produces the C function in

Figure 2.9b. Input argument local_size_array is an array of size 3, and is used to store

the dimensions of the work group to be used as boundaries in the triple nested loop.

2.3.2 Loop Fission

Thread serialization can lead to invalid execution of a kernel function if the

OpenCL kernel body contains synchronization operations. In the presence of a barrier

instruction, every work-item must execute that instruction before any work-item is

__kernel void Add_3D(__global int * A,

__global int * B,

__global int * C,

int W, int H)

{

int id0 = get_global_id(0);

int id1 = get_global_id(1);

int id2 = get_global_id(2);

int pos = id2*W*H + id1*W + id0;

C[pos] = A[pos] + B[pos];

}
(a) (b)

Figure 2.9: Logical Threads Serialization. (a) Add_3D OpenCL kernel adds two 3D
arrays. The three runtime functions return the coordinates (id0, id1, id2) of the pixel
computed by a work-item. (b) C function after threads serialization.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 18

allowed to continue its execution. However, in the modified C kernel function, every

work-item finishes its execution before the next work-item is able to start. In order to

ensure correct execution of the coarsened kernel function, the compiler applies loop

fission transformation that facilitates logical thread serialization.

Loop fission is applied in order to enforce the execution ordering that is required

by a synchronization instruction. A triple-nested loop enforces synchronization

among work-items before its first and after its last iteration. Based on this

observation, we partition the instructions of a kernel function into blocks such that no

barrier instruction is present inside a block. Afterwards, we enclose each block into a

triple-nested loop, Figure 2.10 depicts this transformation for the MatrixMul kernel of

Figure 2.7. Since there is one synchronization statement, barrier, two triple nested

loops are required to ensure correct execution of the C kernel function.

A similar problem occurs for kernel functions with multiple exit points, i.e. when

break, continue or return statements are present. We treat each of the aforementioned

instructions as an additional synchronization point and apply loop fission around it

(Figure 2.11). For example, in Figure 2.11b, the if-statement works as a

synchronization barrier. Hence, triple nested loops (loops) are created around each

statement (S1 and S2).

2.3.3 Variable Privatization

Loop fission presents a complication for variables that are defined in one triple-

__kernel void MatrixMul(__global float* a, __global float* b,

__global float* c, int * global_id)

{

int row, col, sum, j;

__local float aTile[HEIGHT][WIDTH], bTile[HEIGHT][WIDTH];

triple_nested_loop {

row = global_id[1] + i1;

col = global_id[0] + i0;

aTile[i1][i0] = a[row*WIDTH + col];

bTile[i1][i0] = b[row*WIDTH + col];

}

// barrier(CLK_LOCAL_MEM_FENCE);

triple_nested_loop {

row = global_id[1] + i1;

col = global_id[0] + i0;

sum = 0;

for(j = 0; j < WIDTH; j++)

sum += aTile[i0][j] * bTile[j][i1];

c[row*WIDTH + col] = sum;

}

}
Figure 2.10: Loop Fission example.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 19

nested loop construct and used in another. A work-item that defines the value of a

variable in the first loop cannot use it in a subsequent loop, as its contents will be

polluted by the execution of subsequent work-items, thus violating semantics.

SOpenCL compilation infrastructure conducts a live-variable analysis to identify

the variables that are live beyond the boundaries of the loops introduced by loop

fission. Next, we apply variable privatization for these variables, namely we allocate

them to a separate memory area for each logical thread. Each logical thread is

therefore provided with a private copy of such variables.

Figure 2.12 shows an example of loop privatization. In Figure 2.12b, the variable k

computed by each work-item (i.e. loop iteration) in the first nested loop, will be

overwritten by other work-items (loop iterations). When the k variable is used in the

second nested loop its value has been polluted with the last iteration of the first nested

loop. Figure 2.12c shows the result of applying variable privatization on loop fission

Figure 2.11: Barrier Elimination examples.

Figure 2.12: Variable privatization example. (a) Original OpenCL kernel. (b) Loop
fission output (wrong). (c) Variable privatization output (correct).

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 20

output. A local memory array (_K) is allocated with size equal to the number of work-

items per work group (LOCAL_SIZE_0). Each work-item stores its k value in the

allocated array at a unique position to be later used in the second nested loop.

For further details on the OpenCL compiler transformations, the interested reader

should consult [21].

2.3.4 Output C function structure

Figure 2.13a depicts an OpenCL kernel which implements LU Decomposition is

used as a running example to explain the sequence of steps to generate the hardware

accelerator. This kernel is part of the Rodinia benchmark suite [23].

LU Decomposition kernel consists of three parts, separated by barrier instructions.

All work-items that execute the first part of the code, prefetch a segment of the input

array m to three local buffers, and have to rendevouz to the first barrier before they

proceed. The second part of the code performs the main LU Decomposition

operation, and, likewise, forces all work-items to synchronize to the second barrier,

before proceeding to the final writeback to array m.

Figure 2.13b depicts the block structure of the modified kernel function for our

running example. The kernel code separated by barrier instructions is enclosed in

triple nested loops (T i).

One may assume that transforming the parallel OpenCL representation into the

sequential C representation, we lose the desirable features of OpenCL language, i.e.

explicit parallelism and data movement. However, the specific structure of the

generated C functions and the knowledge of what each portion of the function

represents, we can ensure that the desirable features of OpenCL are preserved.

Multiple nested loops in the C function indicate the existence of synchronization

commands within the OpenCL kernel. Multiple nested loops have to be executed

sequentially, but their execution can be pipelined.

The body of a triple nested loop represents the workload of a single work-item,

which leads to the conclusion that multiple iterations of a triple nested loop can

correspond to multiple work-items, and hence, can be executed in parallel and out of

order.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 21

Explicit local memory representations are transformed into local data arrays in the

C function, and can be implemented as on-chip distributed memory blocks.

2.4 LLVM Compiler Infrastructure

LLVM compiler infrastructure [24] has been developed to provide a machine

independent framework for program optimization, analysis, and refactoring. To

provide support for multiple programming languages and different target

architectures, LLVM adapts a three-step compilation flow (Figure 2.14). The LLVM

(a) (b)

Figure 2.13: OpenCL kernel for LU Decomposition with marked loops (Li_j)
and basic blocks out of loops (Bi_j). In this kernel, a work-item (or thread)
performs LU Decomposition for a 32x32 sub-matrix. Some parts of the code
have been omitted for brevity.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 22

compiler model provides a RISC-style, yet rich, intermediate representation (LLVM-

IR) between the frontend, optimizer, and backend.

The clarity and completeness of the LLVM-IR, provides a simple way for

conveying information between multiple analysis and transformation passes as well

between the frontend and backend. Using LLVM-IR, the compiler framework is a

collection of libraries of transformations and optimizations can be used to build a

compiler for any language and target architecture. In particular, LLVM-IR is both

well specified and the only interface to the optimizer. This property means that all

you need to know to write a frontend for LLVM is what LLVM-IR is, how it works,

and the invariants it expects.

2.4.1 LLVM Intermediate Representation (LLVM-IR)

The LLVM-IR instruction set captures the key operations of ordinary processors

but avoids machine-specific constraints such as physical registers, pipeline

architecture, and low-level calling conventions. LLVM-IR provides an infinite set of

typed virtual registers which can hold values of primitive types (boolean integer,

floating point, and pointer). The virtual registers are in Static Single Assignment

(SSA) form [58]. LLVM-IR is a load/store architecture: programs transfer values

between registers and memory solely via load and store operations using typed

pointers.

LLVM-IR uses SSA as its primary code representation (Figure 2.15). SSA is an

Intermediate Representation (IR) used in several compilers (including LLVM

compiler). In SSA each instruction is assigned a unique register name and each use of

a register is dominated by its definition. In the example of Figure 4.4, the two

assignments for the register x is transferred into two assignments on two different

registers.

Figure 2.14: LLVM compiler Infrastructure

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 23

A key feature of SSA IR is the Phi instruction which selects the proper value to

pass to the next blocks, depending on the last control transfer event. In the example

given, the assignment to register y does not read the values of the assignments for x1

and x2 directly but, instead, the proper value is passed through the Phi instruction

assignment.

Memory locations in LLVM-IR are not in SSA form because many possible

locations may be modified at a single store through a pointer, making it difficult to

construct a reasonably compact, explicit SSA code representation for such locations.

SSA form provides a compact def-use graph that simplifies many dataflow

optimizations and enables fast, flow-insensitive algorithms to achieve many of the

benefits of flow-sensitive algorithms without expensive dataflow analysis. Non-loop

transformations in SSA form are further simplified because they do not encounter

anti- or output dependences on SSA registers. Non-memory transformations are also

greatly simplified because registers cannot have aliases.

Figure 2.16 shows an example of LLVM-IR generated for a C function that clips a

value in the range [0, 255]. A function in LLVM-IR consists of one or more basic

(a) (b)

Figure 2.15: SSA Representation (a) Code portion without SSA representation. (b)
Code with SSA representation.

Figure 2.16: LLVM-IR Example.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 24

blocks of instructions. A program in LLVM is represented as a module of code that

includes one or more functions. A feature in LLVM-IR is its arbitrary bitwidth data

type representation, which is convenient for hardware bitwidth optimizations.

2.5 Related Work

There is a large body of literature that deals with conversion of an application

written in a high level language to hardware. The majority of research efforts used a

variation of C as their input programming language which was driven mainly by the

existence of a large body of C programmers, and the extensive use of C in embedded

applications. C-based architectural synthesis research can be classified into two

categories: using a restricted format of C written in specific way, or extending extra

language constructs and syntax to support hardware synthesis.

PICO-NPA [13], SPARK [25], Trident [26], and Streamroller [27] belong to first

category. PICO-NPA is a synthesis system that generates non-programmable

accelerators from a C function. PICO restricts a C function to consist only of a single

perfectly nested loop. In addition to nested loops, PICO make use of C pragmas to

pass application specific information to simplify program analysis. Those pragmas

allow the user to declare no-standard data widths, to indicate that specific global

variables are not live-in or not live-out. Also pragmas could be used to advise the

compiler to create local memory for certain arrays, like lookup tables. PICO does not

support recursion, and dynamic memory allocation.

SPARK and Trident impose no stylizations or modeling on the input C functions.

The only restrictions in SPARK C model include function recursion and dynamic

memory allocation. Trident imposes additional restrictions: the code cannot contain

print statements, function arguments or returned values, calls to functions with

variable-length argument lists, or arrays without a declared size.

Streamroller emulates the stream programming model by some extensions of the C

language to capture parallelism and decouple communication from computation. The

system takes as input the application written in C, expressed as a set of

communicating kernels. The input program consists of two logical parts, a set of

kernel specifications and system specification. A kernel is expressed as a single C

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 25

function. All inputs and outputs to the kernel have to be provided as arguments to the

function. The body of the kernel has to be perfectly nested for loops. The system

specification describes one “packet” forward flow through the pipeline. The system

specification is expressed as a C function whose body contains a sequence of calls to

the kernel functions.

The second category of C-based hardware synthesis research includes work that

created new programming languages as variations of ANSI-C, such as Handel-C [28],

Mitrion-C [29], haydn-C [30], and SA-C [31, 32] Handel-C retains most of the pure C

syntax and sequential execution model. However, to support compilation for

hardware, Handel-C supports several hardware implementation features like arbitrary

bitwidth declarations of variables. Parallelism in Handel-C is supported through a

“para” qualifier to declare a block of statements that will run in parallel. Handel-C

provides a channel declaration to communicate between parallel blocks. RAMs and

ROMs are declared in Handel-C like arrays, with exception that RAMs and ROMs

are accessed once each clock cycle.

Haydn-C has many similarities to Handel-C. Like Handel-C, it uses parallel blocks

of statements, VHDL-like components/entities to describe parallelism in the program.

The Handel-C and Haydn-C are timed languages, i.e. require from the programmer to

keep exact timing of the program execution, by defining the time execution of each

expression as one clock cycle, and providing the user with a “delay” construct to

control the timing of execution.

Mitrion-C main concept centers on parallelism and data dependencies and there is

no order-of-execution; any operation may be executed as soon as its data-

dependencies are fulfilled. To capture the custom features of hardware

implementation, Mitrion-C enables the user to specify the exact variable precision by

declaring the bit-width of the variable. Like other static single assignment languages,

each statement in Mitrion-C is an expression, statements like FOR, WHILE loops

return values, and each variable within a scope is assigned once. The single-

assignment is required in Mitrion-C since statements within scope could run in

parallel rather than sequential. In addition, since Mitrion-C targets FPGAs, it supports

the use of RAM blocks and banks through a group of memory read/write functions.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 26

SA-C differs from C in some important ways. It is an expression-oriented,

functional language. Its scalar types include signed and unsigned integers and fixed

point numbers with specified bit widths. It has no explicit pointers, and is non-

recursive. It has true multidimensional arrays, including array sections similar to

those in Fortran 90. It also allows any function, loop or conditional expression to

return multiple values.

Other prior research based on C programming model chose to provide libraries of

functions and types to support hardware synthesis instead of creating a new language.

Stream-C [33] is a combination of annotations and library functions callable from C

program. There are three distinguished objects declared in Stream-C program:

process, stream and signal. Stream and signal carry data and control bits between

processes. Processes are the computation kernels that implemented by hardware or

host processor. Process declaration consists of head where the name and IN/OUT

streams/signals are declared, and body encloses the computational operations. The

body is written using callable functions and a subset of supported C.

Impulse CoDeveloper is an ANSI C synthesizer [34] based on the ImpulseC

language. ImpulseC is distinct from standard C in that it provides a parallel streaming

programming model for mixed processor and FPGA platforms. For this purpose,

Impulse C includes extensions to C, in the form of functions and datatypes, allowing

applications written in standard C to be mapped onto coarse-grained parallel

architectures that may include standard processors along with programmable FPGA

hardware. Using ImpulseC, an application could be described as a collection of

parallel, pipelined processes, each of which has been described using one or more C

subroutines.

At the heart of the ImpulseC streaming programming model are processes and

streams. Processes are independently synchronized, concurrently executing segments

of an application. Hardware processes are written using a subset of standard C and

perform the work of an application by accepting data, performing computations and

generating outputs. In a typical application, data flows from process to process by

means of buffered streams, or in some cases by means of messages and/or shared

memories. The characteristics of each stream, including the width and depth of the

generated FIFOs, may be specified in the C application.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 27

Another category of research efforts used the stream-programming model as their

high level languages. In Proteus [35], a program consists of two objects: streams

descriptors and stream data-flow graph (sDFG). A stream descriptor declares stream

access patterns from main memory. The sDFG describes a computational kernel, and

declares IN/OUT streams. Using those two objects a program can be written as a set

of communicating sDFG blocks through streaming channels.

Optimus [36] takes programs written in StreamIt stream programming language.

Programs in StreamIt are represented as graphs where nodes, called filters

encapsulate computation, and edges represent FIFO communication. StreamIt is

based on the synchronous dataflow (SDF) model of computation [50]. Each filter

consists of a work function that repeatedly executes when sufficient data is available

on its input FIFO (queue). The work function reads data from its input queue using

pop operations, and writes data to its output queue using push operations. The work

function can also inspect input without removing them from the FIFO using a peek

operation.

Prior research has investigated the use of different programming models like

MATLAB and Simulink. MATLAB and especially Simulink have traditionally been

used for algorithm design. The availability of a mature tool with specialized modules

(toolboxes, blocksets) along with the possibility of integrating C code makes the tool

a very attractive development platform. Work in [16] presents a MATLAB-to- RTL

compilation flow. One of the issues to be resolved in generating hardware from

MATLAB is to figure out the type/shape of the variables since MATLAB variables

have no notion of type or shape. To generate hardware, the compiler must determine

the exact data type i.e. integer or floating point, or complex numbers etc. The

compiler also needs to determine the shape i.e. how many dimensions the matrix

(array) has, and what are the extents in each dimension.

The majority of current high level synthesis commercial tools use SystemC as

input representation [14, 37, 38]. SystemC is a set of C++ classes and macros used to

simulate concurrent processes, each described using plain C++ syntax. SystemC is

closer to HDL languages VHDL and Verilog. A program in SystemC usually consists

of several modules which communicate via ports. SystemC Modules include

concurrent processes as the main computation elements. Modules communicate via

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 28

channels, which could be either wires or complex communication mechanisms like

FIFOs or bus channels. SystemC libraries provide datatypes extensions like arbitrary

bitwidth integer datatypes, and fixed point datatypes, in addition to C++ standard

types.

Lately, research in architectural synthesis have focused on parallel programming

languages such as FCUDA, a tool that converts CUDA kernels to synthesizable

hardware [39]. CUDA is a parallel programming model developed by Nvidia for

graphics processing. A CUDA kernel implicitly describes multiple CUDA threads

that are organized in groups called thread-blocks. Thread-blocks are further

organized into a grid structure similar to that of OpenCL. FCUDA is based on source-

to-source transformation that generates a C function for each CUDA kernel. The

generated C code is annotated with pre-processor directives (FCUDA pragmas)

inserted by the FPGA programmer into the CUDA kernel. These directives control

the FCUDA translation of the expressed parallelism in CUDA code into explicitly-

expressed coarse-grained parallelism in the generated AutoPilot code. The FCUDA

pragmas describe various FPGA implementation dimensions which include the

number, type and granularity of tasks, the type of task synchronization and

scheduling, and the data storage within on and off-chip memories.

The AutoPilot Compiler [15] generates RTL descriptions for each function in a C

program. Each function is translated into an FPGA core. AutoPilot provides code

directives to indicate parallel-code regions, and further unrolls inner-loops to run

concurrently when no across iterations dependencies are detected. AutoPilot allocates

all arrays onto local BRAMs. It also supports arbitrary bitwidth data types to achieve

optimized hardware implementations.

Jääskeläinen et al. [40] introduce a compilation infrastructure based on LLVM to

generate transport-triggered architectures from OpenCL codes in an approach

seemingly similar to our work. The processors generated with their design flow are

statically scheduled VLIW-style architectures with up to hundreds of programmer

visible general-purpose registers. Parallelism at the granularity of work-items is

exploited in order to overlap memory access latency with computations. They also

introduce and use OpenCL extensions in order to code performance-critical parts of

the kernels. Our approach is inherently different. We do not favor OpenCL

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 29

extensions, but perform extensive compile-time analysis instead, and granularity

coarsening in order to avoid putting additional burden to the programmers.

Altera Inc. started an initiative to build FPGA-based systems from OpenCL

programs [41]. The concept of Altera’s OpenCL-to-FPGA is similar to that of

Jääskeläinen et al.; OpenCL threads are mapped on customized processing cores. The

system is populated with many of the processing cores on which the entire

computations grid is mapped. An embedded on-chip RISC processor (e.g. Nios) plays

the role of host processor that manages OpenCL threads. The processing cores are

either custom pipelines or a VLIW/Vector processor.

Finally, OpenRCL platform utilizes OpenCL to schedule fine-grain parallel

threads to a large number of MIPS-like cores [42]. OpenRCL does not generate

customized hardware accelerators, although each MIPS core can be configured to

match application characteristics.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 30

CHAPTER 3

ARCHITECTURAL TEMPLATE

3.1 Overview

 In a conventional hardware design flow, application functionality and structure

determine the target design architecture. A hardware designer performs firstly a

thorough analysis of the application functionality to extract parallelism and data

communication patterns. Based on the analysis output, the designer partitions the

application into a hierarchal structure of parallel tasks and subtasks each implemented

separately, and determines the communication network connecting the set of tasks.

Hardware designers exploit all kinds of available parallelism in the application like

instruction parallelism, data parallelism, pipeline parallelism, and task level

parallelism.. Moreover, each task implementation is optimized according to its

specific computational patterns.

Figure 3.1 depicts the block diagram of a manual implementation of the motion

compensation block in AVS video codec system [43]. A hardware designer typically

partitions a complex task into multiple subtasks each performing a specific function:

chroma interpolation, and luma interpolation (Figure 3.1a). Such partitioning

exploits task level parallelism by concurrently executing chroma and luma

interpolation, and pipeline parallelism by overlapping the execution of multiple

blocks of data (called macroblocks in the context of video codecs). The designer may

go further by partitioning each subtask into smaller blocks each performing a specific

functionality exploiting more task parallelism, pipeline parallelism and data

parallelism (Figure 3.1b). At the low level partitions, a hardware designer will exploit

computation patterns to build efficient circuits to perform the basic computations

(Figure 3.1c). Hardware designers traditionally design separated components for data

streaming and interfacing to overlap I/O data communication and computations.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 31

In this work, the SOpenCL backend transforms a C function, corresponding to an

OpenCL kernel, to synthesizable HDL based on an architectural template that can be

instantiated to match the performance requirements of the application and the

available FPGA resources. In the following sections we will describe the structure

and components of the architectural template, and how the C function is mapped onto

it.

3.2 High Level Architecture

3.2.1 Hierarchical Structure

The use of an architectural template is necessary to relieve the programmer from

specifying the tasks partitions and mapping by providing a systematic approach in

partitioning and mapping the kernel code onto the hardware fabric while exploiting

available parallelism. The proposed architectural template has a hierarchal structure

that closely follows the computational hierarchy of the input kernel. Figure 3.2b

shows the architecture of the hardware accelerator of the LU Decomposition kernel

shown in Figure 3.2a. The architectural template is built mainly of two types of

components: Processing Element (PE) and Control Element (CE). A PE is a

customized architecture that executes an inner-most loop. A CE implements the

functionality of the outer loops and loop invariant statements. Based on this

classification, the kernel in Figure 3.2a translates into the accelerator of Figure 3.2b

as follows:

•••• Inner Loops: Each of the inner loops {L0_2, L0_3, L1_0, L2_0, and L2_1} is

allocated a PE module.

C
o
ef

fi
ci

en
ts

C
o
m

p
u
ta

ti
o
n

Figure 3.1: Motion Compensation Block Manual design.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 32

•••• Nested Loops: Each of the nested loops {T0, T1, and T2} is allocated a CE

module {CE0, CE1, and CE2}. Moreover, CE modules CE0 and CE2 are also

used for processing outer loop basic blocks {B0_0, B0_1} and {B2_0, B2_1},

respectively.

•••• Loop Invariant Code: Loop invariant code outside any nested loops in the

kernel body is allocated a CE module {CE_g}.

In this hierarchal structure a parent-child relationship exists between a CE module

and another CE or PE module. In addition to executing outer loops and loop invariant

code, a parent CE initiates the execution of its children. For instance, module CE0 is

responsible for controlling execution of PE modules PE(L0_2) and PE(L0_3).

Local arrays in the kernel (peri_row, peri_col, and dia in Figure 3.2a) are each

allocated a local memory implemented using dual port Block RAMs (BRAMs). Local

memories could be either double buffered or work as a FIFO to enable pipeline

parallelism of multiple PE and CE modules.

The architectural template allocates arbiters to manage data read and write

(a) (b)

Figure 3.2: (a) Program structure of LU Decomposition kernel after coarsening
the granularity to the equivalent of a work-group. (b) The block diagram of the
automatically generated hardware accelerator for LU decomposition.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 33

requests to global memories. Each separate memory port has its own arbitration logic.

Multiple PE and CE modules that access the same global memory will compete to

gain access to a global memory port.

 The resemblance between the source code structure and the generated architecture

provides several benefits:

•••• Exploiting multi-level parallelism: Multiple nested loops can be pipelined and

hence execute in parallel. Multiple PE modules are allowed executing in parallel

if they are independent or can be pipelined if they have cross iteration

dependencies.

•••• Full Customization: An architecture that resembles the hierarchal structure of the

kernel code captures every feature and characteristic of the code much better than

a random RTL structure or a microprocessor-like architecture. Separate datapaths

built to execute computations in different loops are designed more specifically to

match the computational pattern of each loop, instead of having more generalized

datapath for multiple loops.

•••• Control distribution: Control signal delay and logic becomes more critical when

it covers large hardware blocks. Building architecture with multiple hardware

blocks each executing independently and using a hand-shaking synchronization

mechanism will localize control logic and reduce significantly the distance a

control signal needs to travel within a single clock cycle.

3.2.2 Interconnection network

The interconnection network connecting all components uses FIFO channels

between two components (PE or CE) that exchange data. The use of FIFO channels

allows asynchronous execution and overlaps the execution of loop iterations, as will

be described in Section 3.5.

Figure 3.3 depicts two types of data channels; scalar data point-to-point FIFO

channel, and local streams buffer. Scalar FIFO channels are implemented using Flip

Flops, and local stream buffers are implemented using FPGA Block RAMs

(BRAMs). Multiple scalar FIFO channels are allocated for the same scalar variable if

it has multiple consumers (Figure 3.3a). On the other hand, a local stream is allocated

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 34

only one local buffer channel shared by all producers/consumers of the same local

stream (Figure 3.3b).

A scalar FIFO channel transfers scalar variables in the C function between

producer and consumer components (PE, and CE modules). A producer continues to

write data as long as all FIFO channels have free space (full signal equal to 0), and a

consumer absorbs data as long as the FIFO is not empty. A FIFO channel will store

incoming data if the valid signal is true, and will output data to the producer if the

absorb signal is true. A consumer absorbs data tokens from the FIFO by setting the

absorb signal to 1 (i.e. true), e.g. consumer_0 sets absorb_0 signal equal to 1 to

absorb data from its own FIFO channel. The FIFO channel flushes one data token

each clock cycle if the input absorb signal is true. Hence, if a consumer wants to read

one data token from its FIFO channel, the absorb signal should stay true (equals 1)

only for one clock cycle. The FIFO channel sets the full signal to 1 if there is no more

space to store incoming data tokens (i.e. the FIFO is full), and forces the producer to

stop generating new data tokens.

A local buffer channel is created for each data array which is local to a kernel. A

local buffer channel is built using dual port Block RAMs providing separate

Read/Write ports. A local buffer address space can be partitioned into two or more

blocks (In Figure 3.3b local buffer has two blocks) to enable double buffering and

(a) (b)

Figure 3.3: Interconnect communication channels. (a) FIFO channels. (b) Local
Buffers channels. Local buffer two blocks are used for double buffering.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 35

pipelined execution. In fact, a local buffer partitioned into multiple blocks is

implemented as shared FIFO between the multiple consumers and producers. A

producer first writes into Block_0 address space of the local buffer, and when it

finishes it sets its output finish signal to 1 so a consumer could start reading data from

Block_0. While a consumer reading data from Block_0, the producer starts a new

write session to Block_1, then it sets the finish signal again to declare finishing the

second write session and starts a third write session to Block_0 as soon as the

consumers finished reading from Block_0. This switch forth and back between

Block_0 and Block_1 allows overlapping read and write sessions to local buffers.

A producer/consumer generates a finish signal stored in a FIFO and used by buffer

arbiters to enable/disable successors read/write requests. A finish signal becomes true

once a consumer/producer submits as many read/write requests that fulfill its

dependencies. For example, PE(L0_2) in Figure 3.2b, generates a true finish signal

when the execution of the last iteration of loop T0 terminates (and the write operation

into dia local array). Likewise, consumer PE(L1_0) produces true finish signal when

the execution of the last iteration of loop T1 terminates. A finish signal is stored in a

FIFO channel when it is equal to 1. A read port arbiter examines all FIFOs finish

signals and allows a consumer to start reading data only when all its dependencies are

fulfilled, i.e. all its predecessors produced a true finish signal. When a consumer

finishes its reading session, the read port arbiter flushes the corresponding finish

FIFOs of all its predecessors. The same operation also performed by the write port

arbiter.

3.3 Processing Element (PE) Architecture

Figure 3.4 shows the architecture of a PE module, which is used to execute inner

loop computations in a kernel. The PE architecture decouples and overlaps data

movement and execution, by allocating separate modules for computation

(Datapath), and data movement (Stream Interface Unit). The stream interface unit

allocates a set of memory traffic management modules, including a programmable

Address Generation Unit (AGU) for memory read requests. Separate modules are

allocated for input and output streams to allow overlaping data read and write

operations.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 36

The architecture favors streaming applications with regular and predictable

memory access patterns by allocating separate modules for addresses generation and

data computations and by processing memory read and write requests independently.

However, in case memory access patterns are dependent on runtime computations,

addresses and data computations are mapped on a unified-as opposed to decoupled-

datapath. If irregular or a runtime-dependent RAW dependency exists, then separate

input and output streaming units are also merged to preserve the execution order of

memory read and write operations. This unified configuration of the PE architecture

is more suitable for non-streaming applications with I/O traffic dependences that can

be resolved only at runtime.

3.3.1 Datapath and AGU Modules

The Datapath module absorbs data tokens loaded from memory, performs

computations, and then pushes output data tokens back to the streaming unit for write

back to local or global memory. In a unified datapath configuration, it also performs

address computations. An Address Generation Unit (AGU) aggressively generates

Figure 3.4: Processing Element (PE) architectural template.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 37

addresses for data prefetching, and feeds them to the Requests Generation Module

(RGU). The tool flow guides the generation of the AGU by first identifying the code

slice responsible for data I/O, and then performing modulo scheduling on that code,

as we will show in Section 4.3. The output of the code slice and, therefore, the output

of the generated AGU hardware, is an address sequence for all elements of the input

stream. The architecture of the AGU is very similar to that of the datapath, thus the

same methodology is used to generate hardware in both cases. Figure 3.5 shows the

datapath generated for PE(L1_0) module in Figure 3.2b. A datapath includes three

types of components: functional units (FUs), storage units, and the control unit.

3.3.1.1 Functional Units

The datapath (and AGU) consists of a network of functional units (FUs) that

produce and consume data elements using explicit input and output FIFO channels to

the streaming units (Sin0, Sin1 and Sout0 in Figure 3.4). Each FU is preceded by a

multiplexer tree, which, at each time-slot, directs data elements into the correct input

port. The multiplexers are driven by a periodic-count of the initiation interval (II)

generated by the control unit.

Each FU supports the execution of specific operation type. SOpenCL tool supports

a large pool of operation types classified as follows:

+

==

phi

not

not

phi

FIFO

i

FIFO

(loc_idx < 16)

1

0

1

&

*

+

PopPopPop

Push

Tunnel
Tunnel

Push

FIFO

&peri_row[i][idx]

peri_row[i][idx] peri_col[i][idx]

FIFO

&peri_col[i][idx]

MUXMUX MUX

MUX

MUX

Control

Unit II

peri_row peri_col dia

stall

Figure 3.5: Datapath of the PE(L1_0) module in Figure 3.2b.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 38

• Primitive Integer Operations: Basic arithmetic and logic operations like Add,

Mul, And, Shift, and so on.

• Single Precision Floating Point Operations: SOpenCL uses a library of single

precision IEEE-754 compliant floating point units (FP Unit). Multiple versions of

each floating point operation are implemented. Each implementation is tagged

with its precision, its latency, as well as the number of its pipeline stages. At

compile time, the system selects and integrates the appropriate implementation

according to precision requirements and the target initiation interval. We used FP

units generated by FloPoCo [94] arithmetic unit generator.

• Mathematical Operations: The tool utilizes a library of commonly used

mathematical operations, such as square root, exponent, sine, cosine, arctan, etc.

The library includes two FUs supporting the sine and cosine operations: one FU

implementation is based on Taylor series with latency equal to 28 clock cycles,

and the second one implemented using CORDIC algorithm [95] with 40 clock

cycles latency. The latter also supports the execution of arctan operation. The

square root FU core uses a polynomial approximation with latency equal to 5

clock cycles. Square root and exponent FUs are generating by FloPoCo [94].

• Application Specific Operations: The tool flow analyzes computation patterns in

the loop and extracts common computational expressions to implement then as

custom FUs. Section 4.4 details the methods used in extracting application

specific instructions.

The size and number of functional units and types of supported operations are

configurable parameters, decided by the tool flow to achieve the computations

requirements and user performance specifications.

3.3.1.2 Storage Units

The datapath also includes registers and FIFOs that hold loop invariant data

generated by outer loops executed in parent CE modules. Figure 3.5 shows few of the

data FIFOs generated, used to temporarily store incoming data from local arrays such

as peri_row and peri_col, and inner-loop invariant variables like the outer-loop index

i. The size of each FIFO is a configurable parameter that can be assigned to match the

data rate at the specific FIFO channel.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 39

 Tunnels are storage elements used to bypass the streaming unit and channel data-

tokens stored in earlier iterations to be used by loads in later iterations. Tunnels are

generated wherever a load instruction has a RAW dependency with another store

instruction with constant cross-iteration distance larger than or equal to one, for

example for code portions like the following:

for(int i = 0; i < N; i++)

 a[i] = a[i-1]+1;

The tunnel size (i.e. the number of tunnel registers)is equal to the dependency

distance, because once a valid data token leaves the tunnel, the corresponding pop

FU starts reading data tokens from the tunnel and ignores data from the input FIFO

channel (Sin0, Sin1, etc.) coming from the Stream Interface Unit.

Figure 3.6 shows the C code of the inner loop L1_0 in Figure 3.2a. Due to the need

to accumulate values on the peri_row and peri_col arrays, the loop has two RAW

dependencies with distance 1 in each of these two data arrays. Two tunnels are

generated one for each with tunnel size equal to 1 as shown in Figure 3.5.

3.3.1.3 Control Unit

The control unit is responsible for initiating the execution of the datapath and

generating a periodic count (II) used by the FU multiplexers to select proper input

data at each time slot. The control unit stalls the datapath if any of the input data

FIFOs (e.g. i, loc_idx<16) and streams FIFOs (e.g. dia) is empty, or any of the output

streams FIFOs (e.g. peri_row) is full.

The control unit is also responsible for terminating the execution of the datapath by

monitoring the loop termination condition, such as the comparator output in Figure

3.5. As soon as the termination condition turns true, the control unit waits for a

Figure 3.6: L1_0 Loop C source code in Figure 3.2a.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 40

predetermined number of clock cycles until the last loop iteration ends, and then it

resets the datapath. Section 4.5.1.3 details how modulo scheduled loop is terminated.

3.3.2 Stream Interface Unit

The stream interface unit handles all issues regarding data transfers between the

main memory and the datapath. These include data alignment, data ordering, and bus

arbitration and interfacing. The streaming unit allocates multiple independent input

and output streams processing modules. Those modules process generated addresses

and prevent redundant or unnecessary requests from reaching local or global memory.

Local arrays (peri_row, peri_col, and dia in Figure 3.2a) or input arrays are

considered distinct streams of data. Each stream of data is allocated its own set of

processing units.

3.3.2.1 Input Streaming Units

Each input data stream is processed by a couple of tightly connected units:

Requests Generation Unit (RGU) and Input Stream Alignment Unit (SinAlign). The

RGU module receives addresses generated by the AGU and issues read requests to

external memories, while SinAlign unit retrieves data tokens, and packs them in order

to the datapath.

The RGU coalesces read requests generated by SinAGU (or the datapath) to the

word width of the underlying memory interconnect (for example, a PLB bus for

Xilinx FPGAs), or to burst size if bursting is enabled. The RGU aims to eliminate

redundant transactions on the memory interconnect. Before issuing a transaction

request to the arbiter it checks if the addresses aliases with previously requested ones

or if the data are available in the cache (if the cache has been instantiated).

Figure 3.7 depicts how the RGU and SinAlign unit process each generated read

address from the AGU (or the datapath) until the data token is loaded from the

memory and presented to the datapath. The process flow can be summarized as

follows:

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 41

• The RGU first checks if the input address aliases with previously issued addresses

stored in WReqs and SReqs FIFOs (Figure 3.9) or not. If an address alias is found,

the RGU issues a local address to the cache and the SinAlign unit to retrieve data

token from input data line (Data_line in Figure 3.4). The cache uses the local

address to store the incoming data line (data_in in Figure 3.4) and writing

Data_line to the SinAlign unit.

• If no address alias is detected, the RGU checks if the cache has valid data (if the

cache allocated) or not. If the cache has valid data then a local address is issued to

the cache and SinAlign unit to retrieve the data token from input data line

(Data_line in Figure 3.4).

• If the cache has no valid data, then the RGU issues a read request to the arbiter,

and then issues a local address to the cache and SinAlign units to retrieve data

token from input data line.

• The SinAlign unit stores input local address in the corresponding Data unit

(Figure 3.9) and then waits for incoming data line (Data_line). A local address is

shortcut of the complete address consists of two components: Offset and Code.

Figure 3.8a shows a 5-bit local address. The code component is a unique ID given

for each read request stored in the WReqs and SReqs FIFOs. The SinAlign unit

compares this ID with the incoming data line tag (Data_line_tag signal not

shown in Figure 3.9, accompanies Data_line) to check if the incoming data line

contains the required data token. If true, the SinAlign unit extracts the proper data

token from the input data line using the offset component. The offset component

Figure 3.7: RGU and SinAlign modules operations flow.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 42

is used to retrieve the proper data token bytes within a data line. For example, for

a 1-byte data token, Figure 3.8b shows the offset value for each byte in a 64-bit

data bus.

The RGU module can be configured to process multiple addresses in parallel or

once a time. The RGU module takes different shapes depending on the data stream

type and characteristics. Figure 3.9 shows three basic shapes of the RGU module. For

a global or local input data stream, the RGU follows the configuration in Figure 3.9a.

The Cache Access Logic block is not used for local data streams, as well for streams

that don’t use the cache. A data stream of constants will use a much simpler RGU;

each input address port is allocated a ROM that stores the array of constants (Figure

3.9b).

(a) (b)

Figure 3.8: Local Address Encoding. (a) 5-bit local address. (b) Offset values for 1-
byte data token in 64-bit Data Bus.

(a) (b) (c)

Figure 3.9: RGU and SinAlign modules configurations for (a) cached and non-cached
data streams. (b) stream of Constants. (c) Streams with runtime RAW dependencies.
WReqs FIFO refers to Waiting Requests FIFO. SReqs FIFO refers to Sent Requests
FIFO.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 43

The RGU module could serve data write requests (Figure 3.9c) as well in the

special case of irregular or runtime dependent RAW dependencies as in the following

code:

 for (i = 1; i < N; i++)
 a[c[i-1]] = a[c[i]] + b[i];

In this special case the datapath will be responsible for generating read and write

addresses. The scheduler will consider the available RAW dependency and produce a

correct schedule. However, since the SoutAlign Unit and RGU are completely

independent, and the datapath does not wait for write acknowledge signal, there is no

guarantee that the read/write requests order generated by the datapath will be

preserved on the interconnect bus. Hence, both read and write requests, are served by

the same RGU module which preserves their execution order. Moreover, the RGU

module will exploit address coalescing resources to retrieve data tokens from a write

request, and prevent unnecessary read request from reaching the interconnect bus.

The SinAlign module retrieves data from the cache unit or the data_in incoming

data in case the data stream is not cached, and presents them in-order to the datapath.

For each load instruction in the loop, the SinAlign module allocates separate

alignment logic and FIFOs (Data Unit_m in Figure 3.9). This allows the SinAlign

modules to serve multiple load instructions in parallel and out of order.

The Local Address Select block in Figure 3.9 works as demultiplexer by directing

each incoming local address to the proper Data Unit. The Tag signal that accompany

each local address indicates to the corresponding load instruction produced the

address, and hence to which Data Unit the local address should be directed.

The SinAlign Unit is tightly coupled with the RGU module, and variations on its

configuration follow closely any variations on the RGU configuration. For global and

local data streams, the Align Path (Data Unit in Figure 3.9) includes a FIFO that store

local addresses and retrieves data tokens. A single Data Unit can retrieve multiple

data tokens simultaneously, if multiple local addresses stored in its FIFO have

the same request code component. For a data stream of constants the Data Unit is a

FIFO that stores only data tokens obtained from the ROM.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 44

3.3.2.2 Output Streaming Units

Each output data stream is allocated its own Output Stream Alignment unit

(SoutAlign). The SoutAlign unit aligns the output data tokens coming from the

datapath in a FIFO of data-lines of bus-width bytes (Align Data FIFO in Figure 3.10).

The operation of the SoutAlign unit can be summarized as follows:

• For each incoming write request (which includes address and data token), the

Align Logic unit (Figure 3.10) checks if the input write address aliases with

previous addresses stored in the Align Data FIFO. If an alias found, the proper

data line in the Align Data FIFO is updated with the input data token.

• If an address alias is not found, the Align Logic unit stores the input address and

data token in an empty line in the Align Data FIFO. If the Align Data FIFO is

full, then the Align Logic unit sets the issue signal to true. The Issue Request unit

then issues a write request to the arbiter (or a local memory) to make a space in

the Align Data FIFO.

• When the datapath terminates, all data in the Align Data FIFO is written to the

memory before new write requests stemming from the datapath are written in the

Align Logic

Align Data FIFO

Issue Request

A
ck

D
L
in
e

B
E

A
d
d
r

is
su
e

A
d
d
r_
0

A
d
d
r_
m

D
li
n
e
_
0

D
li
n
e
_
m

B
E
_
0

B
E
_
m

A
ck

D
Li
n
e

B
E

A
d
d
r

Data/

Address

FIFO

Data/

Address

FIFO

D
a
ta
_
0

A
d
d
r_
0

D
a
ta
_
n

A
d
d
r_
n

D
a
ta
_
0

A
d
d
r_
0

D
a
ta
_
n

A
d
d
r_
n

(a) (b)

Figure 3.10: SoutAlign module. BE refers to the Byte Enable bus signal. (a)
Generic SoutAlign unit configuration. (b) SoutAlign unit configuration when
no address aliases detected at compile time.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 45

Align Data FIFO.

The Align Logic unit provides parallel alignment capability, by writing aligned

data tokens to multiple data lines in the Align Data FIFO, and by writing multiple

data tokens in the same data line simultaneously.

The SoutAlign unit eliminates repetitive writes to the same memory location by

overwriting old data tokens in the Align Data FIFO with newly produced data tokens.

The mechanism of overwriting old data in the Align Data FIFO is applied until the

datapath terminates or the Align Data FIFO is full and a data line (where data is

overwritten) must be written to the memory to make space in the FIFO. Also if the

Align Data FIFO is full RAW dependencies are not violated by the overwriting of old

data. Regular RAW dependencies are served using tunnels, and irregular

dependencies are served by directing write requests through the RGU module and

removing the SoutAlign unit. Write-after-write (WAW) dependencies are considered

by the scheduler, and since they pass through the same SoutAlign unit, their execution

order is preserved.

The SoutAlign unit follows a simpler configuration (Figure 3.10b) if the SOpenCL

detects no aliases between successive addresses at compile-time, and hence, remove

the Align Logic unit and Align Data FIFO. The SoutAlign unit in this configuration

simply works as arbiter serving one data token each clock cycle.

3.3.2.3 Local Cache

The cache unit exploits temporal and spatial locality and reduces latency of

memory accesses by saving recently loaded data for future reuse. The cache unit is

implemented using dual ported Block RAMs so that accesses from the arbiter and the

SinAlign unit can be served simultaneously.

A cache line is equal in size to the bus width. The cache unit is not instantiated if

compile time analysis determines that the input memory access pattern has limited

reuse. The cache unit is configured as a set of data blocks possibly with different

sizes. Each distinct data stream stored in the cache is allocated a number of data

blocks with specific size determined by SOpenCL, as will be discussed in Chapter 4.

Compared to conventional caches, the cache unit has the following differences:

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 46

•••• It is a read only cache; data transferred from main memory to the cache but not

the other way.

•••• A block of data is allocated a space in the cache but no read operation on the

whole block is performed. A data line in the block will be transferred from the

main memory only if a data request to a data token in that line is generated by the

SinAGU. In other words, a data line is read on demand.

•••• The cache is accessed only by the PE module associated with it. No other PE

modules have access to that cache.

•••• The lifetime of a data stream in the cache ends when another PE or CE module

starts a write transaction to the data stream in the main memory.

It is not necessary that all input data streams utilize the cache. SOpenCL will

detect data streams with temporal and spatial locality and recommend whether a

cache will be instantiated as part of the architecture.

3.4 Control Element (CE) Architecture

The control element (CE) serves as the glue connecting all the accelerator

components by directing the execution flow. The CE module implements and

executes outer loops and loop invariant statements. In Figure 3.2b, CE modules CE0,

CE1, and CE2 execute the statements (blocks of instructions) in outer loops T0, T1,

and T2, respectively. Figure 3.11 outlines the architectural template of the CE

module. The architecture consists of three types of components:

•••• Computational components: functional and storage units.

•••• Control FSM: A finite state machine used to control the execution flow and

provide synchronization information for the CE children (PE and other CE

modules).

•••• Streaming and memory interface: a set of streaming units used to issue read/write

requests, and retrieve data tokens and acknowledgements.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 47

3.4.1 Functional and Storage Units

Computational components include a network of functional units (FUs),

multiplexers, registers and queues. The instructions blocks within the loops are

statically scheduled on the allocated FUs, and the multiplexers are configured at

compile time to fulfill the interconnection requirements of the scheduled FUs, i.e.

direct the proper FU output or registered data to the proper FU input port at each time

slot in the schedule period.

The CE module supports the same types of functional units mentioned in section

3.3.1.1. However, the amount of FU resources allocated is typically less than the

resources allocated for a datapath. The storage units in the CE module include scalar

data static registers and FIFOs (similar to the ones described in section 3.3.1.2), and a

register file. The register file holds scalar variable with lifetime outside the

boundaries of a basic block. Figure 3.12 shows some of the Loop T0 statements

mapped on CE0 (Figure 3.2), and the register file generated for CE0. In Figure 3.12,

variables r0, and r3 in block bb0 (not shown) are used in block bb5, hence, they are

Figure 3.11: Control Element Architectural Template.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 48

saved in the register file to be used later, because the queue of an FU is reset after

block execution finishes.

3.4.2 Control Unit

The Control Unit implements the control transfer logic between blocks of

instructions as well as with successor CEs and PEs. The transition between FSM

states is guided by the execution of the control transfer instructions (br instructions in

Figure 3.12) in the current executing basic block.

The FSM state drives the generation of control signals such as the schedule length,

and trigger signals of children modules such as start_pe0, start_pe1, etc. Schedule

length is the number of clock cycles required to finish the execution a block of

instructions, e.g. the schedule length of block bb3 in Figure 3.12 equal to 4 clock

cycles. The value of schedule length is computed at compile time after instruction

scheduling. The FSM selects the proper schedule length value depending on the block

currently executing.

Similar to the control unit in the PE datapath, the FSM control unit stalls CE

module execution when there is a read/write request waiting in a stream unit to be

served, and when input scalar data is not available or the register file is stalled by a

hold signal from another PE/CE module.

Figure 3.12: CE Register File allocation. (a) Part of the outer loop statements
of Loop T0 in Figure 3.2. (b) Snippet of the Register file of module CE0 in
Figure 3.2.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 49

3.4.3 Streaming Interface

The streaming interface in the CE architecture consists of a set of stream

processing units and off-chip memory arbitration. Each data stream is allocated its

own Stream Units. The stream units have the simple task to issue read/write request

address and to retrieve data tokens or write request acknowledgement. Unlike PE

architecture streaming units, the CE streaming units serve one read/write request each

time; there is no address coalescing, no reuse mechanisms, and no cache support

(Figure 3.13). The assumption is that the CE memory traffic is very small compared

to that of the PE module; as the PE module normally has more data traffic executes N

times the number of its parent CE execution iterations (where N is the loop trip of the

inner loop executed by the PE module).

In Figure 3.2, CE1 module executes the statement peri_col[idx][i] /= dia[i][i]

where two read and one write operations are performed on local data arrays peri_col

and dia. Hence, CE1 module allocates two input stream units (as in Figure 3.13a) for

read operations from peri_col and dia local streams, respectively, and one output

stream unit (as in Figure 3.13c) for write operation to peri_col local stream. The

stream units in a CE module share the same local buffer or global memory ports with

PE modules. In Figure 3.2, CE1 shares peri_col and dia local buffers with PE

modules (interconnects are not shown in the Figure for clarity).

The CE streaming interface includes an arbiter that manages requests to an off-

chip memory; all stream units accessing an off-chip memory assigned an arbiter that

manages their requests and acknowledgements. A stream unit that processes data

D
a
t
a

A
d
d
r

Address

Align Data Bus

Data

(a) (b) (c)

Figure 3.13: CE Stream Unit Configurations. (a) Typical input stream streaming
unit. (b) Stream unit supports array of constants. (c) Typical output stream streaming
unit.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 50

arrays in local buffers has a direct link to the local buffer system. The stream units

also support arrays of constants (Figure 3.13b). Like the RGU module, the stream unit

allocates ROM storing the array of constants.

3.5 Execution Model

Figure 3.14a shows a synopsis of the FSM of CE0 in Figure 3.2b. In a sequential

execution model, a control transfer occurs (FSM state changes) when a basic block of

instructions (e.g. B00, B01) finishes execution and a control transfer operation (br,

switch) is executed. According to this model, a CE will not initiate a new execution of

a successor module (PE or CE) until that successor finishes previous execution. A PE

(or CE) emits a true finish signal to transfer control back to its parent CE. For

example PE02_finish and PE03_finish signals used in Figure 3.14a FSM are

generated by PE(L0_2) and PE(L0_3) (Figure 3.2b), respectively. This FSM model will

reduce the architecture into a sequential processor consisting of multiple hardware

units executing one at a time. Figure 3.15a depicts the sequential execution flow of all

architecture components.

SOpenCL uses a concurrent execution flow, instead of the slower sequential

model. A control transfer from a basic block occurs when it finishes execution, but a

control transfer from a successor PE or CE will not wait for a finish signal, given the

destination is known at compile time.

Figure 3.14b shows a synopsis of the FSM with concurrent execution model.

When the FSM state reaches states PE02, and PE03, CE0 children PE(L0_2) and

Figure 3.14: Synopsis of the FSM of CE0. (a) Sequential execution mode
FSM. (b) Concurrent execution mode FSM. The FSM in (b) drops signals
PE02_finish and PE03_finish in states PE02 and PE03, respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 51

PE(L0_3) are triggered. The FSM in Figure 3.14b drops signals PE02_finish and

PE03_finish in states PE02 and PE03 respectively. Both PE(L0_2) and PE(L0_3) will be

triggered with distance one clock cycle. In other words, both modules will execute in

parallel as long as there are no data dependencies between them. Figure 3.15b depicts

the concurrent execution flow.

Concurrent flow requires a mechanism to preserve data dependencies between

multiple PE and CE modules. A simple handshake synchronization mechanism is

used. Two PE or CE units that have either a memory or scalar data dependency will

exchange two signals: Finish and Hold, and if they have multiple dependencies they

exchange multiple pairs of Finish and Hold signals one for each dependency. A

producer will emit a Finish signal as soon as it finishes data computations required by

other PEs and CEs. A consumer scans the Finish signal continuously and saves the

incoming data in a FIFO when the Finish signal is true. If the data FIFO at a

consumer is full, the consumer will emit a Hold signal and the producer will stall

execution until the consumer can absorb the data. For memory dependencies, the

consumer (reader or writer) will save the Finish signal itself in the FIFO since the

data saved either in local or global memory.

Adopting the concurrent execution model allows parallel execution of multiple

independent PE and CE modules. One major benefit is hiding prologue and epilogue

latencies of inner most loops (Figure 3.16). In the PE module, the AGU and datapath

run as separated entities. Figure 3.16a shows the sequential execution model,

Figure 3.15: Timing for a work-item execution for the architecture of Figure 3.2b
using (a) sequential execution flow, and (b) concurrent execution flow.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 52

according to which the next iteration of an outer loop can be initiated only after the

last iteration of the inner loop. The sequential model creates execution bubbles at the

prologue and epilogue of each outer loop iteration (ET0 and ET2, respectively),

during which computing resources remain idle, thus causing unnecessary execution

delays. ET0 refers to the execution time of computations in the outer loop executed

before a PE module is initiated. ET1 refers to the execution time of the PE module.

And ET2 refers to the execution time of computations in the outer loop executed after

the PE module finishes execution. Tin in Figure 3.16 refers to the time required to

initialize the datapath (and the SoutAlign unit) with input data. In the sequential

execution model, at least one of the PE module components (AGU, datapath or

SoutAlign unit) stays idle.

Using the concurrent execution model we can ameliorate the sequential execution

model inefficiency. By initiating the next outer loop iteration, the parent CE will

retrigger the successor PE while it still executes the work load of previous iterations.

In Figure 3.14b, the FSM state will reach the PE02 and PE03 states while the

corresponding PE children still executing previous iterations. This early trigger of a

child, forces the AGU and datapath to start execution of next outer loop iterations as

soon as it finishes previous ones (Figure 3.16b).

(a) (b)

Figure 3.16. Nested loop execution model (a) when there is no overlap
between successive outer loop iterations (sequential model) and (b) when
successive outer loops overlap (concurrent mode). SinAGU: yellow,
Datapath: blue, and SoutAlign: green

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 53

3.6 Related Work

Prior research in architectural synthesis has investigated a variety of hardware

accelerators architectures. The variations between the introduced architectures

resulted mainly from the way each architecture partitioned the input specification into

multiple blocks and the interconnect between them.

PICO-NPA [13] generates a Non-Programmable Accelerator (NPA) for a C

function comprising a single perfectly nested loop. The NPA architecture consists of

an array of multiple instances of a datapath processor, a memory controller, a control

unit, and an interface to the host processor (Figure 3.17a). The architecture includes

also local memories shared by the datapath processors. A datapath instance

implements a modulo-schedule of the inner most loop in the loop nest (Figure 3.17b).

The PICO-NPA compiler distributes outer loops iterations over the allocated datapath

processors equally. It is the responsibility of the host processor to initiate processors

execution, initialize processors with data and loops indices.

The PICO-NPA architecture is a paradigm for a coprocessor with a host processor

as its central control unit. While this paradigm provides an efficient implementation

of a coprocessor and can speedup loop execution, shifting the control logic to the host

processor restricts parallelism between multiple NPA coprocessors, and reduces

NPAs to application specific execution units in a VLIW processor.

The Trident system [26] synthesizes a hardware accelerator from a C function

with one or more arbitrary loop nests. Trident performs if-conversion (predication) to

generate hyper blocks of instructions. A hyper block is created by removing all

(a) (b)

Figure 3.17: PICO-NPA system. Figure copied from [13]. (a) NPA architecture:
systolic array of processing cores. (b) Processing core datapath.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 54

branch instructions between a set of basic blocks and putting their instructions in a

single block. Trident uses If-conversion to create hyper blocks. The Trident system

generates an architecture consisting of multiple subcircuits each implements a

hyperblock (Figure 3.18). A subcircuit consists of a state machine and a datapath. All

subcircuits share a single file register to store scalar variables. The architecture top

circuit includes a control module that manages control transfers between hyper blocks

and exchange control signals with a host processor. Trident is one of the few

synthesis tools that support floating point operations using multiple libraries.

Like PICO-NPA, Trident system doesn’t provide any sort of synchronization

mechanism between multiple hyper blocks, hence, blocks of Figure 3.18 execute

sequentially. On the other hand, Laura [44] architecture utilizes sophisticated

synchronization mechanisms allowing multiple processing units to run in parallel.

Laura architecture (Figure 3.19) follows closely a Kahn Process Network (KPN)

specification [45]. Laura uses the Compaan compiler [46] to generate a KPN

specification from Matlab applications. The work in [47] builds upon Laura

framework to support C functions.

A KPN computation model assumes concurrent autonomous virtual processes

(VP) that communicate in point to point fashion over unbounded FIFO channels. In

KPN model, a VP is a perfectly nested loop. KPN computation model is applicable on

streaming applications with regular data streams. The streaming feature of KPN

models allows pipelining producer-consumer VPs. To overcome the issue of

Figure 3.18: Trident system target architecture. Figure copied from [26].

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 55

unbounded FIFO channels in a KPN, Laura supports the use of bounded FIFO

channels by applying blocking write synchronization and blocking read

synchronization mechanisms.

Virtual process architecture includes three units; read unit, execute unit, and a

write unit. In [44], PICO system is used to generate the hardware for the execute unit.

Read and write units pop and push data from the proper FIFO channel without the

need for address generation. A VP starts execution once all its input data are valid.

ROCCC compiler [48] implies architecture similar to Laura architecture. ROCCC

architecture consists of a network of modules, in which each module implements a C

function. According to ROCCC programming model, a C function consists of an I/O

interface represented as a data structure and an instantiation of a function performs

the computation. ROCCC module architecture (Figure 3.20a) decouples memory

accesses from datapath computations. Since ROCCC supports regular memory

accesses known at compile time, memory accesses are configured at compile time. A

smart buffer handles data reuses by keeping data tokens for their lifetime. This

requires the compiler to perform data reuse analysis and configure the buffers at

compile time.

Similar to Laura and ROCCC architectures, Optimus [36] generates uses an

architectural template called filter (Figure 3.20b). Optimus stream programming

model represents a program as communicating filters. The template consists of five

main components: input queues, output queues, memories, the filter itself, and the

controller. Input and output queues are used to send and receive data. Each filter can

(a) (b)

Figure 3.19: Laura target architecture. Figure copied from [44]. (a) Network of
KPN virtual processes. (b) Architecture of a VP process.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 56

be connected to several memory components. All the memory modules are local to

each filter. The hardware block implementing the filter consists of the work module

(datapath) which performs the computations and an optional init module which

executes once to initiate the filter. The controller makes sure that the init function gets

executed only once before the first invocation of the work function.

Contrary to Laura and ROCCC interconnect model, MARC system [49] uses

many-core style architecture. The architecture consists of a C-core (Control

processor), and many A-Cores (Arithmetic cores) as depicted in Figure 3.21. Each

core has its own private/local memory (P/L), and access to global multiport memory

through the interconnect network. The datapath of an A-Core can be a simple RISC

style processor with 5-stage pipeline, or an application specific core. MARC system

builds application specific A-Core datapaths each supporting a set of Super

Instructions. A super instruction is a cluster of simple instructions that have a

common computation pattern. The scheduler is responsible for mapping statically

scheduled instructions on proper A-Core datapaths.

MARC architecture allows as many A-cores to execute in parallel as soon as each

core has all its input data available. To exchange data, A-cores will go through global

memory, because there are no registers between A-cores. Instructions executing on

the same A-Core, share data through A-Core private and local memory. While

application specific A-Cores achieve a significant speedup in computations, the

absence of point-to-point communication between A-Cores increases the pressure on

(a) (b)

Figure 3.20: (a) ROCCC Module architecture model. Figure copied from [48].
(b) Optimus Filter template. Figure copied from [36].

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 57

global memory. Scheduling instructions on A-Cores should be done carefully to

minimize the number of data dependencies between multiple cores.

Figure 3.21: MARC System Architecture. Figure copied from [49].

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 58

CHAPTER 4

SILICON OPENCL BACKEND

SOpenCL backend applies a series of transformations prior to hardware generation

(Figure 4.1). These transformations are used for hardware optimizations and are used

as a means for generating customized hardware accelerators based on the template

described in Chapter 3. Each transformation has a corresponding hardware support in

the architectural template of Chapter 3 as will be explained in this section.

4.1 Bitwidth Optimization

General purpose processors (GPP) include functional units, such as ALUs,

multipliers, etc. of standard size, (32 or 64 bits). As a result, compilers targeting GPP

based platforms produce assembly instructions of the same bitwidth. However, when

we design a customized hardware accelerator for a given application, we can control

the size of each allocated functional unit. Hence, it is important to remove any

redundant bits in every instruction size to minimize the size of functional units, and

reduce overall area.

Bitwdith optimization has been developed as a separate LLVM optimization pass

to compute the minimum number of bits needed to represent every integer variable

(i.e. instruction) in the application. On the other hand, floating point variables are

Figure 4.1: SOpenCL backend transformations.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 59

IEEE-754 compliant and use the 32-bit for single and 64-bit for double precision,

respectively.

Bitwidth optimization for integer variables is a value-range propagation problem.

The value range (e.g. 0 to 255 for char variables) of a variable is propagated through

the program data flow graph (DFG) to compute the value range of subsequent

variables. The bitwidth optimization algorithm uses three types of information as

input to the value propagation engine:

• Variable data type: Data types like char, unsigned char indicate a value range

[-128,127] and [0,255], respectively.

• Static Array Size: Static arrays size like A[256] can be used as an upper bound on

array index variables.

• Loop carried linear expressions and loop trip count: a loop carried expression,

like most loop iteration index variables (e.g. k += 2), can be solved provided that

the loop trip count is known and the expression is linear.

As an example, refer to Figure 4.2. Input data stream A, and B have char data type

with value range [-128, 127]. Propagating their value range to variables s0 and s1

leads to value range [-256, 254] and [-255,255], respectively. The static array C[16]

size places a bound on the variable N, hence the value range [1, 16] . The variable i

value range is computed using its loop carried expression, and value range of N,

hence the variable i takes value range [1, 16]. Using the computed value range for

each variable, we compute the number of bits required to represent that value range

Figure 4.2: Bitwidth optimization example.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 60

(as shown in Figure 4.2).

Bitwidth optimization significantly reduces the size of functional and storage

units. Instead of 32×32 multiplier, we need only a 9×9 multiplier to compute s1*s0,

and instead of a 32-bit adder, a 9-bit adder suffices to compute s0 + s1.

4.2 Predication

4.2.1 Overview

Wide-issue architectures require a sufficient amount of instruction level

parallelism to achieve peak performance. Control transfer instructions impose a

significant restriction on available Instruction Level Parallelism (ILP), and hence,

lead to a serious restriction on performance.

Many studies proposed predicated execution as a method to increase ILP [51, 53,

55]. Predicated execution eliminates control transfer instructions and replaces them

by predicate-defining instructions and guarding instructions. This transformation

replaces control dependencies with data dependencies. An instruction is executed as

soon as its data operands and predicates are available. Compilers support predicated

execution by applying If-Conversion transformation, in which code with multiple

basic blocks of instructions is translated into a single block Figure 4.3 shows a

simple example of the outcome of If-conversion. Instructions I0 and I1 define

predicates, while I2 and I3 are predicated instructions. The effect of a predicate on the

instruction is to validate (allows it to write its result) or invalidate its output. In cases

of load/store instructions, a predicate qualifies memory accesses.

Predication offers many benefits. ILP is increased by allowing separate control

paths to be executed in parallel. Some optimizations like modulo scheduling are

difficult to be applied on code segments with control-flow. Optimizations like

bb0:

c = cmp eq t, 0

br c, bb1, bb2

bb1:

r2 = ldw 0(A)

bb2:

r2 = add a, 1

bb0:

I0: p0 = cmp eq t, 0

I1: p1 = not p0

I2: (p0) r2 = ldw 0(A)

I3: (p1) r2 = add a, 1

Figure 4.3: IF-Conversion using LLVM assembly. Multiple blocks of
instructions are merged into a single block.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 61

redundant and dead instructions elimination will be more effective on a code free of

control instructions.

4.2.2 Prior Work

For many years, If-conversion studies have been conducted by simulating code

generated by experimental compilers. Recently, predicated execution is supported on

almost all high performance processors VLIW/EPIC processors. Multiflow-200

architecture [53] provided a Select instruction to select a data outcome from multiple

control paths. Later Multiflow architectures supported conditional-write for store and

floating point instructions [53]. Many architectures adopted conditional move

instruction (CMOV) as in DEC/Compaq Alpha and SUN SPARC V9 [55, 57].

Cydra5 was the first architecture that fully supported word-wide instruction

predication. Every wide-word instruction can be made conditional on a bit in the

predicates register file (Iteration Control Register) [53, 55] Intel IA-64 (Itanium) was

the first general purpose architecture that fully supported predication. Each

instruction specifies a 1-bit predicate register, and if the value is true the instruction is

executed, otherwise, the instruction will have no effect [52, 54]. Predicate registers

are set by compare instructions, where each compare instruction is specified with the

predicate registers to update.

4.2.3 Predication Algorithm

SOpenCL implements If-conversion as a separate pass in LLVM compiler. If-

conversion is used to transform control dependencies in inner-most loops into data

dependencies in order to facilitate modulo scheduling and increase ILP.

4.2.3.1 If-conversion algorithm

Algorithm 4.1 depicts the pseudo code of the used If-conversion algorithm. The

algorithm first put the blocks of the inner most loop in execution order, i.e. a block

comes in the list after all its predecessors. The algorithm then iterates the ordered

blocks and for each block it first computes the block predicate using

computeBlockPredicate function. Then, it process block instructions by replacing Phi

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 62

instructions, removing branch instructions and computing destination blocks partial

predicates. At the end, it computes the loop header block predicate.

The replacePhiInstruction function replaces a Phi instruction in block Bi with a

sequence of Select instructions using partial predicates computed for block Bi. A

partial predicate is a predicate of block Bi generated from only one of its

predecessors. Block Bi will have as many partial predicates as the number of its

predecessor blocks. In Figure 4.4c, c1 instruction is a partial predicate of block bb4

corresponding it its predecessor block bb1. A Phi instruction is replaced by a

sequence of select instructions each selecting an input data token if its condition (i.e.

partial predicate) is true, or the previous data token select instruction. In this sequence

only a single partial predicate will be true, and so the true data token will be passed.

In Figure 4.4c, the Phi instruction r3 is replaced by a sequence of two select

instructions: t0 and r3 in Figure 4.4d.

The computePartialPredicates function removes a branch instruction and

computes partial predicates of destination blocks using the branch instruction

Algorithm 4.1: If-conversion algorithm.

Input: Inner loop code in LLVM assembly code with multiple instructions blocks.
Output: Inner loop with single block of instructions.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

BB → List of Inner loop Blocks
PP → Blocks Partial Predicates List

// Main If Conversion algorithm
IfConversion (BB){

 BB` = ExecutionOrder (BB);

 foreach block Bi in BB` do
 p = computeBlockPredicate (Bi , PP);
 foreach instruction I in block Bi do
 if I is Phi instruction then
 replacePhiInstruction (I , PP);
 else if I is Branch instruction then
 computePartialPredicates (p, I , PP);
 else
 copyInstruction (I);
 end if
 end for
 end for

 ComputeHeaderPredicate (PP);
}

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 63

condition operand. For the true destination block, the partial predicate is computed as

the AND operation of the branch condition and the predicate of the source block. In

Figure 4.4d, c2 is the partial predicate for bb4 computed from its source bb2. This is

the AND operation of the branch condition negation c1 from source block bb2 and

the predicate c0 of bb2.

The computeBlockPredicate function computes the predicate defining instruction

of block Bi as a logical OR of all the block partial predicates. In Figure 4.4d, block

bb4 has one source block bb2 only, hence its partial predicate c2 is also its predicate

instruction. The same applies to block bb2, its only partial predicate c0 is also as its

predicate.

Even the loop header block bb0 is valid at each loop iteration, we introduce the

predicate p for the header block. The predicate p takes true value for the first loop

iteration and for the rest of loop iterations it takes the negation of the loop exit

condition c3. The header block predicate is necessary for implementing loop

termination and schedule flushing. Header predicate instruction is computed in

Algorithm 4.1 using ComputeHeaderPredicate.

Note that we do not need to replace the Phi instruction of the loop header block,

because the accelerator architectural template provides special function units to

Figure 4.4: If-conversion transformation for value-clipping example. (a) C code
interpolator sample. (b) Control flow graph (CFG) of the LLVM code in (c). (c)
Generated LLVM assembly code. (d) Predicated LLVM code after applying
Algorithm 4.1.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 64

implement such Phi instructions in the loop header block. In Figure 4.4 the initial

value is 0, and the loop carried value is r6 which is the increment of the loop index.

Another issue to address in if-conversion is the multiple exiting points in the loop.

The exit condition represents the predicate for the exit block, the block the loop

reaches when it terminates (e.g. block exit in Figure 4.4). We compute this predicate

as any other predicate by ORing its partial predicates. The example of Figure 4.4 has

a single exiting point with a single exit condition (r5) which is used as predicate for

the exit block. If another block in the loop reaches the exit block, the predicate of exit

block is computed as the OR between the two partial predicates.

4.2.3.2 Architectural Support for Predication

The architecture template of Chapter 3 provides support for predicated

instructions, by annotating each data token by a valid bit used to indicate whether the

token carries valid data or not. This valid bit is used to support predicated execution.

The architectural support we propose is exemplified in Figure 4.5. We only apply

predicate-bits (predicate signal in Figure 4.5) on a limited set of instructions, such as

phi, store, and load instructions, beside instructions that have effects outside the loop.

The predicate signal in Figure 4.5 is the predicate defining instruction of the load

operation running on the load FU. A false predicate signal invalidates the load FU

output data token. Similarly, a false predicated data token is ignored when it changes

memory or output data register as in store operations. This is the same effect when a

valid-bit equals 0. In the implementation of Figure 4.5, a falsely predicated

instruction resets the valid bit of the FU output queue. The effect of invalidating data

tokens propagates through the valid bits of each functional unit.

Figure 4.5: Predicated execution architectural support

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 65

4.3 Code Slicing

4.3.1 Overview

The aim of code slicing is to disassociate computation from data I/O and facilitate

their overlap. Decoupled data movement and computations hide memory latency by

prefetching data tokens required in later loop iterations while computations performed

on early loaded data.

Code slicing has been early introduced by Weiser [60] to facilitate programs

debugging. Later it has been used in software analysis and maintenance. According to

Weiser’s approach, a slice is computed by gathering consecutive sets of indirectly

relevant statements, based on data and control dependencies. Two types of slices had

been mentioned depending on the traversal direction of a data flow graph; backward

traversal slices, and forward traversal slices. A backward slice consists of all

program statements that affect a given statement in the program. A forward slice

consists of all program statements that are affected by a given statement. Figure 4.6b

shows a backward slice that consists of all statements affecting the statement

write(product) .

The slice represents a precise portion of the program that produces correct results.

Note that multiple backward (and forward) slices of a program will have replicated

statements. For example, a backward slice that computes the statement

write(sum) will include many of the statements appearing in the backward slice of

Figure 4.6b.

Figure 4.6: Code slicing. (a) Program Snippet. (b) Backward slice that computes
product statement (10). Figure copied from [60].

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 66

The form shown in Figure 4.6 is known as static program slicing, performed

statically, when all dependencies in a data flow graph are considered. Dynamic

program slicing is a notion used when a program is sliced only according to

dependencies occurring in a specific execution of the program.

4.3.2 Slicing Algorithm

SOpenCL implements static backward code slicing in each inner loop of the

predicated C kernel as a separate pass in LLVM compiler. Code slicing is used to

identify instructions responsible for computing the input (read) addresses in each

Algorithm 4.2: Code slicing algorithm. Output streaming kernel generation is
similar to the input streaming kernel, with stores being the instructions of interest.

Input: Inner loop code in LLVM assembly code
Output: Two distinct modified kernels in LLVM assembly code

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
26:
28:
29:
30:
31:
32:
33:
34:

// Input Streaming Kernel generation
get_sin_kernel (inner_loop, InstructionList * sin_list){
 sin_list = NULL;
 foreach (instruction It in inner_loop)
 if (It is a load instruction)
 add(It , sin_list);

 It = select any instruction from sin_list ;
 while (It != NULL) {
 foreach (predecessor (It) != NULL)
 add (predecessor (It), sin_list);
 It = select any (predecessor (It)!= NULL);
 }

 It = select any instruction from sin_list ;
 while (It != NULL) {
 pred = predicate (It);
 if (pred != NULL){
 foreach (predecessor (pred) != NULL)
 if (sin_list (predecessor (pred)) == NULL){
 pred = NULL; break; }
 if(pred != NULL)
 add (pred , sin_list);
 }}}
//Computational Kernel generation
get_comp_kernel (inner_loop, InstructionList * sin_list ,
 InstructionList * comp_list){
 comp_list = NULL;
 foreach (instruction It in inner_loop)
 if (It not in sin_list)
 add (It , comp_list);
 if (predicate (It)!=NULL)
 add (predicate (It), comp_list);
}

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 67

inner loop. Code slicing step partitions the code to two distinct kernels:

Input Streaming Kernel: This kernel consists of all the load instructions and any

instruction participating to the calculation of load addresses. The kernel drives the

hardware generation of the Input Stream AGU (SinAGU module).

Computational Kernel: This is the core of the PE architecture, and comprises all

instructions that receive input data from the Input Stream Units and produce output

data to the Output Stream Units. Since data are streamed in the datapath in-order, a

pop instruction consumes the next element from the input stream without the need to

specify a memory address. Push instructions produce data to the output stream units

in addition to the memory write address. The computational kernel drives the

hardware generation of the datapath module.

Algorithm 4.2 depicts the pseudo code of code slicing for Input Streaming kernel

and Computational kernel. All load instructions of the inner loop and all their

predecessors, i.e. instructions used to compute memory addresses and their control

predicates are allocated to the Input streaming units. In the computational kernel,

these instructions are substituted by pop instructions used to stream data from the

input streaming unit to the datapath.

Figure 4.7b depicts a slicing example of a chroma interpolation kernel (the

LLVM-IR is shown in Figure 4.7a). The Input streaming kernel comprises all four

load instructions, their address (getelementptr instructions in LLVM assembly), their

predicates, and the instructions used to compute their addresses and predicates. In the

computational kernel the load instructions are converted to pop instructions that sink

data from input stream channels (SIN0, SIN1, SIN2 and SIN3) without the need to

generate address.

The code slicing process is applied only I/O addresses are known at compile time,

i.e. they are not dependent on runtime information. Unless this requirement is not

satisfied, the AGU cannot run ahead of the datapath since it needs to wait for data

computations. In that case, irregular runtime read/write dependencies makes it

impossible to pipeline input and output streaming units. As a result, the tool flow will

skip code slicing and the unified datapath architecture generated will also be

responsible for address generation as well data computations.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 68

Moreover, if control predicates in the Input Stream kernel are data dependent, the

slicing algorithm will bypass adding control predicates to the Input streams kernel

and will make load instructions always truly predicated. In that case, load instructions

always generate valid addresses and read.

(a) (b)

Figure 4.7: Code Slicing. (a) Predicated Chroma Interpolation kernel. (b) Input
Streams and Computations code slices. Predicate variable r34 is used to guard
execution of load instructions in the Input Streaming Kernel, and pop and store
instructions in the Computational Kernel.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 69

4.4 Instruction Clustering

4.4.1 Overview

One of the most challenging tasks of FPGA design is achieving fully routed

circuits, especially in datapath dominated designs. According to our experimental

analysis on a set of benchmarks, routing resources, in the form of multiplexers and

interconnects occupy 70% to 80% of the design area and account for 90% of the

signal delay in computationally intensive designs, such as the LDPC benchmark

(described in section 6). Moreover, Placement and Routing (P&R) in modern FPGAs

is a very computationally intensive process, even with the use of state-of-the-art

routing algorithms. A placement and routing tool may take hours or even days to

generate a fully placed and routed design, especially in the presence of routing

congestion.

Given the routing complexity for large designs, the pressure is growing for

techniques that address the placement and routing problem at a higher abstraction

level. In a typical high level synthesis approach, the tasks of resource allocation,

scheduling and binding are applied on a set of primitive operations (basic arithmetic

and logic operations). The cost of routing resources per primitive functional unit is

increasing rapidly in modern FPGAs. For example, the area cost of a 32-bit adder

with a 4-input multiplexer on each input port is dominated by the multiplexers tree

(67% of the FPGA slices).

Generation of application specific macro-instructions is a common practice among

instruction-set extensions designers [61, 62, 63, 64]. Such macro-instructions can

substitute a set of primitive operations and consume fewer resources. Regular

computation patterns that appear repetitively in a program DFG are strong candidates

to be implemented as macro-instructions. As an example, macro-instruction K in

Figure 4.8b which consists of two successive additions results into a more compact

and efficient circuit, requiring fewer resources (i.e. multiplexers) than the individual

primitive ADD operations. A macro-instruction can be designed to optimize a set of

different criteria, such as silicon real-estate or latency, compared with the set of

corresponding primitive operations.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 70

The generation of application specific macro-instructions is a two steps process: a)

candidate instructions identification, and b) candidate instructions selection. During

candidate instructions identification, a space exploration of a given DFG results to the

identification of a set of subgraphs, of primitive operations, each subgraph

representing a potential macro-instruction that fulfills a specific set of constraints. In

the next step, a subset of the candidate instructions is selected for the final

implementation based on a number of optimality criteria, like latency and area. A

variety of approaches have been used for the candidate instructions generation and

selection problem, including subgraph enumeration methods and techniques based on

pattern recognition [61, 62, 63, 64, 65, 66]. Our target is to exploit the characteristics

of MFUs to reduce datapath complexity, and hence, reduce routing overhead and

improve performance.

In this work we propose the use of a grammar-induction approach for macro-

instructions generation and selection. Grammar induction is an established technique

used in string and tree compression algorithms [67, 68]. It is a very efficient approach

to extract repetitive patterns from a data sequence and to create hierarchical models of

such patterns that can be readily understood, analyzed and applied in other domains.

In this paper we extend a grammar induction technique called Sequitur [67], to

identify and generate a set of candidate macro-instructions. The generated grammar is

composed of a set of non-terminals, where a non-terminal is a subgraph of the DFG.

A non-terminal can, in turn, be composed of other non-terminals and/or primitive

operations.

Contrary to the thousands of subgraphs generated by enumeration and pattern

recognition methods, the generated grammar has a regular hierarchal structure with

Figure 4.8: Scheduling and binding of a DFG with: (a) primitive instructions.
(b) Mixture of primitive and macro instruction. Macro instruction K is
scheduled on the Macro FU (MFU) K which is a pipelined 3-input adder.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 71

few non-terminals, each serving as a potential macro-instruction. This simple

hierarchal structure results to a simpler and more compact form of macro-instructions.

To keep routing overhead to minimum, a macro functional unit (MFU) closely

follows the structure of a single type of macro-instruction (i.e. non-terminal in the

grammar) and supports the execution of only this type. Making an MFU support the

execution of different types of macro-instructions (rules with different subgraphs)

requires adding internal configurable multiplexers on the internal edges of the MFU.

This, in turn, would come at the expense of complexity and hence would limit the

effectiveness of our approach.

One might reason that the reduction of inter-FU interconnects potentially leads to

an increase of intra-FU interconnects. However, the increase of intra-FU

interconnects does not translate into an area overhead. Intra-FU interconnects are

multiplexers free and localized. They are short interconnects between neighboring

logic slices. Moreover, intra-FU interconnects can be optimized out using the

approach for pipelining MFUs we introduce in section 4.3. In fact, the transformation

of costly, inter-FU interconnects into light weight intra-FU interconnects is the main

technique exploited by the proposed grammar driven synthesis methodology to

reduce area overhead.

4.4.2 Grammar Generation

In this section we introduce a grammar generation algorithm for systematically

discovering all repetitive computation patterns inside the DFG, or equivalently

identifying candidate sets of primitive operations to be implemented as macro-

instructions. Our algorithm is based on the Sequitur grammar inference technique,

(a)

(b)

Figure 4.9: Grammar representation applied on (a) a sequence of data
symbols, and (b) a data flow graph (DFG). Notation x(y,z) means that
operation x has inputs y and z.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 72

originally designed for data strings compression [67].

4.4.2.1 Grammar Representation

Figure 4.9a depicts an example of a grammar representation of a sequence of

symbols. A grammar representation consists of a set of statements called rules or non-

terminals (we will use both terms interchangeably through the rest of the paper). Each

rule is a sequence of symbols that contains other rules and/or data symbols called

terminals. In Figure 4.9a, rule B includes both non-terminal symbol A and terminal

symbols, a and d. Rule S includes non-terminal B and rule A consists of terminal

symbols b and c. The original statement S can be restored by substituting each non-

terminal with its production, namely the right-hand side of the rule, until all non-

terminals are eliminated.

In this work we extend grammar inductions to also represent data flow graphs.

Figure 4.9b depicts a subgraph of a DFG represented as a compound statement S. A

simple grammar can be deduced by introducing rule A. We treat each primitive

instruction a, and b as a terminal symbol. A concern in using grammar

representations for DFGs is the operand order for non-commutative operations, such

as subtraction or division. We use clockwise numbering of input operands to denote

their order. In a DFG that consists merely of primitive instructions, each rule can be

considered as a potential compound macro-instruction.

A convenient property of grammar representations is their hierarchical structure,

which inherently integrates multiple levels of granularity. Such a multi-granular

representation of a DFG proves very handy when it comes to hardware

implementation of computationally intensive algorithms. For example, assume the

DFG subgraph S in Figure 4.9b is part of a larger DFG, populated with multiple

subgraphs of type S. In this case, S can function as a non-terminal in the larger DFG.

The synthesizer has the choice to implement either the macro-instruction A that

represents a fine granularity computation, or the macro-instruction S which represents

a coarser granularity computation.

An MFU that implements a macro-instruction with coarser granularity requires

lower routing overhead because most interconnects tend to be within the FU, and not

across the FUs. By reducing inter-FU routing, final datapath implementation tends to

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 73

suffer less from routing congestion and to require lower P&R overhead. However, a

coarser granularity macro-instruction like S is not necessarily fitter for

implementation. This is, for example, the case when the implementation of S requires

many resources and at the same time there are just a few occurrences of S in the

program to reuse the MFU that implements S. In this case, a finer granularity macro-

instruction like A which costs less resources and may have many more similar

patterns in the program seems to be fitter for implementation. In section 4.4.3 we will

introduce a systematic method for selecting between different granularity levels.

4.4.2.2 Generation of Grammar-based DFG representation

The grammar generation algorithm traverses the DFG and discovers repetitive

patterns by matching pairs of instructions. A pair of instructions b(a) denotes that the

output of instruction a is an operand to instruction b as shown in Figure 4.9b. We call

instruction b destination node and instruction a source node. The parenthesis in b(a)

Algorithm 4.3: Grammar Extraction Algorithm
Input: Data Flow Graph
Output: Set of Grammar Rules

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

D[N] → Data Flow Graph (DFG) nodes list
N → Number of DFG nodes
M → Set of matched node pairs
G → Grammar’s rules set.

Order D nodes in reverse topological order;

index = 0;
while (index < N) do
 R = D[index];
 Max = 0;
 for each operand P of instruction R do
 Pair = R (P)
 if (! check_output_ports(Pair)) continue ;
 if (! check_convexity(Pair)) continue ;
 (Size, Mt) = find_matching_pairs(D, Pair);
 If (Size > Max) then
 M = Mt
 Max = Size
 end if
 end for
 if (Max > 0) then
 update_grammar(G, M);
 update_destination_nodes(D, M);
 else
 index += 1;
 end if
end while

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 74

is used to express the instruction-operand relationship of instructions b and a.

The rules of a grammar generated according to Sequitur share two properties:

(1) Digram uniqueness: A digram is a pair of adjacent symbols, each being a

terminal or non-terminal e.g. aA in Figure 4.9a. Each digram should appear

exactly once in the productions (right-hand side) of the grammar rules.

(2) Rule Utility: Each rule in the grammar should appear at least twice in the

productions of other, higher-level rules. This property ensures that all rules are

useful.

In addition to the above constraints we introduce the following constraints,

specifically for data flow graphs:

(1) Output ports number: The number of outputs of a compound statement described

by a rule S should not exceed an upper limit Nout. For Nout larger than one, MFU

with multiple output ports (e.g. performs multiple computations in parallel) is

feasible. This constraint helps reduce the complexity of the pattern identification

and selection process by reducing the amount of feasible patterns.

(2) Convexity: A rule is a representation of a convex subgraph in the DFG. A

subgraph S is convex if there is no path from a node Su∈ to a node

Sv∈ through a node Sw∉ .

(3) Data computation instructions only: Load, store, and control instruction nodes

cannot be included as terminals in the grammar rules.

Algorithm 4.3 outlines the pseudo code of the grammar generation algorithm and

Figure 4.10 shows the steps using a motivational example. The algorithm starts by

sorting the DFG nodes in a reverse topological order. In Figure 4.10a, each node is

assigned a number indicating its reverse topological order.

Given the sorted DFG, the algorithm selects the first node, n0 (destination node)

in our example, and builds the template pairs for each operand of the node (n0(n2)

and n0(n3) in our example). If a template pair satisfies the output ports number and

convexity tests, the algorithm searches for additional instances of the template in the

DFG, using the subroutine find_matching_pairs. The function returns a list Mt of

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 75

pairs of instructions matching the template pair.

A matching instance should have the same operations as the template pair and,

generally, the same order of operands. The order of operands is ignored in case the

destination node in the template pair is a commutative operation such as addition.

From all the template pairs derived from n0, namely n0(n2) (Figure 4.10b) and n0(n3)

(Figure 4.10c), we greedily choose to consider the template pair with the maximum

number of instances for implementation as a macro-instruction. In our example

(Figure 4.10d) we chose the template pair a(b) (corresponding to n0(n3)) which has 5

occurrences rather than the template pair a(a) (corresponding to n0(n2)) which has 2

occurrences.

When a template pair is chosen, the algorithm will update the grammar using the

Figure 4.10: Motivational example showing the steps of Algorithm 4.3. In this case
output ports number constraint is set to one (Nout = 1). The final generated grammar
is depicted in (k).Three potential clusters of instructions can be implemented as a
Macro FU.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 76

subroutine updategrammar in one of two ways:

(1) If the destination node in the pair is a terminal, i.e. a primitive instruction, the

algorithm generates a new rule. In Figure 4.10d we create a new rule A for the

pair a(b) because a is a primitive operation.

(2) If the destination node in the pair is non-terminal (e.g. node A in Figure 4.10e),

then;

a. If all its occurrences in the DFG have a matching pair (e.g. A(a) in Figure

4.10e), we extend the non-terminal rule of the destination node.

b. Otherwise, we create a new rule.

In Figure 4.10e, not all the occurrences of the destination node A have a matching

pair A(a) (only 2 of the 5 occurrences of A), so we create the new rule B. However, in

Figure 4.10g, all occurrences of the destination node B have a matching pair B(c), so

we extend the rule of B to include c.

After updating the grammar, the algorithm updates the destination node in each

matching pair using the subroutine update_destination_nod as follows:

(1) Substitute the destination node of each matching pair by a non-terminal node.

E.g. node a in the pair a(b) of Figure 4.10c becomes non-terminal node A in

Figure 4.10d.

(2) Add the source node in the pair (b in the pair a(b) of Figure 4.10c) to the internal

subgraph of the destination node. Each node marked as non-terminal has an

internal subgraph which is a cut of the original DFG. In Figure 4.10d, non-

terminal node A corresponds to subgraph a(0, b(1, 2)).

(3) Finally, the algorithm updates the operands list of the newly created non-terminal

node to include the operands of the source node in the pair, and empties the

operands list of the source node.

The process is repeated on the new state of the DFG, searching for templates

(pairs of nodes) having the newly inserted non-terminal as destination. In Figure

4.10e, after merging terminal node a to non-terminal node A, the algorithm repeats

the process of building template pairs and searching for matches using destination

node A which now has two more operands: c and A, to node b. If the algorithm fails to

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 77

find matching pairs having the newly inserted non-terminal as destination node, it

continues with the next node in the sorted DFG list. The iterative process continues

until there are no more nodes to consider as destination nodes.

4.4.2.3 Computational Complexity and Correctness

For a DFG with N nodes and E edges, the grammar generation algorithm

computational complexity in the worst case scenario (where the DFG has no

repetitive patterns) is O(N2). The computational complexity for the worst case

scenario can be derived as follows:

(1) Each edge ei in the DFG is compared with each other edge ej in the DFG where i

≠ j. Hence, the maximum number of search steps is E*(E-1), in the case no

patterns are detected. Otherwise, each time a pattern instance is substituted by a

macro instruction, the total number of edges in the DFG is reduced by at least 2

(at least 2 instances of the pattern, involving at least 2 edges, are substituted by

macro nodes), and the total number of search steps is reduced accordingly.

(2) For a DFG without recurrent circuits and, the total number of edges E in the DFG

is linearly dependent on the number of nodes N, hence the maximum number of

search steps is O(N2).

Figure 4.11 depicts the computational complexity (in terms of the total number of

instruction pair comparisons) observed experimentally by applying the algorithm on

the benchmark base used in the experimental evaluation (Section 5). Their

Computational Complexity

1

100

10000

1000000

100000000

1 10 100 1000 10000

DFG size (#nodes)

In
st

ru
ct

io
n

pa
ir

co

m
pa

ri
so

ns

Experimental Results Worst Case (N^2)

Figure 4.11: Experimental evaluation of the computational complexity of Algorithm
4.3. The data points represent the number of instruction pair comparisons observed
experimentally on the benchmarks set of Table IV. The theoretically predicted worst
case complexity is also depicted in the graph (continuous line). Both the x- and y-axis
are in logarithmic scale.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 78

characteristics are summarized in Table IV. The graph also includes a plot of f(N) =

N2 (Worst Case). It is clear that in all cases, the overhead of the algorithm is lower

than the O(N2) worst-case complexity. In fact in practice the worst-case upper bound

proves overly conservative.

The computational complexity of the algorithm is significantly lower than that of

enumeration based algorithms, which are characterized by exponential complexity.

For all experiments described in Section 5, the execution time of the algorithm was

less than 1 second. Moreover, the significant reduction in synthesis, placement &

routing runtime for large values of N in the vast majority of the experiments

overweighs the grammar generation runtime overhead, leading to overall reduction in

the design generation runtime.

The algorithm does not remove DFG nodes, not even reorganize them. It just

groups them together without changing their external or internal connections in the

DFG, so essentially, the original and the compressed DFGs are equivalent. Therefore,

the algorithm is correct.

4.4.3 Grammar-Driven Datapath Synthesis Flow

The hierarchical grammar representation of a DFG can be exploited in many

practical problems such as DFG compression. Since each FU in a datapath can be

typically reused for multiple DFG operations, a multiplexer tree is needed at the input

ports of each FU to select among a multitude of inputs. Multiplexer trees may cost

more in terms of area than the FU itself, specifically for simpler FUs that perform

basic arithmetic and logic operations. For example, a 2-input 32-bit multiplexer

consumes as many FPGA logic cells as a 2-input adder or a logic operator of the same

bitwidth. Therefore, if a 2-input adder is driven by an 8-input multiplexer tree at each

of its inputs, the cost of the adder will be smaller than the cost of the multiplexer tree.

If all instances of a grammar rule are implemented as a macro functional unit (MFU),

where the internal data flows are free of multiplexers, the area gain may be

significant; furthermore, reducing routing complexity leads to reducing routing

latency, and time the P&R tool chain requires to place and route the design.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 79

Figure 4.12 shows the complete grammar-driven datapath synthesis flow,

including instruction clustering. For each input DFG we generate the datapath RTL

that implements the DFG functionality. Given the original input DFG, the synthesis

flow starts by slicing the DFG into one or more smaller subgraphs. Then, the

grammar generation engine processes each DFG slice separately and generates the

grammar. A subset of the non-terminal rules is selected to generate macro-

instructions. Given the selected set of rules, the algorithm will produce a new DFG

incorporating primitive instructions and macro-instructions.

4.4.3.1 Data Flow Graph Slicing

A preliminary step before grammar generation in our tool is the slicing of the

given DFG into smaller DFGs (Figure 4.13). In some cases, for example when the

DFG expresses computation of an unrolled, data-parallel loop, the graph consists of

multiple strongly connected subgraphs (slices), each corresponding to a loop iteration.

The objective of DFG slicing is to treat parallel data flows within a DFG

independently in grammar generation, scheduling and binding. For grammar

generation, the search space for matching pairs is smaller when applied on DFG slices

rather than the original DFG, which will speed up the grammar generation algorithm.

Another important benefit is the creation of isolated islands of resources (FUs,

registers) by preventing an instruction in a DFG slice from being scheduled on

resources of another DFG slice. These isolated islands of resources make the task of

the placement & routing much easier.

DFG slicing corresponds to identifying the strongly connected components of the

DFG. We use a modified version of the path-based strong component algorithm

described by Cheriyan and Mehlhorn [69]. Starting from each leaf node of the

original DFG, n0, n1, and n2 in Figure 4.13, the slicing algorithm iteratively moves

up the graph and tracks the operand nodes of each selected node. At first, both DFG

slices A and B of Figure 4.13 include two common nodes: c0 and c1 (Figure 4.12).

Figure 4.12: Grammar based datapath synthesis flow.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 80

Since the two slices are strongly connected, we exclude the two common nodes from

both slices. A slice of a DFG is created from each leaf node and DFGs with no

common nodes belong to different slices.

4.4.3.2 Grammar Generation & Selection

Following DFG slicing, the flow continues with the grammar generation algorithm

described in Section 4.4.2, which is applied independently on each slice. Hence, each

DFG slice will end up with its own grammar representation.

Grammar-driven data compression algorithms normally use all the grammar rules

to compress a sequence of data symbols. However, in our case, a subset of rules can

be used to implement MFUs. As mentioned earlier, grammar rules correspond to

candidate macro-instructions – which can be implemented as custom MFUs – at

different granularities. Therefore, the synthesizer needs to select the optimal

granularity for the generation of macro-instructions, according to a set of criteria.

The purpose of this step is to identify an optimal subset of grammar rules that

minimizes routing density and reduces total area. Algorithm 4.4 summarizes the

greedy selection heuristic we introduce in our work. The selection heuristic uses a

fitness function to assign weights to each rule in the generated grammar. At each step,

the rule with the highest fitness value is selected to be implemented as an MFU and

all instances of the selected rule are removed from the grammar. Note that when a

rule is selected, all grammar rules using this rule as a non-terminal in their

Figure 4.13: DFG slicing example. The original DFG is partitioned into two
independent slices.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 81

productions are essentially also removed from the grammar and they are no longer

considered for implementation as MFUs. Otherwise, multiple different MFUs would

be generated, executing the same primitive operations. After each step, the fitness

function updates the fitness of the remaining rules. The process is repeated until the

grammar is empty.

The fitness function (1) uses a set of metrics to estimate the gain from

implementing rule i as an MFU. The metrics aim to rank the grammar rules based on

their potential to reduce routing complexity:

().

i
MUXG

i
LG

i
CG

i
W +∗=

 (1)

The following paragraphs detail the parameters of (1).

Coverage Gain (CG): The coverage gain for rule i is a normalized value of the

total number of primitive instructions in the DFG covered by the specific rule. The

metric is computed in (2). Higher coverage of the DFG nodes means fewer primitive

FUs will be implemented individually, hence, smaller multiplexer trees. To compute a

Algorithm 4.4: Grammar Rules Selection

Input: List of Grammar Rules.
Output: Select set of grammar rules.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

G → set of discovered Rules
SR → Selected set of Rules
r size → Rule instances count

computeMetrics(G, BWA);

while (G != Ø) do
 OrderRules (G);
 R = getMaxFitnessRule (G);

 if (R. r size > 2) then
 add R to SR;
 foreach Rule Sk != R do
 if Sk uses R as non-terminal then
 remove Sk from G
 else if R uses Sk as non-terminal then
 remove all instances of Sk in R from G
 end if
 end for
 end if
 remove R from G;
 computeMetrics(G);

end while

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 82

fair metric value, we compute the total number of primitive instructions that can be

covered by a given rule, instead of relying only on the count of rule instances

(occurrences) or the number of primitive instructions (operations) per rule instance.

()

()i
RulesCounti

i
i

iii

Coverage

Coverage
CG

OperationssOccurrenceCoverage

≤≤

=

=

0
max

,*##

 (2)

The coverage gain factor functions as a multiplier for two metrics LG and MUXG

that correspond to area gains. It is important to notice that the value of the coverage

gain metric will change each time we select a rule to be implemented as an MFU.

This happens because some of the rule instances are removed from the grammar if

they appear as non-terminals in the production of a rule selected earlier. Also the

current maximum coverage value will change, and hence, the normalized values of

CG.

Multiplexers Gain (MUXG): This metric quantifies area gains due to reduction of

number of multiplexers per instance of each rule. The metric is computed using (3).

The nominator in (3) is the difference between the total number of inputs of all

primitive FUs of an MFU (Σ#Operands) and the number of the MFU inputs

(#RuleOperands). To quantify the gain from this difference, we divide it by

“Σ#Operands”.

()p
RulesCountp

i
i

RuleOps

p
p

RuleOps

p
p

i

Ratio

Ratio
MUXG

Operands

dsRuleOperanOperands

Ratio

≤≤

=

=

=

−

=

∑

∑

0

0

0

max

#

##

 (3)

Based on formula (3), we can find that the value of MUXG tends to increase when

the number of primitive instructions in a rule increases. In other words, larger rules

will have higher multiplexers gain. However, the algorithm does not always favor

larger rules over smaller ones. A smaller rule with lower multiplexers gain per

instance may be associated with a much higher coverage gain which makes it fitter

for implementation.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 83

Logic Gain (LGi): This metric quantifies the potential for reduction of logic cells

through packing of primitive instructions within an MFU (or equivalently a grammar

rule). The metric is computed using equation (4). Consider an MFU implementing the

function f(x0, x1 …xn). The nominator in (4) quantifies the efficacy of fusing the logic

cells of all the primitive FUs of the MFU. LUTs in FPGAs (an LUT serves as a

function generator with limited number of inputs) have a limited number of inputs,

hence, the more the number of MFU inputs increases the more difficult it becomes to

map its function on fewer LUTs, and therefore, we divide by the number of the MFU

input signals (#RuleOperands) in equation (4).

()

()p
RulesCountp

i
i

RuleOps

l
l

i

LogicGain

LogicGain
LG

dsRuleOperan

A
LogicGain

≤≤

=

=

−
=

∑

0

0

max

#

1

 (4)

The value of the parameter Al in (4) is normalized in the range [0, 1] and is

characteristic for each primitive instruction type l. It quantifies the difficulty to fuse

this instruction with additional ones, in the same set of logic cells. Al is dependent on

the nature of the instruction, the FPGA architecture, and the synthesis, placement and

routing tool chain. We developed a set of representative subgraphs, with various

primitive instructions types and configurations, which can be used as micro-

benchmarks for systematically estimating Al on each target platform. A micro-

benchmark is a subgraph synthesized to analyze primitive FUs resources

requirements. Subgraphs A, B, and C in Figure 4.10 are examples of micro-

benchmarks. This approach is described in detail in Section 4.4.3.3. For the Xilinx

Virtex 6 FPGA family for example, the characterization assigned the Al value 0.5 to

add operations, whereas logical and operations have an Al value of 0.20. The shift

operation was assigned an Al value of 1.0 indicating that its logic cells cannot

accommodate additional operations, when the shift amount is variable.

Figure 4.14 shows how we apply rule selection on the grammar of the example of

Figure 4.10. The left table of Figure 4.14 contains the normalized metric parameters

and the corresponding fitness for each rule according to (1). After selecting the rule

with the maximum fitness (B in Figure 4.10), we update the metric parameters, and

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 84

normalize their values again. Note that after removing rule B from the grammar, we

also removed two instances of rule A, which appears now in only 3 instances. Rules A

and C now have the same coverage since they both cover 6 instructions. After

updating the metrics (right table of Figure 4.14), both rules A and C have the same

weight. Since rule C is using rule A, OrderRules subroutine prioritizes rule C over

rule A, and hence the algorithm selects rule C for implementation and removes 2

more instances of the rule A. Since rule A now appears in only one instance, we can

no longer consider it for MFU implementation, because of the rule utility constraint:

each rule must appear in the grammar with at least two instances.

4.4.3.3 Macro Functional Unit Pipelining

Since MFUs have a more complex structure than simple FUs, it is possible that

they will stretch clock frequency if they are assigned a single cycle for execution.

Prior to scheduling macro-instructions on the generated MFUs, we have to determine

the pipeline depth of each MFU and therefore its cycle latency, aiming at retaining

the same clock frequency as if we had no MFUs in the accelerator. Algorithm 4.5

drives the decision process of inserting pipeline registers between pairs of primitive

FUs in a given MFU. The algorithm attempts to balance timing delay by placing FUs

CG MUXG LG W
A 1 0.5 0.95 1.45
B 0.8 1 1 1.6
C 0.6 0.67 0.72 0.83

CG MUXG LG W
A 1 0.75 1 1.75
C 1 1 0.75 1.75

Figure 4.14: The selection process of Rules in the grammar of Figure 4.10. The
selected set of rules: {B, C}.

(a) (b) (c)
Figure 4.15: (a) reference pipeline scheme used as template for the pipelining
algorithm. (b) Logic level of pipelined Xor and Add operators. (c) Fused Xor and
Add operations logic level.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 85

of approximately equal latency in each pipeline region.

The algorithm uses as a reference a default pipelining scheme for inserting

pipeline registers in MFU. The default pipelining scheme blindly adds a pipeline

register after each primitive FU, as in the case when primitive FUs implemented

individually and not part of an MFU (Figure 4.15a). In this reference pipeline scheme,

the combinational path of a single primitive FU (4-bit XOR and 4-bit ADD FUs in

Figure 4.15b) is considered as one level of logic. Hence, using the default pipelining

scheme, only one level of logic exists between two successive pipeline registers.

Algorithm 4.5 traverses the MFU subgraph and removes a pipeline register if its

removal doesn't increase the levels of logic between two other pipeline registers. For

example, in Figure 4.15a, pipeline register R1 will be removed if it does not increase

the levels of logic between pipeline registers R0 and R2. Contrary to the intuition, the

removal of a pipeline register doesn't necessarily increase the levels of logic on a

combinational path between two registers on an FPGA. For example, in Figure 4.15c,

the removal of pipeline register R1 allowed fusing the logic cells of the XOR FU with

the logic cells of the ADD FU. The removal of a pipeline registerR1 produces a new

boolean expression that may be implementable using one level of logic cells (LUTs).

In most cases, a primitive FU does not consume the whole capacity of its LUTs.

To determine if the removal of a pipeline register will increase the number of logic

Algorithm 4.5: Custom Instruction Pipelining
Input: Custom instruction subgraph.
Output: Pipelined Macro Functional Unit.
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

N → Rule’s primitive operations

reverse_topological_order (N)
foreach node Nl in N do
 max = 0
 foreach user Uk of Node Nl do
 if (heights [k] > max) then
 max = heights [k]
 end if
 end for
 if ((max + Al) < 1.0) then
 remove_pipeline_register (Nl)
 heights [l] = A k
 else
 heights [l] = max + Ak
 end if
end for

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 86

levels – in the form of LUTs –, algorithm 4.5 uses the same set of Al parameters used

in (4) to compute the logic gain metric LGi. Parameter Al quantifies an estimation of

the percentage of the implementation capacity of the LUT taken by the primitive

instruction l. Similarly, if two primitive instructions l and l΄ are fused on the same

LUT, the summation of the corresponding area estimation parameters Al and Al΄

provides a good estimation of the consumption of the LUT implementation capacity

by both instructions.

In general, if the summation of area estimation parameters Al in a DFG sub-path,

is less than or equal to 1.0, we estimate that the corresponding primitive instructions

can be fused and implemented on a single LUT, or equivalently, they require the

same levels of logic as one primitive instruction. As a result, intermediate registers in

the sub-path can be removed without affecting the timing characteristics of the

circuit.

The value of the parameter Al for each primitive instruction is derived by

systematically applying an experimental method on a set of micro-benchmarks. The

following subsection describes in details the experimental method we introduce.

The pipelining algorithm (Algorithm 4.5) is characterized by linear (O(N))

computational complexity for a single MFU type, with respect to the number of

primitive FUs (N) in the MFU. For each FU node in the DFG, the algorithm examines

one or more output edges (user node Uk in Algorithm 4.5). Since the maximum

number of FU operands is 3 (for the select FU), the average number of output edges

per node in the MFU graph is a constant, independent of N. Therefore, the total

number of edges in the MFU is O(N) and the computational complexity of the

algorithm is O(N) as well.

Algorithm 4.5 is essentially a heuristic that could potentially lead to timing errors

if applied alone. However, the Xilinx toolchain, responsible for Synthesis, Placement

and Routing, guarantees timing correctness by appropriately manipulating frequency.

In Section 5 we present the experimental timing evaluation (Table 4.3) on a set of

microbenchmarks (Figure 4.16) using both full and selective pipelining. Moreover,

we present (Table 5.6) the frequency attained by the Xilinx toolchain on a set of

kernels optimized using our approach. Both sets of experimental results prove that

Algorithm 3 works efficiently.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 87

4.4.3.3.1 Experimental Area Estimation.

The experimental method incrementally builds sets of micro-benchmarks,

computes an initial estimate of the parameter Al, and refines the initial estimations at a

subsequent step. Algorithm 4.6 describes the steps of the experimental method.

Algorithm 4.6: Al parameters estimation.

Input: Set of micro benchmarks.
Output: Al parameters estimated values.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

N → Primitive Operations Population.
Âl → The value of parameter Al plus an error δl
FUl → Primitive FU performs only operation s of type l
MFU → Macro FU composed of one or more primitive FUs

// Step 1: Initial estimate of parameter A l
foreach primitive operation Nl in N do
 Count = 0
 MFU = FU l
 L l = getAreaLUTs (MFU)
 L_mfu = L l
 while (L_mfu ≤ L l) do
 MFU = addNewFU(MFU, FU l)
 L_mfu = getAreaLUTs (MFU)
 Count += 1
 end while
 Âl = 1 / Count
end for

 Order primitive operations in N from min to max Â l
// Step 2: Refine initial estimate of parameter A l
foreach primitive operation Nl in N do
 MFU = FU l
 L l = getAreaLUTs (MFU)
 foreach operation Nk in N where k less than l do
 if Ak < Âl then
 Count = 0
 MFU = addNewFU(MFU, FU k)
 L_mfu = getAreaLUTs (MFU)
 while (L_mfu ≤ L l) do
 MFU = addNewFU(MFU, FU l)
 L_mfu = getAreaLUTs (MFU)
 Count += 1
 end while
 if (Count × Ak + Âl) > 1 then

 δl = Count × Ak + Âl – 1
 Âl = Âl – δl
 end if
 end if
 end for
 Al = Âl
end for

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 88

The initial estimate of Al is computed by determining how many primitive FUs of

the same type l can be packed in one level of logic of the same LUTs. The procedure

getAreaLUTs performs synthesis, placement and routing on the given FU (or MFU)

and returns the number of consumed LUTs (the combinational logic cells). The

procedure addNewFU adds the given FUl to the subgraph of the given MFU. The

process of adding more FUs of the same type continues, until the resulting subgraph

requires more LUTs for its implementation than the single, primitive LUT.

The initial estimate is a rough approximation that represents an upper bound for

Al. For example, for an addition operation, two adders can be packed in the same

number of LUTs required for the implementation of one adder of the same bitwidth.

If a third adder is added, it will occupy a different set of LUTs. Therefore, the initial

estimate of Aadd takes the value 0.5. If packing a third adder on the same set of LUTs

succeeded, the estimate would be 0.33. Therefore, the real, accurate value of Aadd has

range [0.5, 0.33).

Given the computed initial estimates of parameters Al, the algorithm performs a

refinement step which attempts to reduce the range of error in the initial estimate. The

second step refines the parameter Al for primitive operation of type l by computing

how many primitive operations of type k, with Ak < Al, can be packed in the same

LUTs already occupied by operation l. If the summation of parameters Ak and Al of all

successfully packed operations is larger than one, we conclude that the value of

parameter Al is over-estimated and needs to be reduced to approximate the real value.

The reason why we reduce the value of Al not Ak is because the error in the value

of Ak is smaller than that in Al. Note that the algorithm refines operations with smaller

Al before others with larger Al. This means the error in Ak has been already refined to

approximate its real value before using it to refine a larger Al. For example, from the

parameter Aadd value range the error is up to 0.17. On the other hand, for Bitwise logic

operations the value range of parameter Alogic is [0.2, 0.17), and hence the error span

Table 4.1: Experimentally derived values of the Al parameter for primitive
operations for Xilinx Virtex-6 and Virtex-4 FPGA families.

 And, Or, Xor, Not Select Add, Sub, Cmp
Mul, Div, Shift,
FP operations

Virtex 6 0.2 0.4 0.5 1.0
Virtex 4 0.33 0.67 0.67 1.0

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 89

for Alogic equals 0.03 which is much smaller than that of Aadd.

Table 4.1 shows the values of parameter Al on two Xilinx FPGA architectures;

Virtex-6 based on 6-input LUTs architecture, and Virtex-4 based on 4-input LUTs

architecture. Figure 4.16 depicts a subset of the micro-benchmarks generated and

tested using algorithm 4.6 (all FUs are 16-bit wide). Figure 4.16a corresponds to the

reference fully pipelined configurations. Pipelined configurations according to

algorithm 4.5 for Virtex-6 and Virtex-4 appear in Figure 4.16b and Figure 4.16c

respectively.

Table 4.2 summarizes the consumed LUTs for each micro-benchmark (Figure

4.16a) when all pipeline registers are removed. The Output FU column in Table II

refers to the area of the output FU (the one directly producing the output data) in the

micro-benchmark subgraph: in the examples of Figure 4.16 this is the Adder FU for

micro-benchmarks 1 & 2, and the Select FU for the rest.

The PR-Free Configuration column reports the LUTs required for the

implementation of the full set of FUs in the micro-benchmark, whereas ΣAl is the

sum of the Al area estimation parameters of all FUs participating in the benchmark.

The results in the table are a testament of the accuracy of our area estimation

approach, even after one step of refinement. A quick summation of the Al parameters

is an excellent predictor of the area that will be required for the implementation of the

compound instruction. Whenever ΣA l exceeds 1.0, an additional set of LUTs will be

required to implement the set of FUs. For example, micro-benchmark #1 has a ΣAl of

Table 4.2: Examples of the area (number of LUTs) consumed by a set of micro-
benchmarks. All primitive operations are 16-bits wide. We use the notation
introduced in section 4.4.2 to describe the micro-benchamrks. PR refers to Pipeline
Register.

Virtex-6 Virtex-4

Micro-Benchmarks Output
FU (one
instance)

PR-Free
Configuration ΣAl

Output FU
(one

instance)

PR-Free
Configuration ΣAl

1 Add (Add (0, 1), 2) 16 16 1.0 16 30 1.34

2
Add (Add (Add (0,

1), 2), 3)
16 32 1.5 16 46 2.01

3
Sel (0, Sel (1, 2, 3) ,

4)
16 16 0.8 16 32 1.34

4
Sel (0, Sel (1, 2, 3) ,

XOR(4, 5))
16 16 1.0 16 32 1.67

5 Sel (0, 1 , XOR(2, 3)) 16 16 0.6 16 16 1.0

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 90

1.0 for Virtex-6, hence our estimator predicts that it will fit in the same set of LUTs

as a single Add operation.

The prediction is confirmed by the experiment. Moreover, if we implement the

compound statement as a macro FU, we do not need to insert a pipeline register

between the adders. However, for Virtex-4 ΣAl equals 1.34, meaning the adders

cannot be fused to a single level of LUTs (as again confirmed by the experiment).

Therefore, if we decide to implement the compound statement as a macro FU, we will

have to insert a pipeline register between the adders. In micro-benchmark #2 for

Virtex-6, the third adder increases the summation of parameters Al to 1.5 and hence

we have to insert a pipeline register after the second adder.

 The same can be seen in the other benchmarks. In micro-benchmark #4, the

summation on the Select-Select path equals 1.34 for Virtex-4, so we do add a pipeline

register. However, on the Select-Xor path the summation equals 1.0, so no pipeline

register is not inserted. Observe also the case of benchmark #2 for Virtex-4: The ΣΑl

marker has a value above 2.0. This indicates that even a second set of LUTs will not

be enough, and a third set will be needed. The prediction is, once again, confirmed by

the experimental results.

In Table 4.3 we compare the critical path delay of the reference fully pipelined

micro-benchmarks (Figure 4.15a), with selectively pipelined configurations generated

using Algorithm 4.5. In general, pipelined configurations according to our approach

(a) (b) (c)

Figure 4.16: Experimental method micro-benchmarks. PR refers to Pipeline
Register. (a) Fully pipelined configurations. (b) Configurations pipelined
according to Algorithm 4.5 for Virtex-6 FPGA. (c) Configurations pipelined
according to Algorithm 4.5 for Virtex-4 FPGA.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 91

have a slightly longer critical path with very little effect on the clock frequency in the

context of a large datapath. The critical path delay is composed of logic and route

delay between the registers of inputs and outputs ports. Our analysis of the critical

path delay, showed that the logic delay is the same, and the slight overhead comes

from route delay. This can be expected, since when fusing two operations, more

inputs are brought to the same LUTs, which may increase slightly the route delay of

the farthest input source. Once again, the results of Table 4.3 are indicators of the

accuracy of the automated, experimental area estimation approach we use as input to

the selective pipeline registers insertion algorithm.

4.4.3.4 Scheduling and Implementation

Once a set of rules is selected for MFU implementation, each instance of a rule is

converted to a macro instruction of the specific type. Each macro instruction type will

be bounded to its own macro FU (MFU latency is computed after applying the

pipelining algorithm described in Section 4.4.3.3.

After macro-instruction formation, the resulting DFG is scheduled using modulo

scheduling. A macro instruction is scheduled only when all input data are available,

so that the functionality and internal organization of MFUs does not need to be

known to the scheduling algorithm. For example in Figure 4.10, when scheduling the

macro instruction represented by rule B, all three input operands should be available.

We use Swing Modulo Scheduling (SMS) to generate a schedule of the DFG nodes, as

will be detailed in Section 4.5.

Table 4.3: Examples of some micro-benchmarks critical path (ns) for two cases:
Fully pipelined configuration Figure 4.16a, and a configuration selectively
pipelined using algorithm 4.5 (Figure 4.16b and Figure 4.16c for Virtex 6 and
Virtex-4 respectively). All primitive FUs are 16-bits wide.

Virtex-6 Virtex-4
Micro-Benchmarks Full-

Pipelining
Selective

Pipelining
Full-

Pipelining
Selective

Pipelining
1 Add (Add (0, 1), 2) 2.324 2.720 2.771 2.771
2 Add (Add (Add (0, 1), 2), 3) 2.460 2.770 2.766 2.766
3 Sel (0, Sel (1, 2, 3) , 4) 1.479 1.580 1.596 1.596

4
Sel (0, Sel (1, 2, 3) , XOR(4,

5))
1.570 1.740 1.669 1.709

5 Sel (0, 1 , XOR(2, 3)) 1.523 1.562 1.650 1.661

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 92

4.5 Scheduling

Our infrastructure applies two types of scheduling algorithms: a modulo

scheduling algorithm called Swing Modulo Scheduling (SMS) [87] which is applied

on datapath and AGU kernels (input streams kernel and computational kernel), and

As Soon As Possible (ASAP) scheduling [89] applied on basic blocks assigned to the

CE modules.

Scheduling techniques are machine dependent algorithms. Scheduling instructions

on the datapath or AGU requires first allocating a number of functional units (FUs)

before scheduling applied. The amounts and types of functional units in each AGU

and datapath are passed as an XML-based file representation specified by the user.

4.5.1 Modulo Scheduling

4.5.1.1 Overview

Modulo scheduling is a software pipelining technique typically applied for

pipelining loop iterations. Software pipelining on loops overlaps the execution of

successive iterations to increase throughput and to reduce the total execution time. A

modulo scheduler produces a schedule for one iteration of the loop (after several

unrolls if required), such that when this same schedule is repeatedly applied at regular

intervals, no intra- or inter-iteration dependence is violated, and no resource usage

conflicts arise between operations of either the same or distinct iterations. This

constant interval between successive iterations is called the initiation interval (II).

A modulo schedule of a single iteration is divided into stages with stages’ count

recorded as SC [88]; each stage has a duration equal to the initiation interval.

Successive iterations of the loop are initiated after each stage finishes or after II time

slots. Figure 4.17 shows a modulo-schedule of a loop with 10 iterations and an II

equal to 3. A schedule of a single iteration spans 4 stages. The full loop execution

flow consists of three phases: prologue execution, kernel execution, and epilogue

execution. The prologue represents a transient phase from the beginning of loop

execution until all hardware resources become active. The kernel phase represents a

steady state in the loop execution flow, which in Figure 4.17a, takes place when the

fourth iteration is initiated. In steady state all resources are fully utilized by

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 93

instructions of different loop iterations. The number in the brackets indicates the loop

iteration the instruction belongs to. The kernel pattern will repeat (Figure 4.17b) until

no more loop iterations are launched. Then the epilogue phase begins, which

gradually drains the pipeline.

The following steps summarize a generic algorithm to generate a modulo

schedule. The next section describes SMS, the specific modulo scheduler used for

SOpenCL.

1. Calculate a minimum II bound called MII. The minimum initiation interval (MII)

is a lower-bound on the number of cycles required by any feasible schedule of the

loop body.

2. Put the instructions population of a loop iteration in an ordered list.

3. Perform scheduling by picking instructions from the ordered list sequentially.

Insert instructions in a free time slot in the partial schedule. If the partial schedule

fails to accommodate more instructions, increment II and restart scheduling.

The computation of MII is not always adequate for correctness of the schedule, but

to avoid trying II that is too small to succeed, thereby speeding-up the modulo

scheduling process [87, 88]. MII is computed as the maximum of two parameters;

r1, r2

r8

r9

Stage 0

r4

r6

r11

r3

r10

r5

r7

r12

Iter 0

Iter 1

Iter 2

Iter 3

r1, r2

r8

r9

r4

r6

r11

r3

r10

r5

r7

r12

r1, r2

r8

r9

r4

r6

r11

r3

r10

r5

r7

r12

r1, r2

r8

r9

r4

r6

r11

r3

r10

r5

r7

r12

r1[3] r2[3] r3[1] r4[3] r5[0]

r6[2] r7[0] r8[3]

r9[3] r10[1] r11[2] r12[0]

Stage 1

Stage 2

Stage 3

Kernel

T
im

e

(a) (b)

Figure 4.17: Modulo Scheduling. (a) Loop Schedule Sample. (b) Loop Execution
time Flow.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 94

Resources bound MII (ResMII), and Recurrence bound MII (RecMII).

ResMII is a measure of how many cycles are required to map all the instructions in

a single loop iteration on the available resources (functional units) without any

resource conflicts (regardless of dependences).

ResMII for FU type f is computed as the division of the total bitwidth allocated for

FU type f, allocatedBitwidth(f) (e.g. 256-bits ALU), and the total bitwidth of

instructions in the kernel supported by the FU type f (e.g. add, sub operations on

ALU). ResMII is determined as the worst case constraint across all FU types.

)()()(Re fwidthuctionsBitTotalInstrfitwidthAllocatedBfsMII =

RecMII is derived from the latency calculations around elementary circuits in the

dependence graph for the loop body. Assume that the sum of latencies along some

elementary circuit c in the graph is Latency(c) and that the sum of the distances along

that circuit is Distance(c). RecMII for circuit c is computed as the division:

)(tan)()(Re cceDiscLatencyccMII =

The RecMII is determined by considering the worst case constraint across all circuits.

4.5.1.2 Swing Modulo Scheduling

Swing modulo-scheduling algorithm [87] is a modulo scheduling technique

designed to minimizing registers requirements and critical path delay. The algorithm

starts by building a DFG to represent all data dependences in the loop. Then, the DFG

nodes are ordered in a list. The scheduler then run on the ordered list and tries to

allocate the necessary time slots for each instruction.

Swing modulo scheduling differentiates from other modulo scheduling algorithm

in its DFG nodes ordering algorithm. It starts by ordering recurrence circuits nodes

giving the circuit with highest RecMII the highest priority. Then, it goes forth and

back on the DFG (swinging) ordering predecessors of partially ordered nodes then

successors, then predecessors and so. The later pattern of ordering is what minimizes

variables lifetimes since nodes ordered for schedule near their predecessors and

successors.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 95

4.5.1.3 Hardware Support

SOpenCL does not generate separate code segments for the prologue and epilogue

portions of the modulo schedule but instead uses the concept of valid bits.

As described in section 4.2, each data token exchanged between functional units,

or streamed in or out of the datapath is accompanied by a valid bit. That bit shows

whether the value carried by the data token is valid or not. The operation carried out

by a FU will only be valid, if all input data to the FU are valid. Since at the beginning

of a loop execution, all data tokens are reset to invalid, only data sourced by the input

streaming unit are valid. In each cycle, these data tokens spread to the rest of the

datapath-in a movement reminiscent to a wave-thus gradually enabling execution on

the FUs. This gradual triggering of the FUs implements the prologue schedule.

Figure 4.18 depicts the flow of valid bits over the whole loop execution duration

for the kernel of Table 4.4. Phi instructions always become valid (green) at the first

loop iteration, while the rest of the instructions become valid once all their input

operands are valid. After 10 cycles all instructions become valid, i.e. the schedule

Table 4.4: Modulo Scheduled kernel example

Kernel
t = 0 i2[3], i23[3], i8[2], i21[2], i12[1], i15[0]
t = 1 i0[3], i18[3], i9[2]
t = 2 i4[3], i6[3], i7[3], i19[3], i14[1]

i2

i23

i8

i21

i12

i0

i18

i9

i4

i6

i7

i19

i14

i15

0 1 2 3 4 5 6 7 8 9 ...

Prologue Kernel Epilogue

Header predicate

turns FALSETime slot

Figure 4.18: Valid-bit flow over the loop execution duration for the kernel of
Table 4.4. Green for true valid-bits and red for false valid-bits.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 96

execution reaches the steady state.

Loop termination occurs once the header predicate (predicate of the loop header

block) became false. The header predicate is always a phi instruction (i23 in Table

4.4) with its back-edge value is the negation of the termination condition (i21 in the

Table 4.4). In Figure 4.18, when the header predicate i23 becomes false it invalidates

the output of the other phi instructions (i2, and i0). The false valid bit of the phi

instructions propagates for few cycles (10 cycles) until all instructions output is

invalid, then the loop terminates.

4.6 Cache Instantiation

The target of the cache in the PE architecture is to exploit temporal and spatial

locality in the access pattern of each input stream of the inner loop. A cache will be

instantiated only if at least one input stream is deemed to be able to benefit from the

use of a cache. The decision is taken independently for each input data stream,

however all input data streams eventually use the same physical cache resources.

An input data stream is a candidate to use the cache, only if it has a predictable,

regular memory access pattern, and accesses off-chip memory. Local arrays mapped

on on-chip memories are excluded because of their very low latency compared to off-

chip memories and similar to the cache latency. An input data stream with an

irregular or dynamic access pattern is not expected to benefit significantly from a

cache, since cache size is essentially just a few kilobytes due to resource limitations.

4.6.1 Memory Addresses Profiling

SOpenCL backend uses profiling of memory read accesses to determine cache

requirements. The profiler computes all addresses generated for each read operation

in the inner loop code over all the iterations of the nested loop. Then the addresses are

placed in blocks of continuous addresses. In a block of continuous addresses, the

distance between two addresses does not exceed the width of the system data bus

width (in bytes), otherwise a block of cached data will have gaps of data lines never

used. Since allocated cache has limited size (few kilobytes) and we only allocate

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 97

cache for regular data streams, hence, the gaps between useful data lines in the access

pattern will appear regularly, such gaps are expensive and are avoided.

Figure 4.19b shows the set of generated addresses blocks for the C code sample of

Figure 4.19a. In the given example a continuous addresses block represents all

continuous addresses generated for single outer loop iteration. The profiler produces

output only for data streams with regular access pattern. A data stream considered

regular if all the generated blocks of addresses have the same size, and have an

identical addresses distances. Generated addresses blocks annotated with the outer

loop index. This annotation is used later to compute the cache reuse distance while

determining the cache configuration.

4.6.2 Cache Configuration Computation

To determine whether a cache should be instantiated or not, the hardware should

check whether a data stream is a candidate for being stored in the cache. This happens

if it is a read-only stream and has a regular access pattern which can be determined

from the profiler output. In more detail:

• Compute stream cache configuration: for each candidate data stream estimate the

degree of data reuse, reuse distance, and the cache size required to effectively

host reused data.

• Select a subset of the candidate streams for being supported by the cache.

For each candidate stream the tool computes two parameters: reuse ratio and

cache configurationReuse Ratio (reuse): For a data stream, the reuse parameter

measures how many repetitive addresses generated over the loop trip as in (1). The

Figure 4.19: Example of data reuse across outer loop iterations. (a) C code sample with
row wise access pattern. (b) Memory accesses profiler output, set of continuous
addresses blocks.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 98

reuse parameter value is in the range [0, 1].

ssesTotalAddre

essesUniqueAddrssesTotalAddre
reusei #

−
=

 (1)

Cache Configuration (Size): Each data stream has its own preserved space in the

cache unit that cannot be used by other data streams. The tool flow decides the space

size and configuration for each data stream to host the amount of data reuse computed

earlier. A cache configuration consists of two parameters: Data Block Size (DBSize)

and Data Blocks Count (DBCount). The cache space size allocated for the stream is

the multiplication of both values as shown in (2).

iii DBCountDBSizeSize *= (2)

A data block size (DBSizei) is computed from the size of a continuous addresses

block generated by the profiler. The size computed as the distance between the

minimum and maximum addresses. Then the distance is rounded to the nearer upper

power of 2. In Figure 4.19b, the data block size computed initially equal to 40 bytes

rounded up to 64 bytes. The DBSizei size is rounded to a power of 2 value because the

addressing scheme of cache data blocks dictates that. A cache data block is assigned

an address space that spans a power of 2 bytes. For example a 256-byte data block is

assigned a base address 0x******00 . The specific address space simplifies the

process of detecting valid/invalid data in the cache.

The count of data blocks is equal to the cache reuse distance. Conventionally,

cache reuse distance [96] is the number of distinctive data elements accessed between

two consecutive uses of the same element. In our design flow, we apply a slightly

different definition: the cache reuse distance is the number data blocks written to the

cache before a data reuse occurs. In Figure 4.19b, after 2 outer loop iterations a data

reuse occurs and 4 blocks are loaded to the cache, hence, DBCounti equals 4.

The reason behind choosing DBCounti to be equal to the cache reuse distance is

the regular access pattern of a candidate data stream. Because a candidate data stream

has a regular access pattern, data reuse occurs at regular distances. Hence, once we

reach the iteration where data reuse starts, data blocks loaded earlier will be reused

regularly. So we need to keep all loaded data blocks until a data reuse starts, because

after that we can replace old blocks with new ones.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 99

The regular access pattern of a candidate data stream also drives the replacement

policy of the cache data block. Initially, the cache blocks are empty; the cache fills an

empty block for each read request that has no data in the cache. When the cache is

full, the oldest block in the cache with no pending read requests is evicted and the

block is allocated for the new read request. If all blocks have pending read requests,

the first block finish serving its current pending requests is allocated for the new read

request.

Given the computed parameters reuse and size for each data stream, we solve the

problem of maximizing the amount of data reuse within an upper bound constraint on

the cache size as in (3). We use exact enumeration techniques to solve the problem in

(3). An enumeration of all possible combinations is performed and the combination

with maximum total reuse is selected.

≤∑∑

∈
SizeCacheSizeSoreuse

i
i

i
i

SINi
_ , max

 (3)

4.7 Local Buffers Synchronization

A key feature of the proposed architectural template of chapter 3, are the

asynchronous interconnect channels between a producer and a consumer, namely

scalar data FIFO channels and local streams buffers (see section 3.2.2). In the case of

scalar data FIFO channel, the dependencies appear as instruction operands, hence the

datapath (or AGU) and CE modules allocate the proper data FIFOs (as discussed in

chapter 3, section 3.3.1). However, the generation of local streams buffers requires

dependency information extraction through memory access pattern analysis, in order

to build a dependency graph and guide the generation of synchronization signals.

Figure 4.20 depicts the dependency graphs generated for each local data stream in

the LUD kernel (Figure 3.2). SOpenCL generates dependency graphs for each local

stream by analyzing memory dependencies between individual load/store operations

in each PE and CE module.

A dependency graph consists of nodes, where a node is a PE or a CE module.

Each node is labeled by its memory access type for the specific data stream: Write

(W), Read (R), or Read/Write (R/W). A dependency can occur between two nodes as

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 100

long as at least one of the nodes performs a write operation. The dependency is

represented by a directed edge labeled by the dependency distance. The latter is the

cross-iteration interval at which the dependency occurs. For example, in Error!

Reference source not found.a, the dependency PE(L0_3) → CE1 with distance 0,

means that CE1 cannot start read operation until PE(L0_3) finishes its write operation.

On the other hand, the dependency PE(L0_3) ← CE1 with distance 1, means that

PE(L0_3) waits for CE1 to finish its read operation before starting a write operation for

the next iteration. An edge with distance 0 is called a forward edge, whereas an edge

with distance greater than 0 is called a backward edge.

After building the dependency graph for a data stream, the tool performs a

redundant dependency elimination optimization in order to reduce the number of

synchronization channels corresponding to dependency edges. Error! Reference

source not found. depicts the pseudo-code of this optimization. The algorithm first

generates an ordering of the graph nodes such that a node comes after all its

Figure 4.20: Memory Dependency Graphs for LUD OpenCL architecture in
Figure 3.2. W: refers to Write memory, R: refers to Read memory. (a) Dia
local stream dependency graph. (b) Non-optimized peri_row local stream
dependency graph. (c) Non-optimized peri_col local stream dependency
graph. (d) Optimized peri_col local stream dependency graph. (e) Optimized
peri_row local stream dependency graph.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 101

predecessors. Then, for each node Ni the algorithm performs elimination of forward

and backward predecessors (incoming edges) separately. A forward edge from

predecessor Pi is eliminated if there is a path PPi between Pi and any of the node

predecessors (excluding Pi) fullfils the following constraint:

Distance (PPi) ≤ Distance (Pi→ Ni)

Where Distance() returns the summation of distance label on all edges of the given

path. The distance constraint on the path PPi ensures that the dependency implied by

the path PPi occurs before or at the same iteration as the eliminated dependency edge

Algorithm 4.7: Redundant Dependency Elimination.

Input: Memory dependency flow graph.
Output: Optimized memory dependency graph.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

G → Dependency flow graph.
//
eliminate_redundant_edge(G){
 G’ = predecessor_first_order (G);
 foreach node Ni in G’ do
 eliminate_forward_edges (Ni , G’);
 eliminate_backward_edges (Ni , G’);
 end for
}
//
eliminate_forward_edges(Ni, G’){

 foreach predecessor(Ni) Pi do
 if (distance (Ni , Pi) == 0) then
 foreach predecessor(Ni) Pi ’ != P i do
 if (has_path (Pi ,P i ’)) then
 delete Pi
 break ;
 end if
 end for
 end if
 end for
}
//
eliminate_backward_edges(Ni, G’){
 foreach successor(Ni) Si do
 if (distance (Ni , Si) > 0) then
 foreach successor(Ni) S’ i do
 if (has_path (S’ i , S i)) then
 delete Si
 break ;
 end if
 end for
 end if
 end for
}

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 102

Pi→ Ni.

A backward edge to successor Si is eliminated if there is a path between any of the

node’s successors and Si such that, the maximum distance on such a path should be

less than or equal to the edge Pi← Ni. Error! Reference source not found.d and

Figure 4.19e shows the result of applying Error! Reference source not found. on

dependency graphs of Figure 4.19c and Figure 4.19b respectively.

The equivalence of the new dependency graph to the old one can be verified as

follows: for each eliminated direct dependency edge Pi→ Ni, there is at least one path

in the dependency graph from node Pi to node Ni, that fullfils the distance constraint.

For example, in Figure 4.20c, the edge PE(L0_3) → CE1 is eliminated. In the

optimized graph of Figure 4.20d, the path “PE(L0_3) → PE(L1_0) → CE1” is

equivalent to the eliminated one and both has distance equal to 0 which fulfils the

distance constraint.

Dependency graph optimization simplifies the local buffers synchronization.. Each

dependency edge is served by a 1-bit finish signal (refer to Figure 3.3) and a FIFO 1-

bit wide. Redundant dependency edges elimination leads to eliminating

corresponding finish signal and its FIFO. While the FIFOs cost is small, eliminating

finish signals affects significantly the routing complexity and control signals

computation at each node. For example, the dependency graph of Figure 4.20c

produces a network of 10 synchronization finish signals spreading all over the

accelerator, while the optimized graph in Figure 4.20d has only 4 finish signals flow

in a pipeline pattern.

Once we have the optimized dependency graph for each local data stream, the

backend allocates as many Block RAMs required for each local array. For example,

in the LUD kernel (Figure 2.14) each of the local arrays, peri_col, peri_row, and dia

has size equal to 256 floating point elements, hence 1 KB of memory space is

required for each local array. To support doubling buffering we allocate a 2 KB local

buffer for each local array. The backend then uses the optimized dependency graph

for each local array to generate synchronization logic. A finish signal and a FIFO is

generated (as in Figure 3.3) for each dependency edge. Then the hardware generator

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 103

builds the local buffer Read/Write ports arbitration considering double buffering and

computed dependencies.

4.8 Related Work

Research in architectural synthesis traditionally applied a series of optimizations to

achieve efficient hardware designs. Prior research that avoided arbitrary bitwidth

datatypes extensions employed a sort of bitwidth analysis to compute the minimum

bitwidth to represent a variable [70, 71, 72, 73, 74].

The majority of previous work applied a series of loop transformations. PICO-

NPA [13] performs loop tiling. The compiler selects the best tile shape and size to

reuse already loaded data. Additionally, the tile size should match the possible

available registers and local memories resources.

SPARK compilation framework [25] applies a variety of transformations

including code motion using percolation scheduling, ,, and speculative code motion.

Transformations like dynamic renaming while reordering operations and dynamic

common subexpression elimination (CSE) also have been applied to reduce the size

of required resources.

Traditional compiler optimizations have been used with all works compilation

frameworks. Optimizations include dead code elimination, common sub expression

elimination, constant propagation, array value propagation, and function inlining.

Extracting regular computation patterns has been the focus of prior research in

behavioral datapath synthesis [65, 66, 76, 77, 78]. Regularity extraction also has also

been used for custom instruction generation [61, 62, 64, 63, 79]. The proposed

approaches can be categorized based on how they resolve candidate subgraph

generation and candidate subgraph selection.

Candidate subgraph generation. Early work used variations of enumerations

techniques augmented with a set of constraints or a guide function to prune the search

space.

Atasu [62] exhaustively enumerated all possible subgraphs in the DFG using a

binary tree representation. To prune the search space, Atasu used convexity and upper

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 104

limit of inputs/outputs as constraints to generate a candidate subgraph. Atasu

considered single and multiple outputs subgraphs as candidates, weakly connected

subgraphs also considered as a class of multiple outputs subgraphs. Goodwin [80]

adapted the work of Atasu to generated fused operations for application specific

processors. Goodwin added the subgraph latency constraint in addition to the number

of inputs/output operands constraints used by Atasu. A less expensive enumeration

technique was proposed in the work by Bonzini [79]. The proposed algorithm uses

the same set of inputs/outputs and convexity constraints used in previous works, and

achieves a polynomial time complexity with respect to the input/output port number.

Yu [63] proposed a more efficient enumeration approach that produces all possible

subgraphs using a two phase process. In the first phase, it enumerates all upward and

downward cones in the DFG, and in the second phase a union operation is applied on

the generated set of upward and downward cones to produce more complex

subgraphs. Yu also used the convexity and inputs/outputs number constraints to

eliminate illegal subgraphs. The approach of Yu can run faster than that of Atasu

because it eliminates illegal subgraphs, early in the first step. Both enumeration

techniques have a worst case exponential time complexity.

Cong [81] used the method of cones enumeration. Instead of considering upward

and downward cones, Cong restricted the enumeration process to upward cones only,

hence supporting single output subgraphs. Cong used the number of input operands

and execution time as constraints on feasible upward cones. Our algorithm also

considers upwards cones only, similarly to Cong et al., however without constraining

the number of input operands, thus allowing us to generate the maximal patterns.

Cong considers any cut of a feasible cone to be a feasible candidate subgraph. In our

approach, a cut T of a candidate upward cone Ci (i.e. a grammar rule Ci) is a feasible

candidate subgraph (i.e. translated into new rule) in two cases: if the cut T pattern

appears in other candidate cones (i.e. in other grammar rules productions), or if the

cut T pattern appears more than once within the same candidate cone subgraph. For

example, candidate Rule B → AA, includes two instances of rule A. Otherwise, for

our purposes of multiplexers size reduction, implementing a candidate upward cone is

more efficient than just implementing a cut of its subgraph. Hence we dismiss

generating such patterns in our grammar structure.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 105

Work by Clark [64] examines each node in the DFG and uses it as a seed for a

candidate subgraph. This seed is grown downwards along dataflow edges to create

new candidates. A guide function is used to determine which nodes are the best

directions to grow, and when to stop growing a subgraph. The guide function assigns

a priority to each edge in the DFG based on its criticality, latency, and area.

Another set of early work used pattern recognition techniques to extract

computations regularities in a DFG. Rao et el. [65] used string pattern recognition

techniques on a DFG to extract regular computation patterns. First, he converts the

DFG into a string of characters (operations), and then a string matching algorithm is

used to find regular patterns of characters. User-defined patterns library also used in

work [76] to improve quality of logical synthesis at the behavioral level. Other

interesting work used predefined patterns library include scheduling and binding

algorithms based on patterns matching [77, 78].

Cong [66] proposed a pattern-recognition based approach for FPGA resources

reduction. According to Cong et al., a pattern type includes instances not completely

identical. In our grammar approach, instances of a pattern (represented by a grammar

rule) are completely identical. Cong et al. approach produces MFUs with extra

multiplexers on intra-FU interconnects. The extra multiplexers cost increases the area

overhead of MFUs. Moreover, multiplexers on the intra-FU interconnects would

prevent generating compact, optimized MFU circuits using our pipelining algorithm.

The pattern recognition approach Cong et al. used is based on exhaustive subgraph

enumeration. First, each DFG node is considered as a candidate pattern. For each

node, all possible subgraphs are enumerated by adding one neighboring node

(predecessor or successor), thus creating subgraphs of size 2. The algorithm then

traverses the current pattern types set and adds the created subgraph to a matching

pattern. If the subgraph does not match any previously created pattern, a new pattern

is created, as long as it satisfies the convexity constraint. After processing subgraphs

of size 2, subgraphs of size 3 are created from subgraphs of size 2 and the previous

process is repeated. The algorithm continues until patterns cannot be grown any

further. If the instances of a pattern are less than a pre-defined number, the pattern and

all its instances are removed from the search space. Cong et al. also remove patterns

totally encapsulated within a larger pattern (called maximal pattern).

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 106

Our grammar generation algorithm also grows patterns from each DFG node

incrementally, however moving only upwards (add predecessors), unlike Cong et al.

patterns which grow in any direction. In our case, since we start growing patterns

upward from nodes at the bottom of the DFG, there is no need to grow patterns

downward. This unidirectional growth reduces the complexity of the search space and

thus of the algorithm. Contrary to Cong et al. our algorithm considers patterns

completely contained in other larger patterns and dismisses patterns partially contained

in other larger patterns. In fact this feature is the basis for hierarchical grammar

structure. Our experimental study indicated that such patterns characterized by a finer

computations granularity could often be fitter for implementation than larger, coarser

patterns.

Cong et al., pattern recognition algorithm generates a large number of patterns (in

the order of thousands) covering all possible patterns in the DFG. While their

approach is complete and more efficient than others, it still produces a large amount

of unnecessary and redundant patterns and takes minutes to process a DFG with a few

hundreds of nodes. Our grammar-based algorithm produces just a handful of patterns

within one second, for DFGs with thousands of nodes. At the same time, it achieves a

similar reduction in area (~20%) to that achieved by Cong et al. algorithm.

Several papers used candidate generation algorithms based on iterative

combination of primitive operations [61, 82, 83, 84]. The basic idea behind iterative

combination of primitives is to use a profiling approach to find the frequency of a

combination of two operations in the input program, replace them with new super-

node and repeat the process until a stopping condition is met. Brisk [61] extracts

regular computation patterns from a DFG by examining each edge in the DFG and

record the number of occurrences for each edge type. Consequently, the most

frequently edge types are converted to super-nodes. The process I s repeated

iteratively until a stopping condition (like graph coverage) is met. Work by Bennett

[83] considers the combination of two operations that occur in subsequent line of

code to reduce static code size. This technique is irrespective of the dataflow graph

and is used mainly for code size reduction.

Our work utilizes the same concept of replacing a combination of two operations

(or an edge) with a super node (i.e. rule). The work of Brisk et al. destroys a

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 107

previously created super node S when a new super node A is created contains the

super node S. Such behavior prevents building hierarchical models of super nodes

(i.e. rules). An instance of super node S will be available in the final set of super

nodes only if not all its instance have been destroyed when the algorithm reaches the

stopping condition. Our approach preserves all instances of a super node allowing

creating hierarchical models of supper nodes. Such super nodes may be more fit for

implementation than their parent super nodes. Removing them during the creation of

their parent super nodes we lose the opportunity to exploit them leading to sub-

optimal design.

 Candidate subgraph selection. All previously mentioned papers approached the

candidate subgraph selection problem in a similar manner: a cost function and a set of

metrics have been used to weigh the performance gain and the feasibility of a

candidate subgraph. Previous research that has targeted application specific

processors and instructions set extension [61, 62, 63, 64], where the concern is

increasing processors performance, metrics that estimate latency, area, and

inputs/outputs number have be used. Clark used a greedy selection algorithm based

on dynamic programming. A ratio of cycles savings and area is computed for each

candidate subgraph and used as a priority metric for selection.

Cong [66] used metrics that estimate multiplexers cost reduction and latency to

reduce FPGA resources. The latency metric gives higher priority to flat subgraphs to

reduce latency overhead. Our patterns selection algorithm has few similarities with

that of Cong et al. Both algorithms are greedy and use metrics for area reduction

estimation. In our case however, latency is not a primary concern at the instruction

clustering phase. The critical path latency is actually effectively reduced during MFU

pipelining. However, using the flatness metric of Cong et al. could help reduce the

variables lifetime overhead

Work described in [85] uses a speedup analysis to select an optimal set of

subgraph candidates. Speedup analysis is performed by comparing the approximate

subgraph execution time in software, as a sequence of instructions, with the

approximate time the subgraph takes if implemented in hardware, as a single special

instruction. The most promising candidates are then passed for hardware mapping.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 108

The enumeration techniques in previous research have a worst case exponential

computational complexity. Moreover, the generated set of candidate subgraphs is

typically very large (thousands of subgraphs) for large DFGs, and most of them are

redundant or cannot produce optimized designs. Our grammar-driven approach

performs a very fast search and produces a small number of subgraphs by focusing

only on repetitive patterns as candidates. Another distinct difference is the clear

hierarchal relationship among the generated grammar rules. On the other hand, in

enumeration based approaches, only a portion of subgraph nodes may be members of

tens other subgraphs. This complex relationship among the subgraphs and their large

number increases the complexity of candidate subgraph selection algorithm.

Prior work addressed the problem of multiplexers size reduction in a variety of

ways. The majority of works are based on resources binding techniques in datapath

synthesis. Huang et al. [97] developed a weighted bipartite matching approach to

minimize the multiplexers following a step-by-step method. First, variable-register

binding is applied, followed by an operation-FU binding step. The register binding

method tries to minimize the total number of operation types with outputs bonded to

the same register, and at the same time minimize the total number of input registers

used by operations with outputs bonded to the same register. The FU binding method

tries to minimize the number of new input registers required when assigning an

operation to an FU instance. Chen et al. [98] enhanced Huang methods and updated

the method of calculating the weighted bipartite graph. Moreover, they applied the

register-binding algorithm after FU binding.

Cong et al. [99] apply a similar algorithm to Huang et al. on a distributed register

file architecture. The proposed architecture model consists of one or more islands of

registers and functional units. The binding algorithm concentrates on reducing inter-

island interconnects and multiplexers.

The drawback of previous binding algorithms is that they fail to exploit regular

patterns and rely solely on iterative algorithms to minimize the multiplexers overhead

generated during resources binding.

Our work tackles the problem of multiplexers area overhead earlier in the design

flow, similarly to Cong et al. [66], by identifying and exploiting regular patterns in

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 109

the problem DFG. Cong et al. uses a multiplexer area overhead metric that favors

MFUs with less internal multiplexers and does not consider the overall reduction in

multiplexers count. Exploiting regular patterns we create islands of primitive FUs (i.e.

MFUs) with multiplexers-free internal interconnects. Since we only support MFUs

with no multiplexers on internal interconnects, the rules selection algorithm

(Algorithm 2) uses a metric (MUXG in equation 3) that favors MFUs which result to

a higher reduction in the total number of multiplexers in the design. This objective is

similar to that of binding algorithms.

Few research papers addressed the problem of MFU implementation. Works in the

field of custom instruction set generation [64, 86] considered implementations of

MFU that support different types of macro-instructions. Clark proposed a wildcard

approach to share resources between different subgraphs. Wildcards are subgraphs

that have a similar shape, but operations in one node may differ. This approach

increases routing complexity of the MFU when internal multiplexers introduced to

support different types of subgraphs. Pothineni [86] proposed a heuristic that accounts

for internal multiplexers in merged subgraphs. The heuristic merges multi-cycle

subgraphs, by first decomposing them into single cycle subgraphs that can be merged

during the binding process.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 110

CHAPTER 5

EXPERIMENTAL EVALUATION

In this chapter we present our experimental evaluation and analysis of SOpenCL.

We examine independently the impact of asynchronous execution model, bitwidth

optimization, instruction clustering and cache utilization on performance and area.

5.1 Benchmark Suite

Table 5.1 outlines the set of benchmarks used in our experimental evaluation.

Some of the kernels base source is OpenCL and others are from C source origin. The

kernels are from a variety of fields: multimedia, cryptography, telecommunication

and linear algebra. Following is a brief description for each kernel highlighting its

specific characteristics.

CMC is the Chroma motion interpolation kernel of the AVS video standard. CMC

performs pixels interpolation on the chrominance pixels in a video frame. CMC uses

a 2-dimensional sliding window of size 2×2 to compute the interpolation of a single

pixel. The coefficients of the interpolation filter are derived from the motion vector

for each Macroblock (16×16 block of pixels) [90]. The Chroma component

interpolation (Figure 5.1) follows the equation:

Table 5.1: Applications used for experimental evaluation.

Application Description Source Data
CMC AVS Video Decoder Chroma motion interpolation [90] OpenCL Int
LMC AVS Video Decoder Luma motion interpolation [90] C Int
DCT H.264 Video Encoder 8x8 Integer DCT [91] OpenCL Int
SEAL Seal cryptography kernel [8] C Int

CN Forward Error Correction (FEC) decoder CheckNode Kernel [92] OpenCL Int
BN Forward Error Correction (FEC) decoder BitNode Kernel [92] OpenCL Int

LUD LU Decomposition-Perimeter [23]. OpenCL FP
Deblocking AVS Video Decoder Deblocking Filter [93]. C Int

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 111

()() () ()
() 632]][[]][[

8888]][[

>>+′=

+−+−+−−=′

yxdpreyxpred

dxdyDdyCdxBdydxAdydxyxdpre

The CMC kernel consumes 10 pixels per loop iteration and produces 4 pixels per

iteration.

LMC is the Luminance motion interpolation kernel of the AVS video standard.

LMC performs pixel interpolation on luminance pixels in a video frame. Like CMC,

LMC kernel uses sliding window for interpolation, but the size of the sliding window

is variable (1×4, 1×5, 4×1, 5×1, 4×4, 4×5, and 5×4) depending on the motion vector

of each Macroblock. LMC kernel consumes up to 20 pixels per loop iterations and

produces 1 pixel per iteration.

Discrete Cosine Transform (DCT) kernel, used in H.264 video encoder among

others, converts 2D 8x8 pixel blocks in an image frame to frequency coefficients each

time it is invoked. . The kernel consists of a nested loop which encapsulates two inner

loops. The first inner loop processes the input pixels block and produces a partially

transformed 8×8 block stored in a local array. The second inner loop operates on the

partially transformed block and completes the DCT computations.

SEAL is a fast, software-oriented encryption algorithm. SEAL is a stream cipher,

i.e. incoming data to be encrypted are streamed in the algorithm and continuously

encrypted. SEAL encryption uses a random 160-bit encryption key and has a longer

initialization phase during which a large set of tables is done using the Secure Hash

Algorithm. An invocation of the SEAL kernel encrypts a 4KB plaintext message. The

algorithm is divided in two steps: Tables generation, and a pseudo-random function

execution. Tables generation is typically performed once for a communication

Figure 5.1: Sub-pixel Chroma interpolation in AVS Motion Compensation.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 112

session. Given the generated tables and a 32-bit position index n, the pseudo-random

function stretches n to L-bit pseudo-random string. L can be made arbitrarily large

ranging from a few bytes to thousand of bytes. In our SEAL kernel, L equals 4 KB.

In terms of implementation characteristics, the C code includes an inner loop

which forms a recurrence circuit limiting the initiation interval (II) to 60 in all

configurations. To make things worse, the memory access pattern in the SEAL kernel

is runtime dependent, i.e. read addresses computation depends on data loaded from

the memory. As a result, a unified PE architecture (the datapath performs addresses

computation) is generated for the SEAL accelerator.

BN and CN kernels are forward error correction kernels used in the DVB-S2

standard (Digital Video Broadcasting – Satellite second generation). The standard is

based on, and improves upon its predecessor DVB-S. It uses a new coding scheme

based on a modern LDPC code. It also uses VCM (Variable Coding and Modulation) and

ACM (Adaptive Coding and Modulation) modes, which allow optimizing bandwidth

utilization by dynamically changing transmission parameters. Both BN and CN kernels

have a 1-dimensional computations grid. The kernels are computationally intensive.

For example the CN kernel DFG has 3962 nodes. The kernels require a significant

memory bandwidth: BN kernel consumes 128 Bytes per loop iteration, and CN kernel

consumes 96 Bytes per iteration.

Deblocking Filter is a video filter applied to blocks in decoded video to improve

visual quality by smoothing the sharp edges between macroblocks. Video frames

normally partitioned into macroblocks, which further partitioned into smaller blocks

processed independently, a process leads to distortions at the blocks edges. Each

block edge is assigned a boundary strength based on whether it is also a macroblock

boundary, the coding (intra/inter) of the blocks, whether references (in motion

prediction and reference frame choice) differ, and whether it is a luma or chroma

edge. Stronger levels of filtering are assigned by this scheme where there is likely to

be more distortion. The filter can modify as many as three samples on either side of a

given block edge. In most cases it can modify one or two samples on either side of the

edge. Deblocking kernel has a RAW memory dependency across outer loops iteration

of distance equals 1 preventing pipelining and overlapping the execution of

successive outer loop iterations.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 113

LU Decomposition is an algorithm to calculate the solutions of a set of linear

equations. The LUD kernel decomposes a matrix as the product of a lower triangular

matrix and an upper triangular matrix. The product sometimes includes a permutation

matrix as well. LU decomposition is a key step in several fundamental numerical

algorithms in linear algebra such as solving a system of linear equations, inverting a

matrix, or computing the determinant of a matrix. LU Decomposition kernel consists

of three nested loops: the first and third nested loops perform data prefetching and

write back, respectively. The second nested loop performs the main LU

Decomposition kernel computations. The three nested loops have a clear forward

dependency flow (prefetch → compute → write) that allows for execution pipelining.

5.2 Methodology

The aforementioned backend transformations and hardware generation algorithms

in chapter 4: If-conversion, code slicing, instructions clustering, scheduling and cache

instantiation have been implemented as separated passes in the LLVM compiler.

To evaluate the efficiency of the methodology and the potential of the proposed

architectural template, we used three different hardware configurations (CA, CB and

CC) to guide the module scheduling of the Computational and I/O streaming kernels.

These configurations represent three levels of resource availability; CA is an extreme

configuration, which allocates just a single FU of each required type (e.g. one adder,

one multiplier, etc.) and one word I/O bandwidth. However, for some kernels as BN

and CN, hundreds of instructions scheduled per FU produce very large multiplexers,

hence multiple FUs are allocated. CC configuration allocates as many FUs as required

to achieve the minimum possible II for each loop. Barring any cyclic dependences,

this corresponds to II=1. The CB configuration is selected differently for each

Table 5.2: Experimentation Data Set Size.

Application Data Set
CMC VGA Frame: 640×480
LMC VGA Frame: 640×480
DCT VGA Frame: 640×480
SEAL 4 KB Plaintext message.

CN 32400 Data points

BN 64800 Data points
LUD 128×128 Data matrix

Deblocking VGA Frame: 640×480

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 114

application to achieve the average II between the two extremes. For applications with

little computation in each loop (such as LUD) the CB configuration proved similar to

CC. In SEAL kernel a recurrence circuit limited the II value to 60 cycles for all

configurations.

Besides the three resource configurations, architectural exploration also considers

parameters such as sequential/concurrent execution, instruction clustering, bitwidth

optimizations and cache availability. For the evaluation of our design we used the

Xilinx Virtex-6 LX760 FPGA and Xilinx ISE 12.4 toolset for synthesis, placement

and routing. The Virtex-6 LX760 device includes 118560 slices, 720 RAMB36

Block-RAMs, and 864 DSP48 modules. The tool flow generates a testbench (Figure

5.2) used for simulation and verification. Table 5.2 summarizes the data set size used

in verification/simulation of each benchmark.

5.3 Execution Model Evaluation

The concurrent execution model adopted in the proposed architectural template

increases the utilization ratio of the allocated resources and reduces the duration each

component stays idle through overlapping the execution of multiple components. In

this section, we experiment with the concurrent execution mode for each of the three

configurations CA, CB, and CC All other optimizations are enabled by default.

Table 5.3 summarizes the area results after the synthesis performed for the

benchmarks of Table 5.1. The general trend is that area requirements increase from

configuration CA to configuration CC when the loop body encompasses enough

computations to exploit the additional resources. Concurrent mode configurations

tend to consume more slices than sequential ones. The additional hardware is used to

implement the synchronization FIFOs of the PE and CE modules and synchronization

Figure 5.2: Simulation and Verification Testbench.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 115

flags for Local Buffers.

The results show that this hardware overhead is nearly the same in all

configurations (CA, CB, and CC), and it depends on the number of scalar variables

FIFO channels and Local buffers synchronization signals available in the architecture.

For example, in the LUD kernel, there are 25 scalar variables (LLVM instructions)

computed in different parent CE modules and passed to children PE modules. Note

that most of the scalar variables here are LLVM assembly instructions that do not

change during the course of the inner most loop iterations, the backend applies loop-

invariant code motion and move them to outer loops, hence they computed in CE

modules and must passed through FIFOs to the consumer PE modules. Each scalar

variable uses a FIFO channel of size equals 3. The total increase in slices in the LUD

kernel (around 800 slices) is a combination of the scalar variables channels and local

buffers synchronization channels for each one of the streams dia, peri_col, and

peri_row as depicted in Figure 4.19.

An additional overhead stems from the routing overhead of the synchronization

signals valid and hold in each channel. The use of the valid and hold in the control

mechanisms at each module (e.g. stall execution at hold signal) increases control

Table 5.3: Concurrent/Sequential modes area results for the benchmarks implemented
on Xilinx Virtex-6 LX760 device.

CMC
Concurrent Sequential

Config. CA CB CC CA CB CC
Slices 2051 2074 3421 1596 1652 2947

RAMB36 1 1 1 1 1 1
DSP48 12 12 20 12 12 20

LMC
Concurrent Sequential

Config. CA CB CC CA CB CC
Slices 2989 3540 5395 2909 3447 5304

RAMB36 1 1 1 1 1 1
DSP48 5 10 18 5 10 18

LUD
Concurrent Sequential

Config. CA CB CC CA CB CC
Slices 4788 4895 4895 3908 4191 4191

RAMB36 3 3 3 3 3 3
DSP48 17 19 19 17 19 19

DCT
Concurrent Sequential

Config. CA CB CC CA CB CC
Slices 3481 3615 5323 2916 3074 4416

RAMB36 1 1 1 1 1 1
DSP48 14 14 14 14 14 14

Deblocking
Concurrent Sequential

Config. CA CB CC CA CB CC
Slices 2464 2736 3379 1868 2157 2714

RAMB36 0 0 0 0 0 0
DSP48 3 3 3 3 3 3

SEAL
Concurrent Sequential

Config. CA CB CC CA CB CC
Slices 2089 2112 2112 1905 1945 1945

RAMB36 0 0 0 0 0 0
DSP48 0 0 0 0 0 0

BN
Concurrent Sequential

Config. CA CB CC CA CB CC
Slices 22304 25692 32168 22268 25640 32150

RAMB36 0 0 0 0 0 0
DSP48 4 4 4 4 4 4

CN
Concurrent Sequential

Config. CA CB CC CA CB CC
Slices 20675 27390 22044 20640 27350 22005

RAMB36 0 0 0 0 0 0
DSP48 2 6 10 2 6 10

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 116

complexity and routing overhead.

The area overhead in the asynchronous configuration is very small or none exist if

there are no scalar variables exchanges between multiple PE and CE modules, and no

local streams synchronization is required. This is the case for BN and CN kernels.

The LMC kernel also has a very small area overhead since only four scalar variables

are exchanged between a CE and a PE module and each variable is 13-bits wide.

Dual port Block RAMs are used for both local buffers and caches. LMC and CMC

are the only benchmarks that utilize their Block RAMs as a cache, while the rest of

the benchmarks use their Block RAMs to implement local buffers for local arrays. In

LUD, each of the local arrays dia, peri_row, and peri_col is allocated a Block RAM

of 36Kbit. In all applications, the Block RAMs are configured as 512 lines in size,

each size being 64-bits wide. The caches and local buffers work in simple dual port

mode (one port allocated for write-only and the second port allocated for read-only)

to allow pipelining write and read transactions.

Figure 5.3 depicts the execution time (in ms) and clock rate for four benchmarks

under different configurations for the work data set shown in Table 5.2. As expected,

performance increases moving from configuration CA to configuration CC when there

is enough memory bandwidth to serve the datapath I/O requirements. The limited

memory bandwidth problem appears in the DCT benchmark for the concurrent

configurations. The memory bandwidth of 8 bytes/cycle fails to support the datapath

I/O requirements 16 bytes/cycle and 32 bytes/cycle for configurations CB and CC

respectively.

As expected, the concurrent mode implementations in all benchmarks achieve

higher computational rate and reduced execution time compared to configurations

supporting sequential mode. Sequential operation (without data prefetching)

frequently throttles the throughput of PE modules. Concurrent operation tends to

become performance critical when II is small. This is typically the case in the CC

configuration. Faster datapaths and AGUs make better use of the control element

(CE) module executing the outer loops and preparing data used by the PE modules in

subsequent operations.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 117

The performance of concurrent operation may be limited by the existence of data

dependences between loops at different level of the loop nest, i.e. when computations

in the outer-loops (executed by CE modules) are dependent on results produced from

the innermost loops (executed by PE modules). This is the case in LUD between

PE(L1_0) and its parent CE1 as appear in dependency graph discussed in Chapter 4

(Figure 4.19), where an outer loop computation waits data to be written to a local

buffer, performs multiplication and division operations and only then initiates the

next iteration. Even in this case, the experimental results indicate that concurrent

execution outperforms synchronous one.

 Figure 5.4 shows of the rest four benchmarks that achieved very limited

performance gain using the concurrent operation. Deblocking filter (Figure 5.4a)

achieves limited performance mainly because of data stream dependencies. The inner

most loop of the deblocking kernel has a RAW memory dependency across outer

loops iterations with distance equal to 1. In the generated architecture, the input

(a) (b)

(c) (d)

DCT Exe .Tim e

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

Ca Cb Cc

m s

159,5

160

160,5

161

161,5

162

162,5

163

163,5

164
MHz

Concurrent Sequential
Concurrent Sequential

LUD-P Exe. Time

0

5

10

15

20

25

30

Ca Cb Cc

m s

150

154

158

162

166

170

174

MHz

Concurrent Sequential
Concurrent Sequential

CMC Exe. Time

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

Ca Cb Cc

m s

120

130

140

150

160

170

180

190

200

MHz

Concurrent Sequential
Concurrent Sequential

vc

LMC Exe. Time

0

12

24

36

48

60

72

84

96

Ca Cb Cc

m s

140

144

148

152

156

160

164

168

172

MHz

Concurrent Sequentia l
Concurrent Sequentia l

Figure 5.3: Execution Time (bars in ms) And clock frequency (lines in MHz) for
concurrent and sequential configurations.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 118

streaming units wait for a finish signal from the output streaming units before sending

read requests. The minimal execution time improvement is due to overlapping the

execution of the PE module with its parent CE module.

SEAL benchmark has a unified PE architecture; no AGU modules generated

because addresses computations can be computed only at runtime. Hence, the PE

module consists only of a datapath and input/output streaming units (RGU, SinAlign

and SoutAlign units). As a result, successive outer loop iterations will not promote

data prefetching since addresses generation for later iterations cannot start until the

datapath finishes computations of earlier iterations. As in the Deblocking filter case,

the limited reduction in execution time came from overlapping the execution of the

PE module with its parent CE module.

BN and CN kernels in Figure 5.4c and 5.4d show another case where concurrent

operation achieves no performance gain. BN and CN kernels have 1-dimensional

computational grid. In other words, the trip count of the outer loops of the triple

Deblocking Exe.Time

0

3

6

9

12

15

18

21

24

Ca Cb Cc

m s

150

153

156

159

162

165

168

171

174

MHz

Concurrent Sequential
Concurrent Sequential

SEAL Exe.Time

0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

0,32

Ca Cb Cc

m s

196

197

198

199

200

201

202

203

204

MHz

Concurrent Sequential
Concurrent Sequential

CN Exe.Time

0

3

6

9

12

15

18

21

24

Ca Cb Cc

m s

80

83

86

89

92

95

98

101

104

MHz
Concurrent Sequential
Concurrent Sequential

BN Exe.Time

20

23

26

29

32

35

38

41

44

Ca Cb Cc

m s

84

88

92

96

100

104

108

112

116

MHz
Concurrent Sequential
Concurrent Sequential

Figure 5.4: Execution time (bars, in ms) And clock frequency (lines in MHz) for
concurrent and sequential configurations.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 119

nested loop is one; hence the PE module (the inner loop) is initiated just once for

execution.

Analyzing data dependencies and grid dimensions, the tool flow can determine if

the concurrent operation could possibly improve performance or not. Figure 6.4

compares the maximum performance gain (decrease in execution time) achieved in

using concurrent operation for each benchmark to its corresponding area overhead

(increase of consumed resources) in each benchmark. The comparison of

performance gain to the area overhead reveals the efficiency of the concurrent

operation compared to the cost. Figure 5.5 shows that, the 4 benchmarks of Figure 5.3

that achieved respectable performance gain (over 30%), did so at much less area

overhead. On the other hand, area overhead surpassed performance gain for

benchmarks with limited concurrent operation. Performance gain and area overhead

are computed as follows:

)(

)()(

)(

)()(

SequentialSlices

ConcurrentSlicesSequentialSlices
adAreaOverhe

SequentialExecTime

ConcurrentExecTimeSequentialExecTime
eGainPerformanc

−
=

−
=

One can conclude that efficiency of concurrent operation is dependent on the

application characteristics.

Concurrent operation has a mixed effect on clock frequency. A FIFO channel

Performance Gain vs. Area Overhead

0%

10%

20%

30%

40%

50%

60%

DCT LUD CMC LMC SEAL Deblocking BN CN

Performance Gain Area Overhead

Figure 5.5: Concurrent operation performance gain and area overhead

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 120

plays a role in balancing the routing delay between a producer and a consumer. On

the other hand, the increase in routing and control signals computation overhead

caused by the synchronization signals like valid and hold produces a negative effect

that may degrade clock frequency.

5.4 Bitwidth Optimization Evaluation

In this section, we experimentally evaluate bitwidth optimization for the three

different target configurations. All other optimizations, i.e. asynchronous execution,

instruction clustering and cache allocation are enabled, by default. In Conventional

compilers targeting architectures with standard FU size (i.e. 32- and 64-bits wide), the

result value is represented in 32-bits format, while 8-bits format is enough for its

representation. Figure 5.6 shows the area results for each of the benchmarks with

bitwidth optimization enabled (optimized case) or not (original case). As we

expected, bitwidth optimization succeeds in reducing the amount of consumed

resources. In the figure we can see that up to 36% reduction in area has been

achieved. The negative percentage values indicate the ratio of area reduction for each

configuration.

In particular, deblocking Filter (Figure 5.6h) achieves most gains from bitwidth

optimization. Filter computations operate on pixel variables with char data type which

is automatically extended to 32-bits by the LLVM compiler. Moreover, many kernel

operations have one of their operands to a constant value equal to 2, 3 or 4. The

bitwidth optimization (similar to instruction clustering) performs efficiently on

computations which contain small constants, such as CN and BN as well as SEAL

kernels.

In the case of LUD benchmark, bitwidth optimization affected the FIFO channels

width because many scalar variables are exchanged between multiple CE and PE

modules. As a result, both FUs and the FIFO channel width are optimized.

Moreover, the effects of bitwidth optimization vary from one configuration to

another, since, for example, Configurations with lower II value (such as CC) are more

successful in reducing area overhead. Higher II values force the scheduler to allocate

fewer functional units which should be wide enough to serve multiple instruction

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 121

bitwidths, hence, instructions with small bitwidth (e.g. 8-bits), could be scheduled on

FUs wider than their instruction bitwidth.

Bitwidth optimization has also a positive effect on clock frequency (Table 5.4). In

BN and CN kernels, the reductions in functional units width significantly reduced

(a) (b)

(c) (d)

(e) (f)

(g) (h)

LUD

-14%-14%

-11%

4500

4800

5100

5400

5700

6000

Ca Cb Cc

A
re

a
(#

sl
ic

es
)

original optimized

CMC

-6%

-3%-2%

1800

2200

2600

3000

3400

3800

Ca Cb Cc

A
re

a
(#

sl
ic

es
)

original optimized DCT

-4.5%

-5%
-4%

3000

3600

4200

4800

5400

6000

Ca Cb Cc

A
re

a
(#

sl
ic

es
)

original optimized

Luma

-10%

-11%

-8%

2000

2900

3800

4700

5600

6500

Ca Cb Cc

A
re

a
(#

sl
ic

es
)

original optimized

BN

-10%

-19%

-10%

20000

23060

26120

29180

32240

35300

Ca Cb Cc

A
re

a
(#

sl
ic

es
)

original optimized CN

-21%

-24%

-13%

18000

22000

26000

30000

34000

38000

Ca Cb Cc

A
re

a
(#

sl
ic

es
)

original optimized

SEAL

-12%-12%-13%

2000

2100

2200

2300

2400

2500

Ca Cb Cc

A
re

a
(#

sl
ic

es
)

original optimized Deblocking

-36%

-27%

-4%

2000

2700

3400

4100

4800

5500

Ca Cb Cc

A
re

a
(#

sl
ic

es
)

original optimized

Figure 5.6: Area results for Bitwidth optimization. The percentage value above
the bars indicates the percentage of Area reduction.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 122

datapath routing complexity of the giving more room for the router and hence

increasing clock frequency. Another noticeable improvement on clock frequency

appears in the DCT benchmark. The main source for clock delay in the DCT is 32-bit

multiplications. With bitwidth optimization, 20-bit multiplication is only required

reducing significantly the clock delay.

5.5 Instruction Clustering Evaluation

Instruction clustering is a powerful optimization aiming at reducing area overhead

and routing complexity especially in computation bound designs. In this section, we

experimentally evaluate instruction clustering optimizations for the three different

target configurations. All other optimizations are enabled, be default.

Table 5.5 summarizes DFG statistics after grammar generation and rule selection.

Column “#Rules” lists the grammar size in numbers of rules generated for each

application. Column “#Used Rules” lists the number of selected rules from each

grammar to be implemented as MFUs in the final representation of the DFG. Column

Table 5.4: Bitwidth optimization Frequency (MHz) results for the test kernels
on Xilinx Virtex-6 LX760.

Original Optimized App.
CA CB CC CA CB CC

CMC 165 179 161 166 186 163
LMC 160 160 162 158 164 164
DCT 134 134 134 161 161 163

SEAL 184 184 184 201 201 201
LUD 158 161 160 159 161 163

Deblocking 160 158 162 162 161 163
CN 69 66 66 101 85 100
BN 71 66 67 111 100 85

Table 5.5: Grammar generation results on the kernels DFGs.

App. #Rules
#Used
Rules

Rule Size #Insts. #Insts(g) Reduction Coverage

CMC 6 3 [2-9] 136 86 -37% 53%
LMC 18 11 [2-4] 299 219 -27% 50%
DCT 10 8 [2-3] 307 197 -36% 52%
SEAL 8 5 [2-3] 143 107 -25% 45%

CN 18 7 [2-5] 3962 2500 -37% 40%
BN 8 5 [2-7] 2917 1677 -43% 41%

Deblocking 9 5 [2-4] 176 150 -15% 32%
LUD 1 1 [2] 20 18 -10% 10%

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 123

“Rule Size” shows the range of number of instructions per rule for the selected rules

subset. Columns “#Insts” and “#Insts(g)” list the DFG size before and after grammar-

based representation, respectively. Column “Reduction” shows the percentage of

reduction in the number of primitive instructions. Finally, column “Coverage” shows

the percentage of the DFG covered by the generated grammar.

Several conclusions can be drawn from table 5.5. Unlike pattern recognition and

enumeration approaches, the generated set of subgraphs (i.e. rules) is much smaller in

both the total number of subgraphs and subgraph size, yet it covers 40% – 53% of the

program DFG.

Figure 5.7 shows the area and synthesis time results (for datapaths and AGUs

only) for the benchmarks for the original and the optimized cases. A noticeable result

appears in Figure 5.7e and 5.7f for CN and BN kernels, respectively. The two DFGs

have very large sizes (approximately 4000 & 3000 nodes, respectively) which lead to

routing congestion. Without the grammar-driven synthesis approach the ISE synthesis

tool failed to successfully finish placement & routing. On the other hand, after the

grammar-driven synthesis optimizations the tool took less than three hours to

generate a fully placed and routed design. The reduced DFG size with grammar-based

compression required around 20% less time on average to schedule and synthesize,

which correlates with the reduction in DFG size.

Grammar-based designs typically involve more FU types than original designs in their

datapath, due to the introduction of MFUs. The additional MFU types impose an area

overhead. The issue manifests itself more clearly in the CC configurations, where few FU

instances (normally one or two) are allocated for each FU type. In Fig. 11.b and 11.c, we can

notice that our algorithm achieves 30% and 17 % reduction in area for the CB configuration in

the DCT and LMC kernels respectively. For the CC configuration the area gains are limited to

20% and 13% for DCT and LMC. The two kernels use 8 and 11 MFU types respectively in

their datapath. While using MFUs reduces multiplexers’ area in the design, the area overhead

from the large number of used rules limits the overall area reduction for configuration CC. On

the other hand, CMC and SEAL kernels use only 3 and 5 rules respectively, with limited area

overhead, hence configuration CC outperforms configuration CB. Note also that MFU area

overhead can be reduced whenever the pipeline algorithm (Algorithm 3) identifies

opportunities to produce compact and lightweight MFUs, which is the case for CMC and

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 124

SEAL. On the contrary, MFUs in DCT and LMC datapaths consist of heavyweight primitive

FUs, that could not be effectively fused.

SEAL

69
69

69

62 62 62

1000

1160

1320

1480

1640

1800

CA CB CC

A
re

a
(#

sl
ic

es
)

0

5

10

15

20

25

SP
R

 T
im

e
(m

in
)

original optimized
original optimized

CMC

11

2032

8

16
22

500

800

1100

1400

1700

2000

CA CB CC

A
re

a
(#

sl
ic

es
)

2

5

8

11

14

17

SP
R

 T
im

e
(m

in
)

original optimized
original optimized DCT

8

21

21

18
18 8

1000

1600

2200

2800

3400

4000

CA CB CC

A
re

a
(#

sl
ic

es
)

0

4

8

12

16

20

SP
R

 T
im

e
(m

in
)

original optimized
original optimized

Luma

22

55

63

25

4346

700

1000

1300

1600

1900

2200

CA CB CC

A
re

a
(#

sl
ic

es
)

0

10

20

30

40

50

SP
R

 T
im

e
(m

in
)

original optimized
original optimized

BN

74
85

118

160

10000

13000

16000

19000

22000

25000

CA CB CC

A
re

a
(#

sl
ic

es
)

0

40

80

120

160

200

SP
R

 T
im

e
(m

in
)

original optimized
original optimized CN

136

188

114

108

10000

14000

18000

22000

26000

30000

CA CB CC

A
re

a
(#

sl
ic

es
)

0

36

72

108

144

180

SP
R

 T
im

e
(m

in
)

original optimized
original optimized

Deblocking

35

27

51
36

28
23

1000

1200

1400

1600

1800

2000

CA CB CC

A
re

a
(#

sl
ic

es
)

0

6

12

18

24

30

SP
R

 T
im

e
(m

in
)

original optimized
original optimized

LUD

14

1313 1313

14

1000

1500

2000

2500

3000

3500

CA CB CC

A
re

a
(#

sl
ic

es
)

0

6

12

18

24

30

SP
R

 T
im

e
(m

in
)

original optimized
original optimized

Figure 5.7: Area (slices) and Synthesis, Placement & Routing time (SPR Time in minutes).
Results for original configurations, and optimized configurations (with grammar-driven
datapath synthesis). In (e) and (f) the missing configurations for the original case are due to
the fact that the Xilinx ISE tool chain failed to fully place & route the generated circuit.
unless we apply our compression.. The numbers above the bars represent the schedule
latency (in clock cycles) of a single loop iteration in each configuration.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 125

DGFs characterized by patterns with a very low number of occurrences and low DFG

coverage are also potentially susceptible to area overheads from the introduction of MFUs. In

this case, the combination of MFUs overhead with the limited multiplexers area reduction

might produce designs with very little or no area reduction, which is the case for LUD and

Deblocking kernels. However, during our experimental evaluation with a variety of kernels we

observed that, even for DFGs with a small number of pattern repetitions (see Table V,

#Instances per Rule), area reductions are achieved because these repetitions cover 45% to 53%

of the DFG. Therefore, instruction clustering led to a significant reduction in the area spent for

multiplexers, overweighing the MFUs area overhead.

It appears from the experimental evaluation that the grammar-based approach sometimes

performs poorly at II = 1. This is expected because in this case there are no multiplexers to

optimize out. For some benchmarks (DCT and Luma) the consumed area is slightly more than

that of the original configurations. For these benchmarks, the pipeline algorithm (Algorithm 3)

produced fully pipelined MFUs, because they contained heavyweight primitive FUs that could

not be fused with others.

Moreover, using macro-instructions in those benchmarks increased variable lifetimes,

which led to allocating more registers. This is, for example, the case for the BN

kernel(configuration CA). The version produced after instruction clustering requires more area

than the original one, despite the fact that the pipelining algorithm efficiently produced more

compact MFUs. Most of the generated MFUs in BN kernel are not flat. They have latencies

between 3 and 4 cycles (after being optimized down from 7 cycles by the pipelining algorithm).

The large amount of MFUs with such latencies imposed an overhead on the scheduler, leading

to increased variable lifetimes and registers requirements.

On the other hand, the proposed approach worked well even at II = 1 for other benchmarks

(CMC, Deblocking and CN), in which the logic gain for generated macro-instructions was

significant. The MFUs produced were compact and lightweight, which subsequently led to the

area reduction. Compact MFUs generated using Algorithm 3 have a positive impact on

variables lifetime at II = 1 – if the MFUs latency is not larger than 2 cycles – leading to

reductions in registers requirements. Therefore, at II = 1, area reductions are obtained mainly

by compressing and optimizing the generated MFUs using Algorithm 3. Otherwise designs

incorporating MFUs would be expected to pose an area overhead compared with the original

designs.

The schedule latency tends to be smaller for optimized configurations, except

when the pipelining algorithm inserts a pipeline register after each primitive

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 126

instruction, as in DCT and Luma benchmarks. However, the schedule latency effect

on the datapath throughput is very small, since we pipeline the loop iterations that

execute on the datapath, and for large number of loop iterations the II value is the

main parameter that determines the datapath throughput.

Figure 5.8 depicts the synthesis, placement & routing (SPR) speedup achieved on

the standard Xilinx toolset for the optimized versus the original DFGs. Synthesis,

placement & routing for grammar-based designs is on average faster than for the

original designs achieving an average speedup 1.2x. In CN and BN kernels original

designs (without MFUs) in CB and CC configurations were processed for over 12 hours

before eventually failing to produce fully placed and routed designs because of routing

congestion. The DFGs produced for the same benchmarks and configurations by the

grammar-based approach succeeded in less than 3 hours. CN kernel achieves the

highest speedup (2.2x) among the other benchmarks, mainly because of the significant

area reduction attained by the optimized design.

SPR runtime is affected by a wide range of factors. The synthesis phase is affected

by the total number of allocated resources and potential logic cells optimizations. The

placement & routing runtime is even more sensitive on the size of the generated

netlist, routing complexity and user constraints. In Fig. 12, LMC kernel optimized

configurations CA and CB are slower to SPR than the original configurations. Analysis

of the SPR time for LMC showed that both original and optimized designs took the

same time for synthesis and routing steps for configurations CA and CB. However, the

“Global Placement” step, during which the design netlist is placed on the FPGA

fabric, the optimized design took more time to finish leading to slower SPR runtime.

SPR Time Speedup
365

1742827
17

18

27

16 2823

20

17
12

12 2621

20

15
15

13

0

0,5

1

1,5

2

2,5

CMC LMC DCT SEAL Deblocking LUD BN CN

S
p

ee
d

u
p

CA CB CC

Figure 5.8: Synthesis, Placement & Routing (SPR) Speedup. CB and CC bars in BN and CN
kernels are missing because the original designs failed to finish placement and routing
successfully after 12 hours of runtime, while optimized designs succeeded within 3 hours.
The numbers above the bars are the SPR time (in minutes) required for the original,
unoptimized DFGs.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 127

We did not manage to identify any correlation with any of the design parameters.

Moreover, the lack of information on the algorithmic and implementation details of

this step in Xilinx tools does not allow us to further reason on the problematic

increase in runtime.

Fig. 13 demonstrates the correlation between area reduction and either the number

of macro instructions per rule or the DFG coverage for the three configurations, CA,

CB, and CC. From Fig. 13 we can conclude that for configurations with large II (and

thus complex, large multiplexers as in CC), the reduction in area is highly correlated

with the number of macro-instructions per rule and DFG coverage (correlation equals

0.95 for both cases). As II becomes smaller (and so does the multiplexers overhead),

so does the correlation. For configuration CB where II = 8, the correlation equals 0.8

for both cases. For configuration CA where II = 1, the correlation of area reduction

with the number of macro-instructions per rule and DFG coverage is 0.15 and 0.12

respectively. As explained earlier, in this case the area reduction is expected to come

mainly from the pipelining algorithm and not from instruction clustering.

Area and synthesis results demonstrate the effectiveness of the grammar-driven

 Area Reduction vs. Macro Inst per Rule (Cc)

LUD
Deblocking

SEAL

LMC

DCT
CMC

0%

10%

20%

30%

0 2 4 6 8 10
Macro instruction per Rule

A
re

a
R

ed
uc

ti
on

AR Linear (AR)

 Area Reduction vs. Macro Inst per Rule (Cb)

LUD Deblocking

CMC
LMC

SEAL

DCT

0%

10%

20%

30%

40%

0 2 4 6 8 10
Macro Instruction pre Rule

A
re

a
R

ed
uc

ti
on

AR Linear (AR)

 Area Reduction vs. Macro Inst per Rule (Ca)

LUD

Deblocking CMC

LMC

SEAL

DCT
-10%

0%

10%

20%

30%

40%

0 2 4 6 8 10

Macro Instruction pre Rule

A
re

a
R

ed
uc

ti
on

AR Linear (AR)

 Area Reduction vs. Coverage (Cc)

LUD
Deblocking

SEAL

LMC

DCT
CMC

0%

10%

20%

30%

0% 14% 28% 42% 56% 70%
Coverage

A
re

a
R

ed
uc

ti
on

AR Linear (AR)

 Area Reduction vs. Coverage (Cb)

LUD Deblocking

CMC
LMC

SEAL

DCT

0%

10%

20%

30%

40%

0% 14% 28% 42% 56% 70%
Coverage

A
re

a
R

ed
uc

ti
on

AR Linear (AR)

 Area Reduction vs. Coverage (Ca)

LUD

Deblocking CMC

LMC

SEAL

DCT

-10%

0%

10%

20%

30%

40%

0% 14% 28% 42% 56% 70%

Coverage

A
re

a
R

ed
uc

ti
on

AR Linear (AR)

Figure 5.9: Area Reduction (AR) correlation with the number of macro-instructions
per grammar rule (a, c, e) and the DFG coverage (b, d, f).

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 128

approach to reduce the amount of multiplexers and their routing overhead. The

generation of MFUs and the selective pipelining algorithm (algorithm 4.5) produced

compact macro FUs that performed computations with fewer logic cells and latency.

The achieved clock frequency (Table 5.6) for optimized configurations has a

deviation between +8% to -1.2% from the original configurations.

In general, the proposed approach achieves higher gain with increasing value of II,

in cases where the multiplexer tree has a significant area overhead. Also, for II = 1,

significant gain can be achieved if the primitive FUs in each MFU can be packed

tighter (high logic gain). If this is not the case, the use of macro-instructions tends to

put more constraints on scheduling, increasing the lifetime of variables. The proposed

grammar-based algorithm proved to be very fast; in all cases the grammar generation

and rules selection took less than a second to finish and to produce a new DFG.

5.6 Cache Allocation Evaluation

The cache unit is useful in holding data across outer loop iterations, especially

when the computation of a single data element requires a block of data which will be

reused for the computation of following elements. SOpenCL determines allocating a

cache if it detects continuous blocks of data reused across loop iterations.

The SEAL kernel has runtime dependent addresses, hence no memory access

pattern can be detected and no cache is allocated. The Deblocking kernel has a RAW

dependency across outer loops iterations which limit cache utilization. In addition, no

data reuse was detected across inner loop iterations. In LUD, CN, and BN kernels,

also no data reuse has been detected across loop iterations since data is accessed

Table 5.6: Instruction Clustering Frequency (MHz) results for the test kernels
on Xilinx Virtex-6 LX760.

Original Optimized App.
CA CB CC CA CB CC

CMC 165 184 160 166 186 163
LMC 154 161 161 158 164 164
DCT 160 161 163 161 161 163

SEAL 184 184 185 201 201 201
CN - - 97 101 85 100
BN - - 84 111 100 85

Deblocking 162 162 159 162 161 163
LUD 159 160 163 159 161 163

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 129

column wise. In DCT data reuse is within each single loop iteration, but non across

loop iterations. The tool does not generate a cache to serve only data reuse within

single loop iteration, because these are already served by the requests generation unit

(RGU).

Only two CMC and LMC kernels have forced SOpenCL to allocate a data cache.

Figure 5.8 depicts the data reuse pattern for each kernel. Shaded area represents

pixels shared between successive outer loop iterations. Here a row of pixels

represents a continuous block of data. Based on the reuse pattern, SOpenCL allocates

the following cache blocks for each kernel: 6 blocks of size 32 bytes for luma kernel,

and 2 blocks of size 16 bytes for chroma kernel.

Table 5.7 depicts area results for both kernels with and without cache. For both

kernels, configurations with cache allocated consume one 36k-bit Block RAM (not

shown in the table). Column “Cache” represents configurations with cache enabled.

Column “N/C” refers to configurations without cache allocation, and column

“Overhead” refers to the area overhead computed as follows:

CN

CNcache

Slices

SlicesSlices
Overhead

/

/−
=

Figure 5.10: Luma (LMC) and Chroma (CMC) kernels data reuse pattern. The shaded
area represents the data (pixels) reused in later outer loop iterations. The pixels
surrounded with the dashed rectangle represent the data loaded in a single outer loop
iteration.

Table 5.7: FPGA Slices for CMC and LMC kernels with and without cache. N/C
refers to configurations with No cache allocated.

CA CB CC

Cache N/C Overhead Cache N/C Overhead Cache N/C Overhead

CMC 2051 1984 +3.4% 2074 2009 +3.3% 3421 3041 +12.5%

LMC 2989 2487 +20.2 3540 2630 +34.6% 5395 4290 +20.5%

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 130

Configurations with cache tend to consume more resources for managing cache

data blocks dynamic allocation and incoming read requests. One can see that LMC

configurations have higher area overhead than CMC configurations because LMC

configurations have more cache blocks allocated.

Figure 5.9 depicts execution time for LMC and CMC cache configurations. The

negative percentage value represents the decrease in execution time in cache

configurations compared to configurations without cache. Interestingly, one can

notice that the execution time reduction percentage correlates with percentage of

reused pixels: 50% for CMC kernel, and 80% for LMC kernel.

Cache allocation successfully achieves its goal, reducing memory traffic and

increasing performance. For these two benchmarks, performance gain achieved with

cache allocation surpasses area overhead.

5.7 Overall Performance Analysis and Comparisons

Figure 5.10 depicts, for each benchmark, the optimal execution time when all

optimizations are enabled, for two cases: full accelerator execution (memory transfers

+ computations) and datapath computations only (i.e. assuming zero cycle memory

accesses). The latter case assumes input data always available when needed. The

system architecture is a PLB bus based system with peak memory bandwidth equal to

64-bits per clock cycle.

CMC

-49%

-55%

-55%

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

Ca Cb Cc

T
im

e
(m

s)

Without Cache With CachedLuma

-82%

-83%

-80.6%

0

60

120

180

240

300

360

420

480

Ca Cb Cc

T
im

e
(m

s)

Without Cache With Cache

Figure 5.11: Execution time for LMC and CMC configurations with and without
cache. The negative percentage value represents the decrease in execution time in
cache configurations compared to configurations without cache.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 131

Figure 5.10 shows that most kernels are I/O bounded. BN and CN datapaths

require 304 bytes/cycle and 256 bytes/cycle respectively, to keep datapath 100%

utilized and the memory system provides only 64 bytes/cycle in the best case. While

I/O requirements of the deblocking filter are within bus bandwidth limits, execution

time spikes when memory transfers are considered. Irregular access patterns push the

effective memory bandwidth away from its theoretical peak value. Half of the loop

iterations require 10 continuous pixel data per cycle, i.e. pixels are accessed row-

wise, and can be served with two read/write requests on the PLB bus. In the second

half of loop iterations, each of the 10 bytes requested is in a different frame row, i.e.

pixels are accessed column-wise, hence the read/write requests spike to 10 requests.

To better assess the efficacy of our tool flow and methodology to provide high

quality designs, we have compared the accelerators generated using SOpenCL with

manual, fully optimized designs. Table 5.8 compares Deblocking filter accelerator

generated our tool (SOpenCL) with the manual design described in [93]. The

throughput numbers are for 1280×720 HD video format (720p). SOpenCL synthesis

tool area and clock frequency results are very close to the manual design results. Even

with the large gap in throughput SOpenCL produced an accelerator that fullfils real-

time requirements (30 frames per second).

The Deblocking filter processes vertical and horizontal edges in every 16x16

Execution Time (ms)

32 B/Cycle

8 B//Cycle

10 B/Cycle

20 B/Cycle

8 B/Cycle

10 B/Cycle

304 B/Cycle

256 B/Ccyle

0,00

4,00

8,00

12,00

16,00

20,00

24,00

28,00

32,00

DCT LUD CMC LMC SEAL Deblocking BN CN

(ms)
Memory+Computations Computations Only

Figure 5.12: Comparison of execution time for Memory transfers plus computations
and computations only. The numbers above the bars indicate the I/O rate required by
each kernel. The Cc configuration with all optimizations have been enabled is used
in this figure.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 132

macroblock in a specific sequence: first vertical edges then horizontal edges. As a

result, computed pixels only at the corners of horizontal edges are used in later

computations of pixels at the corners of vertical edges. This irregular dependency

pattern significantly limited the efficiency of the streaming unit in the SOpenCL-

based deblocking accelerator. The C code consists of a single nested loop that process

both horizontal and vertical edges sequentially which hid potential parallelism

between horizontal and vertical edges.

Contrary to SOpenCL generated accelerator, the manual design includes separate

datapaths for processing horizontal and vertical edges. Moreover, a specific

mechanism has been designed to handle the data dependency that only occurs at the

horizontal and vertical edges corners. Extra registers allocated specifically to hold

only required pixels for later computations. This special mechanism, allowed more

efficient pipelining of successive macroblocks processing.

The manual design only builds the datapath assuming input frame pixels available

in On-chip Block RAMs and output pixels are written to another bank on-chip Block

RAM. On the other hand, SOpenCL based design requires over 1400 slices for

Table 5.8: SOpenCL based design of Deblocking filter compared to manual
design. The throughput numbers are for 1280×720 HD video format (720p). MB
latency refers to the number of clock cycles required to complete the processing of
a single Macroblock.

SOpenCL based design
Application

Complete Accelerator Datapath Only
Manual design

(Datapath Only)
Slices 2714 1295 1430

Throughput
(frames/Second)

31 260 379

Frequency
(MHz)

161 161 160.5

MB Latency
(Clock Cycles)

172 172 118

Table 5.9: SOpenCL based design of SEAL kernel compared to manual
design. The throughput numbers are for 1 Gbit plaintext messages.

Application
SOpenCL based design
Complete Accelerator

Manual design

Slices 2112 1450
Execution Time

(second)
8.35 9.3

Frequency (MHz) 201 158

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 133

read/write requests for data alignment and synchronization.

Finally, table 5.9 compares SEAL kernel accelerator with the manual design of

[8]. The manual design consists of three components: tables generation, initialization

and the main body of SEAL encoder. SOpenCL accelerators implement only the last

two components, i.e. initialization and the main body. For a 1 Gbit plaintext session,

Tables generation components executes only for the first 32 Kbit plaintext message,

hence, its execution time overhead can be ignored compared to the main processing

operations in the other components.

Our design achieved slightly smaller execution time compared to the manual

design with acceptable area overhead 44% FPGA slices. The improvement on

execution time was mainly caused by the lower clock frequency achieved via

SOpenCL. For a clock frequency similar to the manual design our design would

require higher execution time (10.62 ms). The additional area cost in our

implementation is due to the input and output streaming units and bus arbitration. The

datapath only consumes only 54% of the accelerator area (i.e. 1135 slices).

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 134

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation we have investigated and described a methodology to generate

hardware accelerators from complex, unmodified OpenCL kernels and C functions.

One of the main tasks of this work was the evaluation of the presented methodology

which consists of two parts: architectural template design and hardware-driven

transformations and optimizations.

The architectural template design and transformation addresses the following

issues:

• Generating hardware for imperfect loop nests and data- and control-flow DAGs.

The template distinguishes inner most loops code from outer loops code and loop

invariant code and maps them on different resources. This mapping paradigm

allows arbitrary shapes of loops to be supported for hardware generation.

• Hiding memory latency and overhead through the disassociation of computational

operations and data-transfers, effectively facilitating the overlap of computation

and communication. Moreover, the template allocates resources and mechanisms

to exploit data reuse and reduce memory traffic and bandwidth requirements.

• Exploiting inherent parallelism in OpenCL kernels (and generated C functions) as

in task- and pipeline parallelism. The template allows concurrent execution of

multiple loop iterations, and pipelines multiple loop nests.

• Customized and application specific datapath design through bitwidth

optimization, and instruction clustering. Instruction clustering allows designing

optimized application specific functional units which provide improved

performance reduced area.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 135

All the aforementioned capabilities are based on compiler analysis of memory

access patterns, control- and data-dependencies and require no programmer

intervention. Equally important, the hardware generator can be tuned to match the

available FPGA resources and respect target performance requirement.

We introduced instruction clustering a grammar-based instruction clustering

algorithm. Our approach targets the reduction of the routing complexity and overhead

in FPGA designs, allowing FPGA implementation of kernels that could not be routed

otherwise, such as the DVB-S2 kernels. The core of the methodology is the

production of a hierarchical grammar representation of a DFG. The rules of the

grammar correspond to subgraphs of the DFG which can be considered as candidate

macro-instructions. The proposed algorithm performs the tasks of grammar

generation, rule selection and implementation with negligible computation

complexity. Furthermore, we presented a simple yet systematic area estimation

technique, which can be applied to characterize each target FPGA architecture and

toolchain. The results of the area estimation are used to both guide the rules selection

phase, and drive the insertion of pipeline registers in the produced macro FUs.

The experimental evaluation proved the potential of our infrastructure to generate

efficient hardware. Moreover, it quantified the tradeoffs of different hardware

configurations, as well as of optimizations like the asynchronous execution model,

instruction clustering and data streams caching.

The concurrent execution model proved its efficiency achieving up to 56%

increase in performance as in the DCT kernel case. Our analysis showed that

applications written in OpenCL kernels with multi-dimensional computations grid

will achieve significant performance gain using concurrent execution model.

Decoupled computations (on datapath) and address generation (on AGU),

combined with concurrent execution model, efficiently reduced the effect of memory

latency on the overall performance. Data prefetching reduced the idle state time gaps

of the memory system over the course of a kernel invocation.

Experimental evaluation of data caching proved the effectiveness of the caching

mechanism. While the cache utilization is limited to regular data streams, the cache

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 136

allocation methods consumed small amount of memory (96 byte for CMC and 256

bytes for LMC) to achieve over 50% increase in performance.

Experiments showed the efficiency of the proposed instruction clustering approach

in reducing routing complexity and hence reducing area. Moreover, the pipelining

algorithm used to design macro functional units, typically produced schedules with

smaller latency and no penalty on clock frequency. Most importantly the grammar-

driven optimization allowed successful placement and routing on complex designs

that were not deemed implementable before.

Instruction clustering and the corresponding algorithms and tool prototypes are

another necessary step in the direction of producing efficient FPGA designs from

algorithmic descriptions expressed in high level parallel programming languages.

This process moves FPGA development closer to the realm of software engineers,

thus facilitating the wider adoption and exploitation of FPGAs in everyday,

embedded and high-performance computing.

Concluding, the proposed methodology and techniques compared well with

manually optimized designs. The generated designs achieved comparable

performance with little area overhead.

Hardware generation from high level programming language is a promising

technology and the key for promoting FPGA integration in heterogeneous systems.

Our research showed that developing a fully automatic architectural synthesis tool

that enables software engineers to target FPGA based platforms is not an easy

undertaking since it requires extensive analysis of the input programs and

sophisticated compiler transformations.

Our future work includes automating the configuration selection process based on

the target device and user performance requirements. We are also planning to extend

the underlying architectural model to include multiple kernels (or multiple

instantiations of the same kernel) with multiple accelerators interconnected through

customized memory hierarchies. Last but not least, area and performance estimation

algorithms are necessary to guide hardware/software partitioning in the high level

compiler.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 137

BIBLIOGRAPHY
[1] Nvidia Inc. “nVIDIA GeForce 256 User Guide”, March, 2000.

www.nvidia.com

[2] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, and A.

Saidi, “The Reconfigurable Streaming Vector Processor (RSVPTM)”, In Proceedings of

the International Symposium on Microarchitecture (MICRO), December, 2003, San

Diego, CA, U.S.A.

[3] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Evaluating the Imagine

Stream Architecture”, In Proceedings of the International Symposium on Computer

Architecture (ISCA), June 2004, Munich, Germany.

[4] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P.

Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S.

Amarasinghe, and A. Agarwal, “Evaluation of the Raw Microprocessor: An Exposed-

Wire-Delay Architecture for ILP and Streams”, In Proceedings of the International

Symposium on Computer Architecture (ISCA), June 2004, Munich, Germany.

[5] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, “Merrimac: Supercomputing with

Streams”, In Proceedings of ACM/IEEE International Conference on Supercomputing

(SC), November 2003, Phoenix, Arizona, U.S.A.

[6] M. Duranton, D. Black-Schaffer, S. Yehia, and K. De Bosschere, “Computing Systems:

Research Challenges Ahead, The HiPEAC Vision 2011/2012”, October 2011.

[7] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark

silicon and the end of multicore scaling”, In Proceedings of the International

Symposium on Computer Architecture (ISCA), June, 2011, San Jose, CA, U.S.A.

[8] K. Theoharoulis, C. Antoniadis, N. Bellas, and C. D. Antonopoulos, “Implementation

and Performance Analysis of SEAL Encryption on FPGA, GPU and Multi-Core

Processors”, In Proceedings of IEEE International Symposium on Field-Programmable

Custom Computing Machines (FCCM), April, 2011, Salt Lake City, UT, U.S.A.

[9] Z.H. Chen, W.Y. Su, M.T. Sun and S. Hauck, “Accelerating Statistical LOR Estimation

for a High-Resolution PET Scanner using FPGA Devices and a High Level Synthesis

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 138

Tool”, In Proceedings of IEEE International Symposium on Field-Programmable

Custom Computing Machines (FCCM), April, 2011, Salt Lake City, UT, U.S.A.

[10] S. Muhlbach, and A. Koch, “A Scalable Multi-FPGA Platform for Complex Networking

Applications”, In Proceedings of IEEE International Symposium on Field-

Programmable Custom Computing Machines (FCCM), April, 2011, Salt Lake City,

UT, U.S.A.

[11] B. Sukhwani, B. Abali, B. Brezzo, and S. Asaad, “High-Throughput, Lossless Data

Compression on FPGAs”, In Proceedings of IEEE International Symposium on Field-

Programmable Custom Computing Machines (FCCM), April, 2011, Salt Lake City,

UT, U.S.A.

[12] R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch and V. Natoli, “Low-latency FPGA

Based Financial Data Feed Handler”, In Proceedings of IEEE International Symposium

on Field-Programmable Custom Computing Machines (FCCM), April, 2011, Salt Lake

City, UT, U.S.A.

[13] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cronquist, and M.

Sivaraman, “PICO-NPA: High-Level Synthesis of Nonprogrammable Hardware

Accelerators”, Journal of VLSI Signal Processing Systems, Vol. 31(1), pp 127-142,

June 2002.

[14] S. McCloud. “Catapult C Synthesis-based Design Flow: Speeding Implementation and

Increasing Flexibility”, Mentor Graphics Inc., October 2003.

[15] Z. Zhang et al. “AutoPilot: A Platform-Based ESL Synthesis System”. In “High-Level

Synthesis: From Algorithm to Digital Circuit”, Springer Netherlands, 2008,

www.autoesl.com.

[16] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar, P. Joisha,

A. Jones, A. Kanhare A. Nayak, S. Periyacheri, M. Walkden, and D. Zaretsky, “A

MATLAB Compiler For Distributed, Heterogeneous, Reconfigurable Computing

Systems”, In Proceedings of the IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), April 2000, Napa Valley, CA, U.S.A.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 139

[17] A. Canis et al. “LegUp: High-Level Synthesis for FPGA-Based Processor/Accelerator

Systems”. In Proceedings of the IEEE International Symposium on Field

Programmable Gate Arrays (FPGA), February, 2011, Monterey, CA, U.S.A.

[18] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos, “Synthesis of Platform

Architectures from OpenCL Programs”, In Proceedings of IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), May, 2011, Salt Lake City, UT,

U.S.A.

[19] M. Owaida, N. Bellas, C. D. Antonopoulos, K. Daloukas, C. Antoniadis, “Massively

Parallel Programming Models Used as Hardware Description Languages: The OpenCL

Case”, In Proceedings of the International Conference on Computer-Aided Design

(ICCAD), November, 2011, San Jose, CA, U.S.A.

[20] G. Falcao, M. Owaida, D. Novo, M. Purnaprajna, N. Bellas, C. D. Antonopoulos, G.

Karakonstantis, A. Burg and P. Ienne, “Shortening design time through multiplatform

simulations with a portable OpenCL golden-model: the LDPC decoder case”, In

Proceedings of the IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), April, 2012, Torronto, Canada.

[21] K. Daloukas, C. D. Antonopoulos, and N. Bellas. “GLOpenCL: OpenCL Support on

Hardware- and Software-Managed Cache Multicores”. In Proceedings of the

International Conference on High Performance Embedded Architectures & Compilers

(HiPEAC), January, 2011, Heraklion, Greece.

[22] Khronos OpenCL Working Group. Editor: A. Munshi, “The OpenCL Specification”,

Version: 1.1 Document Revision, June, 2010.

[23] S. Che, et al. “A Characterization of the Rodinia Benchmark Suite with Comparison to

Contemporary CMP Workloads”, In Proceedings of the IEEE International Symposium

on Workload Characterization (IISWC), October, 2009, Austin, TX, U.S.A.

[24] L. Chris, and A. Vikram, “LLVM: A Compilation Framework for Lifelong Program

Analysis Transformation”, In Proceedings of the International Symposium on Code

Generation and Optimization (CGO), March, 2004, Palo Alto, CA, U.S.A.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 140

[25] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK : A High-Level Synthesis

Framework For Applying Parallelizing Compiler Transformations”, In Proceedings of

the International Conference on VLSI Design (VLS), January, 2003, New Delhi, India.

[26] J. L. Tripp, M. B. Gokhale, and K. D. Peterson, “Trident: From High-Level Language

to Hardware Circuitry”, IEEE Computer Journal, Vol. 40(3), pp.28-37, March 2007.

[27] M. Kudlur, K. Fan, and S. Mahlke, “Streamroller: Automatic Synthesis of Prescribed

Throughput Accelerator Pipelines”, In Proceedings of International conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), October, 2006,

Seoul, Korea.

[28] M. Bowen, “Handel-C Language Reference Manual”, Embedded Solutions Ltd.

[29] S. Möhl, “The Mitrion-C Programming Language”, Mitrionics AB. 2005.

[30] J. Gabriel, F. Coutinho, and W. Luk, “Source-Directed Transformations for Hardware

Compilation”, In Proceedings of IEEE International Conference on Field-

Programmable Technology (FPT), December, 2003, London, UK.

[31] W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker, J. R. Beveridge, M.

Chawathe, and C. Ross, “High-Level Language Abstraction for Reconfigurable

Computing”, IEEE Computer Journal, Vol. 36(8), pp. 63-69, August 2003.

[32] W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker, and J. R. Beveridge,

“Cameron: High Level language Compilation for Reconfigurable Systems”, In

Proceedings of International conference on Parallel Architectures and Compilation

Techniques (PACT), October, 1999, Newport Beach, CA, U.S.A.

[33] M. Gokhale, J. Stone, J. Arnold, “Stream-Oriented FPGA Computing in the Streams-C

High Level Language”, In Proceedings of IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), April, 2000, Napa, CA, U.S.A.

[34] Impulse Accelerated Technologies Inc, “Impulse Tutorial: Using C-Language

Simulation for Algorithm Verification”, 2003.

[35] N. Bellas, S. Chai, M. Dwyer, and D. Linzmeier, “FPGA implementation of a license

plate recognition SoC using automatically generated streaming accelerators”,

Reconfigurable Architectures Workshop (RAW), April, 2006, Napa, CA, U.S.A.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 141

[36] A. Hormati, M. Kudlur, S. Mahlke, D. Bacon, and R. Rabbah, “Optimus: Efficient

Realization of Streaming Applications on FPGAs”, In Proceedings of the International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),

October, 2008, Atlanta, Georgia, U.S.A.

[37] Cadence Design Systems, Inc. “Cadence C-To-Silicon Compiler High Level Synthesis”,

2008, www.cadence.com.

[38] Forte Design Systems, Inc. “Cynthesizer: The most productive path to silicon”, 2008,

www.forteds.com.

[39] A. Papakonstantinou et al. “FCUDA: Enabling efficient compilation of CUDA kernels

onto FPGAs”, In Proceedings of the Symposium on Application Specific Processors

(SASP), July, 2009, Boston, MA, U.S.A

[40] E. Jääskeläinen, C. S. de La Lama, P. Huerta, and J. Takala, “OpenCL-based Design

Methodology for Application-Specific Processors”. In Proceedings of SAMOS X:

Embedded Computer Systems: Architectures, MOdeling, and Simulation, July, 2010,

Samos, Greece.

[41] Altera, Inc. “Implementing FPGA Design with the OpenCL Standard”, 2011,

www.altera.com.

[42] M. Lin, I. Lebedev, and J. Wawrzynek. “OpenRCL: Low-Power High Performance

Computing with Reconfigurable Devices”. In Proceedings of the International

Conference on Field Programmable Logic (FPL), September, 2010, Milano, Italy.

[43] M. Owaida, N.Bellas, C. D. Antonopoulos, K. Daloukas, Ch. Antoniadis, K.

Krommydas and G. Tsoumblekas, “Implementation and Performance Comparison of

the Motion Compensation Kernel of the AVS Video Decoder on FPGA, GPU and

Multicore Processors”, In Proceedings of IEEE International Symposium on Field-

Programmable Custom Computing Machines (FCCM), April, 2011, Salt Lake City,

UT, U.S.A.

[44] C. Zissulescu, T. Stefanov, B. Kienhuis, and Ed Deprettere, ‘‘LAURA: Leiden

Architecture Research and Exploration Tool’’, In Proceedings of the International

conference on Field Programmable Logic and Applications (FPL), September, 2003,

Lisbon, Portugal.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 142

[45] G. Kahn, “The semantics of a simple language for parallel programming”, In

Proceedings of the IFIP Congress 74, North-Holland Publishing Co., 1974.

[46] B. Kienhuis, E. Rypkema, and E. Deprettere, “Compaan: Deriving process networks

from Matlab for embedded signal processing architectures”, In Proceedings of the

International Workshop on Hardware/Software Codesign (CODES), May, 2000, San

Diego, USA.

[47] S. van Haastregt, and B. Kienhuis, “Automated Synthesis of Streaming C Applications

to Process Networks in Hardware”, In Proceedings of Design, Automation & Test in

Europe conference (DATE), April, 2009, Nice, France.

[48] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing Modular Hardware

Accelerators in C With ROCCC 2.0”, In Proceedings of IEEE Symposium on Field

Programmable Custom Computing Machines (FCCM), May, 2010, Charlotte, NC,

U.S.A.

[49] I. Lebedev, S. Cheng, A. Doupnik, J. Martin, C. Fletcher, D. Burke, M. Lin, and J.

Wawrzynek, “MARC: A Many-Core Approach to Reconfigurable Computing”, In

Proceedings of IEEE International Symposium on Field-Programmable Custom

Computing Machines (FCCM), April, 2011, Salt Lake City, UT, U.S.A.

[50] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow” IEEE Proceedings,

September, 1987.

[51] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier, B. Cheng, P. R.

Eaton, Q. B. Olaniran, W. W. Hwu, “Integrated Predicated and Speculative Execution

in the IMPACT EPIC Architecture”, In Proceedings of the International Symposium on

Computer Architecture (ISCA), June, 1998, Barcelona, Spain.

[52] N. Snavely, S. Debray, G. Andrews, “Predicate Analysis and If Conversion in an

Itanium Link Time Optimizer”, In Proceedings of the Workshop on Explicitly Parallel

Instruction Set (EPIC) Architectures and Compilation Techniques, March, 2002,

Seattle, Washington, U.S.A.

[53] W. Chuang, B. Calder, J. Ferrante, “Phi-Predication for Light-Weight If-Conversion”, In

Proceedings of the International Symposium on Code Generation and Optimization

(CGO), March, 2003, San Francisco, CA, U.S.A.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 143

[54] P. Y. T. Hsu, and E. S. Davidson, “Highly Concurrent Scalar Processing”, In

Proceedings of the international symposium on Computer architecture (ISCA), June,

1986, Tokyo, Japan.

[55] Y. Choi, A. Knies, L. Gerke, and T. Ngai, “The Impact of If-Conversion and Branch

Prediction on Program Execution on the Intel Itanium Processor”, In Proceedings of the

ACM/IEEE International Symposium on Microarchitecture (MICRO), November,

2002, Istanbul, Turkey.

[56] B. R. Rau, D. W.L. Yen, W. Yen, and R. A. Towle, “The Cydra 5 Departmental

Supercomputer Design Philosophies, Decisions, and Trade-offs”, IEEE Computer

Journal, Vol. 22(1), pp. 12-26, January 1989.

[57] R.E. Kessler, “The ALPHA 21264 Microprocessor”, IEEE Micro Journal, Vol. 19(2),

pp. 24-36, March, 1999.

[58] F. de Ferriere, “Improvements to the Psi-SSA Representation”, In Proceedings of the

International Workshop on Software & Compilers for embedded systems (SCOPES),

April, 2007, Nice, France.

[59] C. Bruel, “If-Conversion SSA Framework and Transformations”, In Proceedings of the

SSA annual meeting, April, 2009, Monterey, CA, U.S.A.

[60] M. Weiser, “Program Slicing”, In Proceedings of the International Conference on

Software Engineering (ICSE), March, 1981, San Diego, CA, U.S.A.

[61] P. Brisk, P. Kaplan, A. Kastner, and M. Sarrafzadeh, “Instruction Generation and

Regularity Extraction for Reconfigurable processors”, In Proceedings of the

International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems (CASES), October, 2002, Grenoble, France.

[62] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific instruction-set

extensions under micro-architectural constraints”, In Proceedings of the International

Design Automation Conference (DAC), June, 2003, Anaheim, CA, U.S.A.

[63] P. Yu, and T. Mittra, “Scalable Custom Instructions Identification for Instruction-Set

Extensible Processors”, In Proceedings of the International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems (CASES), September, 2004,

Washington, DC, U.S.A.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 144

[64] N. Clark, H. Zhong, and S. Mahlke, “Automatic custom instruction generation for

domain-specific processor acceleration", IEEE Transactions On Computers, Vol.

54(10) pp. 1258 – 1279, October, 2005.

[65] D. S. Rao, and F. J. Kurdahi, “On Clustering for Maximal Regularity Extraction”, IEEE

Transactions On Computer Aided Design of Integrated Circuits and Systems,

Vol.12(8), pp. 1198-1208, August, 1993.

[66] J. Cong, and W. Jiang, “Pattern-based behavior synthesis for FPGA resources

reduction”, In Proceedings of the international ACM/SIGDA symposium on Field

programmable gate arrays (FPGA), February, 2008, Monterey, CA, U.S.A.

[67] N. Manning, H. Witten, and L. Maulsby, “Compression by Induction of Hierarchical

Grammars” In Proceedings of Data Compression Conference (DCC), March, 1994,

Snowbird, UT, U.S.A.

[68] M. Lohrey, S. Maneth, and R. Mennike, “Tree Structure Compression with RePair”, In

Proceedings of Data Compression Conference (DCC), March, 2011, Snowbird, UT,

U.S.A.

[69] J. Cheriyan, and K. Mehlhorn, “Algorithms for Dense Graphs and Networks on the

Random Access Computer”, Algorithmica, Vol. 15(6) 521-549, June, 1996.

[70] G. A. Constantinides, “Perturbation Analysis for Word-length Optimization”, In

Proceedings of the IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), April, 2003, Napa, CA, U.S.A.

[71] B. Le Gal, C. Andriamisaina, and E. Casseau, “Bit-Width Aware High Level Synthesis

for Digital Signal Processing Systems”, In Proceedings of IEEE International System-

on-Chip Conference (SoCC), September, 2006, Austin, Texas, U.S.A.

[72] A. Abdul-Gaffar, O. Mencer, W. Luk, P.Y.K. Cheung, and N. Shirazi, “Floating-point

Bitwidth Analysis via Automatic Differentiation”, In Proceedings of the IEEE

International Conference on Field-Programmable Technology (FPT), December 2002,

Hong Kong.

[73] A. Abdul-Gaffar, O. Mencer, W. Luk, P. Y.K. Cheung, “Unifying Bit-width

Optimization for Fixed-point and Floating-point Designs”, In Proceedings of the IEEE

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 145

Symposium on Field-Programmable Custom Computing Machines (FCCM), April,

2004, Napa, CA, U.S.A.

[74] Y. Pu, and Y. Ha, “An Automated, Efficient and Static Bit-width Optimization

Methodology Towards Maximum Bit-width-to-Error Tradeoff With Affine Arithmetic

Model”, In Proceedings on the Asia and South Pacific Design Automation Conference

(ASP-DAC), January, 2006, Yokohama, Japan.

[75] M. Weinhardt, and W. Luk, “Pipeline Vectorization”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 20(2), February, 2001.

[76] M. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, and M. Rabaey, “Performance

Optimization Using Template Mapping for Datapath-Intensive High Level Synthesis”,

IEEE Transactions On Computer Aided Design of Integrated Circuits and Systems,

Vol. 15(8) 877-888, November, 2006.

[77] T. Ly, D. Knapp, R. Miller, and D. Macmillen, “Scheduling using Behavioral

Templates”, In Proceedings of the International Design Automation Conference (DAC),

June, 1995, San Francisco, CA, U.S.A.

[78] O. Bringmann, and W. Rosenstiel, “Resource Sharing in Hierarchal Synthesis” In

Proceedings of the IEEE/ACM Conference on Computer Aided Design (ICCAD),

November, 1997, San Jose, CA, U.S.A.

[79] P. Bonzini, and L. Pozzi, “Polynomial-Time Subgraph Enumeration for Automated

Instruction Set Extension”, In Proceedings of the Conference on Design automation

and test in Europe (DATE), April, 2007, Nice, France.

[80] D. Goodwin, and D. Petkov, “Automatic Generation of Application Specific

Processors”, In Proceedings of the International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems (CASES), October, 2003, San Jose,

CA, U.S.A.

[81] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-Specific Instruction Generation

for Configurable Processor Architectures”, In Proceedings of the ACM/SIGDA

International Symposium on Fieald Programmable Gate Arrays (FPGA), February,

2004, Monterey, CA, U.S.A.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 146

[82] R. Kastner, S. Memik, E. Bozorgzadeh, and M. Sarrafzadeh, “Instruction Generation for

Hybrid Reconfigurable Systems”, ACM Transactions On Design Automation of

electronic Systems, Vol. 7(4) 605-627, October, 2002.

[83] J. Bennett, “A Methodology for automated design of computer instruction sets”, PhD.

Thesis, University of Cambridge, 1988.

[84] J. V. Praet, G. Goossens, D. Lanneer, and H. Man, “Instruction Set Definition and

Instruction Selection for ASIPs”, In Proceedings of the international symposium on

High-level synthesis (ISSS), May, 1994, Ontario, Canada.

[85] A. Peymandoust, L. Pozzi, P. Ienne, and G. Micheli, “Automatic Instruction Set

Extension and Utilization for Embedded Processors”, In Proceedings of the IEEE

International Conference on Application-Specific Systems, Architectures, and

Processors (ASAP), June, 2003, Hague, Netherlands.

[86] N. Pothineni, P. Brisk, P. Ienne, A. Kumar, and K. Paul, “A High-Level Synthesis Flow

for Custom Instruction Set Extensions for Application-Specific Processors”, In

Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC),

January, 2010, Taipei, Taiwan.

[87] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero, “Swing Modulo Scheduling: A

Lifetime-Sensitive Approach”, In Proceedings of International conference on Parallel

Architectures and Compilation Techniques (PACT), October, 1996, Boston, MA,

U.S.A.

[88] B. Ramakrishna Rau, “Iterative Modulo Scheduling: An Algorithm For Software

Pipelining Loops”, 1994, In Proceedings of the International Symposium on

Microarchitecture (MICRO), November, 1994, San Jose, CA, U.S.A.

[89] P. G. Paulin, and J. P. Knight, “Scheduling and binding algorithms for high-level

synthesis”, In Proceedings of the ACM/IEEE Design Automation Conference (DAC),

June, 1989, Las Vegas, NV, U.S.A.

[90] W. Gao, S. MA, L. SU, and D. Zhao, “AVS Video Coding Standard”, In Studies in

Computational Intelligence, Vol. 280, 125-166, 2010.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

 147

[91] J.A. Michell, J. Solana, and G. Ruiz, “A high-throughput ASIC processor for 8x8

transform coding in H.264/AVC”, In ACM Image Communication, 26(2), pp. 93-104,

February, 2011.

[92] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and N. When, “A novel LDPC

decoder for DVB-S2 IP”, In Proceedings of the Conference on Design, Automation and

Test in Europe (DATE), April, 2009, Dresden, Germany.

 [93] A. Karapatis, “Implementation of AVS video decoder on FPGA”, Undergraduate

Diploma, University of Thessaly, July 2011, Volos, Greece.

[94] F. de Dinechin, B. Pasca, and E. Normale, “Custom Arithmetic, Datapath Design for

FPGAs using the FloPoCo Core Generator”, IEEE Design & Test of Computers, Vol.

28(4), August, 2011.

[95] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers”, In

Proceedings of the ACM/SIGDA International Symposium on Fieald Programmable

Gate Arrays (FPGA), February, 1998, Monterey, CA, U.S.A.

[96] K. Beyls, and E.H, D`Hollander, “Reuse Distance as a Metric for Cache Behavior”, In

Proceedings of the IASTED International Conference on Parallel and Distributed

Computing and Systems (PDCS), August, 2001, Anaheim, U.S.A.

[97] C. Y. Haung, Y. S. Chen, Y. L. Lin, and Y. C. HSU, “Data Path Allocation Based on

Bipartite Weighted Matching”, In Proceedings of the 27th annual ACM/IEEE Design

Automation Conference (DAC), June, 1990, San Orlando, FL, U.S.A.

[98] D. Chen, and J. Cong, “Low-Power High-Level Synthesis for FPGA Architectures”, In

Proceedings of the International Symposium On Low Power Electronics and Design

(ISLPED), June, 2003, Seoul, Korea.

[99] J. Cong, Y. Fan, and W. Jiang, “Platform-Based Resource Binding Using a Distributed

Register-File Microarchitecture”, In Proceedings of the IEEE/ACM Conference on

Computer Aided Design (ICCAD), November, 2006, San Jose, CA, U.S.A.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

