[TANEITIZTHMIO GEXXAATAY

TMHMA MHXANIKQN
H/Y, THAETTIKOINQNIQN
KAT AIKTYQN

Xomnon Movtéhov ITagariniov ITpoyoappatiopod yio Xovbeor

Agyrrentovinmy

Muwx epyaoio mov exmoviOnue and
tov Muhsen Owaida yto T1¢ anaitt#08tg 1oL

Adantopnod Atmhwuatoq.

EmBiénwv Kabnynmae: Av. Kabnynmg, Nuohaog Mrédhag

Bolog, Adyovatog 2012

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Acknowledgement

The work of this dissertation has been one of the most significant academic challenges |
have ever had to face. Without the support, patience and guidance of the kind people around

me this dissertation would not have been completed.

First of all, my enormous debt of gratitude goes to my thesis advisor and mentor, Professor
Nikolaos Bellas. Throughout the period of my PhD studies, Professor Bellas was there for me
to actively support and guide me toward taking the best possible decisions and to develop to a
much better researcher. | am thankful for his patience and immense knowledge and help in
writing this dissertation. | am especially thankful to him for his mentorship and friendship

throughout these years.

| owe sincere and earnest thankfulness to my committee member, Professor Christos D.
Antonopoulos for his constant guidance and insightful comments which have been invaluable
on both an academic and a personal level, for which | am extremely grateful. It has been a great

privilege for me to work under his guidance.

| would like to express my sincere gratitude to my committee member, Professor Georgios
Stamoulis for his assistance and guidance in getting my PhD studies started. | would like to
thank also my colleagues and fellow students, especially Konstantis Daloukas and
Charalambos Antoniadis for their help and cooperation in my research. | would like to thank
the staff of the Department of Computer and Communication Engineering at the University of

Thessaly for their support and constant encouragement.

Finally, | wish to thank my family, who have always believed in me and helped me to reach

my goals. Their support forged my desire to achieve all that | could in life.

I would like to acknowledge the financial support of the Greek State Scholarship
Foundation (IKY) throughout the period of my PhD studies, which without it this research

would not have begun.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

dedicated to my family

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

TABLE OF CONTENTS

TABLE OF CONTENTS ...ttt ettt sttt e st s b e e s et b e s st e e s s abbee s e sbeeas |
LIST OF FIGURES.ttt ettt ettt r b et s e s s ebe e e e e baeessnnaeesnraeean v
LIST OF TABLES oottt ettt et sab e s s ebe e e e e sbb e e s anbeesnraeean VI
LIST OF ALGORITHMSottt ettt et st be e s sare e s b e s sabe e e e enneeas VIl
(08 AN e I =t O RTRRO 1
INTRODUCGTION. ...ttt ettt e s s et e e s sbae e e s ibbe e s sbeessasbeeessabeessbbeeeanbaeseassseessares 1
R =7 ot Ao 01U] o TSP 1
111 Modern Parallel and Heterogeneous Computingooceveeeeeevieeveeevivnivnninnnnnn. 1
11.2 FPGA-based Computing Platforms.............oovvviiiiiiiiiiiiiiiiee e 3
1.2 RESEARCH OBJECTIVE AND CONTRIBUTION ...cvvtiiiiitieeitieeiiieeeeteeerineessneeseraneessannns 5
1.3 THESIS STRUGCTURE ...ttt ittt ittt ettee et te st e st et e e et e satee st e e st e e s et esansetaesan et senseenertrasrans 7
(08 DN e I = R 9
SILICON-OPENCL TOOL FLOW ...ttt estree st sirae s snvae s s evnee s snnee s snbee s 9
2.1 TOOL FLOW AND INFRASTRUCTUREititittiiitiiiieeeseieetestiestnessisssnsensssnestsessneesnnns 9
2.2 OPENCL PROGRAMMING MODELivvuiiitiieiiieeiiieeetieeeeatseesaieeestsessnaessnnesssnneessns 11
221 (@Y < V1= 11
222 Computation MOGEoooiiiei e e a e 12
223 SYNCNIONIZALION. ...t e et e e e e s e er e e e e e e e s e e annr e aeeees 14
224 OpPeNCL MEMOIY SITUCLUIE ...t eaaa s 15
2.3 OPENCL TO C TRANSFORMATION .. tittueiitieettieeeetteeettnseestseesstneesstsersnaessnneessnnaessns 16
231 Logical Threads Serializationccocviiieiiirie e e 17
232 (o T0] o}l = Lo o ISP 17
2.3.3 Variable PrivatiZationooeeueiiiiiiiiiis et aaa s 18
234 (O 10110101 O 1] ox i o] K= 1 U o1 (1 | f = S EPEERR 20
2.4 LLVM COMPILER INFRASTRUCTURE ...cuuiitiiitieitteett et ieeeeeseetesanesbaessiesensenesnnenns 21
241 LLVM Intermediate Representation (LLVM-IR)..........oooiciiiiiiiiieieieee e 22
25 RELATED WORK .1.iitteeitiee ittt e ettt e et e e ettt e et e e e eae e e s st e s eea e e ss e e e bbessabaeesateeertseeeaannns 24
CHAPTER 3.ttt ettt et e et e e eaa e e e e sab e e s s ab e e s e bae s e s b be e eabaessasbeeeesbaeesannres 30
ARCHITECTURAL TEMPLATE ...ttt ettt sree et es st e st eesebae e s anae s snree e 30
31 OVERVIEW ..otuiiittetiteee e ee e e et e et s e e ettt e s et e e et e et e s e sea e s sba e e sba e e st eesta e eebaneestnnees 30
3.2 HIGH LEVEL ARCHITECTURE ... cittueiitteetiteesitie e ettt eeeeteeestsesetnsesatasesstnsesennaesssnnessns 31
3.2.1 HierarChiCal SITUCIUNE.......covvei i e e e e e e eees 31
322 I NtErCONNECHTION NEIWOIKiveiiiii i e e e e e e aa e e aes 33
3.3 PROCESSING ELEMENT (PE) ARCHITECTURE ..uuoiiiiiieiieeeeeeiietceeeeevsisstaninn e s 35
331 Datapath and AGU MOUIES...........uuuiiiiiiieeeeieis e e e eee e e 36
3.3.1. 1 FUNCHONAI UNIES.....ciiiiiiciie ettt ettt ae e et e e e e bae e e sabeeeeennraeeeas 37
TG T8 7 S (o] = Vo T2 U311 USSR 38
TR T I @70 o | (o L0 [o 1) AR 39
3.3.2 Stream INterface UNit.......ooiien i 40
3.3.2.1 INPUL SEreaming UNISoooiei ittt s e st stae e e e e s reeenree s 40
3.3.2.2 OUtpUt STreamiNg UNITS.....ccociiiieiie e see st siee s e st e sbae e sseesnaeesnaeesnneeseaeenes 44
TR T T W Tor- | I O To! 1= TSR 45
i

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

34 CONTROL ELEMENT (CE) ARCHITECTURE ...coiiiiiieeieeisieceeeveevviatieni s s neaeaaaeaaaas 46

34.1 Functional and Storage UNitS.........c.oovieiiiiiiiiiiriee e e e e e e e e a7
34.2 (@0 a1 o] I U1 o T S 48
34.3 Streaming | NLEITaCE.viiiiiiiiiie e e e e e e e 49
35 [q =(o1 U T V1 0 o = P 50
3.6 RELATED WORK .. .iiitie i ee et e et e e et e e et e et e et e e et e e e e e e e s e e et e e e st e e erteeett e eeeaannns 53
CHAPTER 4.ttt ettt et et e et e e et e e et e e sate e sbaeeaeesaneasaseeaneeenteesnsean 58
SILICON OPENCL BACKEND ..ottt ettt et ettt et et ne e 58
4.1 BITWIDTH OPTIMIZATION ettuueeeetttieeeeeeetteseeeeeatnaseesesttanaaeseesnnnseeesssnnnaseseensnnneeees 58
4.2 L= =] 07 1@\ PPN 60
42.1 (@Y= = SRR 60
422 Prior WOIKot e et e e e e e e ee s 61
423 Predication AlQOrithim...........ooiiie e 61
4.2.3.1 If-conversion algorithmocueeii i e 61
4.2.3.2 Architectural SUppOrt for PrediCationccvveiieiiieeiiessiie e 64
4.3 (020 5] = I L1 1 N TP 65
431 OVEIVIBIW ...ttt e e e et e e e e et e e e e et eeeeee bt e eaesestnnaeaaens 65
432 IS el g To Y o o g T o P 66
4.4 INSTRUCTION CLUSTERING .uuueetitttieeeeeeettaeeeseattnnaeeeseesnnnsaeeeesnnnnaesesssnnaaaesessnnnseees 69
441 OVEIVIBIW ...ttt e e e et e e e e et e e e e et eeeeee bt e eaesestnnaeaaens 69
442 Grammar GENEIALIONiiivtieiiiieee e et e e e e et e s e s e e e sab s sebaeeaeaas 71
4421 Grammar REPIrESENTALION.oiiiiiieiietieitiereeeeeeteeste et e s e teesee st e saeesbeeaeeseeeseesneasneeseeaneas 72
4.4.2.2 Generation of Grammar-based DFG representation............cccoceieeieieeneniesieeseesenees 73
4.4.2.3 Computational Complexity and COIMECINESSc.cceiiriuieieiieeeie et 77
44.3 Grammar-Driven Datapath SyntheSiS FIOW........ccoooivveiiiiiiiiiiiiccn 78
4.4.3.1 Data FIOW Graph SHCING.......cioiieeiieie ettt st e e e 79
4.4.3.2 Grammar Generation & SEIECHONceeiiiiiii i e 80
4.4.3.3 Macro Functional Unit PipeliNiNGcooeiiiiiiiiiie s 84
4.4.3.4 Scheduling and IMpIemMeENtationccooiieiiie i 91
4.5 IS o1 T = 00 T 92
45.1 MOAUIO SChEAUIINGvveeeieieiee e e e e e e 92
A.5.1.1 OVEIVIEW ..ueeiiiiieeee et ettt e ettt e e ettt e e et e e s eabe e e e eabeeeeabbeeesabaeeesbbeeeeasbaaeessaeeeaaneeeesnnsaeenanes 92
45.1.2 Swing Modulo SCheAUIINGccuiiiiiieieee et 94
4.5.1.3 HArdWare SUPPOIc..eiieiieie ettt et eeeetee e e e eseesteesse s e e beaseeaseaneanseeseesseeseeanseaneessenas 95
4.6 CACHE INSTANTIATION. ..t eeetttueeee et eettaeeeeeeaean s s e e eeeaaeeeeeastsaaeeeeeanann e eeeesanneeeesnennaes 96
46.1 Memory Addresses Profiling......cc.euveieiiirieeee e 96
46.2 Cache Configuration Computationuuveeeiiiiiiinieneeeeeee s eeeceee e 97
4.7 LOCAL BUFFERS SYNCHRONIZATIONittueeitteeeitieeetteeeetneeeateessnnesennaesssaassnnaeeenns 99
4.8 RELATED WORK .. .iittie it et e e et e et e e et e e et e e e et e e e et e e et e e e et eesa e e b e e aaneaeaanns 103
CHAPTER 5.ttt ettt et e e b et e e s be e et e e eae e e sbaeenbeeeateesbaeenneesnnas 110
EXPERIMENTAL EVALUATION ...ttt ettt ettt 110
51 BENCHMARK SUITE .. iiiuiiiiiiiei e et e et e e e e et e e et e e e e e e eea e e e aa e e e et e e sana e e st eaeatnnns 110
52 M ETHODOLOGY uuniiitieitieee it e e et e et e e e ettt e e et e e et e e e et e e e et e e et e eeaa e e sanaetan e eetneassnnns 113
53 EXECUTION MODEL EVALUATION ...uuiiiiieiii e ee e ee e e et e e et e e et e eeete e e annaeeenns 114
54 BITWIDTH OPTIMIZATION EVALUATION ...iitiiiiii e eee e ee e ee e et e e e e ee e een 120
55 INSTRUCTION CLUSTERING EVALUATION.....ccttiiieeieiii s eveiite e e e e et e e e eeannn e 122
5.6 CACHE ALLOCATION EVALUATION ..uuuiiieiieiiieeeee et eeeeatsee e e eeat e e e e enennneeeeesanns 128
57 OVERALL PERFORMANCE ANALYSISAND COMPARISONS......cccuueeiinieeeineeennnnnnn. 130
CHAPTER Bttt ettt ettt e ee et e et e et e s be e e baesaeeesbaeenbeesateesbaeanneesnnas 134
CONCLUSIONSAND FUTURE WORKoo ot snee st e 134
ii

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

BIBLIOGRAPHY .. b e e e

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Number Page

Figure 1.1: HeterogeNEOUS SYSIEIM. ...cuuuuiiiiiiirieieeeees e s esittee e e eeeeees e s e s snntntereereeeaeaeeses s ssnrnnnaees 3
Figure 1.2: FPGA fabric basiC COMPONENES.c.uiiiiiiiiii e 4
Figure 2.1: Silicon-OpenCL TOOl FIOW.uuuuiiiiiiiiiii s e e e ee e aaaaeenes 9
Figure 2.2: SOpenCL Low Level Compiler (SOpenCL-LLC)..cccooiiviiiiiiiiieeeeeees e 10
Figure 2.3: C-t0-RTL DACKEN.coi e e e e e e e 11
Figure 2.4: OpenCL PIlatform MOdEL.ouiiiiiieeiiii et e e 12
Figure 2.5: 2-dimensional computations grid geometry (N = 2)......cccccveeeeeiiiniiiiiiiieieieree e, 12
Figure 2.6: Chroma Interpolation OpenCL KerNel........ccoooiiiiiiiiiiiiiiiieee e 13
Figure 2.7: Matrix Multiplication OpenCL kernel example.cccocveiiiiiiiiiiiinieieeiiecieeeieiinns 14
Figure 2.8: OpenCL memory hi€rarChy.ccccceoii i e e 15
Figure 2.9: Logical Threads Serialization..........cccuuuiiiiiiiiieeee e e e 17
Figure 2.10: Loop FiSSION @XAMPIE........coieiiiiiieiieee ettt e e e e et r e e e e e e e e e e e nnnes 18
Figure 2.11: Barrier Elimination €XamplesS.uuuuiuiiiiiiiiiniiee e ee e 19
Figure 2.12: Variable privatization eXample.............uiiiiieceee e 19
Figure 2.13: OpenCL kernel for LU DeCOMPOSITION.vvviieeeeeieiiiciiiiieiiee e e e e ee e 21
Figure 2.14: LLVM compiler INfraStruCtUrecc.cuviiiiiiiiie e e 22
Figure 2.15: SSA RePIESENIALION.vuiiiiiitiiiieiieis e e e e e et e ee e et e e s e e e e aaeaaeeeeeresernnns 23
Figure 2.16: LLVM-IR EXAMPIE.uviiiiiiiiiiiee ettt e e e e e e e e e 23
Figure 3.1: Motion Compensation Block Manual design.cccccoviiiiiiiiiiiiccve 31
Figure 3.2: Program structure of LU Decomposition Kernel............o.oouvvvviiiiiiiiiiiiiiieeeceeeeeeee, 32
Figure 3.3: Interconnect communication ChanNEIS............ccooviiiiiiiiiiiiiiieeee e 34
Figure 3.4: Processing Element (PE) architectural template............c.ovvviiiiiiiiiiiiiiee e, 36
Figure 3.5: Datapath of tHeE(L; o) module in Figure 3.2D.......coovvviiiiiiiiiiiiiiieeceeeias 37
Figure 3.6:L; oLoop C source COOE IN FIGUIE B.28. ...t 39
Figure 3.7.RGU andSinAlignmodules operations flow.ccccoviviiriiiiicciciici e, 41
Figure 3.8: Local AdAress ENCOUING. .. .uuiuiieieeei ettt e eeee e e e s s seseeeeeereee e e e e e s s e snnnaneneeees 42
Figure 3.9 RGU andSinAlignmodules configurationS.............ccovveiveiiiiiiiieieeee e 42
Figure 3.10: SOUtAIIGN MOAUIE..cccoii i e e e e e aa s 44
Figure 3.11: Control Element Architectural Template..........ccccuveeiieeeeeeiiiiiiiieeee e a7
Figure 3.12: CE Register File alloCation...........ccooiiiiiiiiiiii i e e e eeaee e 48
Figure 3.13: CE Stream Unit Configurations.cccuuiiiiiieieie e 49
Figure 3.14: Synopsis of the FSM Of CEO..cccveeiiiiiiiiie e 50
Figure 3.15: Timing for a Work-item eXeCULION.cccoiiiiiiiiieiiieeer e e ee e 51
Figure 3.16. Nested |00p eXeCUution MOUEL..........coevuiiiiiiiiiiiiiiin e 52
Figure 3.17: PICO-NPA SYSIEIM.......cciiiiiiiiiiiiiitiiiiasiaeseeeeeaetaesseeeeaeeaassessasn s e esaeaaaasaaseeeesenes 53
Figure 3.18: Trident system target arChiteCIUIE..ocvviviiiiiiiiiiiiee e 54
Figure 3.19: Laura target arChiteCtUIE..cccviiiiiiiie e a e e 55
Figure 3.20: 8) ROCCC Module architecture model. (b) Optimus Filter template.. 56
Figure 3.21: MARC System ArcChit@CtUre..........cooooiiiiiiiiiii e 57
Figure 4.1: SOpenCL backend transformations.cooveiiiiiiiiiiiiie e 58
Figure 4.2: Bitwidth optimization @XampPle............coiiiiiiiiiiiie e 59
Figure 4.3: IF-Conversion using LLVM asSSemDBIY.couviiiiioriiiiiciiieeceeee e ee e 60
Figure 4.4: If-conversion transformation for value-clipping example..cccccccoeevviivvvvnnnnnn. 63
Figure 4.5: Predicated execution architectural SUPPOIt.........ccooveiiiiieiiiiiiiiiiee e 64
Figure 4.6: Programm SHICING..........ooviiiiiiiiiiiiiiiiis e e e e e et e e e s e e ae e e a e e s e e e aeaaaaaeeeeaanes 65
Figure 4.7: Code Slicing EXamPIE..ccceeieii ittt e e e r e e e e e e 68
Figure 4.8: Scheduling and binding of @ DFG.ciiiiiiiiii e 70
Figure 4.9: Grammar repreSENtAtiONccccuiiiiieiiii i e e e e e see e e e e e e e s e e rn e reeeeeeeeeas 71

Li1sST OF FIGURES

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Figure 4.10: Motivational example showing the steps of Algorithm 4.3..cccccoveiiiiiininnennn, 75
Figure 4.11: Experimental evaluation of the computational complexity of Algorithm 4.3...... 77
Figure 4.12: Grammar based datapath synthesis flow.cccccccciiiiiiiiiic e, 79
Figure 4.13: DFG SliCING €XAMPIE..uuuiiiiiriieeeee ittt e e e e e e s e st e e e e e e e e e s es s snreneeees 80
Figure 4.14: The selection process of Rules in the grammar of Figure 4.10..........cccccvvvveeeennn. 84
Figure 4.15: MFU Pipelining EXamMPIE.coooiiiiiiiiieee s 84
Figure 4.16: Experimental method micro-benchmarks.. ..., 90
Figure 4.17: Modulo SChedUIING..couviiiiiiie e e e rreeeae s 93
Figure 4.18: Valid-bit flow over the loop execution duration for the kernel of Table 4.4.......95
Figure 4.19: Example of data reuse across outer l00p iterations..........cccccvvveveveeeeeeesiecccciiieeenn, 97
Figure 4.20: Memory Dependency Graphs for LUD OpenCL architecture...........ccccceeeeeennnn. 100

Figure 5.1: Sub-pixel Chroma interpolation in AVS Motion Compensation.........................
Figure 5.2: Simulation and Verification Testbench.c.ccccccooi i, 114
Figure 5.3: Execution Time (barsimg And clock frequency (lines iNHZ) for concurrent

and sequential CoNfIQUIALIONS.coiiiiiii e e aaaaaa s 117
Figure 5.4: Execution time (bars,nim And clock frequency (lines iNHZ) for concurrent

and sequential CoNfIQUIALIONS.ooiiiiiii e e aaaaa s 118
Figure 5.5: Concurrent operation performance gain and area overheadccccccvvvnnnnnn. 119
Figure 5.6: Area results for Bitwidth optimization.. ..o 121

Figure 5.7: Area (slices) and Synthesis, Placement & Routing time.oevvvvvvivvinnnnnn. 124
Figure 5.8: Synthesis, Placement & Routing (SPR) Speedup..........cccceeeeviiiiiiiviiiiiiiiiiiinn, 126
Figure 5.9: Area Reduction (AR) correlation with the number of macro-instructions per

grammar rule (a, c, e) and the DFG coverage (b, d, f). cuvvviiiiiii, 127

Figure 5.10: Luma (LMC) and Chroma (CMC) kernels data reuse pattern.............cccccceee.... 129
Figure 5.11: Execution time for LMC and CMC configurations with and without cache..... 130
Figure 5.12: Comparison of execution time for Memory transfers plus computations and

(oo] o101 =11 o] g ST 0] o] V2RSS 131

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Li1ST OF TABLES

Number Page
Table 4.1: Experimentally derived values of fa@arameter.............cocccvviviieeeeeeee s 88
Table 4.2: Examples of the area consumed by a set of micro-benchmarks..................ccee.. 89
Table 4.3: Examples of some micro-benchmarks critical path (NS).vvviiiiiiiiiiiieee, 91
Table 4.4: Modulo Scheduled kernel example.........ccciiiiireie e 95
Table 5.1: Applications used for experimental evaluation............cccccceeeeveiveviiiiiiiieieee e, 110
Table 5.2: Experimentation Data Set SiZe.ccceeeiiiiiiiiiiiieii e e e e 113
Table 5.3: Concurrent/Sequential modes area results for the benchmarks implemented on
XilINX VIrteX-6 LX760 UEVICE. ...eeeiiiieiiiiiie ittt ettt e e e e et e e e e e e e e e eas 115
Table 5.4: Bitwidth optimization Frequency (MHz) results for the test kernels on Xilinx
VIFEEX=6 LXTB0.eeeeeeeieteee ettt ettt e ekttt e e s et et e e ekt e e e e s aan b e e e e e e abab e e e e e aannees 122
Table 5.5: Grammar generation results on the kernels DFGS.cooovvviiiiiiiiiiiiiiieeeeee e 122
Table 5.6: Instruction Clustering Frequency (MHz) results for the test kernels on Xilinx
VIFEEX-6 LXTB0.eeeeeeeiteet e ettt ettt e ettt e e e ettt e e e abe e e e e s e ntbe e e e e eanbeeeeesaabbeeeeeeasnbeeeeeannrens 128
Table 5.7: FPGA Slices for CMC and LMC kernels with and without cache........................ 129
Table 5.8: SOpenCL based design of Deblocking filter compared to manual design............ 132
Table 5.9: SOpenCL based design of SEAL kernel compared to manual design.. 132
Vi

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

L1ST OFALGORITHMS

Number Page
Algorithm 4.1: If-conversion algorithmM............uuiiiiiiiiee e e e e 62
Algorithm 4.2: Code slicing algorithm.. ... 66
Algorithm 4.3: Grammar Extraction AlIgorithmuviiiiiiiiii 73
Algorithm 4.4: Grammar RUIES SEIECHONuuviiiiiiieeeiii e 81
Algorithm 4.5: Custom Instruction Pipelining..........ccceeiiiiiiiiiiiiiiiririee e 85
Algorithm 4.6: A parameters @StMatioN.oeeeeieiiiiiiiiiirie e e e e e e e sanees 87
Algorithm 4.7: Redundant Dependency ElmMINation...........cccccceeveviiiiiciiiiiiiieeeee e 101
Vil

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Modern Parallel and Heter ogeneous Computing

The ever increasing demand for more efficient computing has pushed the
evolution of computing systems to spectacular levels over the last few decades.
Advances in computing systems are the key to the development of new domains and
revolutionary technologies, such as personalized medicine, online social interaction,
and immersive entertainment experiences.

While appetite for high performance and more efficient computing is increasing,
today's computing systems are struggling with technology limitations. The traditional
way to improve performance by increasing clock frequency has already come to an
end. As a result, computing systems are shifting towards energy-efficient parallel
computation models. Using many slower parallel processors instead of a single high

speed core has provided higher energy efficiency.

Parallel architectures developed over the last decade, can be classified into
different categories. The first category includes multiple instances of the traditional
general purpose processor have been arranged within the same chip to produce multi
core processors (MCPs). Another category includes the Graphic Processing Units
(GPUs) with hundreds of simple processing cores. Nvidia GeForce256 was the first
GPU released on 1999 [1]. Finally, streaming/Vector processors are multi-core
processors, specially designed for streaming applications. Streaming processors like
RSVP, Imagine, Raw, and Merrimd2, 3, 4, 5] promoted high performance
computing by exploiting heavy data parallelism in streaming applications and
employing a distributed memory model.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

While the many-core processing hardware technology is progressing rapidly,
software development for parallel computing is falling behind. The challenge rising
with parallel computing systems is to port already developed software for sequential
processors on the newly introduced multi- or many-core processors. To cope with the
new architectural trends, the parallel computing industry has developed a variety of
parallel programming languages to allow programmers to exploit the multiple
execution contexts available in the new multi-core architectures. The first class of
parallel programming languages like OpenMP and Posix threads are extensions of
sequential programming models, suitable for systems with few processing cores, and
are widely used in the industry. New parallel programming models have been
invented in the last few years to better suit systems with hundred or thousands of
cores. Languages such as OpenCL, CUDA or various streaming languages fit the

second category.

Yet even the shift to parallel computiiigy not enough. Many-core chips suffer
from high power density which restricts the number of cores that can be
simultaneously active, a phenomenon calileak silicon [6, 7]. The dark silicon
phenomenon puts limits on the prospect of building many-core chips with tens or
hundreds of cores without significant degradation in efficiency. This inefficiency is
promotingheterogeneous parallel computing systems

Instead of a parallel computing system built only from many-core chips, a
heterogeneous computing system comprises multiple different computing
components (Figure 1.1) each carefully optimized to efficiently execute a particular
type of task. This heterogeneous parallel computing model presents an even greater
challenge for developers. Now they must not only develop parallel applications, but
they are responsible for deciding what types of processors to use for which
calculations [6].

Heterogeneous systems development represents the best approach on energy-
efficient high performance computing. However, it is a new technology that requires
extensive research and effort mostly in developing tools and compilers to help
software developers to deal with the large pool of architectural variables and
parameters of heterogeneous systems. Other than the architectural differences of

heterogeneous system components, their programming tools and languages exhibit

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

DSP

e ”l*\

[Heterogencous
System

>
\

FPGA

Figure 1.1: Heterogeneous System.

vast differences making it extremely difficult to develop applications that can be
executed on all components. For example, porting an application on a heterogeneous
system comprising MCPs, GPUs and FPGAs, requires the use of completely different
programming languages; for example OpenMP for MCPs, CUDA for GPUs, and
Verilog/VHDL for FPGAs

Recently, researchers in the parallel computing community have been moving
towards unified programming models to support the heterogeneity of parallel
computing platforms. OpenCL[22] is an industry-supported standard for building
parallel applications that are portable across heterogeneous parallel systems. OpenCL
adopts an architecture-agnostic computations model, promoting application

portability across different platforms.

1.1.2 FPGA-based Computing Platforms

The recent advances in FPGA technology have placed reconfigurable platforms on
the map of heterogeneous computing. FPGA accelerators offer superior performance,
power and cost characteristics compared to a homogeneous CPU-based platform, at
the expense of complex and expensive software infrastructure. For instance, FPGAs
have been shown to offer two orders of magnitude superior performance than

conventional CPUs for a variety of data-intensive applications [8].

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Research in the last few years provided strong evidence on FPGA high
performance computing capabilities. Applications in medical imaging [9], networking
[10], multimedia [11], and financial applications [12], have been successfully
implemented on FPGA platforms achieving orders of magnitude speedup and energy-
consumption reductions over CPU- and GPU-based solutions.

Distributed logic and memory components of FPGA devices bear a significant
resemblance to many-core processors. FPGA reconfigurable fabric consists of a sea
of programmable logic cells and interconnects organized in rows and columns (Figure
1.2). Recently, FPGA manufacturers have included hard IP cores, like multipliers and
SRAM blocks, distributed within the logic cells to improve designs efficiency. The
distributed memory blocks over the FPGA architecture, provide the necessary
memory bandwidth for building parallel computing architectures.

Developing FPGA-based systems is a hard undertaking and a time consuming
process. The designer requires firstly analyzing the problem under consideration,
partition it into multiple tasks, each then implemented carefully to fulfill the
performance requirements. The design then has to be implemented using a hardware

description language like Verilog or VHDL before programming the FPGA device.

Even with FPGA-based computing being up to the expectations of the high
performance community, the integration of FPGAs in heterogeneous systems
composed of CPUs and GPUs is far from mainstream. The main obstacle in the way

of FPGAs being used in heterogeneous platforms is the need for hardware expertise

Figure 1.2: FPGA fabric basic components.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

to program the FPGA. The community of software programmers and especially
programmers of parallel systems will resist a platform with its own programming
language when the industry is moving towards unified higher-level programming
models for multi-core and heterogeneous platforms. Using FPGAS in heterogeneous
platforms ideally requires enabling FPGA programming using high level parallel

programming languages like CUDA, and OpenCL.

1.2 Research Objectiveand Contribution

The problem of automatically generating system architectures from high level
programming languages has been at the forefront of academic and industrial research
in the last few decades. Generating system designs from high level programming
languages such as C/C++ or Matlab has been investigated to increase design
productivity and enable rapid design space exploration [13, 14, 15, 16, 17]. However,
High Level Synthesis tools have not been so well adopted by the software engineer
community because the design flow of the current commercial tools is more suited for
the hardware rather than the software engineer. The designer is required to tune the
application source code specifically for hardware design, and may have to intervene
to specify low level details which may discourage most software engineers from
using the technology. A successful high level synthesis tool targeting software
engineers and parallel programmers will have to hide the architectural details from

the programmer.

Using parallel programming models like OpenCL, to generate FPGA-based
systems, open up system hardware design for the large community of software
engineers to exploit the capabilities of high-end FPGA devices without the need for

hardware expertise.

OpenCL programs express parallelism at its finest granularity. This is a
particularly convenient feature for hardware generation, as the programmer explicitly
exposes all available parallelism of the application. Exposing parallelism at its finest
granularity allows hardware generation at different levels of granularity. Another
favorable feature of OpenCL is the explicit expression of data movement in the form
of buffer transfers between compute devices. Languages with C-like semantics, as

well as traditional parallel programming models such as POSIX Threads or OpenMP,

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

express parallelism at a coarser granularity and at the same time ignore or obfuscate
communication, thus placing the burden of re-discovering parallelism and
communication patterns to an optimizing compiler and/or the user — usually with
limited success.

Our research develops algorithms, and architectures to generate automatically
hardware accelerators from OpenCL kernels. Our synthesis tool, Silicon OpenCL
(SOpenCL), generates a hardware accelerator from a single OpenCL kernel using two
phases: OpenCL to C source to source transformation and C to RTL generation. Our
research concerns the second phase. A C function generated by the source to source
transformation consists of one or more nested loops that encapsulate the

computationally intensive parts of the OpenCL kernel.
The contributions [18, 19, 20] of our research can be summarized as follows:

1. Code Transformationsthe tool flow performs novel transformations specific
for architectural synthesiBitwidth analysigransforms variable bitwidth from
the standard size (char, int, etc.) into arbitrary sizes to minimize the amount of
hardware resourced?redication replaces control dependencies with data
dependencies, thus increasing the size of basic blocks and the potential of
instruction schedulers to find an optimal instruction sched@ede slicing
decouples data movement from data computations, and overlaps their
execution. A major transformation introduced in the tool flowCade
Clustering SOpenCL analyzes patterns of instructions and produces
application specifianacroinstructions where amacroinstructionconsists of
multiple basic arithmetic and logic operations. Macroinstructions provide a
compact form of computation that can be implemented more efficiently than

basic arithmetic and logic operations.

2. Architectural TemplateSOpenCL utilizes an architectural template designed
and configured to meet user performance requirements and fit the target
device. The architecture of a hardware accelerator of an OpenCL kernel has a
hierarchal structure which resembles the loop hierarchy in the generated C
function. Each nested loop is allocated a single cluster of hardware which
allows pipelining the nested loops execution. The architectural template

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

decouples and overlaps the execution of data computation and data movement
by allocating separated modules for data computations (Datapath) and data

movement to and from memaories (Streaming Interface Unit).

3. Concurrent Execution ModeT.o exploit the separate hardware components in
the architectural template, an asynchronous execution model is adopted. The
operation of the streaming units and the computational datapaths is fully
asynchronous, even across the boundaries of different loops and loop nests.
Asynchronous execution model allows pipelined and parallel execution of

multiple nested loops, and increases hardware utilization.

The current state of the tool produces a single accelerator per OpenCL kernel. The
supported kernels may consist of arbitrary loop nests and shapes. They may contain
synchronization and any kind of standard arithmetic operations. The tool flow also
provides an IP library for floating point operators and math functions optimized to
enhance the performance of the accelerator. OpenCL kernels that include dynamic

memory allocation or function call are not supported.
1.3 ThesisStructure

The structure of the thesis is as follows:

Chapter 2 covers the background material necessary to understand the proposed
algorithms and design techniques. More precisely, Chapter 2 presents the framework
and infrastructure used by our tool flow..

Chapter 3 introduces the proposed architectural template for architectural
synthesis. It describes the skeleton of the template, its basic structure and how an
OpenCL kernel is mapped on the template components. The chapter addresses the
architectural techniques used in handling synchronization and exploiting data reuse to
reduce memory access overhead. The execution model of OpenCL kernel on the
generated hardware accelerator is also discussed.

Chapter 4 describes the low level transformations/optimizations and hardware
generation methods applied on the OpenCL kernel source code to provide
architectural optimizations. Transformations include bitwidth optimization,

predication, code slicing and instruction clustering. Code slicing separates portions of

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

code responsible for addresses generation from computations to decouple and overlap
their execution. Instruction clustering generates application specific instructions to
build custom functional units. Later in the chapter we introduce methods used in
taking architectural synthesis decisions. More precisely, scheduling instructions on
allocated resources, data caching configurations, and synchronization/interconnect
data channels generation. Two scheduling algorithms are descnibedulo

schedulingandas soon as possibfeheduling.

Chapter 5 presents the experimental evaluation of the proposed techniques and
architectural template. Finally, Chapter 6 completes this dissertation with the

presentation of the conclusions and reference to future work.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

CHAPTER 2

SILICON-OPENCL TooL FLow

2.1 Tool Flow and Infrastructure

Silicon-OpenCL (SOpenCL) is an architectural synthesis CAD tool targeting
heterogeneous parallel computing platforms (Figure 2.1). The objective is to allow a
software programmer to develop an OpenCL application once, and deploy it on any
platform, without the need for modifications. The tool consists of a two levels
compilation process: High Level Compilation (HLC) and Low Level Compilation
(LLC).

The high level compiler processes an OpenCL application and partitions its
kernels as appropriate across the available computing platforms (CPU, GPU, and
FPGA). The low level compiler processes OpenCL kernels selected to run on FPGA
platforms. The task of the LLC is to compile an OpenCL kernel, and generate an
equivalent hardware design that fits the target FPGA device and fulfills performance
requirements. SOpenCL tool infrastructure also provides runtime environments for
each of the target platforms to facilitate their integration and the execution of

OpenCL Application

4

HLC

}

LLC
(OpenCL to RTL)

¥

GPU FPGA CPU

Figure 2.1: Silicon-OpenCL Tool Flow.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

OpenCL kernels.

Figure 2.2 shows the low level compiler flow. The LLC converts unmodified
OpenCL kernels into a system on chip (SoC) with hardware and software
components. The tool flow generates a hardware accelerator for each OpenCL kernel
in two phases: OpenCL-to-C transformation, and C-to-RTL. The tool flow also
generates the runtime environment and drivers, in addition to the testbench generated
for simulation and verification purposes. The OpenCL-to-C frontend developed by
Daloukas [21] generates a C function from an OpenCL kernel by coarsening the
computation granularity as will be detailed in section 2.3. The C-to-RTL backend
developed in this thesis generates a hardware accelerator RTL description for each

OpenCL kernel.

Figure 2.3 shows the C to RTL back end tool flow which-along with the front end
is based on the LLVM compiler infrastructure. LLVM compiler translates the input C
function into an assembly-like intermediate representation, calladM-IR. The
LLVM compiler provides conventional optimizations and transformations such as
dead code elimination, redundant code elimination, constants propagation, algebraic
transformations, loop transformations, loop unroll, and loop invariant code motion.
Given the LLVM-IR, the backend performs two sets of tasks, low level

transformations and optimizations, and hardware allocation and generation.

OpenCL OpenCL-to-C C
Kernel | Frontend
Drivers &
Off-Chip . i
Memory System on Chip

On-chip Bus

HW HW Simulation &
Accelerator Accelerator Verification

Figure 2.2: SOpenCL Low Level Compiler (SOpenCL-LLCE-t6-RTL
backend is the result of this thesis resegrch

10

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Transformations

C LLVM) Optimized i) Bitwidth Code _» Code

Kernel s Compilation LLVM-IR | Optimization > a1 Slicing Customization |
____Hardware Generation /
FPGA — Synthesis, <_Synthesnable<_;_ Verilog <« Scheduling ‘ User
<«—— Performance

Bitstream P&R Verilog i Generation
AN Requirements

Accelerator

Simulation «— Testbench «——
Template

Figure 2.3: C-to-RTL backend.

2.2 OpenCL Programming M odel

2.2.1 Overview

OpenCL [22] is a programming framework for heterogeneous computing
platforms. OpenCL was initially developed by Apple Inc. as a portable programming
framework for the vast number of multi-core CPUs and GPUs. Apple submitted an
initial proposal in collaboration with technical teams at AMD, IBM, Intel, and Nvidia,
to the Khronos group. Within six months Khronos group released the first OpenCL
specification for the public. OpenCL programming language is based on ISO C99
with some limitations and extensions. The language is extended to provide explicit

representation of parallelism, synchronization and memory regions.

OpenCL programming framework was designed with software portability in mind.
The vision is to write a single application that can run on a variety of potentially
heterogeneous platforms, from embedded systems to workstations and
supercomputers. The OpenCL platform model comprises a host processor and a
number of compute devices (Figure 2.4). Each device consists of a number of
compute units, which are subsequently divided into a number of processing elements.
An OpenCL application consists of a host program and a number of kernel functions.
The host part executes on the host processor and submits commands that can refer
either to execution of a kernel function or to manipulation of memory objects. A
kernel function contains the computational part of an application and is executed on

the compute devices.

11

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Figure 2.4: OpenCL Platform Model.

A key feature in OpenCL is that the compiler is built into the runtime system,
which provides flexibility and portability, and allows OpenCL applications to select

and use different compute devices in the system at runtime.

2.2.2 Computation Model

The work corresponding to a single invocation of an OpenCL kernel is called a
work-item. Multiple work-items can be organized in a work-group. OpenCL allows
for geometrical partitioning of the grid of computations to an N-dimensional space of
work-groups, with each work-group being subsequently partitioned to an N-
dimensional space of work-items, wherec N < 3 (Figure 2.5). Once a command
that refers to execution of a kernel function is submitted, the host part of the
application defines an abstract index space, with a maximum of 3 dimensions of work

groups and 3 dimensions of work items in each work group. A work-item is identified

Figure 2.5: 2-dimensional computations grid geometry (N = 2).

12

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

by a tuple of IDs defining its position within the work group, as well as the position
of the workgroup within the computation grid. Based on these IDs, a work-item is

able to access different data (SIMD style) or follow a different path of execution.

Figure 2.6 shows an example of Chroma interpolation OpenCL kernel. Chroma
interpolation computes sub-pixels from chrominance components in a video frame.
Each work item (one kernel invocation) computes one sub-pixel by applying a 4-tap
filter on 4 chrominance pixels. The filter output is then clipped to the value range
[0,255]. The kernel utilizes 2-dimentional computations grid like the one shown in
Figure 2.5. Theget_global_id(0)and get_global_id(1)runtime functions return the

unigue globak- andy-coordinates of the work-item, respectively.

OpenCL also provides runtime functions to return local work-item coordinates
within a work group (Figure 2.7). For exampigt_local_id(0)andget_local _id(1)
return thex- andy-coordinates$xand Syin Figure 2.5) of the work-item within the

work-group.

The programmer explicitly defines the dimensions of a single work group when
she invokes the kernel function. The number of work groups is determined implicitly
in the runtime depending on the size of the computation problem. For example, the
chroma interpolation kernel of Figure 2.6 has 2-dimensional work group of size 4x4,
i.e. 16 work-items, where each work-item processes a single pixel. The number of
work groups depends on the grid size, i.e. the video frame size. For 640x480 VGA
frame, the grid includes 80x60 work-groups.

_ _kernel void Chromalnter (___global char * refF,
__global char * predF,
_ local char * Coeffs, int W)

int id0 = get_global_id(0);

int idl = get_global_id(1l);

int tmp = (refF[idl*W + id0] * Coeffs[0] +
refF[idl*W + id0 + 1] * Coeffs[l] +
refF[(idl + 1)*W + idO0] * Coeffs[2] +
refF[(idl + 1)*W + id0 + 1] * Coeffs[3]) >> 6;

predF[idl*W + id0] = Clipping(tmp)

Figure 2.6: Chroma Interpolation OpenCL kernel

13

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

__kernel void MatrixMul (_ global float* a, _ global float* b,
__global float* c)
{
int row
int col

get_global id(1l);
get global id(0);

__local float aTile[HEIGHT] [WIDTH], bTile[HEIGHT] [WIDTH];
int y = get local_id(1l);
int x = get local_id(0);

aTile[y] [x] alrow*WIDTH + col];
bTile[y] [x] b[row*WIDTH + coll];

barrier (CLK_LOCAL MEM FENCE) ;
int sum = 0, j;
for(j = 0; j < WIDTH; J++)
sum += aTile[x][J] * bTile([J]Ily];

c[row*WIDTH + col] = sum;

Figure 2.7: Matrix Multiplication OpenCL kernel example.
2.2.3 Synchronization

OpenCL uses what is calledrelaxed memory consistency moediich means
that different work-items may see a different view of global memory as the
computation progresses. Synchronization is required to ensure data consistency
within the work items of a work group, while reads and writes to all memory spaces
are consistently ordered within work-items.

OpenCL programming model provides two types of synchronization functions
among work-items inside a work-group, memory-fence and barrier function. A barrier
function requires all work-items inside a work-group to rendevouz didireer call.

In other words, every work-item in the same work group must execute the barrier
function before any work-item is allowed to continue execution beyond the barrier
command. A memory-fence only requires that loads and stores preceding the
mem_fenceall be committed to memory. On the other hand, there is no
synchronization mechanism among work-groups, which means that work-groups can
be executed in parallel.

Figure 2.7, depicts an OpenCL kernel for naive matrix multiplication. Each work-
item first prefetches an entry from each matrix and stores it in local memory. After
the barrier function, each work item computes an entry in the output matrix. The
barrier (CLK_LOCAL_MEM_FENCEJunction stalls the execution of every work-

14

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

item in the work group before allowing any work-item to execute the last statements
in the kernel. The barrier synchronization here is necessary to enforce memory
dependencies between work-items in the same work group; loaded matrices entries by
each work item are used by the rest of work items to perform their computations.

224 OpenCL Memory Structure

OpenCL defines a memory hierarchy of four typgkbal memory, constant
memory, local memonand private memory(Figure 2.8). OpenCL standard only
specifies the access level of different type of memory. Programmers can use memory
region address qualifiers; global, constant, _local, and__private to specify the

type of memory hosting data as in Figure 2.6 and Figure 2.7.

Global memonhas the largest size on a compute device. Global memory is visible
to all work-items in the computations grid. While the largest and visible to all work-
items, global memory is considered the slowest men@opstant memoris a read-
only section of the global memory visible to all work-items. Constant memory can be
associated with specialized hardware optimizations to broadcast.detd.memory
is much faster than global memory, and is typically located on-chip. A local memory
is a shared section of memory within the work-items of the same work-group.
Synchronization of memory accesses in the local memory is the responsibility of the
programmer. Aprivate memoryis used within a work-item, and implemented
generally using registers in a GPU or CPU core. A private memory is fast and can be

Figure 2.8: OpenCL memory hierarchy.

15

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

used without the need for synchronization primitives. In situations where the compute
device has inadequate number of registers, variables stored in private memory are

spilled to global memory space causing significant performance drop.

2.3 OpenCL to C transformation

As explained in the previous section, OpenCL exposes parallelism at a fine level
of granularity by allowing the programmer to embody the task executed by a single
logical thread in an OpenCkernel For example, the OpenCL code for chroma
interpolation (shown in Figure 2.6) describes the computation of a single loop
iteration which comprises an OpenCL work-item in this case. Depending on
performance requirements, and resource availability, any number of hardware
accelerators can be generated spanning from a simple interpolator, executing a single
thread per invocation, to an accelerator that produces the complete interpolated frame
every time it is invoked. Between these two extremes, a hardware generation tool can
generate any number of accelerators, each, potentially, being assigned a different

amount of workload per invocation.

In order to enable efficient mapping of OpenCL kernel functions to the underlying
platform while at the same time taking into account any hardware constraint,
SOpenCL tool applies a series of source-to-source transformations in the high level
compiler frontend (Figure 2.2) that collectively aim at coarsening the granularity of a

kernel function from the work-item to the work-group level.

Daloukas [21] explains that the selection of a work-group as the preferred degree
of granularity for logical threads serialization may seem arbitrary. However, taking
synchronization within a work group into account, it will become evident that other
options may present hard to overcome complications in the presence of
synchronization operations or multiple exit points within the kernel. At the same time,
work-group granularity is usually explicitly set by OpenCL programmers, often
considering data reuse, or matching the work-group data footprint to the capacity of
specific levels of the memory hierarchy. Therefore, introducing different degrees of
work granularity at the runtime, despite being semantically correct, might introduce

performance side-effects.

16

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

OpenCL-to-C frontend applies three source-to-source transformations: threads
serialization, elimination of synchronization functions, and variable privatization,

each one explained in the remainder of the chapter.

231 Logical Threads Serialization

The main step in the OpenCL-to-C frontendbigical thread serializationWork-
items inside a work-group can be executed in any sequence, provided that no
synchronization operation is present inside a kernel function. Based on this
observation, execution of work-items is serialized by enclosing the instructions in the
body of a kernel function intotaiple nested loopgiven that the maximum number of
dimensions in the abstract index space within a workgroup is three. Each loop nest
enumerates the work-items in the corresponding dimension, thus serializing their

execution.

Threads serialization of kernadd_3D (Figure 2.%) produces the C function in
Figure 2.9b. Input argumeltcal_size arrayis an array of size 3, and is used to store

the dimensions of the work group to be used as boundaries in the triple nested loop.

2.3.2 Loop Fisson

Thread serialization can lead to invalid execution of a kernel function if the
OpenCL kernel body contains synchronization operations. In the presence of a barrier

instruction, every work-item must execute that instruction before any work-item is

__kernel void Add_3D(__global int * A,
__global int * B,
__global int * C,
int * local_ size array,

__kernel void Add_3D(__global int * A, int W, int H)
—global ::mt * B { triple nested loop
__global int * C, int i2, i1, i0;
int W, int H) for(i2 = 0; i2 < local_ size_array[2]; i2++){
{ for(il = 0; il < local size array[1l]; il++){
int id0 = get_global_id(0); for(i0 = 0; i0 < local_size array[0]; i0++)({

int idl
int id2

get_global_id(1);
get_global_id(2);

int pos = i2*W*H + il*W + 10;

Clpos] = A[pos] + B[pos];
}

int pos = id2*W*H + idl*W + id0;
C[pos] = A[pos] + Blpos];) }
} }

@ (b)
Figure 2.9: Logical Threads Serialization) Add_3D OpenCL kernel adds two

arrays. The three runtime functions return the coordin@®sidl, id2)of the pixe
computed by a work-item. (b) C function after threads serialization.

17

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

allowed to continue its execution. However, in the modified C kernel function, every
work-item finishes its execution before the next work-item is able to start. In order to
ensure correct execution of the coarsened kernel function, the compiler émumies

fissiontransformation that facilitates logical thread serialization.

Loop fission is applied in order to enforce the execution ordering that is required
by a synchronization instruction. A triple-nested loop enforces synchronization
among work-items before its first and after its last iteration. Based on this
observation, we partition the instructions of a kernel function into blocks such that no
barrier instruction is present inside a block. Afterwards, we enclose each block into a
triple-nested loop, Figure 2.10 depicts this transformation fokitexMul kernel of
Figure 2.7. Since there is one synchronization staterbanter, two triple nested

loops are required to ensure correct execution of the C kernel function.

A similar problem occurs for kernel functions with multiple exit points, i.e. when
break, continueor return statements are present. We treat each of the aforementioned
instructions as an additional synchronization point and apply loop fission around it
(Figure 2.11). For example, in Figure 2.11b, tHestatement works as a
synchronization barrier. Hence, triple nested lodpepg are created around each
statement$ and $).

2.3.3 VariablePrivatization

Loop fission presents a complication for variables that are defined in one triple-

__kernel void MatrixMul (__global float* a, _ global float* b,
__global float* c, int * global_id)
{

int row, col, sum, j;
_ local float aTile[HEIGHT] [WIDTH], bTile[HEIGHT] [WIDTH];

triple nested_loop {
row = global id[1] + il;
col = global_id[0] + i0;
aTile[i11][10] = al[row*WIDTH + col];
bTile[11][i0] = b[row*WIDTH + col];
}
// barrier (CLK_LOCAL_MEM FENCE);
triple_nested loop {
row = global_id[1] + il;
col = global_id[0] + i0;
sum = 0;
for(j = 0; j < WIDTH; j++)
sum += aTile[i0][j] * bTile[j][il];

clrow*WIDTH + col] = sum;

Figure 2.10: Loop Fission example.

18

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

loops {
Sy;
S1; }
barrier; —-
Sa; loops {
S
}
(a) while (1)
for(X
loops{ if (cond) break;
for(X Sy; while (cond) {
S3; } Sy loops {
if(cond) break; || if(cond) break; barrier; > S1;
S2; loops{ Sy }
} Sz; } loops {
} S
} }
}
(b)

(c)

Figure 2.11: Barrier Elimination examples.

nested loop construct and used in another. A work-item that defines the value of a
variable in the first loop cannot use it in a subsequent loop, as its contents will be

polluted by the execution of subsequent work-items, thus violating semantics.

SOpenCL compilation infrastructure conducts a live-variable analysis to identify
the variables that are live beyond the boundaries of the loops introduced by loop
fission. Next, we apply variable privatization for these variables, namely we allocate
them to a separate memory area for each logical thread. Each logical thread is

therefore provided with a private copy of such variables.

Figure 2.12 shows an example of loop privatization. In Figure 2.12b, the védriable
computed by each work-item (i.e. loop iteration) in the first nested loop, will be
overwritten by other work-items (loop iterations). When kheariable is used in the
second nested loop its value has been polluted with the last iteration of the first nested

loop. Figure 2.12c shows the result of applying variable privatization on loop fission

kernel foo(){ _kernel foo(){

_Kkernel foo(){ int _K[LOCAL_SIZE_0];

IOOPSSI{. loops{
S1; k =' . S1;
K= p CK[i0] = .3
Lo > }
barrier(); »- | /I barrier(); 1/ barrier();
V=3 loo]:’si . loops{
Alget_local_id(0)] = k + v; L . V=
3 ; Al =k+v; Ali0] = _KIi0] +v;
}

(a) } }
@) ©

Figure 2.12 Variable privatization example. (a) Original OpenCL kernel. (b) |
fission output (wrong). (c) Variable privatization output (correct).

19

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

output. A local memory array K) is allocated with size equal to the number of work-
items per work groupLOCAL_SIZE_ 0 Each work-item stores itk value in the
allocated array at a unique position to be later used in the second nested loop.

For further details on the OpenCL compiler transformations, the interested reader
should consult [21].

2.3.4 Output C function structure

Figure 2.1a depicts an OpenCL kernel which implements LU Decomposition is
used as a running example to explain the sequence of steps to generate the hardware
accelerator. This kernel is part of the Rodinia benchmark suite [23].

LU Decomposition kernel consists of three parts, separated by barrier instructions.
All work-items that execute the first part of the code, prefetch a segment of the input
arraym to three local buffers, and have to rendevouz to the first barrier before they
proceed. The second part of the code performs the main LU Decomposition
operation, and, likewise, forces all work-items to synchronize to the second barrier,

before proceeding to the final writeback to amay

Figure 2.13b depicts the block structure of the modified kernel function for our
running example. The kernel code separated by barrier instructions is enclosed in
triple nested loopsIy).

One may assume that transforming the parallel OpenCL representation into the
sequential C representation, we lose the desirable features of OpenCL language, i.e.
explicit parallelism and data movement. However, the specific structure of the
generated C functions and the knowledge of what each portion of the function
represents, we can ensure that the desirable features of OpenCL are preserved.
Multiple nested loops in the C function indicate the existence of synchronization
commands within the OpenCL kernel. Multiple nested loops have to be executed

sequentially, but their execution can be pipelined.

The body of a triple nested loop represents the workload of a single work-item,
which leads to the conclusion that multiple iterations of a triple nested loop can
correspond to multiple work-items, and hence, can be executed in parallel and out of
order.

20

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

lud_perimeter(__global float *m, int m_d, int offset){
__local float dia[16][16];

__local float peri_row[16][16];

__local float peri_col[16][16];

int loc_x = get_local_id(0);

intb_x = get_group_id(0);

if (loc_x <16) { B
idx = loc_x; i0 =0;i1=8; 0_0
arroff = arroff0 = offset * m_d + offset;
arroffl = arroff + (b_x + 1)<<4 + idx;

}

else{

// similar settings B0—1
}
arr_offset = arroffo;
for (i=i0; i <il; i++){ LO_Z

dia[i][idx] = m[array_offset + idx];
array_offset += m_d;

}

array_offset = arroff1;

for (i=0;1<16;i++) {
if (loc_x < 16) peri_rowl[i][idx] = m[array_offset+idx]; L0—3
else peri_col[il[idx] = m[array_offset+idx];
array_offset += m_d;

}
barrier(CLK_LOCAL_MEM_FENCE);

for (i=1;i<16; i++) {
for(j=0;j<ij++){
if (loc_x < 16)
peri_rowl[il[idx] -= dialil[j] * peri_row[jl[idx];
else
peri_col[idx][i] -= dia[j][i] * peri_col[idx][j] ;

}
if(loc_x >= 16)
peri_col[idx][i] /= dia[il[il;

barrier(CLK_LOCAL_MEM_FENCE);

if (loc_x< 16
(loc_) B,ol
for (i=1;i<16; i++) {
mlarray_offset + (b_x+ 1) * 16 + idx] = peri_row[i][idx]?zfo
array_offset +=m_d;
}
¥
else {
array_offset = (offset + (b_x + 1) <<4) * m_d + offset; B2 i
for (i=0;i<16;i++){ =
m[array_offset + idx] = peri_col[i][idx]; Lz_1
array_offset += m_d;
}
}

(@)

DO

TO

peri_row[][],
peri_col[][],
\l/ \l/ dia][]

T1

peri_row[],
peri_col[]

J

Y ™

L2_o

L2_1

Figure 2.13: OpenCL kernel for LU Decomposition with marked loops) (L
and basic blocks out of loops (8 In this kernel, a work-item (or thad,
performs LU Decomposition for a 32x32 soiatrix. Some parts of the cc

have been omitted for brevity.

Explicit local memory representations are transformed into local data arrays in the

C function, and can be implemented as on-chip distributed memory blocks.

24 LLVM Compiler Infrastructure

LLVM compiler infrastructure [24] has been developed to provide a machine

independent framework for program optimization, analysis, and refactoring. To

provide support for

multiple programming

languages and different target

architectures, LLVM adapts a three-step compilation flow (Figure 2.14). The LLVM

21

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Fortran Frontend C Frontend X86 Backend ~ ARM Backend

N/ \ /

Source LLVM-IR LLVM LLVM-IR Machine
~—— Frontend .. Backend — X
Code Optlm izer Code

Figure 2.14: LLVM compiler Infrastructure

compiler model provides a RISC-style, yet rich, intermediate representation (LLVM-
IR) between the frontend, optimizer, and backend.

The clarity and completeness of the LLVM-IR, provides a simple way for
conveying information between multiple analysis and transformation passes as well
between the frontend and backend. Using LLVM-IR, the compiler framework is a
collection of libraries of transformations and optimizations can be used to build a
compiler for any language and target architecture. In particular, LLVM-IR is both
well specified and thenly interface to the optimizer. This property means that all
you need to know to write a frontend for LLVM is what LLVM-IR is, how it works,
and the invariants it expects.

24.1 LLVM Intermediate Representation (LLVM-IR)

The LLVM-IR instruction set captures the key operations of ordinary processors
but avoids machine-specific constraints such as physical registers, pipeline
architecture, and low-level calling conventions. LLVM-IR provides an infinite set of
typed virtual registers which can hold values of primitive types (boolean integer,
floating point, and pointer). The virtual registers are in Static Single Assignment
(SSA) form [58]. LLVM-IR is a load/store architecture: programs transfer values
between registers and memory solely via load and store operations using typed

pointers.

LLVM-IR uses SSA as its primary code representation (Figure 2.15). SSA is an
Intermediate Representation (IR) used in several compilers (including LLVM
compiler). In SSA each instruction is assigned a unique register name and each use of
a register is dominated by its definition. In the example of Figure 4.4, the two
assignments for the registeris transferred into two assignments on two different
registers.

22

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

bbl: bb2: bbl: bb2:

x = add a, b x =mul a, 3 xl = add a, b x2 = mul a, 3
‘ | \—J—l
l bb3:
bb2: j = Phi(xl, bbl), (x2, bb2)
y = mul x, x y =mul j, j
(@ (b)

Figure 2.15: SSA Representati@a) Code portion without SSA representation
Code with SSA representation.

A key feature of SSA IR is thehi instruction which selects the proper value to
pass to the next blocks, depending on the last control transfer event. In the example
given, the assignment to registedoes not read the values of the assignmentslifor
and x2 directly but, instead, the proper value is passed througPhh@struction

assignment.

Memory locations in LLVM-IR are not in SSA form because many possible
locations may be modified at a single store through a pointer, making it difficult to
construct a reasonably compact, explicit SSA code representation for such locations.

SSA form provides a compadtef-use graph that simplifies many dataflow
optimizations and enables fast, flow-insensitive algorithms to achieve many of the
benefits of flow-sensitive algorithms without expensive dataflow analysis. Non-loop
transformations in SSA form are further simplified because they do not encounter
anti- or output dependences on SSA registers. Non-memory transformations are also
greatly simplified because registers cannot have aliases.

Figure 2.16 shows an example of LLVM-IR generated for a C function that clips a

value in the range [0, 255]. A function in LLVM-IR consists of one or more basic

define i8 Q@ClipValue(il6é %a) {
entry:
$tmpl = emp 1t il6 %a, O;
br il $tmpl, label %exit, label %else

16-bit integer data type

char ClipValue (short a) {

char b = a; | |
| %tmp2 = cmp gt 116 %a, 255; !
I 1

. br il %tmpl, label %exit, label %else2

if (a <0) b=0; N TT_ T 2o T9EEC PECCC ZTTEC PECIET L 7
else if (a > 255) b = 255; Instructions Basic Block
else2:
return b; br label %exit
} .
exit:
o - : 55 o .
Tnput C program ¥tmp3 = phi [0, entry], [255, else], [%a, else2];

ret i8 %tmp3
}
Qutput LLVM-IR

Figure 2.16: LLVM-IR Example.

23

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

blocks of instructions. A program in LLVM is represented as a module of code that
includes one or more functions. A feature in LLVM-IR is its arbitrary bitwidth data

type representation, which is convenient for hardware bitwidth optimizations.

25 Related Work

There is a large body of literature that deals with conversion of an application
written in a high level language to hardware. The majority of research efforts used a
variation of C as their input programming language which was driven mainly by the
existence of a large body of C programmers, and the extensive use of C in embedded
applications. C-based architectural synthesis research can be classified into two
categories: using a restricted format of C written in specific way, or extending extra
language constructs and syntax to support hardware synthesis.

PICO-NPA [13], SPARK [25], Trident [26], and Streamroller [27] belong to first
category. PICO-NPA is a synthesis system that generates non-programmable
accelerators from a C function. PICO restricts a C function to consist only of a single
perfectly nested loop. In addition to nested loops, PICO make use of C pragmas to
pass application specific information to simplify program analysis. Those pragmas
allow the user to declare no-standard data widths, to indicate that specific global
variables are not live-in or not live-out. Also pragmas could be used to advise the
compiler to create local memory for certain arrays, like lookup tables. PICO does not

supportrecursion, and dynamic memory allocation.

SPARK and Trident impose no stylizations or modeling on the input C functions.
The only restrictions in SPARK C model include function recursion and dynamic
memory allocation. Trident imposes additional restrictions: the code cannot contain
print statements, function arguments or returned values, calls to functions with

variable-length argument lists, or arrays without a declared size.

Streamroller emulates the stream programming model by some extensions of the C
language to capture parallelism and decouple communication from computation. The
system takes as input the application written in C, expressed as a set of
communicating kernels. The input program consists of two logical parts, a set of
kernel specifications and system specification. A kernel is expressed as a single C

24

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

function. All inputs and outputs to the kernel have to be provided as arguments to the
function. The body of the kernel has to be perfectly nested for loops. The system
specification describes one “packet” forward flow through the pipeline. The system
specification is expressed as a C function whose body contains a sequence of calls to
the kernel functions.

The second category of C-based hardware synthesis research includes work that
created new programming languages as variations of ANSI-C, such as Handel-C [28],
Mitrion-C [29], haydn-C [30], and SA-C [31, 32] Handel-C retains most of the pure C
syntax and sequential execution model. However, to support compilation for
hardware, Handel-C supports several hardware implementation features like arbitrary
bitwidth declarations of variables. Parallelism in Handel-C is supported through a
“para” qualifier to declare a block of statements that will run in parallel. Handel-C
provides a channel declaration to communicate between parallel blocks. RAMs and
ROMs are declared in Handel-C like arrays, with exception that RAMs and ROMs
are accessed once each clock cycle.

Haydn-C has many similarities to Handel-C. Like Handel-C, it uses parallel blocks
of statements, VHDL-like components/entities to describe parallelism in the program.
The Handel-C and Haydn-C are timed languages, i.e. require from the programmer to
keep exact timing of the program execution, by defining the time execution of each
expression as one clock cycle, and providing the user with a “delay” construct to
control the timing of execution.

Mitrion-C main concept centers on parallelism and data dependencies and there is
no order-of-execution; any operation may be executed as soon as its data-
dependencies are fulfiled. To capture the custom features of hardware
implementation, Mitrion-C enables the user to specify the exact variable precision by
declaring the bit-width of the variable. Like other static single assignment languages,
each statement in Mitrion-C is an expression, statements like FOR, WHILE loops
return values, and each variable within a scope is assigned once. The single-
assignment is required in Mitrion-C since statements within scope could run in
parallel rather than sequential. In addition, since Mitrion-C targets FPGAs, it supports

the use of RAM blocks and banks through a group of memory read/write functions.

25

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

SA-C differs from C in some important ways. It is erpression-oriented
functional language. Its scalar types include signed and unsigned integers and fixed
point numbers with specified bit widths. It has no explicit pointers, and is non-
recursive. It has true multidimensional arrays, including array sections similar to
those in Fortran 90. It also allows any function, loop or conditional expression to

return multiple values.

Other prior research based on C programming model chose to provide libraries of
functions and types to support hardware synthesis instead of creating a new language.
Stream-C [33] is a combination of annotations and library functions callable from C
program. There are three distinguished objects declared in Stream-C program:
process, stream and signal. Stream and signal carry data and control bits between
processes. Processes are the computation kernels that implemented by hardware or
host processor. Process declaration consists of head where the name and IN/OUT
streams/signals are declared, and body encloses the computational operations. The
body is written using callable functions and a subset of supported C.

Impulse CoDeveloper is an ANSI C synthesizer [34] based on the ImpulseC
language. ImpulseC is distinct from standard C in that it provides a parallel streaming
programming model for mixed processor and FPGA platforms. For this purpose,
Impulse C includes extensions to C, in the form of functions and datatypes, allowing
applications written in standard C to be mapped onto coarse-grained parallel
architectures that may include standard processors along with programmable FPGA
hardware. Using ImpulseC, an application could be described as a collection of
parallel, pipelined processes, each of which has been described using one or more C

subroutines.

At the heart of the ImpulseC streaming programming model are processes and
streams. Processes are independently synchronized, concurrently executing segments
of an application. Hardware processes are written using a subset of standard C and
perform the work of an application by accepting data, performing computations and
generating outputs. In a typical application, data flows from process to process by
means of buffered streams, or in some cases by means of messages and/or shared
memories. The characteristics of each stream, including the width and depth of the

generated FIFOs, may be specified in the C application.

26

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Another category of research efforts used the stream-programming model as their
high level languages. In Proteus [35], a program consists of two objects: streams
descriptors and stream data-flow graph (sDFG). A stream descriptor declares stream
access patterns from main memory. The sDFG describes a computational kernel, and
declares IN/OUT streams. Using those two objects a program can be written as a set

of communicating sDFG blocks through streaming channels.

Optimus [36] takes programs written in Streamlt stream programming language.
Programs in Streamlt are represented as graphs where nodes, fidtghsd
encapsulate computation, and edges represent FIFO communication. Streamlt is
based on the synchronous dataflow (SDF) model of computation [50]. Each filter
consists of avork function that repeatedly executes when sufficient data is available
on its input FIFO (queue). The work function reads data from its input queue using
pop operations, and writes data to its output queue ysiispoperations. The work
function can also inspect input without removing them from the FIFO uspegla
operation.

Prior research has investigated the use of different programming models like
MATLAB and Simulink. MATLAB and especially Simulink have traditionally been
used for algorithm design. The availability of a mature tool with specialized modules
(toolboxes, blocksets) along with the possibility of integrating C code makes the tool
a very attractive development platform. Work in [16] presents a MATLAB-to- RTL
compilation flow. One of the issues to be resolved in generating hardware from
MATLAB is to figure out the type/shape of the variables since MATLAB variables
have no notion of type or shape. To generate hardware, the compiler must determine
the exact data type i.e. integer or floating point, or complex numbers etc. The
compiler also needs to determine the shape i.e. how many dimensions the matrix
(array) has, and what are the extents in each dimension.

The majority of current high level synthesis commercial tools use SystemC as
input representation [14, 37, 38]. SystemC is a set of C++ classes and macros used to
simulate concurrent processes, each described using plain C++ syntax. SystemC is
closer to HDL languages VHDL and Verilog. A program in SystemC usually consists
of several modules which communicate via ports. SystemC Modules include

concurrent processes as the main computation elements. Modules communicate via

27

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

channels, which could be either wires or complex communication mechanisms like
FIFOs or bus channels. SystemC libraries provide datatypes extensions like arbitrary

bitwidth integer datatypes, and fixed point datatypes, in addition to C++ standard

types.

Lately, research in architectural synthesis have focused on parallel programming
languages such as FCUDA, a tool that converts CUDA kernels to synthesizable
hardware [39]. CUDA is a parallel programming model developed by Nvidia for
graphics processing. A CUDA kernel implicitly describes multiple CUDA threads
that are organized in groups called thread-blocks. Thread-blocks are further
organized into grid structure similar to that of OpenCL. FCUDA is based on source-
to-source transformation that generates a C function for each CUDA kernel. The
generated C code is annotated with pre-processor directives (FCUDA pragmas)
inserted by the FPGA programmer into the CUDA kernel. These directives control
the FCUDA translation of the expressed parallelism in CUDA code into explicitly-
expressed coarse-grained parallelism in the generated AutoPilot code. The FCUDA
pragmas describe various FPGA implementation dimensions which include the
number, type and granularity of tasks, the type of task synchronization and
scheduling, and the data storage within on and off-chip memories.

The AutoPilot Compiler [15] generates RTL descriptions for each function in a C
program. Each function is translated into an FPGA core. AutoPilot provides code
directives to indicate parallel-code regions, and further unrolls inner-loops to run
concurrently when no across iterations dependencies are detected. AutoPilot allocates
all arrays onto local BRAMSs. It also supports arbitrary bitwidth data types to achieve

optimized hardware implementations.

Jaaskelainen et al. [40] introduce a compilation infrastructure based on LLVM to
generate transport-triggered architectures from OpenCL codes in an approach
seemingly similar to our work. The processors generated with their design flow are
statically scheduled VLIW-style architectures with up to hundreds of programmer
visible general-purpose registers. Parallelism at the granularity of work-items is
exploited in order to overlap memory access latency with computations. They also
introduce and use OpenCL extensions in order to code performance-critical parts of

the kernels. Our approach is inherently different. We do not favor OpenCL

28

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

extensions, but perform extensive compile-time analysis instead, and granularity

coarsening in order to avoid putting additional burden to the programmers.

Altera Inc. started an initiative to build FPGA-based systems from OpenCL
programs [41]. The concept of Altera’s OpenCL-to-FPGA is similar to that of
Jaaskelainen et al.; OpenCL threads are mapped on customized processing cores. The
system is populated with many of the processing cores on which the entire
computations grid is mapped. An embedded on-chip RISC processor (e.g. Nios) plays
the role of host processor that manages OpenCL threads. The processing cores are

either custom pipelines or a VLIW/Vector processor.

Finally, OpenRCL platform utilizes OpenCL to schedule fine-grain parallel
threads to a large number of MIPS-like cores [42]. OpenRCL does not generate
customized hardware accelerators, although each MIPS core can be configured to

match application characteristics.

29

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

CHAPTER 3

ARCHITECTURAL TEMPLATE

3.1 Oveview

In a conventional hardware design flow, application functionality and structure
determine the target design architecture. A hardware designer performs firstly a
thorough analysis of the application functionality to extract parallelism and data
communication patterns. Based on the analysis output, the designer partitions the
application into a hierarchal structure of parallel tasks and subtasks each implemented
separately, and determines the communication network connecting the set of tasks.
Hardware designers exploit all kinds of available parallelism in the application like
instruction parallelism, data parallelism, pipeline parallelism, and task level
parallelism.. Moreover, each task implementation is optimized according to its

specific computational patterns.

Figure 3.1 depicts the block diagram of a manual implementation of the motion
compensation block in AVS video codec system [43]. A hardware designer typically
partitions a complex task into multiple subtasks each performing a specific function:
chroma interpolation and luma interpolation (Figure 3.8). Such partitioning
exploits task level parallelism by concurrently executing chroma and luma
interpolation, and pipeline parallelism by overlapping the execution of multiple
blocks of data (called macroblocks in the context of video codecs). The designer may
go further by partitioning each subtask into smaller blocks each performing a specific
functionality exploiting more task parallelism, pipeline parallelism and data
parallelism (Figure 3.1b). At the low level partitions, a hardware designer will exploit
computation patterns to build efficient circuits to perform the basic computations
(Figure 3.1c). Hardware designers traditionally design separated components for data

streaming and interfacing to overlap I/O data communication and computations

30

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

MVs Pixels
¥

|
M Single Pixel
Data streaming Interface Interpolation
Ly
Chrana R e
Sframe Chroma Pl.\ﬁy’ Interpolation > SEp 53 MUI/Ac,ld
SS—> 3 Armay
Motion - MVs § § re, i'ster
Compensation ¢ SIS <
Motion Luma Pixels Luma > AN ' l?i"efl
Vectors Interpolation AN ' v b Clipping
MVs) N Data streaming Interface i v
- N 1 ipeline
Task Parallelisnr Data Parallelism ¥ Parallelism

(a) (b) (c)

Figure 3.1: Motion Compensation Block Manual design.

In this work, the SOpenCL backend transforms a C function, corresponding to an
OpenCL kernel, to synthesizable HDL based on an architectural template that can be
instantiated to match the performance requirements of the application and the
available FPGA resources. In the following sections we will describe the structure
and components of the architectural template, and how the C function is mapped onto
it.

3.2 High Level Architecture

3.2.1 Hierarchical Structure

The use of an architectural template is necessary to relieve the programmer from
specifying the tasks partitions and mapping by providing a systematic approach in
partitioning and mapping the kernel code onto the hardware fabric while exploiting
available parallelism. The proposed architectural template has a hierarchal structure
that closely follows the computational hierarchy of the input kernel. Figure 3.2b
shows the architecture of the hardware accelerator of the LU Decomposition kernel
shown in Figure 3.2a. The architectural template is built mainly of two types of
components: Processing Element (PE) and Control Element (CE). A PE is a
customized architecture that executes an inner-most loop. A CE implements the
functionality of the outer loops and loop invariant statements. Based on this
classification, the kernel in Figure 3.2a translates into the accelerator of Figure 3.2b

as follows:

e Inner Loops Each of the inner loops {L, Lo s Lio Lo and L 4} is

allocated a PE module.

31

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

e Nested LoopsEach of the nested loops {T01, andT2} is allocated a CE
module {CEQ CE1, andCEZ. Moreover, CE modules CEO and CE2 are also
used for processing outer loop basic blocks ¢BB, i} and {B, ¢ B, i},

respectively.

e Loop Invariant CodeLoop invariant code outside any nested loops in the
kernel body is allocated a CE moduleg_g.

In this hierarchal structureparent-childrelationship exists between a CE module
and another CE or PE module. In addition to executing outer loops and loop invariant
code, a parent CE initiates the execution of its children. For instance, module CEO is
responsible for controlling execution of PE modi&gL, ,) andPE(L,).

Local arrays in the kernepéri_row, peri_col anddia in Figure 3.2a) are each
allocated a local memory implemented using dual port Block RAMs (BRAMS). Local
memories could be either double buffered or work as a FIFO to enable pipeline

parallelism of multiple PE and CE modules.

The architectural template allocates arbiters to manage data read and write

‘ Arbiter ‘

\
E ml] Do CLUSTERO

TO
Lo_2 (Bo_o, PE (Lo_2) PE (Lo_3)
= Bo_1)
10_3

T
peri_row(][], _
% E E peri_col[][], d'a[]UE
dia]l] l

CLUSTER1 peri_row[][],

=

@ peri_row[], CE_g PE(L1.0) peri_col[]l],
peri_col[] (DO) CEL >

—l— T

EO E__l CLUSTER2 A v
PE (L2.0) PE (L2.1)
- CE2
(B2_o,
l B2_1)
% mi)
(a) (b)

Figure 3.2:(a) Program structure of LU Decomposition kernel after coars
the granularity to the equivalent of a wagieup. (b) The block diagram of 1
automatically generated hardware accelerator for LU decomposition.

Arbiter

i

32

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

requests to global memories. Each separate memory port has its own arbitration logic.
Multiple PE and CE modules that access the same global memory will compete to

gain access to a global memory port.

The resemblance between the source code structure and the generated architecture

provides several benefits:

e Exploiting multi-level parallelismMultiple nested loops can be pipelined and
hence execute in parallel. Multiple PE modules are allowed executing in parallel
if they are independent or can be pipelined if they have cross iteration

dependencies.

e Full CustomizationAn architecture that resembles the hierarchal structure of the
kernel code captures every feature and characteristic of the code much better than
a random RTL structure or a microprocessor-like architecture. Separate datapaths
built to execute computations in different loops are designed more specifically to
match the computational pattern of each loop, instead of having more generalized

datapath for multiple loops.

e Control distribution Control signal delay and logic becomes more critical when
it covers large hardware blocks. Building architecture with multiple hardware
blocks each executing independently and using a hand-shaking synchronization
mechanism will localize control logic and reduce significantly the distance a

control signal needs to travel within a single clock cycle.

3.2.2 Interconnection network

The interconnection network connecting all components uses FIFO channels
between two components (PE or CE) that exchange data. The use of FIFO channels
allows asynchronous execution and overlaps the execution of loop iterations, as will
be described in Section 3.5.

Figure 3.3 depicts two types of data channels; scalar data point-to-point FIFO
channel, and local streams buffer. Scalar FIFO channels are implemented using Flip
Flops, and local stream buffers are implemented using FPGA Block RAMs
(BRAMSs). Multiple scalar FIFO channels are allocated for the same scalar variable if

it has multiple consumers (Figure 3.3a). On the other hand, a local stream is allocated

33

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

only one local buffer channel shared by all producers/consumers of the same local

stream (Figure 3.3b).

A scalar FIFO channel transfers scalar variables in the C function between
producer and consumer components (PE, and CE modules). A producer continues to
write data as long as all FIFO channels have free sfatsi¢nal equal to 0), and a
consumer absorbs data as long as the FIFO is not empty. A FIFO channel will store
incoming data if thevalid signal is true, and will output data to the producer if the
absorbsignal is true. A consumer absorbs data tokens from the FIFO by setting the
absorb signal to 1 (i.e. true), e.gonsumer_0Osetsabsorb_0Osignal equal to 1 to
absorb data from its own FIFO channel. The FIFO channel flushes one data token
each clock cycle if the inpatbsorbsignal is true. Hence, if a consumer wants to read
one data token from its FIFO channel, #imsorbsignal should stay true (equals 1)
only for one clock cycle. The FIFO channel setsftifiesignal to 1 if there is no more
space to store incoming data tokens (i.e. the FIFO is full), and forces the producer to
stop generating new data tokens.

A local buffer channel is created for each data array which is local to a kernel. A
local buffer channel is built using dual port Block RAMs providing separate
Read/Write ports. A local buffer address space can be partitioned into two or more
blocks (In Figure 3.3b local buffer has two blocks) to enable double buffering and

Producer_ 0 Producer_1

Jinish address Jinis
d data data
proaucer

Write port Arbiter
Sfull 1 r data * L addressT

addressT *data

Read port Arbiter
absorb_0 absorb_1 address address
finish data finish
Consumer_0 Consumer_1 Consumer 0 Consumer_1

@) (b)

Figure 3.3 Interconnect communication channels. (a) FIFO channels. (b)
Buffers channels. Local buffer two blocks are used for double buffering.

34

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

pipelined execution. In fact, a local buffer partitioned into multiple blocks is
implemented as shared FIFO between the multiple consumers and producers. A
producer first writes intBlock_0 address space of the local buffer, and when it
finishes it sets its outptihish signal to 1 so a consumer could start reading data from
Block_Q While a consumer reading data fratock Q the producer starts a new
write session tdlock_1 then it sets théinish signal again to declare finishing the
second write session and starts a third write sessidBldck 0 as soon as the
consumers finished reading froBlock 0 This switch forth and back between
Block_OandBlock_lallows overlapping read and write sessions to local buffers.

A producer/consumer generatefinésh signal stored in a FIFO and used by buffer
arbiters to enable/disable successors read/write requefstéstisignal becomes true
once a consumer/producer submits as many read/write requests that fulfill its
dependencies. For exampRE(L, ;) in Figure 3.2b, generates a trfieish signal
when the execution of the last iteration of ldgerminates (and the write operation
into dia local array). Likewise, consum@&E(L, ¢ produces trudinish signal when
the execution of the last iteration of lodpterminates. Afinish signal is stored in a
FIFO channel when it is equal to 1.rAad port arbiterexamines all FIFO$inish
signals and allows a consumer to start reading data only when all its dependencies are
fulfilled, i.e. all its predecessors produced a tfimish signal. When a consumer
finishes its reading session, thead port arbiterflushes the corresponding finish
FIFOs of all its predecessors. The same operation also performed Wyitth@ort

arbiter.

3.3 Processing Element (PE) Architecture

Figure 3.4 shows the architecture of a PE module, which is used to execute inner
loop computations in a kernel. The PE architecture decouples and overlaps data
movement and execution, by allocating separate modules for computation
(Datapath), and data movemenSiream Interface Unit The stream interface unit
allocates a set of memory traffic management modules, including a programmable
Address Generation UnitAGU) for memory read requests. Separate modules are
allocated for input and output streams to allow overlaping data read and write

operations.

35

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

The architecture favors streaming applications with regular and predictable
memory access patterns by allocating separate modules for addresses generation and
data computations and by processing memory read and write requests independently.
However, in case memory access patterns are dependent on runtime computations,
addresses and data computations are mapped on a unified-as opposed to decoupled-
datapath. If irregular or a runtime-dependent RAW dependency exists, then separate
input and output streaming units are also merged to preserve the execution order of
memory read and write operations. This unified configuration of the PE architecture
is more suitable for non-streaming applications with I/O traffic dependences that can

be resolved only at runtime.

3.3.1 Datapath and AGU Modules

The Datapath module absorbs data tokens loaded from memory, performs
computations, and then pushes output data tokens back to the streaming unit for write
back to local or global memory. In a unified datapath configuration, it also performs
address computations. An Address Generation UXGU) aggressively generates

Stream Interface Unit

System Interconnect

Sl | Arbiter
AGU 4 Data_in L AAddress
Address
v.v | \ 4
< Cache
RGU » Unit
Local Data_line| Data_out]
request N %
| Sin Align Unit | | Sout Align Unit |
Ny Ty [EXYY
Sin0 Sinl Sout0
Terminate Sin0 Sinl Sout0 m:’pn:e"z
totiy U111 Registers

el
T

Data
Path

Figure 3.4: Processing Element (PE) architectural template.

36

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

addresses for data prefetching, and feeds them to the Requests Generation Module
(RGU). The tool flow guides the generation of the AGU by first identifying the code
slice responsible for data I/O, and then performing modulo scheduling on that code,
as we will show in Section 4.3. The output of the code slice and, therefore, the output
of the generated AGU hardware, is an address sequence for all elements of the input
stream. The architecture of the AGU is very similar to that of the datapath, thus the
same methodology is used to generate hardware in both cases. Figure 3.5 shows the
datapath generated f&*E(,) module in Figure 3.2b. A datapath includes three
types of components: functional units (FUs), storage units, and the control unit.

3.3.1.1 Functional Units

The datapath (and AGU) consists of a network of functional units (FUs) that
produce and consume data elements using explicit input and output FIFO channels to
the streaming unitsS{nQ Sinland SoutOin Figure 3.4). Each FU is preceded by a
multiplexer tree, which, at each time-slot, directs data elements into the correct input
port. The multiplexers are driven by a periodic-count of the initiation interval (I1)

generated by the control unit.

Each FU supports the execution of specific operation type. SOpenCL tool supports
a large pool of operation types classified as follows:

peri_row peri_col dia

[¥

N

v

not
207

peri_colfi][idx]

2 MUX >phio
5| £ R
= § +
= stall v
—_—
Control ﬁ__
Unit £ | (oc_idx<16)
not
R A—_
i o) &peri_colfi][idx] v h“
phi
1 4—1

&

Figure 3.5: Datapath of tHeE(L; () module in Figure 3.2b.

37

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

e Primitive Integer OperationsBasic arithmetic and logic operations likeld,
Mul, And, Shiftand so on.

e Single Precision Floating Point Operation§OpenCL uses a library of single
precision IEEE-754 compliant floating point units (FP Unit). Multiple versions of
each floating point operation are implemented. Each implementation is tagged
with its precision, its latency, as well as the number of its pipeline stages. At
compile time, the system selects and integrates the appropriate implementation
according to precision requirements and the target initiation interval. We used FP
units generated by FloPoCo [94] arithmetic unit generator.

e Mathematical Operations The tool utilizes a library of commonly used
mathematical operations, such as square root, exponent, sine, cosine, arctan, etc.
The library includes two FUs supporting thiee andcosineoperations: one FU
implementation is based on Taylor series with latency equal to 28 clock cycles,
and the second one implemented using CORDIC algorithm [95] with 40 clock
cycles latency. The latter also supports the executi@aratén operation. The
square root FU core uses a polynomial approximation with latency equal to 5
clock cycles. Square root and exponent FUs are generating by FloPoCo [94].

e Application Specific Operationd he tool flow analyzes computation patterns in
the loop and extracts common computational expressions to implement then as
custom FUs. Section 4.4 details the methods used in extracting application

specific instructions.

The size and number of functional units and types of supported operations are
configurable parameters, decided by the tool flow to achieve the computations

requirements and user performance specifications.

3.3.1.2 Storage Units

The datapath also includes registers and FIFOs that hold loop invariant data
generated by outer loops executed in parent CE modules. Figure 3.5 shows few of the
data FIFOs generated, used to temporarily store incoming data from local arrays such
asperi_rowandperi_col and inner-loop invariant variables like the outer-loop index
i. The size of each FIFO is a configurable parameter that can be assigned to match the

data rate at the specific FIFO channel.

38

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Tunnelsare storage elements used to bypass the streaming unit and channel data-
tokens stored in earlier iterations to be used by loads in later iterations. Tunnels are
generated wherever a load instruction has a RAW dependency with another store
instruction with constant cross-iteration distance larger than or equal to one, for
example for code portions like the following:

for(inti=0; i <N; i++)

afi] = afi-1]+1;

The tunnel size (i.e. the number of tunnel registers)is equal to the dependency
distance, because once a valid data token leaves the tunnel, the correspopding
FU starts reading data tokens from the tunnel and ignores data from the input FIFO
channel §in0, Sinletc.) coming from th&tream Interface Unit

Figure 3.6 shows the C code of the inner lbgp in Figure 3.2a. Due to the need
to accumulate values on tiperi_row andperi_col arrays, the loop has two RAW
dependencies with distance 1 in each of these two data arrays. Two tunnels are

generated one for each with tunnel size equal to 1 as shown in Figure 3.5.

3.3.1.3 Control Unit

The control unit is responsible for initiating the execution of the datapath and
generating a periodic count (II) used by the FU multiplexers to select proper input
data at each time slot. The control unit stalls dagapathif any of the input data
FIFOs (e.qgi, loc_idx<16) and streams FIFOs (edja) is empty, or any of the output

streams FIFOs (e.geri_row) is full.

The control unit is also responsible for terminating the execution afatfapathby
monitoring the loop termination condition, such as the comparator output in Figure

3.5. As soon as the termination condition turns true, the control unit waits for a

for(j =0; j<i; j+){
if(loc_idx < 16)
peri_row[i][idx] += peri_row[j][idx] * dia[i][]j];
else
peri_col[idx][1i] += peri_col[idx][j] * dia[j][i];

Figure 3.6, ¢ Loop C source code in Figure 3.2a.

39

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

predetermined number of clock cycles until the last loop iteration ends, and then it

resets thelatapath Section 4.5.1.3 details how modulo scheduled loop is terminated.

3.3.2 Stream Interface Unit

The stream interface unit handles all issues regarding data transfers between the
main memory and the datapath. These include data alignment, data ordering, and bus
arbitration and interfacing. The streaming unit allocates multiple independent input
and output streams processing modules. Those modules process generated addresses

and prevent redundant or unnecessary requests from reaching local or global memory.

Local arrays (feri_row, peri_col,and dia in Figure 3.2) or input arrays are
considered distinct streams of data. Each stream of data is allocated its own set of

processing units.

3.3.2.1 Input Streaming Units

Each input data stream is processed by a couple of tightly connected units:
Requests Generation Unit (RGU) and Input Stream Alignment SmiA{ign). The
RGU module receives addresses generated by the AGU and issues read requests to
external memaories, whil8inAlignunit retrieves data tokens, and packs them in order
to the datapath.

The RGU coalesces read requests generate@ibpGU (or thedatapath) to the
word width of the underlying memory interconnect (for example, a PLB bus for
Xilinx FPGASs), or to burst size if bursting is enabled. RBU aims to eliminate
redundant transactions on the memory interconnect. Before issuing a transaction
request to tharbiter it checks if the addresses aliases with previously requested ones

or if the data are available in the cache (if the cache has been instantiated).

Figure 3.7 depicts how thRGU and SinAlign unit process each generated read
address from thé\GU (or the datapath until the data token is loaded from the
memory and presented to the datapath. The process flow can be summarized as

follows:

40

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

RGU Operation Flow

Address Aliases witl
previously requested
addresses ?

Input address
—

Send write Local
—>»{ addressto —

|

|

|

Issue Read :
SinAlign Unit |
|

|

|

|

Request

in Cache?

|
|
|
|
|
|
| A A
|

|

Store local
addressin |
the proper |

|

|

Datatoken | Extract data YES |
|

Data Unit |
|

|

|

<«— token from the
input data bus

Wait for Valid
input data bus |«
(data_in)

required data

Sin Align Operation Flow

Figure 3.7RGU andSinAlignmodules operations flow.

o TheRGUfirst checks if the input address aliases with previously issued addresses
stored inWRegsandSReqs$-IFOs (Figure 3.9) or not. If an address alias is found,
theRGU issues a local address to ttecheand theSinAlignunit to retrieve data
token from input data lineData_line in Figure 3.4). Theeacheuses the local
address to store the incoming data lim&até_in in Figure 3.4) and writing

Data_lineto theSinAlignunit.

e If no address alias is detected, BR@U checks if the cache has valid data (if the
cache allocated) or not. If the cache has valid data then a local address is issued to
the cache and SinAlign unit to retrieve the data token from input data line

(Data_linein Figure 3.4).

o If the cachehas no valid data, then tR&GU issues a read request to Hrbiter,
and then issues a local address todaeheand SinAlign units to retrieve data
token from input data line.

e The SinAlign unit stores input local address in the corresponddata unit
(Figure 3.9) and then waits for incoming data liDatg_line. A local address is
shortcut of the complete address consists of two compor@fitetand Code
Figure 3.8a shows a 5-bit local address. ddwecomponent is a unique 1D given
for each read request stored in IMRegsand SReqs-IFOs. TheSinAlign unit
compares this ID with the incoming data line tdgpta line_tagsignal not
shown in Figure 3.9, accompaniPata_ling to check if the incoming data line
contains the required data token. If true, @i@Alignunit extracts the proper data

token from the input data line using tbisetcomponent. Theffsetcomponent

41

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Offset 000 001 010 011 100 101 110 111

4132010 o [1 [2[3]4]5]6]7
Code | Offset e Data Bus 0
() (b)

Figure 3.8: Local Address Encoding) 6-bit local addressbj Offset values for 1-

byte data token in 64-bit Data Bus.
is used to retrieve the proper data token bytes within a data line. For example, for
a 1-byte data token, Figure 3.8b shows the offset value for each byte in a 64-bit
data bus.

The RGU module can be configured to process multiple addresses in parallel or
once a time. Th&®GU module takes different shapes depending on the data stream
type and characteristics. Figure 3.9 shows three basic shapesR@th@odule. For
a global or local input data stream, fR&U follows the configuration in Figure 3.9a.

The Cache Access Loglgock is not used for local data streams, as well for streams
that don't use the cache. A data stream of constants will use a much $RGJer

each input address port is allocated a ROM that stores the array of constants (Figure
3.9b).

I - - s <
o = o e Pl) O]
dlofeee o~ dle gl ¢ gl o
RGU {3 i E R F HE N F
e Bm A RGU
2ddr_0 2ddr_n
Address Cache Addr 0 Addr n Addr 0 _ _ _ Addrn s S
<«—— Access e e = FIFO FIFO
Logic
g bl I Tl o v V
Address .
WRegqs Request [ssue Qﬂ Data Data I e Request‘lssue
FIFO Logic ROM ROM EIFON Logic
SReqs 2 3 M S5 >sReas o |o gl |e
FIFO gle gl < g o g ¢ rrro glol o & 5|
HE 5| g| & = HE R
§|® S S —| §|5|8| E[§|8
K Local Add 3| B
v oc ress 3| |S| Local Address Select
g - Select Local Address Select s <lo
8 5 5 o
s S =2 £ 5 sl 1B sz 8
& € 8 &3 S == sl= S| |8 £[[8]8 gl5| 8
Data_valid T b E|s 5l s &
A = Data_li A1
- —(1_line Py
Data_line = viey v < o 1
20 Data [CR| o g()
= | unito °°° Unitm = | Unit 0 Unit_m o Data . Data
< wn 2‘ Unit_0 Unit_m
2 gy HH EEEE
wn 8¢ s|e HE HE S| s g] s gl
Ql = Q<
H ‘v IR 73 |

(@) (b) (©)

Figure 3.9:RGU andSinAlignmodules configurations for (a) cached and nahea

data streams. (b) stream of Constants. (c) Streams with runtime RAW dependencies
WReqs FIFOrefers toWaiting Requests FIFO. SReqs FIF€fers toSent Reques

FIFO.

42

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

The RGU module could serve data write requests (Figure 3.9¢) as well in the
special case of irregular or runtime dependent RAW dependencies as in the following
code:

for I=1;i<N; i++)
a[c[i-1]] = a[c[il] + bfil;

In this special case thaatapathwill be responsible for generating read and write
addresses. The scheduler will consider the available RAW dependency and produce a
correct schedule. However, since tBeutAlign Unit and RGU are completely
independent, and thdatapathdoes not wait for write acknowledge signal, there is no
guarantee that the read/write requests order generated by the datapath will be
preserved on the interconnect bus. Hence, both read and write requests, are served by
the sameRGU module which preserves their execution order. MoreoverRtag
module will exploit address coalescing resources to retrieve data tokens from a write

request, and prevent unnecessary read request from reaching the interconnect bus.

The SinAlign module retrieves data from the cache unit ordhi_inincoming
data in case the data stream is not cached, and presents them in-order to the datapath.
For each load instruction in the loop, ti8nAlign module allocates separate
alignment logic and FIFOD@ta Unit_min Figure 3.9). This allows th8inAlign
modules to serve multiple load instructions in parallel and out of order.

ThelLocal Address Seletliock in Figure 3.9 works as demultiplexer by directing
each incoming local address to the prdpata Unit. The Tag signal that accompany
each local address indicates to the corresponding load instruction produced the
address, and hence to whibhta Unitthe local address should be directed.

The SinAlign Unit is tightly coupled with th&GU module, and variations on its
configuration follow closely any variations on tR&U configuration. For global and
local data streams, thdign Path (Data Uniin Figure 3.9) includes a FIFO that store
local addresses and retrieves data tokens. A sibgla Unit can retrieve multiple
data tokens simultaneously, if multiple local addressestored in its FIFG— have
the same requesbdecomponent. For a data stream of constant®tta Unitis a
FIFO that stores only data tokens obtained from the ROM.

43

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

3.3.2.2 Output Streaming Units

Each output data stream is allocated its own Output Stream Alignment unit
(SoutAlign. The SoutAlign unit aligns the output data tokens coming from the
datapath in a FIFO of data-lines of bus-width byfdigf Data FIFOin Figure 3.10).

The operation of th8outAlignunit can be summarized as follows:

e For each incoming write request (which includes address and data token), the
Align Logic unit (Figure 3.10) checks if the input write address aliases with
previous addresses stored in tleggn Data FIFQ If an alias found, the proper
data line in th\lign Data FIFOis updated with the input data token.

e If an address alias is not found, thlign Logic unit stores the input address and
data token in an empty line in tiAdign Data FIFQ If the Align Data FIFOis
full, then theAlign Logicunit sets théssuesignal to true. Théssue Requestnit
then issues a write request to Hrbiter (or a local memory) to make a space in
theAlign Data FIFQ

e When the datapath terminates, all data inAlgn Data FIFOis written to the

memory before new write requests stemming frondéitapathare written in the

x IS S
] Slw
4 EM 3[

Select/Issue Request

o S < <
N BI Js| El
Align Logic 3| B S
1g| ful g 8 e o o ‘g a
o o < <
J| oo Jo| g
S| 8] eee |B |3
g‘ J L L Data/ Data/
Data/ Data/ Address Address
ata, ata,
Address Address FIFO FIFO
FIFO FIFO
o QI I EI
SIS < 1= J|oo oo
o J g hS) £ 3 |8
E‘g‘m‘i‘a S R R
(@ (b)

Figure 3.10: SoutAlign modul®&E refers to thByte Enablebus signal. (a)
GenericSoutAlignunit configuration. (bsoutAlignunit configuration when
no address aliases detected at compile time.

44

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Align Data FIFQ

The Align Logic unit provides parallel alignment capability, by writing aligned
data tokens to multiple data lines in thkgn Data FIFQ and by writing multiple

data tokens in the same data line simultaneously.

The SoutAlignunit eliminates repetitive writes to the same memory location by
overwriting old data tokens in thdign Data FIFOwith newly produced data tokens.
The mechanism of overwriting old data in thikgn Data FIFOis applied until the
datapath terminates or thdign Data FIFOis full and a data line (where data is
overwritten) must be written to the memory to make space in the FIFO. Also if the
Align Data FIFQis full RAW dependencies are not violated by the overwriting of old
data. Regular RAW dependencies are served using tunnels, and irregular
dependencies are served by directing write requests througRGhemodule and
removing theSoutAlignunit. Write-after-write (WAW) dependencies are considered
by the scheduler, and since they pass through the Saatalignunit, their execution

order is preserved.

The SoutAlignunit follows a simpler configuration (Figure 3.10b) if the SOpenCL
detects no aliases between successive addresses at compile-time, and hence, remove
the Align Logic unit andAlign Data FIFQ The SoutAlignunit in this configuration

simply works as arbiter serving one data token each clock cycle.

3.3.2.3 Local Cache

The cache unit exploits temporal and spatial locality and reduces latency of
memory accesses by saving recently loaded data for future reuse. The cache unit is
implemented using dual ported Block RAMs so that accesses froanttiber and the
SinAlign unitcan be served simultaneously.

A cache line is equal in size to the bus width. Taeheunit is not instantiated if
compile time analysis determines that the input memory access pattern has limited
reuse. The cache unit is configured as a set of data blocks possibly with different
sizes. Each distinct data stream stored ind@eheis allocated a number of data
blocks with specific size determined by SOpenCL, as will be discussed in Chapter 4.

Compared to conventional caches, the cache unit has the following differences:

45

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

e |tis aread only cache; data transferred from main memory toattteebut not
the other way.

e A block of data is allocated a space in the cache but no read operation on the
whole block is performed. A data line in the block will be transferred from the
main memory only if a data request to a data token in that line is generated by the
SinAGU In other words, a data line is read on demand.

e The cache is accessed only by the PE module associated with it. No other PE
modules have access to that cache.

e The lifetime of a data stream in the cache ends when another PE or CE module

starts a write transaction to the data stream in the main memory.

It is not necessary that all input data streams utilizecttelhe SOpenCL will
detect data streams with temporal and spatial locality and recommend whether a
cachewill be instantiated as part of the architecture.

34 Control Element (CE) Architecture

The control element (CE) serves as the glue connecting all the accelerator
components by directing the execution flow. The CE module implements and
executes outer loops and loop invariant statements. In Figure 3.2b, CE n@EQles
CE1, andCE2 execute the statements (blocks of instructions) in outer [60p31,
and T2, respectively. Figure 3.11 outlines the architectural template of the CE

module. The architecture consists of three types of components:

e Computational componentinctional and storage units.

e Control FSM: A finite state machine used to control the execution flow and
provide synchronization information for the CE children (PE and other CE
modules).

e Streaming and memory interfac@set of streaming units used to issue read/write

requests, and retrieve data tokens and acknowledgements.

46

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

To System Interconnect ContrOI

] T‘“:'C'Ul TAdT::jol Toume Element

Arbiter '

To Local memory

Multiplexer II

Register File

Figure 3.11: Control Element Architectural Template.
3.4.1 Functional and Storage Units

Computational components include a network of functional units (FUs),
multiplexers, registers and queues. The instructions blocks within the loops are
statically scheduled on the allocated FUs, and the multiplexers are configured at
compile time to fulfill the interconnection requirements of the scheduled FUs, i.e.
direct the proper FU output or registered data to the proper FU input port at each time
slot in the schedule period.

The CE module supports the same types of functional units mentioned in section
3.3.1.1. However, the amount of FU resources allocated is typically less than the
resources allocated for a datapath. The storage units in the CE module include scalar
data static registers and FIFOs (similar to the ones described in section 3.3.1.2), and a
register file. The register file holds scalar variable with lifetime outside the
boundaries of a basic block. Figure 3.12 shows some of the TOagatements
mapped orCEO (Figure 3.2), and the register file generatedG&f. In Figure 3.12,
variablesr0, andr3 in block bb0 (not shown) are used in blobk5 hence, they are

47

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

saved in the register file to be used later, because the queue of an FU is reset after

block execution finishes.

3.4.2 Control Unit

The Control Unit implements the control transfer logic between blocks of
instructions as well as with successor CEs and PEs. The transition between FSM
states is guided by the execution of the control transfer instrucbonss{ructions in

Figure 3.12) in the current executing basic block.

The FSM state drives the generation of control signals such as the schedule length,
and trigger signals of children modules suchstast_pe0, start_peletc. Schedule
length is the number of clock cycles required to finish the execution a block of
instructions, e.g. the schedule length of blbdd in Figure 3.12 equal to 4 clock
cycles. The value of schedule length is computed at compile time after instruction
scheduling. The FSM selects the proper schedule length value depending on the block

currently executing.

Similar to the control unit in the PE datapath, the FSM control unit stalls CE
module execution when there is a read/write request waiting in a stream unit to be
served, and when input scalar data is not available or the register file is stalled by a

hold signal from another PE/CE module.

bb3:
ro = phi [0, bbo], [a®, bbl2]
rl = add re, -16
r2 = cmplt re, 16 CEO0 Register File
r3 = select r2, ro, ri
br r2, bb4, bb5

A

bb4:
br bb5
bb5:
rd
r5
ré
r7
r8
r9
br

phi [8, bb4], [0, bb3]
phi [al, bb4], [a2, bb3]
phi [a3, bb4], [a4, bb3]
phi [a5, bb4], [r@, bb3]
and r3, 15

shl r8, 2

b6

[| N [| N | N (R 1}

(@) (b)
Figure 3.12: CE Register File allocation. (a) Part of the outer loop statements

of Loop TO in Figure 3.2. (b) Snippet of the Register file of module CEO in
Figure 3.2.

48

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

3.4.3 Streaming Interface

The streaming interface in the CE architecture consists of a set of stream
processing units and off-chip memory arbitration. Each data stream is allocated its
own Stream UnitsThe stream units have the simple task to issue read/write request
address and to retrieve data tokens or write request acknowledgement. Unlike PE
architecture streaming units, the CE streaming units serve one read/write request each
time; there is no address coalescing, no reuse mechanisms, and no cache support
(Figure 3.13). The assumption is that the CE memory traffic is very small compared
to that of the PE module; as the PE module normally has more data traffic ekécutes
times the number of its parent CE execution iterations (WKésethe loop trip of the

inner loop executed by the PE module).

In Figure 3.2,CE1 module executes the statemeetri_col[idX][i] /= dia]i]]i]
where two read and one write operations are performed on local datapemaygsl
anddia. Hence,CE1 module allocates two input stream units (as in Figure 3.13a) for
read operations frorperi_col and dia local streams, respectively, and one output
stream unit (as in Figure 3.13c) for write operationpéwi_col local stream. The
stream units in a CE module share the same local buffer or global memory ports with
PE modules. In Figure 3.ZZE1 sharesperi_col and dia local buffers with PE

modules (interconnects are not shown in the Figure for clarity).

The CE streaming interface includes an arbiter that manages requests to an off-
chip memory; all stream units accessing an off-chip memory assigned an arbiter that

manages their requests and acknowledgements. A stream unit that processes data

4] §

Align Data Bus

ndivessData-
i 4
3 S

(@ (b) (©

Figure 3.13:. CE Stream Unit Configurationg) (Typical input stream streami
unit. (b) Stream unit supports array of constamsTypical output stream stream
unit.

Addr
ByteEN

Data Bus

WriteAck

Addr_Ack

Address

49

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

arrays in local buffers has a direct link to the local buffer system. The stream units
also support arrays of constants (Figure 3.13b). Lik&tBE module, the stream unit

allocates ROM storing the array of constants.
3.5 Execution Model

Figure 3.14a shows a synopsis of the FSNCBD in Figure 3.2b. In a sequential
execution model, a control transfer occurs (FSM state changes) when a basic block of
instructions (e.gB00, B0} finishes execution and a control transfer operation (
switch is executed. According to this model, a CE will not initiate a new execution of
a successor module (PE or CE) until that successor finishes previous execution. A PE
(or CE) emits a true finish signal to transfer control back to its parent CE. For
example PEO2_finish and PEOQ3_finish signals used in Figure 3.14a FSM are
generated bYE(L, ;) andPE(, 5 (Figure 3.2b), respectively. This FSM model will
reduce the architecture into a sequential processor consisting of multiple hardware
units executing one at a time. Figure 3.15a depicts the sequential execution flow of all

architecture components.

SOpenCL uses a concurrent execution flow, instead of the slower sequential
model. A control transfer from a basic block occurs when it finishes execution, but a
control transfer from a successor PE or CE will not wait for a finish signal, given the
destination is known at compile time.

Figure 3.14b shows a synopsis of the FSM with concurrent execution model.
When the FSM state reaches sta@&02 and PEO3 CEO children PE(, ;) and

case (fsm_state)

BOO : next state = (BOO_finish)? BOO_destination : fsm state;
PEO2 : next state = (PE02_finish)? PEO3 : fsm_state;
PEO3 : next state = (PEO3_finish)? B0l : fsm_state;
BO1 : next state = (BOl_finish)? BOl_destination : fsm state;
EXIT : next_state = (start)? BOO : fsm_state;

endcase
(a)

case (fsm_state)
BOO : next_state
PEO2 : next_state
PEO3 : next_state
BOl : next_state
EXIT : next_ state
endcase

(BOO_finish)? BOO_destination : fsm_state;
PEO3;
BO1;
(BO1_finish)? BOl_destination : fsm_state;
(start)? BOO : fsm_state;

(®)

Figure 3.14: Synopsis of the FSM of CEO. (a) Sequential execution mode
FSM. (b) Concurrent execution mode FSM. The FSM in (b) drops signals
PEO2_finishandPEOQ3_finishin state?E02andPEQ3,respectively.

50

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Sequential Concurrent

Time Time

1 | 1 1 1 1
CE ¢
Cho |l | | | |

PELrLz

PELn;

CE1

PELIJ!

CE> I |
PEinn

PELZJ

(@) (b)

Figure 3.15: Timing for a work-item execution for the architecture of Figure 3.2b
using (a) sequential execution flow, and (b) concurrent execution flow.

PE(, s are triggered. The FSM in Figure 3.14b drops sigR&®2_finishand
PEO03_finishin statedPE02andPEO03respectively. BotlPE(L, ;) andPE(L, 5 will be

triggered with distance one clock cycle. In other words, both modules will execute in
parallel as long as there are no data dependencies between them. Figure 3.15b depicts

the concurrent execution flow.

Concurrent flow requires a mechanism to preserve data dependencies between
multiple PE and CE modules. A simple handshake synchronization mechanism is
used. Two PE or CE units that have either a memory or scalar data dependency will
exchange two signal§&inish andHold, and if they have multiple dependencies they
exchange multiple pairs dfinish and Hold signals one for each dependency. A
producer will emit &inish signal as soon as it finishes data computations required by
other PEs and CEs. A consumer scansFihesh signal continuously and saves the
incoming data in a FIFO when tHenish signal is true. If the data FIFO at a
consumer is full, the consumer will emitHold signal and the producer will stall
execution until the consumer can absorb the data. For memory dependencies, the
consumer (reader or writer) will save tR@ish signal itself in the FIFO since the

data saved either in local or global memory.

Adopting the concurrent execution model allows parallel execution of multiple
independent PE and CE modules. One major benefit is hiding prologue and epilogue
latencies of inner most loops (Figure 3.16). In the PE modulé@t¢anddatapath

run as separated entities. Figure 3.16a shows the sequential execution model,

51

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

according to which the next iteration of an outer loop can be initiated only after the
last iteration of the inner loop. The sequential model creates execution bubbles at the
prologue and epilogue of each outer loop iteratiBm0(and ET2 respectively),
during which computing resources remain idle, thus causing unnecessary execution
delays.ETO refers to the execution time of computations in the outer loop executed
before a PE module is initiateBT1 refers to the execution time of the PE module.
And ET2refers to the execution time of computations in the outer loop executed after
the PE module finishes executiofin in Figure 3.16 refers to the time required to
initialize the datapath(and theSoutAlignunit) with input data. In the sequential
execution model, at least one of the PE module componA@y), (datapath or

SoutAlignunit) stays idle.

Using the concurrent execution model we can ameliorate the sequential execution
model inefficiency. By initiating the next outer loop iteration, the parent CE will
retrigger the successor PE while it still executes the work load of previous iterations.
In Figure 3.14b, the FSM state will reach tR&02 and PEO3 states while the
corresponding PE children still executing previous iterations. This early trigger of a
child, forces théAGU anddatapathto start execution of next outer loop iterations as

soon as it finishes previous ones (Figure 3.16b).

ETO

ET1

ET2
ETO| |

ET1

-
(@ (b)

Figure 3.16. Nested loop execution model (a) when there is no overlap
between successive outer loop iterations (sequential model) and (b) when
successive outer loops overlap (concurrent mod&hAGU yellow,
Datapath blue, andSoutAlign green

52

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

3.6 Related Work

Prior research in architectural synthesis has investigated a variety of hardware
accelerators architectures. The variations between the introduced architectures
resulted mainly from the way each architecture partitioned the input specification into

multiple blocks and the interconnect between them.

PICO-NPA [13] generates a Non-Programmable Accelerator (NPA) for a C
function comprising a single perfectly nested loop. The NPA architecture consists of
an array of multiple instances of a datapath processor, a memory controller, a control
unit, and an interface to the host processor (Figure 3.17a). The architecture includes
also local memories shared by the datapath processors. A datapath instance
implements a modulo-schedule of the inner most loop in the loop nest (Figure 3.17b).
The PICO-NPA compiler distributes outer loops iterations over the allocated datapath
processors equally. It is the responsibility of the host processor to initiate processors

execution, initialize processors with data and loops indices.

The PICO-NPA architecture is a paradigm for a coprocessor with a host processor
as its central control unit. While this paradigm provides an efficient implementation
of a coprocessor and can speedup loop execution, shifting the control logic to the host
processor restricts parallelism between multiple NPA coprocessors, and reduces

NPAs to application specific execution units in a VLIW processor.

The Trident system [26] synthesizes a hardware accelerator from a C function
with one or more arbitrary loop nests. Trident performs if-conversion (predication) to

generate hyper blocks of instructions. A hyper block is created by removing all

(a) (b)

Figure 3.17: PICO-NPA system. Figure copied from [13]. (a) NPA architecture:
systolic array of processing cores. (b) Processing core datapath.

53

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Figure 3.18: Trident system target architecture. Figure copied from [26].

branch instructions between a set of basic blocks and putting their instructions in a
single block. Trident uses If-conversion to create hyper blocks. The Trident system
generates an architecture consisting of multiple subcircuits each implements a
hyperblock (Figure 3.18). A subcircuit consists of a state machine and a datapath. All
subcircuits share a single file register to store scalar variables. The architecture top
circuit includes a control module that manages control transfers between hyper blocks
and exchange control signals with a host processor. Trident is one of the few
synthesis tools that support floating point operations using multiple libraries.

Like PICO-NPA, Trident system doesn't provide any sort of synchronization
mechanism between multiple hyper blocks, hence, blocks of Figure 3.18 execute
sequentially. On the other hand, Laura [44] architecture utilizes sophisticated
synchronization mechanisms allowing multiple processing units to run in parallel.
Laura architecture (Figure 3.19) follows closely a Kahn Process Network (KPN)
specification [45]. Laura uses th@ompaancompiler [46] to generate a KPN
specification from Matlab applications. The work in [47] builds upon Laura
framework to support C functions.

A KPN computation model assumes concurrent autonomous virtual processes
(VP) that communicate in point to point fashion over unbounded FIFO channels. In
KPN model, a VP is a perfectly nested loop. KPN computation model is applicable on
streaming applications with regular data streams. The streaming feature of KPN
models allows pipelining producer-consumer VPs. To overcome the issue of

54

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

(@ (b)

Figure 3.19: Laura target architecture. Figure copied from [44]Nétwork o

KPN virtual processes. (b) Architecture of a VP process.

unbounded FIFO channels in a KPN, Laura supports the use of bounded FIFO
channels by applying blocking write synchronization and blocking read
synchronization mechanisms.

Virtual process architecture includes three units; read unit, execute unit, and a
write unit. In [44], PICO system is used to generate the hardware for the execute unit.
Read and write units pop and push data from the proper FIFO channel without the
need for address generation. A VP starts execution once all its input data are valid.

ROCCC compiler [48] implies architecture similar to Laura architecture. ROCCC
architecture consists of a network of modules, in which each module implements a C
function. According to ROCCC programming model, a C function consists of an /0O
interface represented as a data structure and an instantiation of a function performs
the computation. ROCCC module architecture (Figure 3.20a) decouples memory
accesses from datapath computations. Since ROCCC supports regular memory
accesses known at compile time, memory accesses are configured at compile time. A
smart buffer handles data reuses by keeping data tokens for their lifetime. This
requires the compiler to perform data reuse analysis and configure the buffers at
compile time.

Similar to Laura and ROCCC architectures, Optimus [36] generates uses an
architectural template callefilter (Figure 3.20b). Optimus stream programming
model represents a program as communicating filters. The template consists of five
main components: input queues, output queues, memaories, the filter itself, and the
controller. Input and output queues are used to send and receive data. Each filter can

55

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

(@) (b)

Figure 3.20: & ROCCC Module architecture model. Figure copied from [48].
(b) Optimus Filter template. Figure copied from [36].

be connected to several memory components. All the memory modules are local to
each filter. The hardware block implementing the filter consists ofvtitk module
(datapath) which performs the computations and an optimitalmodule which
executes once to initiate the filter. The controller makes sure thiaittfignction gets

executed only once before the first invocation of the work function.

Contrary to Laura and ROCCC interconnect model, MARC system [49] uses
many-core style architecture. The architecture consists of a C-core (Control
processor), and many A-Cores (Arithmetic cores) as depicted in Figure 3.21. Each
core has its own private/local memory (P/L), and access to global multiport memory
through the interconnect network. The datapath of an A-Core can be a simple RISC
style processor with 5-stage pipeline, or an application specific core. MARC system
builds application specific A-Core datapaths each supporting a set of Super
Instructions. A super instruction is a cluster of simple instructions that have a
common computation pattern. The scheduler is responsible for mapping statically

scheduled instructions on proper A-Core datapaths.

MARC architecture allows as many A-cores to execute in parallel as soon as each
core has all its input data available. To exchange data, A-cores will go through global
memory, because there are no registers between A-cores. Instructions executing on
the same A-Core, share data through A-Core private and local memory. While
application specific A-Cores achieve a significant speedup in computations, the

absence of point-to-point communication between A-Cores increases the pressure on

56

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

global memory. Scheduling instructions on A-Cores should be done carefully to

minimize the number of data dependencies between multiple cores.

Figure 3.21: MARC System Architecture. Figure copied from [49].

57

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

CHAPTER 4

SILICON OPENCL BACKEND

SOpenCL backend applies a series of transformations prior to hardware generation
(Figure 4.1). These transformations are used for hardware optimizations and are used
as a means for generating customized hardware accelerators based on the template
described in Chapter 3. Each transformation has a corresponding hardware support in

the architectural template of Chapter 3 as will be explained in this section.
4.1 Bitwidth Optimization

General purpose processors (GPP) include functional units, such as ALUS,
multipliers, etc. of standard size, (32 or 64 bits). As a result, compilers targeting GPP
based platforms produce assembly instructions of the same bitwidth. However, when
we design a customized hardware accelerator for a given application, we can control
the size of each allocated functional unit. Hence, it is important to remove any
redundant bits in every instruction size to minimize the size of functional units, and

reduce overall area.

Bitwdith optimization has been developed as a separate LLVM optimization pass
to compute the minimum number of bits needed to represent every integer variable

(i.e. instruction) in the application. On the other hand, floating point variables are

Transformations

C | > LLVM - Optimized Bitwidth Code | Code

Kernel Cempilation LLVM-IR | Optimizatien g I ng Slicing Customization |
____Hardware Generation
FPGA Synthesi Synthesizable _{ Verilog . ; User
Bitstream <~ P&R ¢ Verilog <T Generation ¢ Scheduling <«+— Performance
AN Requirements

Accelerator

Simulation «4— Testbench «——
Template

Figure 4.1: SOpenCL backend transformations.

58

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

IEEE-754 compliant and use the 32-bit for single and 64-bit for double precision,

respectively.

Bitwidth optimization for integer variables is a value-range propagation problem.
The value range (e.g. 0 to 255 for char variables) of a variable is propagated through
the program data flow graph (DFG) to compute the value range of subsequent
variables. The bitwidth optimization algorithm uses three types of information as

input to the value propagation engine:

e Variable data typeData types likechar, unsigned chaindicate a value range
[-128,127] and [0,255], respectively.

e Static Array SizeStatic arrays size likA[256] can be used as an upper bound on

array index variables.

e Loop carried linear expressions and loop trip couatloop carried expression,
like most loop iteration index variables (e.g. k += 2), can be solved provided that

the loop trip count is known and the expression is linear.

As an example, refer to Figure 4.2. Input data str&aamdB havechar data type
with value range [-128, 127]. Propagating their value range to variablasd s1
leads to value range [-256, 254] and [-255,255], respectively. The staticCit@ly
size places a bound on the variaNlehence the value range [1, 16] . The variable
value range is computed using its loop carried expression, and value raNge of
hence the variabletakes value range [1, 16]. Using the computed value range for

each variable, we compute the number of bits required to represent that value range

[-128 : 127] 8-bits

int foo (char * A, char * B, int N) {

int i, s0, sl, C[16];

9-bits Cc[ol = 0;
[-256 : 254]-»s0 = A[0] + B[O];
5-bits
1 : 16]—L [1 : 16]
S-bits for (i =1; i < N; i++){
[-255 : 255]—> s1 = A[i] - BIli]
9-bits C[i] = sl * sO + C[1 - 1];
}

return C[N-1];

Figure 4.2: Bitwidth optimization example.

59

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

(as shown in Figure 4.2).

Bitwidth optimization significantly reduces the size of functional and storage
units. Instead of 32x32 multiplier, we need only a 9x9 multiplier to congiit)
and instead of a 32-bit adder, a 9-bit adder suffices to coraputel.

4.2 Predication

421 Overview

Wide-issue architectures require a sufficient amount of instruction level
parallelism to achieve peak performance. Control transfer instructions impose a
significant restriction on available Instruction Level Parallelism (ILP), and hence,

lead to a serious restriction on performance.

Many studies proposed predicated execution as a method to increase ILP [51, 53,
55]. Predicated execution eliminates control transfer instructions and replaces them
by predicate-defining instructions and guarding instructions. This transformation
replaces control dependencies with data dependencies. An instruction is executed as
soon as its data operands and predicates are available. Compilers support predicated
execution by applyindf-Conversiontransformation, in which code with multiple
basic blocks of instructions is translated into a single block Figure 4.3 shows a
simple example of the outcome of If-conversion. Instructithsand 11 define
predicates, whil¢2 andl3 are predicated instructions. The effect of a predicate on the
instruction isto validate (allows it to write its result) or invalidate its outplut cases

of load/store instructions, a predicate qualifies memory accesses.

Predication offers many benefits. ILP is increased by allowing separate control
paths to be executed in parallel. Some optimizations like modulo scheduling are

difficult to be applied on code segments with control-flow. Optimizations like

bb0:

c=cmp eqgt, O

br c, bbl, bb2 bb0:

\ 10: p0 = cmp eq t, 0
> Il: Pl = not p0
L l I2: (p0) r2 = 1ldw 0(A)
bbl: bb2: I3: (pl) r2 = add a, 1
r2 = ldw 0(3) r2 = add a, 1

Figure 4.3: IF-Conversion using LLVM assemblWultiple blocks o
instructions are merged into a single block.

60

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

redundant and dead instructions elimination will be more effective on a code free of

control instructions.

4.2.2 Prior Work

For many years, If-conversion studies have been conducted by simulating code
generated by experimental compilers. Recently, predicated execution is supported on
almost all high performance processors VLIW/EPIC processors. Multiflow-200
architecture [53] provided &electinstruction to select a data outcome from multiple
control paths. Later Multiflow architectures supported conditional-write for store and
floating point instructions [53]. Many architectures adopted conditional move
instruction (CMOQOV) as in DEC/Compag Alpha and SUN SPARC V9 [55, 57].

Cydra5 was the first architecture that fully supported word-wide instruction
predication. Every wide-word instruction can be made conditional on a bit in the
predicates register file (Iteration Control Register) [53, 55] Intel 1A-64 (Itanium) was
the first general purpose architecture that fully supported predication. Each
instruction specifies a 1-bit predicate register, and if the value is true the instruction is
executed, otherwise, the instruction will have no effect [52, 54]. Predicate registers
are set by compare instructions, where each compare instruction is specified with the

predicate registers to update.

4.2.3 Predication Algorithm

SOpenCL implements If-conversion as a separate pass in LLVM compiler. If-
conversion is used to transform control dependencies in inner-most loops into data

dependencies in order to facilitate modulo scheduling and increase ILP.

4.2.3.1 If-conversion algorithm

Algorithm 4.1 depicts the pseudo code of the used If-conversion algorithm. The
algorithm first put the blocks of the inner most loop in execution order, i.e. a block
comes in the list after all its predecessors. The algorithm then iterates the ordered
blocks and for each block it first computes the block predicate using

computeBlockPredicatiinction. Then, it process block instructions by replaé&hg

61

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

instructions, removindpranch instructions and computing destination blocks partial

predicates. At the end, it computes the loop header block predicate.

The replacePhilnstructiorfunction replaces &hi instruction in blockBi with a
sequence ofselectinstructions using partial predicates computed for bIBCkA
partial predicate is a predicate of blo& generated from only one of its
predecessors. BlocBi will have as many partial predicates as the number of its
predecessor blocks. In Figure 4.44&,instruction is a partial predicate of blobk4
corresponding it its predecessor blobkl A Phi instruction is replaced by a
sequence a$electinstructions each selecting an input data token if its condition (i.e.
partial predicate) is true, or the previous data taadactinstruction. In this sequence
only a single partial predicate will be true, and so the true data token will be passed.
In Figure 4.4c, thePhi instructionr3 is replaced by a sequence of twelect

instructionst0 andr3 in Figure 4.4d.

The computePartialPredicatesfunction removes a branch instruction and

computes partial predicates of destination blocks using the branch instruction

Algorithm 4.1: If-conversion algorithm.

Input: Inner loop code ihLVM assembly code with multiple instructions blocks.
Output: Inner loop with single block of instructions.

1: BB - Listof Innerloop Blocks
: PP - Blocks Partial Predicates List

3

4: [/ Main If Conversion algorithm
5. [IfConversion (BB){
6.
7
8

BB = ExecutionOrder (BB);

9 foreach block Bi in BB do

10: p = computeBlockPredicate (Bi, PP);
11: foreach instruction | in block Bi do
12: if 1 is Phi instruction then
13: replacePhilnstruction (I, PP
14: else if | is Branch instruction then
15: computePartialPredicates (p, I, PP);
16: else
17: copylnstruction (ry;
18: end if
19: end for
20: endfor
21:
22: ComputeHeaderPredicate (PP);
23: '}
62

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

for (i=0; i<4; i++) {
A = interpolate(Ref, i);
if (A > 255)
A = 255;
else if(A < 0)

pre:
br bb0

bbO:
i = phi (0, pre), (x6, bb5)
x0 = call (interpolate, Ref, i)

pre:

RSO rl = icmp sgt x0, 255 br bbo
Dest[i] = A; br rl, bbl, bb2 bbO:
} bbl: p = phi (1, pre), <3, bb0)
(a) br bb5 (p) i = phi (0, pre), (r6, bbo0)
bb2: z0 = call(interpolate, Ref, i);
r2 = icmp slt x0, 0 rl = icmp sgt x0, 255
pre br r2, bb3, bbd €0 = not rl
— bb3: r2 = icmp slt z0, 0
bb0 br bb5 el = not x2
bb4: c2 = and c0, cl
bb2 br bbs £0 = select rl, 255, 0
/\ bb5: 3 = select c2, 0, t0
3 = phi (255, bbl), (0, bb3), (z0, bb4) r4 = getelementptr Dest, i
EER 5 e 4 = getelementptr Dest, i (p) store r3, z4
N/ store r3, rd r5 = icmp eq i,
bb5 z5 = icmp eq i, 4 6 = add i, 1
ﬂ 6 = add i, 1 €3 = not x5

br r5, exit, bb0
exit:

®) © 0

br r5, exit, bb0

exit
exit:

Figure 4.4: If-conversion transformation for value-clipping example. (a) C code
interpolator sample. (bControl flow graph (CFG) of the LLVM code in (c). (c)
Generated LLVM assembly code. (d) Predicated LLVM code after applying
Algorithm 4.1.
condition operand. For the true destination block, the partial predicate is computed as
the AND operation of the branch condition and the predicate of the source block. In
Figure 4.4dc2 is the partial predicate fdrb4 computed from its sourdeb2 This is
the AND operation of the branch condition negatidrfrom source bloclkb2 and

the predicate0 of bb2

The computeBlockPredicatiinction computes the predicate defining instruction
of block Bi as a logical OR of all the block partial predicates. In Figure 4.4d, block
bb4 has one source blodib2 only, hence its partial predicat@ is also its predicate
instruction. The same applies to bldah2, its only partial predicate0 is also as its

predicate.

Even the loop header blodb0 is valid at each loop iteration, we introduce the
predicatep for the header block. The predicatdakes true value for the first loop
iteration and for the rest of loop iterations it takes the negation of the loop exit
condition ¢3. The header block predicate is necessary for implementing loop
termination and schedule flushing. Header predicate instruction is computed in
Algorithm 4.1 usingComputeHeaderPredicate.

Note that we do not need to replace i@ instruction of the loop header block,

because the accelerator architectural template provides special function units to

63

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

implement such Phi instructions in the loop header block. In Figure 4.4 the initial

value is0, and the loop carried valueri® which is the increment of the loop index.

Another issue to address in if-conversion is the multiple exiting points in the loop.
The exit condition represents the predicate for the exit block, the block the loop
reaches when it terminates (e.g. bleckt in Figure 4.4). We compute this predicate
as any other predicate by ORing its partial predicates. The example of Figure 4.4 has
a single exiting point with a single exit conditia’d) which is used as predicate for
theexit block. If another block in the loop reaches ¢txé block, the predicate @fxit

block is computed as the OR between the two partial predicates
4.2.3.2 Architectural Support for Predication

The architecture template of Chapter 3 provides support for predicated
instructions, by annotating each data token by a valid bit used to indicate whether the

token carries valid data or not. This valid bit is used to support predicated execution.

The architectural support we propose is exemplified in Figure 4.5. We only apply
predicate-bitsggredicatesignal in Figure 4.5) on a limited set of instructions, such as
phi, store andload instructions, beside instructions that have effects outside the loop.
The predicatesignal in Figure 4.5 is thpredicatedefining instruction of the load
operation running on thiwad FU. A falsepredicatesignal invalidates théoad FU
output data token. Similarly, a false predicated data token is ignored when it changes
memory or output data register asstore operations. This is the same effect when a
valid-bit equals 0. In the implementation of Figure 4.5, a falsely predicated
instruction resets the valid bit of the FU output queue. The effect of invalidating data

tokens propagates through the valid bits of each functional unit.

v data v data v data

Add Load
v v Data

.

v Data

Figure 4.5: Predicated execution architectural support

«
Predicate

64

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

4.3 Code Slicing

431 Overview

The aim of code slicing is to disassociate computation from data I/O and facilitate
their overlap. Decoupled data movement and computations hide memory latency by
prefetching data tokens required in later loop iterations while computations performed

on early loaded data.

Code slicing has been early introduced by Weiser [60] to facilitate programs
debugging. Later it has been used in software analysis and maintenance. According to
Weiser's approach, a slice is computed by gathering consecutive sets of indirectly
relevant statements, based on data and control dependencies. Two types of slices had
been mentioned depending on the traversal direction of a data flow bembtyard
traversal slices, andforward traversal slices. A backward slice consists of all
program statements that affect a given statement in the program. A forward slice
consists of all program statements that are affected by a given statement. Figure 4.6b
shows a backward slice that consists of all statements affecting the statement
write(product)

The slice represents a precise portion of the program that produces correct results.
Note that multiple backward (and forward) slices of a program will have replicated
statements. For example, a backward slice that computes the statement

write(sum) will include many of the statements appearing in the backward slice of

Figure 4.6b.
(1) read(n) (1) read(n)
(2) i =1; (2) 1i=1;
(3) sum = 0; (3)
(4) product = 1; (4) product = 1;
(5) while (i <= n){ (5) while (i <=n){
(6) sum = sum + i; (6)
(7) product = product * i; (7) product = product * i;
(8) i=1i+1; (8) i=1i+1;
} }
(9) write(sum); (9)
(10) write(product) ; (10) write (product) ;

(a) (b)

Figure 4.6: Code slicing. (a) Program Snippet. (b) Backward slice that campute
product statement (10). Figure copied from [60].

65

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

The form shown in Figure 4.6 is known asatic program slicing, performed
statically, when all dependencies in a data flow graph are considered. Dynamic
program slicing is a notion used when a program is sliced only according to

dependencies occurring in a specific execution of the program.

4.3.2 Slicing Algorithm

SOpenCL implements static backward code slicing in each inner loop of the
predicated C kernel as a separate pass in LLVM compiler. Code slicing is used to
identify instructions responsible for computing the input (read) addresses in each

Algorithm 4.2: Code slicing algorithm. Output saming kernel generation
similar to the input streaming kernel, with stores being the instructions of interest.

Input: Inner loop code ihLVM assembly code
Output: Two distinct modified kernels in LLVM assembly code

1: // Input Streaming Kernel generation
2: get_sin_kernel (inner_loop, InstructionList * sin_list){
3 sin_list = NULL;
4: foreach (instruction It in inner_loop)
5: if (It isa load instruction)
6: add(It , sin_list);
7
8 It = select any instruction from sin_list ;
9: while (It = NULL) {
10: foreach (predecessor (It)!=NULL)
11: add(predecessor (It), sin_list);
12: It = select any (predecessor (It)!= NULL);
13: 1}
14:
15: It = select any instruction from sin_list ;
16: while (It != NULL) {
17: pred = predicate (It);
18: if (pred = NULL){
19: foreach (predecessor (pred) != NULL)
20: if (sin_list (predecessor (pred)) == NULL){
21: pred = NULL; break; }
22: if(pred !'= NULL)
23: add(pred , sin_list);
24: W
25. //Computational Kernel generation
26: get _comp_kernel (inner_loop, InstructionList * sin_list ,
26: InstructionList * comp_list){
28: comp_list = NULL;
29: foreach (instruction It in inner_loop)
30: if It notin sin_list)
31 add(It , comp_list);
32: if (predicate (It)I=NULL)
33: add(predicate (It), comp_list);
34: }
66

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

inner loop.Code slicingstep partitions the code to two distinct kernels:

Input Streaming KernelThis kernel consists of all tHead instructions and any
instruction participating to the calculation of load addresses. The kernel drives the

hardware generation of the Input Stream AGLhAGUmodule).

Computational KernelThis is the core of the PE architecture, and comprises all
instructions that receive input data from the Input Stream Units and produce output
data to the Output Stream Units. Since data are streamed in the datapath in-order, a
popinstruction consumes the next element from the input stream without the need to
specify a memory addred8ushinstructions produce data to the output stream units
in addition to the memory write address. The computational kernel drives the

hardware generation of the datapath module.

Algorithm 4.2 depicts the pseudo code of code slicing for Input Streaming kernel
and Computational kernel. All load instructions of the inner loop and all their
predecessors, i.e. instructions used to compute memory addresses and their control
predicates are allocated to the Input streaming units. In the computational kernel,
these instructions are substituted fmp instructions used to stream data from the

input streaming unit to the datapath.

Figure 4.7b depicts a slicing example of a chroma interpolation kernel (the
LLVM-IR is shown in Figure 4.7a). The Input streaming kernel comprises all four
load instructions, their addresgdtelementptinstructions in LLVM assembly), their
predicates, and the instructions used to compute their addresses and predicates. In the
computational kernel thiwad instructions are converted pmp instructions that sink
data from input stream channeBINO, SIN1, SINZand SIN3 without the need to

generate address.

The code slicing process is applied only I/O addresses are known at compile time,
i.e. they are not dependent on runtime information. Unless this requirement is not
satisfied, the AGU cannot run ahead of the datapath since it needs to wait for data
computations. In that case, irregular runtime read/write dependencies makes it
impossible to pipeline input and output streaming units. As a result, the tool flow will
skip code slicing and the unified datapath architecture generated will also be

responsible for address generation as well data computations.

67

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

(@ (b)

Figure 4.7:Code Slicing. (a) Predicated Chroma Interpolation kernel. (b)
Streams and Computations code slices. Predicate vanablés used to gua
execution of load instructions in the Input Streaming Kernel, and pop ant
instructions in the Computational Kernel.

Moreover, if control predicates in the Input Stream kernel are data dependent, the
slicing algorithm will bypass adding control predicates to the Input streams kernel
and will makeload instructions always truly predicated. In that cés&d instructions

always generate valid addresses and read.

68

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

4.4 Indgruction Clustering

441 Overview

One of the most challenging tasks of FPGA design is achieving fully routed
circuits, especially in datapath dominated designs. According to our experimental
analysis on a set of benchmarks, routing resources, in the form of multiplexers and
interconnects occupy 70% to 80% of the design area and account for 90% of the
signal delay in computationally intensive designs, such as the LDPC benchmark
(described in section 6). Moreover, Placement and Routing (P&R) in modern FPGAs
is a very computationally intensive process, even with the use of state-of-the-art
routing algorithms. A placement and routing tool may take hours or even days to
generate a fully placed and routed design, especially in the presence of routing

congestion.

Given the routing complexity for large designs, the pressure is growing for
techniques that address the placement and routing problem at a higher abstraction
level. In a typical high level synthesis approach, the tasks of resource allocation,
scheduling and binding are applied on a set of primitive operations (basic arithmetic
and logic operations). The cost of routing resources per primitive functional unit is
increasing rapidly in modern FPGAs. For example, the area cost of a 32-bit adder
with a 4-input multiplexer on each input port is dominated by the multiplexers tree
(67% of the FPGA slices).

Generation of application specificacro-instructionss a common practice among
instruction-set extensions designers [61, 62, 63, 64]. &watro-instructionscan
substitute a set of primitive operations and consume fewer resources. Regular
computation patterns that appear repetitively in a program DFG are strong candidates
to be implemented as macro-instructions. As an example, macro-instrction
Figure 4.8b which consists of two successive additions results into a more compact
and efficient circuit, requiring fewer resources (i.e. multiplexers) than the individual
primitive ADD operations. A macro-instruction can be designed to optimize a set of
different criteria, such as silicon real-estate or latency, compared with the set of

corresponding primitive operations.

69

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Figure 4.8: Scheduling and binding of a DFG will): grimitive instructions.

(b) Mixture of primitive and macro instruction. Macro instructién is

scheduled on the Macro FU (MFK)which is a pipelined 3-input adder.

The generation of application specific macro-instructions is a two steps process: a)
candidate instructions identification, and b) candidate instructions selection. During
candidate instructions identification, a space exploration of a given DFG results to the
identification of a set of subgraphs, of primitive operations, each subgraph
representing a potential macro-instruction that fulfills a specific set of constraints. In
the next step, a subset of the candidate instructions is selected for the final
implementation based on a number of optimality criteria, like latency and area. A
variety of approaches have been used for the candidate instructions generation and
selection problem, including subgraph enumeration methods and techniques based on
pattern recognition [61, 62, 63, 64, 65, 66]. Our target is to exploit the characteristics
of MFUs to reduce datapath complexity, and hence, reduce routing overhead and

improve performance.

In this work we propose the use of a grammar-induction approach for macro-
instructions generation and selection. Grammar induction is an established technique
used in string and tree compression algorithms [67, 68]. It is a very efficient approach
to extract repetitive patterns from a data sequence and to create hierarchical models of
such patterns that can be readily understood, analyzed and applied in other domains.
In this paper we extend a grammar induction technique c&8sglitur[67], to
identify and generate a set of candidate macro-instructions. The generated grammar is
composed of a set oon-terminals where a non-terminal is a subgraph of the DFG.

A non-terminal can, in turn, be composed of other non-terminals and/or primitive

operations.

Contrary to the thousands of subgraphs generated by enumeration and pattern

recognition methods, the generated grammar has a regular hierarchal structure with

70

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

few non-terminals, each serving as a potential macro-instruction. This simple
hierarchal structure results to a simpler and more compact form of macro-instructions.
To keep routing overhead to minimum, a macro functional unit (MFU) closely
follows the structure of a single type of macro-instruction (ign-terminalin the
grammar) and supports the execution of only this type. Making an MFU support the
execution of different types of macro-instructions (rules with different subgraphs)
requires adding internal configurable multiplexers on the internal edges of the MFU.
This, in turn, would come at the expense of complexity and hence would limit the
effectiveness of our approach.

One might reason that the reduction of inter-FU interconnects potentially leads to
an increase of intra-FU interconnects. However, the increase of intra-FU
interconnects does not translate into an area overhead. Intra-FU interconnects are
multiplexers free and localized. They are short interconnects between neighboring
logic slices. Moreover, intra-FU interconnects can be optimized out using the
approach for pipelining MFUs we introduce in section 4.3. In fact, the transformation
of costly, inter-FU interconnects into light weight intra-FU interconnects is the main
technique exploited by the proposed grammar driven synthesis methodology to
reduce area overhead.

4.4.2 Grammar Generation

In this section we introduce a grammar generation algorithm for systematically
discovering all repetitive computation patterns inside the DFG, or equivalently
identifying candidate sets of primitive operations to be implemented as macro-

instructions. Our algorithm is based on tBequiturgrammar inference technique,

Sequence

S - abcdbcabcedbc

Grammar S=b(a(0, 1), b(a(2, 3),4))
S BB 3

B - aAdA S=A(0,1,A(2,3,4))
A- bc A=b(a(0,1),2)

(@) (b)

Figure 4.9: Grammar representation applied @na(sequence of data
symbols, and (b) a data flow graph (DFG). Notati¢nz) means that
operatiornx has inputy andz.

71

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

originally designed for data strings compression [67].
4.4.2.1 Grammar Representation

Figure 4.@ depicts an example of a grammar representation of a sequence of
symbols. A grammar representation consists of a set of statementsuakent non-
terminals(we will use both terms interchangeably through the rest of the paper). Each
rule is a sequence of symbols that contains other rules and/or data symbols called
terminals In Figure 4.9, rule B includes both non-terminal symbaland terminal
symbols,a andd. Rule S includes non-terminaB and ruleA consists of terminal
symbolsb andc. The original statemer® can be restored by substituting each non-
terminal with its production, namely the right-hand side of the rule, until all non-

terminals are eliminated.

In this work we extend grammar inductions to also represent data flow graphs.
Figure 4.9b depicts a subgraph of a DFG represented as a compound st8ténent
simple grammar can be deduced by introducing AlleNe treat each primitive
instruction a, and b as a terminal symbol. A concern in using grammar
representations for DFGs is the operand order for non-commutative operations, such
as subtraction or division. We use clockwise humbering of input operands to denote
their order. In a DFG that consists merely of primitive instructions, each rule can be

considered as a potential compound macro-instruction.

A convenient property of grammar representations is their hierarchical structure,
which inherently integrates multiple levels of granularity. Such a multi-granular
representation of a DFG proves very handy when it comes to hardware
implementation of computationally intensive algorithms. For example, assume the
DFG subgraphsS in Figure 4.9b is part of a larger DFG, populated with multiple
subgraphs of typ&. In this caseS can function as aon-terminalin the larger DFG.

The synthesizer has the choice to implement either the macro-instréctibat
represents a fine granularity computation, or the macro-instrustidrich represents
a coarser granularity computation.

An MFU that implements a macro-instruction with coarser granularity requires
lower routing overhead because most interconnects tend to be within the FU, and not

across the FUs. By reducing inter-FU routing, final datapath implementation tends to

72

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

suffer less from routing congestion and to require lower P&R overhead. However, a
coarser granularity macro-instruction |ik& is not necessarily fitter for
implementation. This is, for example, the case when the implementat@xegfires

many resources and at the same time there are just a few occurrei®es thé
program to reuse the MFU that impleme8tdn this case, a finer granularity macro-
instruction like A which costs less resources and may have many more similar
patterns in the program seems to be fitter for implementation. In section 4.4.3 we will

introduce a systematic method for selecting between different granularity levels.
4.4.2.2 Generation of Grammar-based DFG representation

The grammar generation algorithm traverses the DFG and discovers repetitive
patterns by matching pairs of instructions. A pair of instructigas denotes that the
output of instructiora is an operand to instructidnas shown in Figure 4.9b. We call

instructionb destination node and instructiansource node. The parenthesid{g)

Algorithm 4.3: Grammar Extraction Algorithm
Input: Data Flow Graph
Output: Set of Grammar Rules

1. DI[N] - Data Flow Graph (DFG) nodes list
N — Number of DFG nodes
M - Set of matched node pairs
G - Grammar’s rules set.

Order Dnodes in reverse topological order;

3

4

5

6

7

8: index =0;

9: while (index < N) do

10 R = D[index];

11 Max = 0;

12: for each operand P of instruction R do

13: Pair=R (P)

14: if (!check_output_ports(Pair)) continue ;
15 if (! check_convexity(Pair)) continue ;
16 (Size, Mt) = find_matching_pairs(D, Pair);
17 If (Size > Max) then

18 M
19 Max
20: end if
21: end for
22: if (Max>0) then

23: update_grammar(G M),

24 update_destination_nodes(D, M),
25: else

26: index += 1,

27: end if

28: end while

M

Size

73

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

is used to express the instruction-operand relationship of instrubtamda.

The rules of a grammar generated accordirfggiguiturshare two properties:

(1) Digram uniquenessA digram is a pair of adjacent symbols, each being a
terminal or non-terminal e.gA in Figure 4.9a. Each digram should appear
exactly once in the productions (right-hand side) of the grammar rules.

(2) Rule Utility: Each rule in the grammar should appear at least twice in the
productions of other, higher-level rules. This property ensures that all rules are

useful.

In addition to the above constraints we introduce the following constraints,

specifically for data flow graphs:

(1) Output ports numbefThe number of outputs of a compound statement described
by a ruleS should not exceed an upper limg,. For N, larger than one, MFU
with multiple output ports (e.g. performs multiple computations in parallel) is
feasible. This constraint helps reduce the complexity of the pattern identification

and selection process by reducing the amount of feasible patterns.

(2) Convexity A rule is a representation of a convex subgraph in the DFG. A
subgraphS is convex if there is no path from a nodé€S to a node

VE Sthrough a nodd&Ve S,

(3) Data computation instructions onlyoad, store, and control instruction nodes

cannot be included as terminals in the grammar rules.

Algorithm 4.3 outlines the pseudo code of the grammar generation algorithm and
Figure 4.10 shows the steps using a motivational example. The algorithm starts by
sorting the DFG nodes in a reverse topological order. In Figure 4.10a, each node is
assigned a number indicating its reverse topological order.

Given the sorted DFG, the algorithm selects the first nodédestination node
in our example, and builds the template pairs for each operand of then@ga2) (
andn0(n3)in our example)lf a template pair satisfies thwitput ports number and
convexity tests, the algorithm searches for additional instances of the template in the
DFG, using the subroutinBnd_matching_pairs The function returns a lig¥l; of

74

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

pairs of instructions matching the template pair.

A matching instance should have the same operations as the template pair and,
generally, the same order of operands. The order of operands is ignored in case the
destination node in the template pair is a commutative operation such as addition.
From all the template pairs derived fro® namelynO(n2)(Figure 4.10b) and0(n3)

(Figure 4.10c), we greedily choose to consider the template pair with the maximum
number of instances for implementation as a macro-instruction. In our example
(Figure 4.10d) we chose the template pdl) (corresponding ta0(n3) which has 5
occurrences rather than the template péa) (corresponding tm0(n2) which has 2

occurrences.

When a template pair is chosen, the algorithm will update the grammar using the

ni3 %’11' nls /

nn + + @
n10] nil \ "2
né n7
n2n
n0 ”I®
(@)
A=2a(0,b(1,2))
A =a(0,b(1,2))
® ® B =A(a(0),0, 1)
® B@ .
L ©
® © W ®d
@ @ o ®
% ® ® @
() (0]
A a0, bL2) A=a(0,b(1,2))

B=A(a(c(0)), c(0), 1) B = A(a(0, e(1)), <(1), 2)

®

(@)

() Q? C=A(c(0), 1, 2)
SN
@ B @
%]

Figure 4.10: Motivational example showing the steps of Algorithmid.gis cas
output ports number constraint is set to ddg:E 1). The final generated gramr
is depicted inK).Three potential clusters of instructions can be implementec
Macro FU.

75

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

subroutineupdategrammain one of two ways:

(1) If the destination node in the pair is a terminal, i.e. a primitive instruction, the
algorithm generates a new rule. In Figure 4.10d we create a new falethe
paira(b) becausa is a primitive operation.

(2) If the destination node in the pairnen-terminal(e.g. nodeA in Figure 4.10e),
then;

a. If all its occurrences in the DFG have a matching pair @&(g) in Figure

4.10e), we extend then-terminal ruleof the destination node.
b. Otherwise, we create a new rule.

In Figure 4.10e, not all the occurrences of the destination Addee a matching
pair A(a) (only 2 of the 5 occurrences Af, so we create the new ruide However, in
Figure 4.10g, all occurrences of the destination idtave a matching paB(c), so

we extend the rule @ to includec.

After updating the grammar, the algorithm updates the destination node in each
matching pair using the subroutinpdate_destination_noak follows:

(1) Substitute the destination node of each matching pair bgnaterminalnode.
E.g. nodea in the paira(b) of Figure 4.10c becomes non-terminal ndde
Figure 4.10d.

(2) Add the source node in the pdirif the paira(b) of Figure 4.10c) to the internal
subgraph of the destination node. Each node marketbderminal has an
internal subgraph which is a cut of the original DFG. In Figure 4.10d, non-
terminal nodéA corresponds to subgrapkD, b(1, 2)).

(3) Finally, the algorithm updates the operands list of the newly created non-terminal
node to include the operands of the source node in the pair, and empties the

operands list of the source node.

The process is repeated on the new state of the DFG, searching for templates
(pairs of nodes) having the newly inserted non-terminal as destination. In Figure
4.10e, after merging terminal nodeto non-terminal nodd, the algorithm repeats
the process of building template pairs and searching for matches using destination
nodeA which now has two more operandsaandA, to nodeb. If the algorithm fails to

76

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Computational Complexity « Boperimental Results ——Worst Case (N2
100000000

1000000 /

/ .
*
10000 d

100

I nstruction pair
comparisons

1

1 10 100 1000 10000
DFG size (#nodes)

Figure 4.11: Experimental evaluation of the comfioral complexity of Algorithr
4.3 The data points represent the number of instruction pair comparisons o
experimentally on the benchmarks set of Table IV. The theoretically predictec
case complexity is also depicted in the graph (continuous line). Both the x-aaied y-
are in logarithmic scale.

find matching pairs having the newly inserted non-terminal as destination node, it
continues with the next node in the sorted DFG list. The iterative process continues

until there are no more nodes to consider as destination nodes.
4.4.2.3 Computational Complexity and Correctness

For a DFG withN nodes andE edges, the grammar generation algorithm
computational complexity in the worst case scenario (where the DFG has no
repetitive patterns) i©O(N’). The computational complexity for the worst case

scenario can be derived as follows:

(1) Each edge in the DFG is compared with each other edga the DFG wheré
j. Hence, the maximum number of search stepg*{&-1), in the case no
patterns are detected. Otherwise, each time a pattern instance is substituted by a
macro instruction, the total number of edges in the DFG is reduced by at least 2
(at least 2 instances of the pattern, involving at least 2 edges, are substituted by
macro nodes), and the total number of search steps is reduced accordingly.

(2) For a DFG without recurrent circuits and, the total number of ddgeshe DFG
is linearly dependent on the number of noNefience the maximum number of
search steps B(N?).

Figure 4.11 depicts the computational complexity (in terms of the total number of
instruction pair comparisons) observed experimentally by applying the algorithm on
the benchmark base used in the experimental evaluation (Section 5). Their

77

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

characteristics are summarized in Table IV. The graph also includes a f{ld} of
N? (Worst Case). It is clear that in all cases, the overhead of the algorithm is lower
than theO(N?) worst-case complexity. In fact in practice the worst-case upper bound

proves overly conservative.

The computational complexity of the algorithm is significantly lower than that of
enumeration based algorithms, which are characterized by exponential complexity.
For all experiments described in Section 5, the execution time of the algorithm was
less than 1 second. Moreover, the significant reduction in synthesis, placement &
routing runtime for large values dfl in the vast majority of the experiments
overweighs the grammar generation runtime overhead, leading to overall reduction in

the design generation runtime.

The algorithm does not remove DFG nodes, not even reorganize them. It just
groups them together without changing their external or internal connections in the
DFG, so essentially, the original and the compressed DFGs are equivalent. Therefore,

the algorithm is correct.

4.4.3 Grammar-Driven Datapath Synthesis Flow

The hierarchical grammar representation of a DFG can be exploited in many
practical problems such as DFG compression. Since each FU in a datapath can be
typically reused for multiple DFG operations, a multiplexer tree is needed at the input
ports of each FU to select among a multitude of inputs. Multiplexer trees may cost
more in terms of area than the FU itself, specifically for simpler FUs that perform
basic arithmetic and logic operations. For example, a 2-input 32-bit multiplexer
consumes as many FPGA logic cells as a 2-input adder or a logic operator of the same
bitwidth. Therefore, if a 2-input adder is driven by an 8-input multiplexer tree at each
of its inputs, the cost of the adder will be smaller than the cost of the multiplexer tree.
If all instances of a grammar rule are implemented as a macro functional unit (MFU),
where the internal data flows are free of multiplexers, the area gain may be
significant; furthermore, reducing routing complexity leads to reducing routing
latency, and time the P&R tool chain requires to place and route the design.

78

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

DFG | pFG .| Grammar .| Rules N Scheduling &
Slicing| DFG |Generation| Ryles Selection Implementation| RTL-level
Slices DFG Datapath

Figure 4.12: Grammar based datapath synthesis flow.

Figure 4.12 shows the complete grammar-driven datapath synthesis flow,
including instruction clustering. For each input DFG we generate the datapath RTL
that implements the DFG functionality. Given the original input DFG, the synthesis
flow starts by slicing the DFG into one or more smaller subgraphs. Then, the
grammar generation engine processes each DFG slice separately and generates the
grammar. A subset of the non-terminal rules is selected to generate macro-
instructions. Given the selected set of rules, the algorithm will produce a new DFG

incorporating primitive instructions and macro-instructions.

4.4.3.1 Data Flow Graph Slicing

A preliminary step before grammar generation in our tool is the slicing of the
given DFG into smaller DFGs (Figure 4.13). In some cases, for example when the
DFG expresses computation of an unrolled, data-parallel loop, the graph consists of
multiple strongly connected subgraphs (slices), each corresponding to a loop iteration.
The objective of DFG slicing is to treat parallel data flows within a DFG
independently in grammar generation, scheduling and binding. For grammar
generation, the search space for matching pairs is smaller when applied on DFG slices
rather than the original DFG, which will speed up the grammar generation algorithm.
Another important benefit is the creation of isolated islands of resources (FUs,
registers) by preventing an instruction in a DFG slice from being scheduled on
resources of another DFG slice. These isolated islands of resources make the task of

the placement & routing much easier.

DFG slicing corresponds to identifying the strongly connected components of the
DFG. We use a modified version of the path-based strong component algorithm
described by Cheriyan and Mehlhorn [69]. Starting from each leaf node of the
original DFG,n0, n1, andn2 in Figure 4.13, the slicing algorithm iteratively moves
up the graph and tracks the operand nodes of each selected node. At first, both DFG

slices A and B of Figure 4.13 include two common nod®sandcl (Figure 4.12).

79

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

DFG Slice: A DFG Slice: B

Figure 4.13: DFG slicing example. The original DFG is partitioned into two
independent slices.
Since the two slices are strongly connected, we exclude the two common nodes from
both slices. A slice of a DFG is created from each leaf node and DFGs with no

common nodes belong to different slices.
4.4.3.2 Grammar Generation & Selection

Following DFG slicing, the flow continues with the grammar generation algorithm
described in Section 4.4.2, which is applied independently on each slice. Hence, each

DFG slice will end up with its own grammar representation.

Grammar-driven data compression algorithms normally use all the grammar rules
to compress a sequence of data symbols. However, in our case, a subset of rules can
be used to implement MFUs. As mentioned earlier, grammar rules correspond to
candidate macro-instructions — which can be implemented as custom MFUs — at
different granularities. Therefore, the synthesizer needs to select the optimal

granularity for the generation of macro-instructions, according to a set of criteria.

The purpose of this step is to identify an optimal subset of grammar rules that
minimizes routing density and reduces total area. Algorithm 4.4 summarizes the
greedy selection heuristic we introduce in our work. The selection heuristic uses a
fitness function to assign weights to each rule in the generated grammar. At each step,
the rule with the highest fithess value is selected to be implemented as an MFU and
all instances of the selected rule are removed from the grammar. Note that when a

rule is selected, all grammar rules using this rule as a non-terminal in their

80

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

productions are essentially also removed from the grammar and they are no longer
considered for implementation as MFUs. Otherwise, multiple different MFUs would

be generated, executing the same primitive operations. After each step, the fithess
function updates the fithess of the remaining rules. The process is repeated until the

grammar is empty.

The fitness function (1) uses a set of metrics to estimate the gain from
implementing rulé as an MFU. The metrics aim to rank the grammar rules based on

their potential to reduce routing complexity:

W =CG (LG, +MUXG |

1)
The following paragraphs detail the parameters of (1).

Coverage Gain (CG)The coverage gain for ruleis a normalized value of the
total number of primitive instructions in the DFG covered by the specific rule. The
metric is computed in (2). Higher coverage of the DFG nodes means fewer primitive

FUs will be implemented individually, hence, smaller multiplexer trees. To compute a

Algorithm 4.4: Grammar Rules Selection

Input: List of Grammar Rules.
Output: Select set of grammar rules.

G - set of discovered Rules
. SR - Selected set of Rules
DT sige - Rule instances count

1
2
3
4:
5: computeMetrics(G BWA);
6:
7. while (G!'= @) do

8 OrderRules (G);

9 R= getMaxFitnessRule (G);
11: if (R r sz >2) then
12: add Rto SR

13: foreach Rule S¢!= R do
14: if Sguses Ras non-terminal then
15: remove Scfrom G
16: else if R uses Sy as non-terminal then
17: remove all instances of S¢in Rfrom G
18: end if
19: end for
20: end if
21: remove R from G
22: computeMetrics(G);
23:
24: end while
81

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

fair metric value, we compute the total number of primitive instructions that can be
covered by a given rule, instead of relying only on the count of rule instances

(occurrencefor the number of primitive instructionggeration$ per rule instance.

Coveragge= (#Occurrencg*#Operations),

CcG - Coverage

O<i ggag;)éoungcove rag Q) (2)

The coverage gain factor functions as a multiplier for two met@&andMUXG
that correspond to area gains. It is important to notice that the value of the coverage
gain metric will change each time we select a rule to be implemented as an MFU.
This happens because some of the rule instances are removed from the grammar if
they appear as non-terminals in the production of a rule selected earlier. Also the
current maximum coverage value will change, and hence, the normalized values of
CG.

Multiplexers Gain (MUXG)This metric quantifies area gains due to reduction of
number of multiplexers per instance of eagle. The metric is computed using (3).
The nominator in (3) is the difference between the total number of inputs of all
primitive FUs of an MFU Y#Operand} and the number of the MFU inputs
(#RuleOperands To quantify the gain from this difference, we divide it by
“I#Operands’

RuleOps

Z#Operandg—# RuleOperads

. -0

Ra‘th = . RuleOps
> #Operands
p=0

MUXG — Ratiq

max (Ratiop)

0< p<RulesCount

3)
Based on formula (3), we can find that the valuMbfXG tends to increase when

the number of primitive instructions in a rule increases. In other words, larger rules

will have higher multiplexers gain. However, the algorithm does not always favor

larger rules over smaller ones. A smaller rule with lower multiplexers gain per

instance may be associated with a much higher coverage gain which makes it fitter

for implementation.

82

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Logic Gain (LG): This metric quantifies the potential for reduction of logic cells
through packing of primitive instructions within an MFU (or equivalently a grammar
rule). The metric is computed using equation (4). Consider an MFU implementing the
functionf(xo, X ...%). The nominator in (4) quantifies the efficacy of fusing the logic
cells of all the primitive FUs of the MFU. LUTs in FPGAs (an LUT serves as a
function generator with limited number of inputs) have a limited number of inputs,
hence, the more the number of MFU inputs increases the more difficult it becomes to
map its function on fewer LUTSs, and therefore, we divide by the number of the MFU
input signals#RuleOperandsin equation (4).

RuleOps

> 1-A)
LogicGain = —"=%————
#RuleOperads
L6 - Logecan
OsperJ%Z(Ccvunt ogickain, (4)

The value of the parameté; in (4) is normalized in the range [0, 1] and is
characteristic for each primitive instruction tybdt quantifies the difficulty to fuse
this instruction with additional ones, in the same set of logic &glls.dependent on
the nature of the instruction, the FPGA architecture, and the synthesis, placement and
routing tool chain. We developed a set of representative subgraphs, with various
primitive instructions types and configurations, which can be used as micro-
benchmarks for systematically estimatidg on each target platform. A micro-
benchmark is a subgraph synthesized to analyze primitive FUs resources
requirements. Subgraphs, B, and C in Figure 4.10 are examples of micro-
benchmarks. This approach is described in detail in Section 4.4.3.3. For the Xilinx
Virtex 6 FPGA family for example, the characterization assigneditialue 0.5 to
add operations, whereas logicahd operations have af, value of 0.20. Theshift
operation was assigned &g value of 1.0 indicating that its logic cells cannot
accommodate additional operations, when the shift amount is variable.

Figure 4.14 shows how we apply rule selection on the grammar of the example of
Figure 4.10. The left table of Figure 4.14 contains the normalized metric parameters
and the corresponding fitness for each rule according to (1). After selecting the rule
with the maximum fitnessB(in Figure 4.10), we update the metric parameters, and

83

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

CG MUXG LG w CG MUXG LG W
A 1 0.t 098 145 A 1 0.7t 1 1.75
B 08 1 1 16 C 1 1 075 175
C 0.&€ 0.67 0.7z 083

Select Rule B Update Metrics Select Rule C

Figure 4.14: The selection process of Rules in the grammar of FigureThd.0
selected set of rulesB{ C}.
normalize their values again. Note that after removing Buleom the grammar, we
also removed two instances of rélewhich appears now in only 3 instances. Réles
and C now have the same coverage since they both cover 6 instructions. After
updating the metrics (right table of Figure 4.14), both rdlesd C have the same
weight. Since ruleC is using ruleA, OrderRulessubroutine prioritizes rul€ over
rule A, and hence the algorithm selects r@l€for implementation and removes 2
more instances of the rube Since ruleA now appears in only one instance, we can
no longer consider it for MFU implementation, because ofule utility constraint:

each rule must appear in the grammar with at least two instances.
4.4.3.3 Macro Functional Unit Pipelining

Since MFUs have a more complex structure than simple FUs, it is possible that
they will stretch clock frequency if they are assigned a single cycle for execution.
Prior to scheduling macro-instructions on the generated MFUs, we have to determine
the pipeline depth of each MFU and therefore its cycle latency, aiming at retaining
the same clock frequency as if we had no MFUs in the accelerator. Algorithm 4.5
drives the decision process of inserting pipeline registers between pairs of primitive

FUs in a given MFU. The algorithm attempts to balance timing delay by placing FUs

R2

R2
1 1 1l 1l
LUT-6 | LUT-6 || LUT-6 || LUT-6
T T T T
1 1 I I

2
R2 § E i
1 E g | 11 1] 1] L
o N < ‘ LUT-6 H LUT-6 H LUT-6 H LUT-6 ‘
" 5 £ | | | |
§ LUT-6 LUT-6 LUT-6 LUT-6 ‘x_, 1 C hai |
5 | . . 0 5 i ‘ arry chain ‘ }
ey Y
RO | | RO | | RO
(@ (b) (©)

Figure 4.15:) reference pipeline scheme used as template for the pip
algorithm. (b) Logic level of pipelined Xor and Add operators. (c) Fused Xc
Add operations logic level.

84

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

of approximately equal latency in each pipeline region

The algorithm uses as a reference a default pipelining scheme for inserting
pipeline registers in MFU. The default pipelining scheme blindly adds a pipeline
register after each primitive FU, as in the case when primitive FUs implemented
individually and not part of an MFU (Figure 4.15a). In this reference pipeline scheme,
the combinational path of a single primitive Fd-bit XOR and 4-bit ADD FUs in
Figure 4.15b) is considered as one level of logic. Hence, using the default pipelining

scheme, only one level of logic exists between two successive pipeline registers.

Algorithm 4.5 traverses the MFU subgraph and removes a pipeline register if its
removal doesn't increase the levels of logic between two other pipeline registers. For
example, in Figure 4.15a, pipeline regig&rwill be removed if it does not increase
the levels of logic between pipeline registBBandR2 Contrary to the intuition, the
removal of a pipeline register doesn't necessarily increase the levels of logic on a
combinational path between two registers on an FPGA. For example, in Figure 4.15c,
the removal of pipeline regist®lallowed fusing the logic cells of the XOR FU with
the logic cells of the ADD FU. The removal of a pipeline regiktgaroduces a new
boolean expression that may be implementable using one level of logic cells (LUTS).
In most cases, a primitive FU does not consume the whole capacity of its LUTSs.

To determine if the removal of a pipeline register will increase the number of logic

Algorithm 4.5: Custom Instruction Pipelining
Input: Custom instruction subgraph.
Output: Pipelined Macro Functional Unit.

1. N - Rule’s primitive operations

3. reverse_topological_order (N

4: foreach node N in N do

5: max =0

6: foreach user U,of Node N do
7. if (heights [k]> max) then
8 max= heights [K]

9: end if

10: end for

11: if ((max+ A)<1.0) then
12: remove_pipeline_register (N)
13: heights [I]= Ay

14: else

15: heights [I]= max + A

16: end if

17: end for

85

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

levels — in the form of LUTs —, algorithm 4.5 uses the same Zetpairameters used

in (4) to compute the logic gain metti€;. ParameteA, quantifies an estimation of

the percentage of the implementation capacity of the LUT taken by the primitive
instructionl. Similarly, if two primitive instructiong and|” are fused on the same
LUT, the summation of the corresponding area estimation paranfgtensd A
provides a good estimation of the consumption of the LUT implementation capacity

by both instructions.

In general, if the summation of area estimation paraméteérsa DFG sub-path,
is less than or equal to 1.0, we estimate that the corresponding primitive instructions
can be fused and implemented on a single LUT, or equivalently, they require the
same levels of logic as one primitive instruction. As a result, intermediate registers in
the sub-path can be removed without affecting the timing characteristics of the

circuit.

The value of the paramete for each primitive instruction is derived by
systematically applying an experimental method on a set of micro-benchmarks. The
following subsection describes in details the experimental method we introduce.

The pipelining algorithm (Algorithm 4.5) is characterized by line@(N))
computational complexity for a single MFU type, with respect to the number of
primitive FUs Q) in the MFU. For each FU node in the DFG, the algorithm examines
one or more output edges (user nddlein Algorithm 4.5). Since the maximum
number of FU operands is 3 (for the select FU), the average number of output edges
per node in the MFU graph is a constant, independem. ofherefore, the total
number of edges in the MFU ®(N) and the computational complexity of the

algorithm isO(N) as well.

Algorithm 4.5 is essentially a heuristic that could potentially lead to timing errors
if applied alone. However, the Xilinx toolchain, responsible for Synthesis, Placement
and Routing, guarantees timing correctness by appropriately manipulating frequency.
In Section 5 we present the experimental timing evaluation (Table 4.3) on a set of
microbenchmarks (Figure 4.16) using both full and selective pipelining. Moreover,
we present (Table 5.6) the frequency attained by the Xilinx toolchain on a set of
kernels optimized using our approach. Both sets of experimental results prove that

Algorithm 3 works efficiently.

86

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

44331 Experimental Area Estimation.

The experimental method incrementally builds sets of micro-benchmarks,
computes an initial estimate of the paraméteand refines the initial estimations at a

subsequent step. Algorithm 4.6 describes the steps of the experimental method.

Algorithm 4.6: A; parameters estimation.

Input: Set of micro benchmarks.

Output: A parameters estimated values.

- N - Primitive Operations Population.

- A - The value of parameter A plus an error]
FU - Primitive FU performs only operation s of type
MFU - Macro FU composed of one or more primitive FUs

- [/ Step 1: Initial estimate of parameter A
foreach primitive operation N in N do
Count =0
MFU =FU |
L = getAreaLUTs (MFU)
11: L._mfu =L |
12: while (Lmfu <L,)do
13: MFU = addNewFU MFU, FU)
14: L mfu = getAreaLUTs (MFU)
15: Count +=1
16: end while

17: A =1/Count

=
QUINOURWONE

18: end for
19: ~
20: Order primitive operations in N from min to max A |
21: I/l Step 2: Refine initial estimate of parameter A |
22. foreach primitive operation N in N do
23: MFU =FU
24:- L, = getAreaLUTs (MFU)
25: foreach operation N¢in Nwhere Kk less than | do
26: if A< A then
27: Count =0
28: MFU = addNewFU MFU, FU)
20: L mfu = getAreaLUTs (MFU)
30: while (L miu <L,)do
31: MFU = addNewFU MFU, FU)
32: L_mfu = getAreaLUTs (MFU)
33: Count +=1
34: end while
35: if (Count x A+ A)>1 then
36: & =Count x A, + A -1
37: A= A- 5
38: end if
39: end if
401 end for
41 A| = A|
42: end for
87

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Table 4.1: Experimentally derived values of thA, parameter for primitivi
operations for Xilinx Virtex-6 and Virtex-4 FPGA families.

And, Or, Xor, Not | Select Add, Sub, Cmp “ﬁ;‘oggaﬁg:g

Virtex 6 0.2 0.4 0.5 1.0
Virtex 4 0.33 0.67 0.67 1.0

The initial estimate of is computed by determining how many primitive FUs of
the same typ&can be packed in one level of logic of the same LUTs. The procedure
getArealLUTsperforms synthesis, placement and routing on the given FU (or MFU)
and returns the number of consumed LUTs (the combinational logic cells). The
procedureaddNewFUadds the given RUo the subgraph of the given MFU. The
process of adding more FUs of the same type continues, until the resulting subgraph

requires more LUTSs for its implementation than the single, primitive LUT.

The initial estimate is a rough approximation that represents an upper bound for
A. For example, for an addition operation, two adders can be packed in the same
number of LUTSs required for the implementation of one adder of the same bitwidth.
If a third adder is added, it will occupy a different set of LUTs. Therefore, the initial
estimate ofA\,qq takes the value 0.5. If packing a third adder on the same set of LUTs
succeeded, the estimate would be 0.33. Therefore, the real, accurate vl thad
range [0.5, 0.33).

Given the computed initial estimates of parameggrshe algorithm performs a
refinement step which attempts to reduce the range of error in the initial estimate. The
second step refines the parameiefor primitive operation of typé by computing
how many primitive operations of tyge with A, < A, can be packed in the same
LUTSs already occupied by operatibrif the summation of parametekgandA, of all
successfully packed operations is larger than one, we conclude that the value of

paramete# is over-estimated and needs to be reduced to approximate the real value.

The reason why we reduce the valugdohot A, is because the error in the value
of A is smaller than that iA,. Note that the algorithm refines operations with smaller
A before others with largek. This means the error i has been already refined to
approximate its real value before using it to refine a laAgefor example, from the
parameteA,qq Value range the error is up to 0.17. On the other hand, for Bitwise logic

operations the value range of paraméigy. is [0.2, 0.17), and hence the error span

88

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

for Agic €quals 0.03 which is much smaller than thaAgf

Table 4.1 shows the values of parameteon two Xilinx FPGA architectures;
Virtex-6 based on 6-input LUTs architecture, and Virtex-4 based on 4-input LUTs
architecture. Figure 4.16 depicts a subset of the micro-benchmarks generated and
tested using algorithm 4.6 (all FUs are 16-bit wide). Figure 4.16a corresponds to the
reference fully pipelined configurations. Pipelined configurations according to
algorithm 4.5 for Virtex-6 and Virtex-4 appear in Figure 4.16b and Figure 4.16c

respectively.

Table 4.2 summarizes the consumed LUTs for each micro-benchmark (Figure
4.16a) when all pipeline registers are removed. @hgut FUcolumn in Table I
refers to the area of the output FU (the one directly producing the output data) in the
micro-benchmark subgraph: in the examples of Figure 4.16 this idither FU for
micro-benchmarks 1 & 2, and t&electFU for the rest.

The PR-Free Configuration column reports the LUTs required for the
implementation of the full set of FUs in the micro-benchmark, whex@hss the
sum of the Al area estimation parameters of all FUs participating in the benchmark.
The results in the table are a testament of the accuracy of our area estimation
approach, even after one step of refinement. A quick summation of the Al parameters
is an excellent predictor of the area that will be required for the implementation of the
compound instruction. WhenevEA, exceeds 1.0, an additional set of LUTs will be

required to implement the set of FUs. For example, micro-benchmark #Thhsfa

Table4.2: Examples of the area (number of LUTS) consumed by a set of-
benchmarks. All primitive operations are 16-bitsdde. We use the notati
introduced in section 4.4.2 to describe the mimeachamrks. PR refers to Pipel

Register.
Virtex-6 Virtex-4
L Output) Output FU)
#| Micro-Benchmarks FU (one PR Freg A (one PR Freg A,
. Configuration . Configuration
instance) instance)
1| Add(Add(0, 1), 2) 16 16 1.0 16 30 1.34
Add (Add(Add (0,
1), 2).3) 16 32 15 16 46 2.01
3 Sel(O’SZ;(L 2,3), 16 16 0.8 16 32 1.34
Sel (0Sel(1, 2, 3),
4 XOR(4, 5)) 16 16 1.0 16 32 1.7
5|Sel(0,1, XOR(2, 3)|) 16 16 0.6 16 16 1.0

89

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

1.0 for Virtex-6, hence our estimator predicts that it will fit in the same set of LUTs

as a single Add operation.

The prediction is confirmed by the experiment. Moreover, if we implement the
compound statement as a macro FU, we do not need to insert a pipeline register
between the adders. However, for Virtexed, equals 1.34, meaning the adders
cannot be fused to a single level of LUTs (as again confirmed by the experiment).
Therefore, if we decide to implement the compound statement as a macro FU, we will
have to insert a pipeline register between the adders. In micro-benchmark #2 for
Virtex-6, the third adder increases the summation of param&ténsl.5 and hence

we have to insert a pipeline register after the second adder.

The same can be seen in the other benchmarks. In micro-benchmark #4, the
summation on th&elect-Seleqtath equals 1.34 for Virtex-4, so we do add a pipeline
register. However, on th8elect-Xorpath the summation equals 1.0, so no pipeline
register is not inserted. Observe also the case of benchmark #2 for Virtex24,The
marker has a value above 2.0. This indicates that even a second set of LUTs will not
be enough, and a third set will be needed. The prediction is, once again, confirmed by

the experimental results.

In Table 4.3 we compare the critical path delay of the reference fully pipelined
micro-benchmarks (Figure 4.15a), with selectively pipelined configurations generated

using Algorithm 4.5. In general, pipelined configurations according to our approach

@%% L% W &
L TS

(@)

Figure 4.16: Experimental method midsenchmarks. PR refers to Pipel
Register. @) Fully pipelined configurations. (b) Configurations pipeli
according to Algorithm 4.5 for Virte® FPGA. (c) Configurations pipelin
according to Algorithm 4.5 for Virtex-4 FPGA.

90

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

have a slightly longer critical path with very little effect on the clock frequency in the
context of a large datapath. The critical path delay is composed of logic and route
delay between the registers of inputs and outputs ports. Our analysis of the critical
path delay, showed that the logic delay is the same, and the slight overhead comes
from route delay. This can be expected, since when fusing two operations, more
inputs are brought to the same LUTs, which may increase slightly the route delay of
the farthest input source. Once again, the results of Table 4.3 are indicators of the
accuracy of the automated, experimental area estimation approach we use as input to

the selective pipeline registers insertion algorithm.
4.4.3.4 Scheduling and Implementation

Once a set of rules is selected for MFU implementation, each instance of a rule is
converted to a macro instruction of the specific type. Each macro instruction type will
be bounded to its own macro FU (MFU latency is computed after applying the

pipelining algorithm described in Section 4.4.3.3.

After macro-instruction formation, the resulting DFG is scheduled using modulo
scheduling. A macro instruction is scheduled only when all input data are available,
so that the functionality and internal organization of MFUs does not need to be
known to the scheduling algorithm. For example in Figure 4.10, when scheduling the
macro instruction represented by r@eall three input operands should be available.
We useSwing Modulo Scheduling (SM®)generate a schedule of the DFG nodes, as

will be detailed in Section 4.5.

Table4.3: Examples of some mic-benchmarks critical path (ns) for two ca:
Fully pipelined configuration Figure 4.46 and a configuration selectiv
pipelined using algorithm 4.5 (Figure 4.16b and Figure ¢4fb6 Virtex 6 anc
Virtex-4 respectively). All primitive FUs are 16-bits wide.

Virtex-6 Virtex-4

Micro-Benchmarks Full- Selective Full- Selective
Pipelining| Pipelining Pipelining| Pipéelining

1 Add (Add(0, 1), 2) 2.324 2.720 2.771 2771
2 |Add (Add (Add(0, 1), 2), 3) 2.460 2.770 2.766 2.766
3 Sel(0,Sel(1, 2, 3) , 4) 1.479 1.580 1.596 1.596
4S80, Se'(é’)z)' 3) XOR(4, 1 570 1.740 1.669 1.709
5 Sel(0,1, XOR(2, 3)) 1.523 1.562 1.650 1.661

91

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

45 Scheduling

Our infrastructure applies two types of scheduling algorithms: a modulo
scheduling algorithm called Swing Modulo Scheduling (SMS) [87] which is applied
on datapath and AGU kernels (input streams kernel and computational kernel), and
As Soon As Possible (ASAP) scheduling [89] applied on basic blocks assigned to the

CE modules.

Scheduling techniques are machine dependent algorithms. Scheduling instructions
on the datapath or AGU requires first allocating a number of functional units (FUSs)
before scheduling applied. The amounts and types of functional units in each AGU
and datapath are passed as an XML-based file representation specified by the user.

45.1 Modulo Scheduling
4.5.1.1 Overview

Modulo scheduling is a software pipelining technique typically applied for
pipelining loop iterations. Software pipelining on loops overlaps the execution of
successive iterations to increase throughput and to reduce the total execution time. A
modulo scheduler produces a schedule for one iteration of the loop (after several
unrolls if required), such that when this same schedule is repeatedly applied at regular
intervals, no intra- or inter-iteration dependence is violated, and no resource usage
conflicts arise between operations of either the same or distinct iterations. This

constant interval between successive iterations is called the initiation interval (ll).

A modulo schedule of a single iteration is divided into stages with stages’ count
recorded asSC [88]; each stage has a duration equal to the initiation interval.
Successive iterations of the loop are initiated after each stage finishes or after Il time
slots. Figure 4.17 shows a modulo-schedule of a loop with 10 iterations and an I
equal to 3. A schedule of a single iteration spans 4 stages. The full loop execution
flow consists of three phases: prologue execution, kernel execution, and epilogue
execution. Theprologue represents a transient phase from the beginning of loop
execution until all hardware resources become active k&heel phase represents a
steady state in the loop execution flow, which in Figure 4.17a, takes place when the

fourth iteration is initiated. In steady state all resources are fully utilized by

92

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

instructions of different loop iterations. The number in the brackets indicates the loop
iteration the instruction belongs to. The kernel pattern will repeat (Figure 4.17b) until
no more loop iterations are launched. Then #pflogue phase begins, which

gradually drains the pipeline.

The following steps summarize a generic algorithm to generate a modulo
schedule. The next section describes SMS, the specific modulo scheduler used for
SOpenCL.

1. Calculate a minimum Il bound called MIl. The minimum initiation interval (MIl)
is a lower-bound on the number of cycles required by any feasible schedule of the

loop body.
2. Put the instructions population of a loop iteration in an ordered list.

3. Perform scheduling by picking instructions from the ordered list sequentially.
Insert instructions in a free time slot in the partial schedule. If the partial schedule

fails to accommodate more instructions, increment Il and restart scheduling.

The computation of Mll is not always adequate for correctness of the schedule, but
to avoid trying Il that is too small to succeed, thereby speeding-up the modulo

scheduling process [87, 88]. Mll is computed as the maximum of two parameters;

Iter 0

ri, r2

Stage 0 | rs
9 Iter 1
4 ri, r2
Stage 1 | ¥6 S
ri 9 Iter 2
3 r4 ri, r2
Stage 2 6 rs Kernel
rio rit ro Iter 3
r1[3] r2[3] r3[1] r4[3] rs[0] S0
rs r3 r4 ri, r2 S1 S0 Prologue
Stage 3 | 17 r6 rs r6[2] r7[0] r8[3] S2 SISO
25 20 i o ro[3] r1o[1] ru1[2] ri2[0] S3 82 81 So
rs r3 r4 S3 S2 S1 SO
r7 6 S3 _S2_S1_So. .
rz oroorn E Kernel . 83 82 S1 S0)
rs r3 = TR S37s2 ST SO
r7 S3 82 S1 SO
riz rio S3 S2 S1 SO
rs S3 82 S1
r7 Epilogue 83 S22
riz S3
(a) (b)

Figure 4.17: Modulo Schedulinga)(Loop Schedule Sampleb)(Loop Executio
time Flow.

93

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Resources bound MIResMI), and Recurrence bound MRécMI|).

ResMllis a measure of how many cycles are required to map all the instructions in
a single loop iteration on the available resources (functional units) without any

resource conflicts (regardless of dependences).

ResMII for FU typef is computed as the division of the total bitwidth allocated for
FU type f, allocatedBitwidth(f) (e.g. 256-bits ALU), and the total bitwidth of
instructions in the kernel supported by the FU tyfde.g.add sub operations on
ALU). ResMIl is determined as the worst case constraint across all FU types.

ResMII(f) = AllocatedBwidth(f)/ TotallnstuctionsBiwidth(f)

RecMllis derived from the latency calculations around elementary circuits in the
dependence graph for the loop body. Assume that the sum of latencies along some
elementary circuit in the graph it atency(c)and that the sum of the distances along

that circuit isDistance(c) RecMlI for circuit ¢ is computed as the division:
RecMIl €)= Latencyc) Distancec)

The RecMll is determined by considering the worst case constraint across all circuits.

4.5.1.2 Swing Modulo Scheduling

Swing modulo-scheduling algorithm [87] is a modulo scheduling technique
designed to minimizing registers requirements and critical path delay. The algorithm
starts by building a DFG to represent all data dependences in the loop. Then, the DFG
nodes are ordered in a list. The scheduler then run on the ordered list and tries to

allocate the necessary time slots for each instruction.

Swing modulo scheduling differentiates from other modulo scheduling algorithm
in its DFG nodes ordering algorithm. It starts by ordering recurrence circuits nodes
giving the circuit with highesRecMII the highest priority. Then, it goes forth and
back on the DFG (swinging) ordering predecessors of partially ordered nodes then
successors, then predecessors and so. The later pattern of ordering is what minimizes
variables lifetimes since nodes ordered for schedule near their predecessors and

Successors.

94

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Table 4.4: Modulo Scheduled kernel example

i2[3], i23[3], ig[2], i21[2], i12[1], i15[O]
o[3], 118[3], 15[2]
03], ie[3], 431, 123, 12l 1]

— | —+ | —~+
1
N[(FR| O

4.5.1.3 Hardware Support

SOpenCL does not generate separate code segments for the prologue and epilogue

portions of the modulo schedule but instead uses the concept of valid bits.

As described in section 4.2, each data token exchanged between functional units,
or streamed in or out of the datapath is accompanied by a valid bit. That bit shows
whether the value carried by the data token is valid or not. The operation carried out
by a FU will only be valid, if all input data to the FU are valid. Since at the beginning
of a loop execution, all data tokens are reset to invalid, only data sourced by the input
streaming unit are valid. In each cycle, these data tokens spread to the rest of the
datapath-in a movement reminiscent to a wave-thus gradually enabling execution on

the FUs. This gradual triggering of the FUs implements the prologue schedule.

Figure 4.18 depicts the flow of valid bits over the whole loop execution duration
for the kernel of Table 4.4hi instructions always become valigréer) at the first
loop iteration, while the rest of the instructions become valid once all their input

operands are valid. After 10 cycles all instructions become valid, i.e. the schedule

Header predicate

Time slot turns FALSE

0123456789.. \
2 JHNNEENEEE HEER 1§
2 JHNNENEEEE NEEE
o HNNNNEEEE NEEE
i1s HINNNEEEEE BEEEE N
4 HINENEEEE NEEE BN
i INNEEEEE NEEE &R
i7 ANEENEEN. . SNENE. . BN
iv ' ANNEEEEE HEEEE BN
i8 ANEEEEE BEEEE ©EER
i21 ANEEEEE HNEEE ©BEER
9 ANEEEE HSEEE NEER
i12 EEEE BEEEE DBEEEER
i14 Al HEEE QNEEEEEER
i15 H HEEE NENEEEEERE
Prologue Kernel Epilogue

Figure 4.18: Valid-bit flow over the loop execution duration for the kernel of
Table 4.4. Green for true valid-bits and red for false valid-bits.

95

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

execution reaches the steady state.

Loop termination occurs once theader predicatépredicate of the loop header
block) became false. The header predicate is alwayls mstruction {23 in Table
4.4) with its back-edge value is the negation of the termination condiibrin(the
Table 4.4). In Figure 4.18, when the header predi2&tbecomes false it invalidates
the output of the other phi instruction®,(and iQ. The false valid bit of the phi
instructions propagates for few cycles (10 cycles) until all instructions output is

invalid, then the loop terminates.

46 Cachelnsantiation

The target of the cache in the PE architecture is to exploit temporal and spatial
locality in the access pattern of each input stream of the inner loop. A cache will be
instantiated only if at least one input stream is deemed to be able to benefit from the
use of a cache. The decision is taken independently for each input data stream,

however all input data streams eventually use the same physical cache resources.

An input data stream is a candidate to use the cache, only if it has a predictable,
regular memory access pattern, and accesses off-chip memory. Local arrays mapped
on on-chip memories are excluded because of their very low latency compared to off-
chip memories and similar to the cache latency. An input data stream with an
irregular or dynamic access pattern is not expected to benefit significantly from a

cache, since cache size is essentially just a few kilobytes due to resource limitations.

4.6.1 Memory Addresses Profiling

SOpenCL backend uses profiling of memory read accesses to determine cache
requirements. The profiler computes all addresses generated for each read operation
in the inner loop code over all the iterations of the nested loop. Then the addresses are
placed in blocks of continuous addresses. In a block of continuous addresses, the
distance between two addresses does not exceed the width of the system data bus
width (in bytes), otherwise a block of cached data will have gaps of data lines never

used. Since allocated cache has limited size (few kilobytes) and we only allocate

96

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

cache for regular data streams, hence, the gaps between useful data lines in the access

pattern will appear regularly, such gaps are expensive and are avoided.

Figure 4.19b shows the set of generated addresses blocks for the C code sample of
Figure 4.19a. In the given example a continuous addresses block repadkents
continuous addresses generated for single outer loop iteration. The profiler produces
output only for data streams with regular access pattern. A data stream considered
regular if all the generated blocks of addresses have the same size, and have an
identical addresses distances. Generated addresses blocks annotated with the outer
loop index. This annotation is used later to compute the cache reuse distance while

determining the cache configuration.

4.6.2 Cache Configuration Computation

To determine whether a cache should be instantiated or not, the hardware should
check whether a data stream is a candidate for being stored in the cache. This happens
if it is a read-only stream and has a regular access pattern which can be determined

from the profiler output. In more detail:

o Compute stream cache configuration: for each candidate data stream estimate the
degree of data reuse, reuse distance, and the cache size required to effectively

host reused data.
e Select a subset of the candidate streams for being supported by the cache.

For each candidate stream the tool computes two parametase ratioand
cache configurationReuse Ratio (reus€pr a data stream, theuse parameter

measures how many repetitive addresses generated over the loop trip as in (1). The

C Code function Continuous addresses Blocks
void CodeSample(int A[][], int C[][]){ i=0|A[0][0] ... A[0]]9] A[2][0] ... A[2][9]

Jor(i = 0: 1 < 8 i++) i=1|A[1]10] ... A[1]]9] A[3][0] ... A[3][9]
for(j=0;j<8;j++) i=2 |A[2][0] ... A[2][9] A[4][0] ... A[4][9]

Clillj] = (A[i][j] + A[i+2][j] + . X Data
Afi][j+2] + Afi+2][j+2])>>2; i=3 ARI0] ... AR21I9T| " |A41[0] ... A4][9]

} l
v

(@) (b)

Figure 4.19Example of data reuse across outer loop iteration€ ¢tade sample wi
row wise access pattern. (Bemory accesses profiler output, set of contin
addresses blocks.

97

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

reuseparameter value is in the range [0, 1].

#TotalAddresses— #UniqueAddesses

reuse =
#TotalAddresse (1)

Cache Configuration (Sizeltach data stream has its own preserved space in the
cache unit that cannot be used by other data streams. The tool flow decides the space
size and configuration for each data stream to host the amount of data reuse computed
earlier. A cache configuration consists of two parameters: Data Block[(H&iZ@
and Data Blocks CounDBCoun). The cache space size allocated for the stream is

the multiplication of both values as shown in (2).
Size = DBSize* DBCount)

A data block size[§BSiz¢ is computed from the size of a continuous addresses
block generated by the profiler. The size computed as the distance between the
minimum and maximum addresses. Then the distance is rounded to the nearer upper
power of 2. In Figure 4.19b, the data block size computed initially equal to 40 bytes
rounded up to 64 bytes. TE¥BSizesize is rounded to a power of 2 value because the
addressing scheme of cache data blocks dictates that. A cache data block is assigned
an address space that spans a power of 2 bytes. For example a 256-byte data block is
assigned a base addre®@s™*****00 . The specific address space simplifies the

process of detecting valid/invalid data in the cache.

The count of data blocks is equal to the caddese distanceConventionally,
cache reuse distance [96] is the number of distinctive data elements accessed between
two consecutive uses of the same element. In our design flow, we apply a slightly
different definition: the cache reuse distance is the number data blocks written to the
cache before a data reuse occurs. In Figure 4.19b, after 2 outer loop iterations a data

reuse occurs and 4 blocks are loaded to the cache, EBICeunt equals 4.

The reason behind choosiBiBCount to be equal to the cache reuse distance is
the regular access pattern of a candidate data stream. Because a candidate data stream
has a regular access pattern, data reuse occurs at regular distances. Hence, once we
reach the iteration where data reuse starts, data blocks loaded earlier will be reused
regularly. So we need to keep all loaded data blocks until a data reuse starts, because

after that we can replace old blocks with new ones.

98

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

The regular access pattern of a candidate data stream also drivegldcement
policy of the cache data block. Initially, the cache blocks are empty; the cache fills an
empty block for each read request that has no data in the cache. When the cache is
full, the oldest block in the cache with no pending read requests is evicted and the
block is allocated for the new read request. If all blocks have pending read requests,
the first block finish serving its current pending requests is allocated for the new read

request.

Given the computed parameteesiseandsizefor each data stream, we solve the
problem of maximizing the amount of data reuse within an upper bound constraint on
the cache size as in (3). We use exact enumeration techniques to solve the problem in
(3). An enumeration of all possible combinations is performed and the combination
with maximum total reuse is selected.

max)_ reuse, S{Z Size < Cache_Size]

ieSIN

3)
4.7 Local Buffers Synchronization

A key feature of the proposed architectural template of chapter 3, are the
asynchronous interconnect channels between a producer and a consumer, namely
scalar data FIFO channels and local streams buffers (see section 3.2.2). In the case of
scalar data FIFO channel, the dependencies appear as instruction operands, hence the
datapath (or AGU) and CE modules allocate the proper data FIFOs (as discussed in
chapter 3, section 3.3.1). However, the generation of local streams buffers requires
dependency information extraction through memory access pattern analysis, in order

to build a dependency graph and guide the generation of synchronization signals.

Figure 4.20 depicts the dependency graphs generated for each local data stream in
the LUD kernel (Figure 3.2). SOpenCL generates dependency graphs for each local
stream by analyzing memory dependencies between individual load/store operations

in each PE and CE module.

A dependency graph consists of nodes, where a node is a PE or a CE module.
Each node is labeled by its memory access type for the specific data stream: Write
(W), Read R), or Read/WriteR/W). A dependency can occur between two nodes as

99

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

long as at least one of the nodes performs a write operation. The dependency is
represented by a directed edge labeled by the dependency distance. The latter is the
cross-iteration interval at which the dependency occurs. For example;ran!
Reference source not found.a, the dependendyE(, 3 — CE1 with distance O,

means thaCE1 cannot start read operation umiE(, s finishes its write operation.

On the other hand, the depende(, 3 < CE1 with distance 1, means that
PE(Lo_s waits forCE1to finish its read operation before starting a write operation for

the next iteration. An edge with distance 0 is callédraard edge whereas an edge

with distance greater than 0 is callebdeeckward edge

After building the dependency graph for a data stream, the tool performs a
redundant dependency elimination optimization in order to reduce the number of
synchronization channels corresponding to dependency eHgear.! Reference
sour ce not found. depicts the pseudo-code of this optimization. The algorithm first

generates an ordering of the graph nodes such that a node comes after all its

Dia
PE(L1.0)
R
(@)

peri_col

peri_row peri_col

(©

Figure 4.20: Memory Dependency Graphs for LUD OpenCL architecture in
Figure 3.2.W: refers to Write memonR: refers to Read memory. (8ja

local stream dependency graph. (b) Non-optimiped row local stream
dependency graph. (c) Non-optimizexbri_col local stream dependency
graph. (d) Optimizegberi_collocal stream dependency graph. (e) Optimized
peri_rowlocal stream dependency graph.

100

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

predecessors. Then, for each ndldehe algorithm performs elimination of forward
and backward predecessors (incoming edges) separately. A forward edge from
predecessoPi is eliminated if there is a patPP, betweenPi and any of the node
predecessors (excludiml) fullfils the following constraint:

Distance(PP) < Distance(Pi— Ni)

WhereDistance()returns the summation of distance label on all edges of the given
path. The distance constraint on the fRfhensures that the dependency implied by

the pathPP; occurs before or at the same iteration as the eliminated dependency edge

Algorithm 4.7: Redundant Dependency Eliminati

Input: Memory dependency flow graph.
Output: Optimized memory dependency graph.

1. G - Dependency flow graph.
2.l
3: eliminate_redundant_edge(G }{
4: G’ = predecessor_first_order (G);
5: foreach node N in G do
6: eliminate_forward_edges (N, G);
7 eliminate_backward_edges (N, G);
8 end for
9: }
10: //
11: eliminate_forward_edges(N, G|
12:
13: foreach predecessor(N) P, do
14: if (distance (N, P,)==0) then
15: foreach predecessor(N) P’!=P ; do
16: if (has_path (P, ,P ;’)) then
17: delete P
18: break ;
19: end if
20: end for
21: end if
22: end for
23: 1}
24: /|
25: eliminate_backward_edges(N, G'{
26: foreach successor(N) S do
27: if (distance (N, S)>0) then
28: foreach successor(N) S’'; do
29: if (has_path (S';,S ;)) then
30: delete S
31: break ;
32: end if
33: end for
34: end if
35: end for
36: }
101

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Pi— Ni.

A backward edge to successbis eliminated if there is a path between any of the
node’s successors aiglsuch that, the maximum distance on such a path should be
less than or equal to the edge— Ni. Error! Reference source not found.d and

Figure 4.19e shows the result of applyiag or! Reference source not found. on

dependency graphs of Figure 4.19c and Figure 4.19b respectively.

The equivalence of the new dependency graph to the old one can be verified as
follows: for each eliminated direct dependency edge Ni, there is at least one path
in the dependency graph from ndeieto nodeNi, that fullfils the distance constraint.
For example, in Figure 4.20c, the edB&(, 3 — CELl is eliminated. In the
optimized graph of Figure 4.20d, the pdtE(L, 3 — PE(Li o — CE1" is
equivalent to the eliminated one and both has distance equal to 0 which fulfils the

distance constraint.

Dependency graph optimization simplifies the local buffers synchronization.. Each
dependency edge is served by a Ifihish signal (refer to Figure 3.3) and a FIFO 1-
bit wide. Redundant dependency edges elimination leads to eliminating
correspondindinish signal and its FIFO. While the FIFOs cost is small, eliminating
finish signals affects significantly the routing complexity and control signals
computation at each node. For example, the dependency graph of Figure 4.20c
produces a network of 10 synchronizatibinish signals spreading all over the
accelerator, while the optimized graph in Figure 4.20d has only 4 finish signals flow

in a pipeline pattern.

Once we have the optimized dependency graph for each local data stream, the
backend allocates as many Block RAMs required for each local array. For example,
in the LUD kernel (Figure 2.14) each of the local arrggsi_col, peri_row,anddia
has size equal to 256 floating point elements, hence 1 KB of memory space is
required for each local array. To support doubling buffering we allocate a 2 KB local
buffer for each local array. The backend then uses the optimized dependency graph
for each local array to generate synchronization logitiniah signal and a FIFO is
generated (as in Figure 3.3) for each dependency edge. Then the hardware generator

102

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

builds the local buffer Read/Write ports arbitration considering double buffering and

computed dependencies.

48 Related Work

Research in architectural synthesis traditionally applied a series of optimizations to
achieve efficient hardware designs. Prior research that avoided arbitrary bitwidth
datatypes extensions employed a sort of bitwidth analysis to compute the minimum
bitwidth to represent a variable [70, 71, 72, 73, 74].

The majority of previous work applied a series of loop transformations. PICO-
NPA [13] performs loop tiling. The compiler selects the best tile shape and size to
reuse already loaded data. Additionally, the tile size should match the possible

available registers and local memories resources.

SPARK compilation framework [25] applies a variety of transformations
including code motion using percolation scheduling, ,, and speculative code motion.
Transformations like dynamic renaming while reordering operations and dynamic
common subexpression elimination (CSE) also have been applied to reduce the size

of required resources.

Traditional compiler optimizations have been used with all works compilation
frameworks. Optimizations include dead code elimination, common sub expression

elimination, constant propagation, array value propagation, and function inlining.

Extracting regular computation patterns has been the focus of prior research in
behavioral datapath synthesis [65, 66, 76, 77, 78]. Regularity extraction also has also
been used for custom instruction generation [61, 62, 64, 63, 79]. The proposed
approaches can be categorized based on how they resolve candidate subgraph

generation and candidate subgraph selection.

Candidate subgraph generation. Early work used variations of enumerations
technigues augmented with a set of constraints or a guide function to prune the search

space.

Atasu [62] exhaustively enumerated all possible subgraphs in the DFG using a

binary tree representation. To prune the search space, Atasu used convexity and upper

103

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

limit of inputs/outputs as constraints to generate a candidate subgraph. Atasu

considered single and multiple outputs subgraphs as candidates, weakly connected
subgraphs also considered as a class of multiple outputs subgraphs. Goodwin [80]
adapted the work of Atasu to generated fused operations for application specific

processors. Goodwin added the subgraph latency constraint in addition to the number
of inputs/output operands constraints used by Atasu. A less expensive enumeration
technigue was proposed in the work by Bonzini [79]. The proposed algorithm uses

the same set of inputs/outputs and convexity constraints used in previous works, and
achieves a polynomial time complexity with respect to the input/output port number.

Yu [63] proposed a more efficient enumeration approach that produces all possible
subgraphs using a two phase process. In the first phase, it enumerates all upward and
downward cones in the DFG, and in the second phase a union operation is applied on
the generated set of upward and downward cones to produce more complex
subgraphs. Yu also used the convexity and inputs/outputs number constraints to
eliminate illegal subgraphs. The approach of Yu can run faster than that of Atasu
because it eliminates illegal subgraphs, early in the first step. Both enumeration
technigues have a worst case exponential time complexity.

Cong [81] used the method of cones enumeration. Instead of considering upward
and downward cones, Cong restricted the enumeration process to upward cones only,
hence supporting single output subgraphs. Cong used the number of input operands
and execution time as constraints on feasible upward cones. Our algorithm also
considers upwards cones only, similarly to Cehgl, however without constraining
the number of input operands, thus allowing us to generate the maximal patterns.
Cong considerany cut of a feasible cone to be a feasible candidate subgraph. In our
approach, a cur of a candidate upward co@ (i.e. a grammar rul€) is a feasible
candidate subgraph (i.e. translated into new rule) in two cases: if tHepaitern
appears in other candidate cones (i.e. in other grammar rules productions), or if the
cut T pattern appears more than once within the same candidate cone subgraph. For
example, candidate Rule B AA, includes two instances of rule A. Otherwise, for
our purposes of multiplexers size reduction, implementing a candidate upward cone is
more efficient than just implementing a cut of its subgraph. Hence we dismiss

generating such patterns in our grammar structure.

104

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Work by Clark [64] examines each node in the DFG and uses isasdior a
candidate subgraph. This seed is grown downwards along dataflow edges to create
new candidates. A guide function is used to determine which nodes are the best
directions to grow, and when to stop growing a subgraph. The guide function assigns
a priority to each edge in the DFG based on its criticality, latency, and area.

Another set of early work used pattern recognition techniques to extract
computations regularities in a DFG. Rao et el. [65] used string pattern recognition
technigues on a DFG to extract regular computation patterns. First, he converts the
DFG into a string of characters (operations), and then a string matching algorithm is
used to find regular patterns of characters. User-defined patterns library also used in
work [76] to improve quality of logical synthesis at the behavioral level. Other
interesting work used predefined patterns library include scheduling and binding

algorithms based on patterns matching [77, 78].

Cong [66] proposed a pattern-recognition based approach for FPGA resources
reduction. According to Conet al, a pattern type includes instances not completely
identical. In our grammar approach, instances of a pattern (represented by a grammar
rule) are completely identical. Congt al approach produces MFUs with extra
multiplexers on intra-FU interconnects. The extra multiplexers cost increases the area
overhead of MFUs. Moreover, multiplexers on the intra-FU interconnects would

prevent generating compact, optimized MFU circuits using our pipelining algorithm.

The pattern recognition approach Caigl used is based on exhaustive subgraph
enumeration. First, each DFG node is considered as a candidate pattern. For each
node, all possible subgraphs are enumerated by adding one neighboring node
(predecessor or successor), thus creating subgraphs of size 2. The algorithm then
traverses the current pattern types set and adds the created subgraph to a matching
pattern. If the subgraph does not match any previously created pattern, a new pattern
is created, as long as it satisfies the convexity constraint. After processing subgraphs
of size 2, subgraphs of size 3 are created from subgraphs of size 2 and the previous
process is repeated. The algorithm continues until patterns cannot be grown any
further. If the instances of a pattern are less than a pre-defined number, the pattern and
all its instances are removed from the search space. @algalso remove patterns

totally encapsulated within a larger pattern (called maximal pattern).

105

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Our grammar generation algorithm also grows patterns from each DFG node
incrementally, however moving only upwards (add predecessors), unlikeeCahg
patterns which grow in any direction. In our case, since we start growing patterns
upward from nodes at the bottom of the DFG, there is no need to grow patterns
downward. This unidirectional growth reduces the complexity of the search space and
thus of the algorithm. Contrary to Coreg al our algorithm considers patterns
completely contained in other larger patterns and dismisses patterns partially contained
in other larger patterns. In fact this feature is the basis for hierarchical grammar
structure. Our experimental study indicated that such patterns characterized by a finer
computations granularity could often be fitter for implementation than larger, coarser
patterns.

Conget al, pattern recognition algorithm generates a large number of patterns (in
the order of thousands) covering all possible patterns in the DFG. While their
approach is complete and more efficient than others, it still produces a large amount
of unnecessary and redundant patterns and takes minutes to process a DFG with a few
hundreds of nodes. Our grammar-based algorithm produces just a handful of patterns
within one second, for DFGs with thousands of nodes. At the same time, it achieves a

similar reduction in area (~20%) to that achieved by Garad. algorithm.

Several papers used candidate generation algorithms based on iterative
combination of primitive operations [61, 82, 83, 84]. The basic idea behind iterative
combination of primitives is to use a profiling approach to find the frequency of a
combination of two operations in the input program, replace them with new super-
node and repeat the process until a stopping condition is met. Brisk [61] extracts
regular computation patterns from a DFG by examining each edge in the DFG and
record the number of occurrences for each edge type. Consequently, the most
frequently edge types are converted to super-nodes. The process | s repeated
iteratively until a stopping condition (like graph coverage) is met. Work by Bennett
[83] considers the combination of two operations that occur in subsequent line of
code to reduce static code size. This technique is irrespective of the dataflow graph

and is used mainly for code size reduction.

Our work utilizes the same concept of replacing a combination of two operations

(or an edge) with a super node (i.e. rule). The work of Beislal destroys a

106

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

previously created super no@ewhen a new super nodeis created contains the
super nodeS. Such behavior prevents building hierarchical models of super nodes
(i.e. rules). An instance of super noSewill be available in the final set of super
nodes only if not all its instance have been destroyed when the algorithm reaches the
stopping condition. Our approach preserves all instances of a super node allowing
creating hierarchical models of supper nodes. Such super nodes may be more fit for
implementation than their parent super nodes. Removing them during the creation of
their parent super nodes we lose the opportunity to exploit them leading to sub-
optimal design.

Candidate subgraph selection. All previously mentioned papers approached the
candidate subgraph selection problem in a similar manner: a cost function and a set of
metrics have been used to weigh the performance gain and the feasibility of a
candidate subgraph. Previous research that has targeted application specific
processors and instructions set extension [61, 62, 63, 64], where the concern is
increasing processors performance, metrics that estimate latency, area, and
inputs/outputs number have be used. Clark used a greedy selection algorithm based
on dynamic programming. A ratio of cycles savings and area is computed for each
candidate subgraph and used as a priority metric for selection.

Cong [66] used metrics that estimate multiplexers cost reduction and latency to
reduce FPGA resources. The latency metric gives higher priority to flat subgraphs to
reduce latency overhead. Our patterns selection algorithm has few similarities with
that of Conget al Both algorithms are greedy and use metrics for area reduction
estimation. In our case however, latency is not a primary concern at the instruction
clustering phase. The critical path latency is actually effectively reduced during MFU
pipelining. However, using the flathess metric of Cenal could help reduce the
variables lifetime overhead

Work described in [85] uses a speedup analysis to select an optimal set of
subgraph candidates. Speedup analysis is performed by comparing the approximate
subgraph execution time in software, as a sequence of instructions, with the
approximate time the subgraph takes if implemented in hardware, as a single special

instruction. The most promising candidates are then passed for hardware mapping.

107

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

The enumeration techniques in previous research have a worst case exponential
computational complexity. Moreover, the generated set of candidate subgraphs is
typically very large (thousands of subgraphs) for large DFGs, and most of them are
redundant or cannot produce optimized designs. Our grammar-driven approach
performs a very fast search and produces a small humber of subgraphs by focusing
only on repetitive patterns as candidates. Another distinct difference is the clear
hierarchal relationship among the generated grammar rules. On the other hand, in
enumeration based approaches, only a portion of subgraph nodes may be members of
tens other subgraphs. This complex relationship among the subgraphs and their large
number increases the complexity of candidate subgraph selection algorithm.

Prior work addressed the problem of multiplexers size reduction in a variety of
ways. The majority of works are based on resources binding techniques in datapath
synthesis. Huangt al. [97] developed a weighted bipartite matching approach to
minimize the multiplexers following a step-by-step method. First, variable-register
binding is applied, followed by an operation-FU binding step. The register binding
method tries to minimize the total number of operation types with outputs bonded to
the same register, and at the same time minimize the total number of input registers
used by operations with outputs bonded to the same register. The FU binding method
tries to minimize the number of new input registers required when assigning an
operation to an FU instance. Chenal [98] enhanced Huang methods and updated
the method of calculating the weighted bipartite graph. Moreover, they applied the
register-binding algorithm after FU binding.

Conget al [99] apply a similar algorithm to Huargg al on a distributed register
file architecture. The proposed architecture model consists of one or more islands of
registers and functional units. The binding algorithm concentrates on reducing inter-
island interconnects and multiplexers.

The drawback of previous binding algorithms is that they fail to exploit regular
patterns and rely solely on iterative algorithms to minimize the multiplexers overhead
generated during resources binding.

Our work tackles the problem of multiplexers area overhead earlier in the design

flow, similarly to Conget al [66], by identifying and exploiting regular patterns in

108

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

the problem DFG. Congt al uses a multiplexer area overhead metric that favors

MFUs with less internal multiplexers and does not consider the overall reduction in
multiplexers count. Exploiting regular patterns we create islands of primitive FUs (i.e.
MFUs) with multiplexers-free internal interconnects. Since we only support MFUs
with no multiplexers on internal interconnects, the rules selection algorithm
(Algorithm 2) uses a metric (MUXG in equation 3) that favors MFUs which result to

a higher reduction in the total number of multiplexers in the design. This objective is

similar to that of binding algorithms.

Few research papers addressed the problem of MFU implementation. Works in the
field of custom instruction set generation [64, 86] considered implementations of
MFU that support different types of macro-instructions. Clark propossiidaard
approach to share resources between different subgraphs. Wildcards are subgraphs
that have a similar shape, but operations in one node may differ. This approach
increases routing complexity of the MFU when internal multiplexers introduced to
support different types of subgraphs. Pothineni [86] proposed a heuristic that accounts
for internal multiplexers in merged subgraphs. The heuristic merges multi-cycle
subgraphs, by first decomposing them into single cycle subgraphs that can be merged
during the binding process.

109

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

CHAPTER 5

EXPERIMENTAL EVALUATION

In this chapter we present our experimental evaluation and analysis of SOpenCL.
We examine independently the impact of asynchronous execution model, bitwidth

optimization, instruction clustering and cache utilization on performance and area.

5.1 Benchmark Suite

Table 5.1 outlines the set of benchmarks used in our experimental evaluation.
Some of the kernels base source is OpenCL and others are from C source origin. The
kernels are from a variety of fields: multimedia, cryptography, telecommunication
and linear algebra. Following is a brief description for each kernel highlighting its

specific characteristics.

CMC is the Chroma motion interpolation kernel of the AVS video standard. CMC
performs pixels interpolation on the chrominance pixels in a video frame. CMC uses
a 2-dimensional sliding window of size 2x2 to compute the interpolation of a single
pixel. The coefficients of the interpolation filter are derived from the motion vector
for each Macroblock (16x16 block of pixels) [90]. The Chroma component

interpolation (Figure 5.1) follows the equation:

Table5.1: Applications used for experimental evaluat

Application Description Source | Data
CMC |AVS Video Decoder Chroma motion interpolation [90] OpenCht
LMC |AVS Video Decoder Luma motion interpolation [90] C Int
DCT |H.264 Video Encoder 8x8 Integer DCT [91] OpenCl Int
SEAL |Seal cryptography kernel [8] C Int

CN Forward Error Correction (FEC) decoder CheckNode Kerne|Q@ginCL Int
BN Forward Error Correction (FEC) decoder BitNode Kernel [92] Open(it

LUD LU Decomposition-Perimeter [23]. OpenCL FP
Deblocking |AVS Video Decoder Deblocking Filter [93]. C Int
110

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

dy

d s-d*

s-d¥

! [
C. D

Figure 5.1: Sub-pixel Chroma interpolation in AVS Motion Compensation.

préd [k Iy= (8— dB- dy A di8— dy B+ (8— dxdyC + dxdyD
prefl { ¥ = (pred[x][y]+32)>> 6

The CMC kernel consumes 10 pixels per loop iteration and produces 4 pixels per
iteration.

LMC is the Luminance motion interpolation kernel of the AVS video standard.
LMC performs pixel interpolation on luminance pixels in a video frame. Like CMC,
LMC kernel uses sliding window for interpolation, but the size of the sliding window
is variable (1x4, 1x5, 4x1, 5x1, 4x4, 4x5, and 5x4) depending on the motion vector
of each Macroblock. LMC kernel consumes up to 20 pixels per loop iterations and

produces 1 pixel per iteration.

Discrete Cosine Transform (DCT) kernel, used in H.264 video encoder among
others, converts 2D 8x8 pixel blocks in an image frame to frequency coefficients each
time it is invoked. . The kernel consists of a nested loop which encapsulates two inner
loops. The first inner loop processes the input pixels block and produces a partially
transformed 8x8 block stored in a local array. The second inner loop operates on the
partially transformed block and completes the DCT computations.

SEAL is a fast, software-oriented encryption algorithm. SEAL is a stream cipher,
i.e. incoming data to be encrypted are streamed in the algorithm and continuously
encrypted. SEAL encryption uses a random 160-bit encryption key and has a longer
initialization phase during which a large set of tables is done using the Secure Hash
Algorithm. An invocation of the SEAL kernel encrypts a 4KB plaintext message. The
algorithm is divided in two steps: Tables generation, and a pseudo-random function
execution. Tables generation is typically performed once for a communication

111

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

session. Given the generated tables and a 32-bit position index n, the pseudo-random
function stretches n to L-bit pseudo-random string. L can be made arbitrarily large

ranging from a few bytes to thousand of bytes. In our SEAL kernel, L equals 4 KB.

In terms of implementation characteristics, the C code includes an inner loop
which forms a recurrence circuit limiting the initiation interval (Il) to 60 in all
configurations. To make things worse, the memory access pattern in the SEAL kernel
is runtime dependent, i.e. read addresses computation depends on data loaded from
the memory. As a result, a unified PE architecture (the datapath performs addresses

computation) is generated for the SEAL accelerator.

BN and CN kernels are forward error correction kernels used in the DVB-S2
standard (Digital Video Broadcasting — Satellite second generation). The standard is
based on, and improves upon its predecessor DVB-S. It uses a new coding scheme
based on a modern LDPC code. It also ¥&&d (Variable Coding and Modulation) and
ACM (Adaptive Coding and Modulation) modes, which allow optimizing bandwidth
utilization by dynamically changing transmission parametBath BN and CN kernels
have a 1-dimensional computations grid. The kernels are computationally intensive.
For example the CN kernel DFG has 3962 nodes. The kernels require a significant
memory bandwidth: BN kernel consumes 128 Bytes per loop iteration, and CN kernel

consumes 96 Bytes per iteration.

Deblocking Filter is a video filter applied to blocks in decoded video to improve
visual quality by smoothing the sharp edges between macroblocks. Video frames
normally partitioned into macroblocks, which further partitioned into smaller blocks
processed independently, a process leads to distortions at the blocks edges. Each
block edge is assigned a boundary strength based on whether it is also a macroblock
boundary, the coding (intra/inter) of the blocks, whether references (in motion
prediction and reference frame choice) differ, and whether it is a luma or chroma
edge. Stronger levels of filtering are assigned by this scheme where there is likely to
be more distortion. The filter can modify as many as three samples on either side of a
given block edge. In most cases it can modify one or two samples on either side of the
edge. Deblocking kernel has a RAW memory dependency across outer loops iteration
of distance equals 1 preventing pipelining and overlapping the execution of

successive outer loop iterations.

112

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

LU Decomposition is an algorithm to calculate the solutions of a set of linear
equations. The LUD kernel decomposes a matrix as the product of a lower triangular
matrix and an upper triangular matrix. The product sometimes includes a permutation
matrix as well. LU decomposition is a key step in several fundamental numerical
algorithms in linear algebra such as solving a system of linear equations, inverting a
matrix, or computing the determinant of a matrix. LU Decomposition kernel consists
of three nested loops: the first and third nested loops perform data prefetching and
write back, respectively. The second nested loop performs the main LU
Decomposition kernel computations. The three nested loops have a clear forward
dependency flow (prefetek compute— write) that allowsfor execution pipelining.

5.2 Methodology

The aforementioned backend transformations and hardware generation algorithms
in chapter 4: If-conversion, code slicing, instructions clustering, scheduling and cache

instantiation have been implemented as separated passes in the LLVM compiler.

To evaluate the efficiency of the methodology and the potential of the proposed
architectural template, we used three different hardware configuratign€{@nd
Cc) to guide the module scheduling of the Computational and I/O streaming kernels.
These configurations represent three levels of resource availabjiig; &b extreme
configuration, which allocates just a single FU of each required type (e.g. one adder,
one multiplier, etc.) and one word I/O bandwidth. However, for some kernBlN as
andCN, hundreds of instructions scheduled per FU produce very large multiplexers,
hence multiple FUs are allocated; €nfiguration allocates as many FUs as required
to achieve the minimum possible Il for each loop. Barring any cyclic dependences,

this corresponds to lI=1. ThegCconfiguration is selected differently for each

Table5.2: Experimentation Data Set Si

Application Data Set
CMC VGA Frame: 640x480
LMC VGA Frame: 640x480
DCT VGA Frame: 640x480
SEAL 4 KB Plaintext message.
CN 32400 Data points
BN 64800 Data points
LUD 128x128 Data matrix
Deblocking VGA Frame: 640x480
113

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

application to achieve the average |l between the two extremes. For applications with
little computation in each loop (such as LUD) theddnfiguration proved similar to
Cc. In SEAL kernel a recurrence circuit limited the Il value to 60 cycles for all

configurations.

Besides the three resource configurations, architectural exploration also considers
parameters such as sequential/concurrent execution, instruction clustering, bitwidth
optimizations and cache availability. For the evaluation of our design we used the
Xilinx Virtex-6 LX760 FPGA and Xilinx ISE 12.4 toolset for synthesis, placement
and routing. The Virtex-6 LX760 device includes 118560 slices, 720 RAMB36
Block-RAMs, and 864 DSP48 modulékhe tool flow generates a testbench (Figure
5.2) used for simulation and verification. Table 5.2 summarizes the data set size used
in verification/simulation of each benchmark.

5.3 Execution Model Evaluation

The concurrent execution model adopted in the proposed architectural template
increases the utilization ratio of the allocated resources and reduces the duration each
component stays idle through overlapping the execution of multiple components. In
this section, we experiment with the concurrent execution mode for each of the three

configurations G, Cg, and G All other optimizations are enabled by default.

Table 5.3 summarizes the area results after the synthesis performed for the
benchmarks of Table 5.1. The general trend is that area requirements increase from
configuration G to configuration G when the loop body encompasses enough
computations to exploit the additional resources. Concurrent mode configurations
tend to consume more slices than sequential ones. The additional hardware is used to

implement the synchronization FIFOs of the PE and CE modules and synchronization

Testbench

Memory

Accelerator

Figure 5.2: Simulation and Verification Testbench.

114

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

flags for Local Buffers.

The results show that this hardware overhead is nearly the same in all
configurations (G, Cs, and G), and it depends on the number of scalar variables
FIFO channels and Local buffers synchronization signals available in the architecture.
For example, in the LUD kernel, there are 25 scalar variables (LLVM instructions)
computed in different parent CE modules and passed to children PE modules. Note
that most of the scalar variables here are LLVM assembly instructions that do not
change during the course of the inner most loop iterations, the backend applies loop-
invariant code motion and move them to outer loops, hence they computed in CE
modules and must passed through FIFOs to the consumer PE modules. Each scalar
variable uses a FIFO channel of size equals 3. The total increase in slices in the LUD
kernel (around 800 slices) is a combination of the scalar variables channels and local
buffers synchronization channels for each one of the streansperi_col, and
peri_row as depicted in Figure 4.19.

An additional overhead stems from the routing overhead of the synchronization
signalsvalid andhold in each channel. The use of tid andhold in the control

mechanisms at each module (e.g. stall executiomolat signal) increases control

Table5.3: Concurrer/Sequentie modes area results for the benchmarks implem
on Xilinx Virtex-6 LX760 device.

CMC LMC
Concurrent Seguential Concurrent Seguential
Config. CA CB Cc CA CB Cc Conflg CA CB Cc CA CB Cc
Slices | 2051 | 2074 | 3421 | 1596 | 1652 | 2947 Slices | 2989 | 3540 | 5395 | 2909 | 3447 | 5304
RAMB36| 1 1 1 1 1 1 RAMB36| 1 1 1 1 1 1
DSP48 | 12 12 20 12 12 20 DSP438 5 10 18 5 10 18

LUD DCT
Concurrent Seguential Concurrent Seguential
Config. | Ca Cs Cc Ca Cs Cc Config. | Ca Cs Cc Ca Cs Cc
Slices | 4788 | 4895 | 4895 | 3908 | 4191 | 4191 Slices | 3481 | 3615 | 5323 | 2916 | 3074 | 4416
RAMB36| 3 3 3 3 3 3 RAMB36| 1 1 1 1 1 1
DSP48 | 17 19 19 17 19 19 DSP48 | 14 14 14 14 14 14

Deblocking SEAL
Concurrent Sequential Concurrent Seguential
Config. CA CB Cc CA CB Cc Conflg CA CB Cc CA CB Cc

Slices | 2464 | 2736 | 3379 | 1868 | 2157 | 2714 Slices | 2089 | 2112 | 2112 | 1905 | 1945 | 1945
RAMB36| 0 0 0 0 0 0 RAMB36| 0 0 0 0 0 0
DSP48 | 3 3 3 3 3 3 DSP48 | O 0 0 0 0 0

BN CN
Concurrent Sequential Concurrent Seguential
Config. CA CB Cc CA CB Cc Conflg CA CB Cc CA CB Cc
Slices | 22304 | 25692 | 32168 | 22268 | 25640 | 32150 | Slices | 20675 | 27390 | 22044 | 20640 | 27350 | 22005
RAMB36| 0 0 0 0 0 0 RAMB36| 0 0 0 0 0 0
DSP48 4 4 4 4 4 4 DSP48 2 6 10 2 6 10

115

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

complexity and routing overhead.

The area overhead in the asynchronous configuration is very small or none exist if
there are no scalar variables exchanges between multiple PE and CE modules, and no
local streams synchronization is required. This is the case for BN and CN kernels.
The LMC kernel also has a very small area overhead since only four scalar variables

are exchanged between a CE and a PE module and each variable is 13-bits wide.

Dual port Block RAMs are used for both local buffers and caches. LMC and CMC
are the only benchmarks that utilize their Block RAMs as a cache, while the rest of
the benchmarks use their Block RAMs to implement local buffers for local arrays. In
LUD, each of the local arraydia, peri_row, anderi_colis allocated a Block RAM
of 36Kbit. In all applications, the Block RAMs are configured as 512 lines in size,
each size being 64-bits wide. The caches and local buffers work in simple dual port
mode (one port allocated for write-only and the second port allocated for read-only)

to allow pipelining write and read transactions.

Figure 5.3 depicts the execution time (in ms) and clock rate for four benchmarks
under different configurations for the work data set shown in Table 5.2. As expected,
performance increases moving from configuratigrni@configuration G when there
is enough memory bandwidth to serve the datapath /O requirements. The limited
memory bandwidth problem appears in the DCT benchmark for the concurrent
configurations. The memory bandwidth of 8 bytes/cycle fails to support the datapath
I/O requirements 16 bytes/cycle and 32 bytes/cycle for configuratigran@ G
respectively.

As expected, the concurrent mode implementations in all benchmarks achieve
higher computational rate and reduced execution time compared to configurations
supporting sequential mode. Sequential operation (without data prefetching)
frequently throttles the throughput of PE modules. Concurrent operation tends to
become performance critical when Il is small. This is typically the case inghe C
configuration. Faster datapaths and AGUs make better use of the control element
(CE) module executing the outer loops and preparing data used by the PE modules in
subsequent operations.

116

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

The performance of concurrent operation may be limited by the existence of data
dependences between loops at different level of the loop nest, i.e. when computations
in the outer-loops (executed by CE modules) are dependent on results produced from
the innermost loops (executed by PE modules). This is the case in LUD between
PE(L1 ¢ and its parenCE1 as appear in dependency graph discussed in Chapter 4
(Figure 4.19), where an outer loop computation waits data to be written to a local
buffer, performs multiplication and division operations and only then initiates the
next iteration. Even in this case, the experimental results indicate that concurrent
execution outperforms synchronous one.

Figure 5.4 shows of the rest four benchmarks that achieved very limited
performance gain using the concurrent operation. Deblocking filter (Figure 5.4a)
achieves limited performance mainly because of data stream dependencies. The inner
most loop of the deblocking kernel has a RAW memory dependency across outer
loops iterations with distance equal to 1. In the generated architecture, the input

CMC Exe. Time == Concurrent @ Sequential LMC Exe. Time === Concurrent mmmmm Sequential
—aA— Concurrent —#— Sequential ms —a— Concurrent —s— Sequential
ms Hz MHz
2 200 |96 172]
175 A 190, |84 168
he /\ \ 1801 |72 17 /’L‘ll 164
1,25 \ 170/ |60 — 160
1 ~ 160 |48 |— 156
0,75 150/ (36 — 152]
0,5 140 |24 — 148|
0,25 130 |12 — 144]
0 120| 0 140|
Cb Cc Ca Cb Cc
(a) (b)
DCT Exe.Time =2 Concurrent = Sequential LUD-P Exe. Time === Concurrent mmmm Sequential
ms —a— Concurrent —a— Sequential MHz ms —a— Concurrent —s— Sequential MHz
160 164 | |30 174
14,0 163,5
25 170
12,0 A 163
162,5
10,0 20 166
162
8,0
1615 [*° 162
6,0
161 10 158
401 160,5
2,0 160 5 154]
0,0 159,5 0 150
Ca Ch Cc Cb Cc
(© (O]

Figure 5.3: Execution Time (bars ms) And clock frequency (lines iMH2) for
concurrent and sequential configurations.

117

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

streaming units wait for #inish signal from the output streaming units before sending
read requests. The minimal execution time improvement is due to overlapping the

execution of the PE module with its parent CE module.

SEAL benchmark has a unified PE architecture; no AGU modules generated
because addresses computations can be computed only at runtime. Hence, the PE
module consists only of a datapath and input/output streaming Bi@ts, SinAlign
and SoutAlignunits). As a result, successive outer loop iterations will not promote
data prefetching since addresses generation for later iterations cannot start until the
datapath finishes computations of earlier iterations. As in the Deblocking filter case,
the limited reduction in execution time came from overlapping the execution of the

PE module with its parent CE module.

BN and CN kernels in Figure 5.4c and 5.4d show another case where concurrent
operation achieves no performance gain. BN and CN kernels have 1-dimensional

computational grid. In other words, the trip count of the outer loops of the triple

i i == Concurrent mmmmm Sequential SEAL Exe.Time === Concurrent mmmm Sequential
Deblocking Bxe Time —4— Concurrent —a— Sequential —a— Concurrent —a— Sequential
MHz ms MHz
e 0,32 204
24 174
21 — 1| O 208
18 |— 168 (024 [202
15 |— 165 | 92 [201
12 || 162| (0,16 |— 200|
9 || 159 (0,12 |— 199
6 — 156/ [0,08 |— 198|
3 — 153/ (0,04 — 197|
0 150 0 196|
Ca Cb Cc Ca Cb Cc
(a))
i === Concurrent mmmmm Sequential i == Concurrent mmmmm Sequential
ms CN Exe.Time —a— Concurrent —I—Seguential MHz BN Bxe.Time —aA— Concurrent —@— Sequential MHz
ms
24 104 44 116
21 r /; 101 a1 112
18— 98 | 138 — 108
15 95 35 — 104
12— 92 32 — 100|
9 — 89 29 — 96
6 —| 86 26 — 92
3 — 83 23— 88
20 84
0 80
ca cb o Ca Cb Cc
© @

Figure 5.4: Execution time (bars,nms) And clock frequency (lines MHZ) for
concurrent and sequential configurations.

118

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

nested loop is one; hence the PE module (the inner loop) is initiated just once for

execution.

Analyzing data dependencies and grid dimensions, the tool flow can determine if
the concurrent operation could possibly improve performance or not. Figure 6.4
compares the maximum performance gain (decrease in execution time) achieved in
using concurrent operation for each benchmark to its corresponding area overhead
(increase of consumed resources) in each benchmark. The comparison of
performance gain to the area overhead reveals the efficiency of the concurrent
operation compared to the cost. Figure 5.5 shows that, the 4 benchmarks of Figure 5.3
that achieved respectable performance gain (over 30%), did so at much less area
overhead. On the other hand, area overhead surpassed performance gain for
benchmarks with limited concurrent operation. Performance gain and area overhead
are computed as follows:

ExecTiméSequentigl— ExecTiméConcurreny

ExecTiméSequentidl
SlicegSequentigl— SlicegConcurrenj
SlicegSequentidl

PerformaneGain=

AreaOverhad =

One can conclude that efficiency of concurrent operation is dependent on the

application characteristics.

Concurrent operation has a mixed effect on clock frequency. A FIFO channel

Performance Gain vs. Area Overhead O Performance Gain B Area Overhead

60%

50%

40%] N

30%]

20%

10%

0% =] —
DCT LUD CMC LMC SEAL Deblocking BN CN

Figure 5.5: Concurrent operation performance gain and area overhead

119

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

plays a role in balancing the routing delay between a producer and a consumer. On
the other hand, the increase in routing and control signals computation overhead
caused by the synchronization signals Madid andhold produces a negative effect

that may degrade clock frequency.

5.4 Bitwidth Optimization Evaluation

In this section, we experimentally evaluate bitwidth optimization for the three
different target configurations. All other optimizations, i.e. asynchronous execution,
instruction clustering and cache allocation are enabled, by default. In Conventional
compilers targeting architectures with standard FU size (i.e. 32- and 64-bits wide), the
result value is represented in 32-bits format, while 8-bits format is enough for its
representation. Figure 5.6 shows the area results for each of the benchmarks with
bitwidth optimization enabled oftimized case) or not driginal case). As we
expected, bitwidth optimization succeeds in reducing the amount of consumed
resources. In the figure we can see that up to 36% reduction in area has been
achieved. The negative percentage values indicate the ratio of area reduction for each

configuration.

In particular, deblocking Filter (Figure 5.6h) achieves most gains from bitwidth
optimization. Filter computations operate on pixel variables with char data type which
is automatically extended to 32-bits by the LLVM compiler. Moreover, many kernel
operations have one of their operands to a constant value equal to 2, 3 or 4. The
bitwidth optimization (similar to instruction clustering) performs efficiently on
computations which contain small constants, such as CN and BN as well as SEAL
kernels.

In the case of LUD benchmark, bitwidth optimization affected the FIFO channels
width because many scalar variables are exchanged between multiple CE and PE
modules. As a result, both FUs and the FIFO channel width are optimized.

Moreover, the effects of bitwidth optimization vary from one configuration to
another, since, for example, Configurations with lower Il value (suchk)ear€ more
successful in reducing area overhead. Higher Il values force the scheduler to allocate
fewer functional units which should be wide enough to serve multiple instruction

120

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

bitwidths, hence, instructions with small bitwidth (e.g. 8-bits), could be scheduled on
FUs wider than their instruction bitwidth.

Bitwidth optimization has also a positive effect on clock frequency (Table 5.4). In
BN and CN kernels, the reductions in functional units width significantly reduced

CMC @ original B optimized DCT @ original B optimized
3800 6000
-6% -4.5%
@ 3400 @ 5400
E 3000 @ 4800
§ 2600 §§ 4200
< < 5%
g 3% -4%
2200 2% 2 3600 i
Ca Ch Cc Ca Ch Cc
(@) (b)
Luma @ original B optimized LUD O original B optimized
6500 6000
. 5600 -10% @\ 5700 —
g 4700 P 5400
= 119 ~ -14% -14%
8 3300 Sy Mk 8 5100
= -8% < -11%
- ﬂ» = J:
2000 4500
Ca Ch Cc Ca Cbh Cc
© @
BN O original B optimized CN o original ® optimized
38000
35300]
. 10% __ 34000
é@ 32240 — é@ 24%
E g 30000
= 29180 =
8 -19% 8 26000
< 26120 < -21%
-13%
-10%
20000 18000
Ca Cb Cc Ca Cb Cc
(©] ®
SEAL @ original B optimized Deblocking D original M optimized
2500 5500
2 2400 — 2 4800
-36%
Qo 13% F12% -12% L 36%
7 2300 7 4100
§ 2200 § 3400
< < 21%
-49
2100 2700 4%
2000 2000 J:.
Ca Cb Cc Ca Cb Cc
® (h)

Figure 5.6: Area results for Bitwidth optimization. The percentage value above
the bars indicates the percentage of Area reduction.

121

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Table5.4: Bitwidth optimizationFrequency (MHz) results for the test kerr
on Xilinx Virtex-6 LX760.

Original Optimized
APP- Ca Cs Ce Ca Cs Ce
CMC 165 179 161 166 186 163
LMC 160 160 162 158 164 164
DCT 134 134 134 161 161 163
SEAL 184 184 184 201 201 201
LUD 158 161 160 159 161 163
Deblocking 160 158 162 162 161 163
CN 69 66 66 101 85 100
BN 71 66 67 111 100 85

datapath routing complexity of the giving more room for the router and hence
increasing clock frequency. Another noticeable improvement on clock frequency
appears in the DCT benchmark. The main source for clock delay in the DCT is 32-bit
multiplications. With bitwidth optimization, 20-bit multiplication is only required

reducing significantly the clock delay.

5.5 Ingruction Clustering Evaluation

Instruction clustering is a powerful optimization aiming at reducing area overhead
and routing complexity especially in computation bound designs. In this section, we
experimentally evaluate instruction clustering optimizations for the three different

target configurations. All other optimizations are enabled, be default.

Table 5.5 summarizes DFG statistics after grammar generation and rule selection.
Column ‘#Rules” lists the grammar size in numbers of rules generated for each
application. Column #Used Rules” lists the number of selected rules from each
grammar to be implemented as MFUs in the final representation of the DFG. Column

Table5.5: Grammar generation results on the kernels C

App. #Ruleg E%ng Rule Size| #InststtInsts(g) ReductionCoverage
CMC 6 3 [2-9] 136 86 -37% 53%
LMC 18 11 [2-4] 299 219 -27% 50%
DCT 10 8 [2-3] 307 197 -36% 52%
SEAL 8 5 [2-3] 143 107 -25% 45%
CN 18 7 [2-5] 3962 2500 -37% 40%
BN 8 5 [2-7] 2917 1677 -43% 41%
Deblocking 9 5 [2-4] 176 150 -15% 32%
LUD 1 1 [2] 20 18 -10% 10%

122

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

“Rule Sizéshows the range of number of instructions per rule for the selected rules
subset. Columnstinsts” and #Insts(g) list the DFG size before and after grammar-
based representation, respectively. ColurReduction” shows the percentage of
reduction in the number of primitive instructions. Finally, colur@overagé shows

the percentage of the DFG covered by the generated grammar.

Several conclusions can be drawn from table 5.5. Unlike pattern recognition and
enumeration approaches, the generated set of subgraphs (i.e. rules) is much smaller in
both the total number of subgraphs and subgraph size, yet it covers 40% — 53% of the
program DFG.

Figure 5.7 shows the area and synthesis time results (for datapaths and AGUs
only) for the benchmarks for the original and the optimized cases. A noticeable result
appears in Figure 5.7e and 5.7f for CN and BN kernels, respectively. The two DFGs
have very large sizes (approximately 4000 & 3000 nodes, respectively) which lead to
routing congestion. Without the grammar-driven synthesis approach the ISE synthesis
tool failed to successfully finish placement & routing. On the other hand, after the
grammar-driven synthesis optimizations the tool took less than three hours to
generate a fully placed and routed design. The reduced DFG size with grammar-based
compression required around 20% less time on average to schedule and synthesize,
which correlates with the reduction in DFG size.

Grammar-based designs typically involve more FU types than original designs in their
datapath, due to the introduction of MFUs. The additional MFU types impose an area
overhead. The issue manifests itself more clearly in thedbfigurations, where few FU
instances (normally one or two) are allocated for each FU type. In Fig. 11.b and 11.c, we can
notice that our algorithm achieves 30% and 17 % reduction in area fog tenfiguration in
the DCT and LMC kernels respectively. For thedonfiguration the area gains are limited to
20% and 13% for DCT and LMC. The two kernels use 8 and 11 MFU types respectively in
their datapath. While using MFUs reduces multiplexers’ area in the design, the area overhead
from the large number of used rules limits the overall area reduction for configurati@nC
the other hand, CMC and SEAL kernels use only 3 and 5 rules respectively, with limited area
overhead, hence configuratiory ©utperforms configuration g Note also that MFU area
overhead can be reduced whenever the pipeline algorithm (Algorithm 3) identifies

opportunities to produce compact and lightweight MFUs, which is the case for CMC and

123

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

SEAL. On the contrary, MFUs in DCT and LMC datapaths consist of heavyweight primitive

FUs, that could not be effectively fused.

cMC =3 original N optimized DCT == original N optimized
—=a—original - -A- -optimized —a— original - -A- -optimized
2000 17 4000 20
_ 1700 Tas 14 ,§ _ 3400 — S 16 ,§
@ " - £ g & A| £
7 1400 il 2 11 g 7 2800 5T . 12 g
§ 16 = ‘é’ 18 18 8 IS
S 1100 8 | | 2200 8
< B |~)
800 5 1600 4
500 2 1000 0
CA CB CcC CA CB CcC
(@) (b)
== original . optimized 3 original . optimized
Luma —=a—original - -a- -optimized SEAL —a—original - -a- -optimized
2200 50 1800 25
A
1900 ‘ 0 1640 20 o
) ' £l |8 T £
‘ £
25 S 69 E
7 1600 S 0 G| |g 180 5 15 3
= 55 - £ = k- - - - - A £
. = [
8 1300 | - 20 5| |8 120 69 10 &
< 46 =2 < %
1000 10 1160 62 2|
700 0 1000 L 0
CA CB CcCc CB cC
() [C))
== original [optimized E==3 original . optimized
BN —a— original = -A- =-optimized CN —=a—original - -A- -optimized
25000 200 30000 180
A A
_ 22000 " & 160 ,g _ 26000 3% 144 E
§ , * 74 g § R é
Q 19000 120 o g 22000 - 108 o
E;’ 'y E E;’ L oA 114 E
$ 16000 — 118 80 ol | S 18000 .- 2 o
< ol |< 08 o
o 188 o
13000 160 40 14000 36
10000 0 10000 0
CA CB Ccc CA CB CcC
() 0
Deblockin =3 original . optimized LUD == original . optimized
9 —=a—original - -A=- =optimized —=a—original - -A- =-optimized
2000 30 3500 30
1800 _/: 24 | | __ 3000 ~ 2% =
7 e N £ 18 13 13 13 13 =
& ” = = =
7 1600 18 2500 18
= =
g 1400 5t 2 12 § 2000 12 o
36 [N < %
1200 6 1500 6
1000 0 1000 0
CA CB CcC CA CB ccC
(€])

Figure 5.7: Area (slices) and Synthesis, Placement & Routing time (SPR Time in minutes)
Results for original configurations, and optimized configurations (with grandmzer
datapath synthesis). In (e) and (f) the missing configurations for the originadreadee t

the fact that the Xilinx ISE tool chain failed to fully place & route the genereitedit.
unless we apply our compression.. The numbers abmwebars represent the sche
latency (in clock cycles) of a single loop iteration in each configuration.

124

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

DGFs characterized by patterns with a very low number of occurrences and low DFG
coverage are also potentially susceptible to area overheads from the introduction of MFUs. In
this case, the combination of MFUs overhead with the limited multiplexers area reduction
might produce designs with very little or no area reduction, which is the case for LUD and
Deblocking kernels. However, during our experimental evaluation with a variety of kernels we
observed that, even for DFGs with a small number of pattern repetitions (see Table V,
#Instances per Rule), area reductions are achieved because these repetitions cover 45% to 53%
of the DFG. Therefore, instruction clustering led to a significant reduction in the area spent for

multiplexers, overweighing the MFUs area overhead.

It appears from the experimental evaluation that the grammar-based approach sometimes
performs poorly at Il = 1. This is expected because in this case there are no multiplexers to
optimize out. For some benchmarks (DCT and Luma) the consumed area is slightly more than
that of the original configurations. For these benchmarks, the pipeline algorithm (Algorithm 3)
produced fully pipelined MFUs, because they contained heavyweight primitive FUs that could

not be fused with others.

Moreover, using macro-instructions in those benchmarks increased variable lifetimes,
which led to allocating more registers. This is, for example, the case for the BN
kernel(configuration). The version produced after instruction clustering requires more area
than the original one, despite the fact that the pipelining algorithm efficiently produced more
compact MFUs. Most of the generated MFUs in BN kernel are not flat. They have latencies
between 3 and 4 cycles (after being optimized down from 7 cycles by the pipelining algorithm).
The large amount of MFUs with such latencies imposed an overhead on the scheduler, leading

to increased variable lifetimes and registers requirements.

On the other hand, the proposed approach worked well even at Il = 1 for other benchmarks
(CMC, Deblocking and CN), in which the logic gain for generated macro-instructions was
significant. The MFUs produced were compact and lightweight, which subsequently led to the
area reduction. Compact MFUs generated using Algorithm 3 have a positive impact on
variables lifetime at Il = 1 — if the MFUs latency is not larger than 2 cycles — leading to
reductions in registers requirements. Therefore, at Il = 1, area reductions are obtained mainly
by compressing and optimizing the generated MFUs using Algorithm 3. Otherwise designs
incorporating MFUs would be expected to pose an area overhead compared with the original

designs.

The schedule latency tends to be smaller for optimized configurations, except

when the pipelining algorithm inserts a pipeline register after each primitive

125

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

instruction, as in DCT and Luma benchmarks. However, the schedule latency effect
on the datapath throughput is very small, since we pipeline the loop iterations that
execute on the datapath, and for large number of loop iterations the Il value is the
main parameter that determines the datapath throughput.

Figure 5.8 depicts the synthesis, placement & routing (SPR) speedup achieved on
the standard Xilinx toolset for the optimized versus the original DFGs. Synthesis,
placement & routing for grammar-based designs is on average faster than for the
original designs achieving an average speedup 1.2x. In CN and BN kernels original
designs (without MFUSs) in £and G configurations were processed for over 12 hours
before eventually failing to produce fully placed and routed designs because of routing
congestion. The DFGs produced for the same benchmarks and configurations by the
grammar-based approach succeeded in less than 3 hours. CN kernel achieves the
highest speedup (2.2x) among the other benchmarks, mainly because of the significant
area reduction attained by the optimized design.

SPR runtime is affected by a wide range of factors. The synthesis phase is affected
by the total number of allocated resources and potential logic cells optimizations. The
placement & routing runtime is even more sensitive on the size of the generated
netlist, routing complexity and user constraints. In Fig. 12, LMC kernel optimized
configurations G and G are slower to SPR than the original configurations. Analysis
of the SPR time for LMC showed that both original and optimized designs took the
same time for synthesis and routing steps for configuratiqren@ G. However, the
“Global Placement” step, during which the design netlist is placed on the FPGA

fabric, the optimized design took more time to finish leading to slower SPR runtime.

SPR Time Speedup mCA mCB mcCC
25 365
2
s, - 15 172020
s 213 18 17 15 272377 282826 174
¢ 1
& 2712
0,5
0
CMC LMC DCT SEAL Deblocking LUD BN CN

Figure 5.8: Synthesis, Placement & Routing (SPR) SpeedumdC bars in BN and C
kernels are missing because the original designs failed to finish placement anc
successfully after 12 hours of runtime, while optimized designs succedtiéd3 hours
The numbers above the bars are the SPR time (in minutes) required for the
unoptimized DFGs.

126

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

We did not manage to identify any correlation with any of the design parameters.
Moreover, the lack of information on the algorithmic and implementation details of
this step in Xilinx tools does not allow us to further reason on the problematic

increase in runtime.

Fig. 13 demonstrates the correlation between area reduction and either the number
of macro instructions per rule or the DFG coverage for the three configuratigns, C
Cg, and G. From Fig. 13 we can conclude that for configurations with large Il (and
thus complex, large multiplexers as ig)the reduction in area is highly correlated
with the number of macro-instructions per rule and DFG coverage (correlation equals
0.95 for both cases). As Il becomes smaller (and so does the multiplexers overhead),
so does the correlation. For configurationwhere 1l = 8, the correlation equals 0.8
for both cases. For configuratiory @here Il = 1, the correlation of area reduction
with the number of macro-instructions per rule and DFG coverage is 0.15 and 0.12
respectively. As explained earlier, in this case the area reduction is expected to come
mainly from the pipelining algorithm and not from instruction clustering.

Area and synthesis results demonstrate the effectiveness of the grammar-driven

Area Reduction vs. Macro Inst per Rule (Cc) ¢ AR ——Linear (AR Area Reduction vs. Coverage (Cc) * AR —Linear (AR
30% 30%
s s
£ o soNe_—, o 2 % * MG et
E LMC E * LMC
10% 10%
8 SEAL g SEAL
= LUD) = LUD)
< % : # Deblocking < 0% e % Deblocking ‘
0 2 4 6 10| 0% 14% 28% 42% 56% 70%
Macro instruction per Rule Coverage
(a) ®)
Area Reduction vs. Macro Inst per Rule (Cb) e AR ——Linear (AR)| Area Reduction vs. Coverage (Cb) ® AR —Linear (AR
40% 40%
c c
.g 30% e DCT .g 30% e DCT
=) SEAL = SEAL
B 20% = B 20% =
« LMC « A
§ 10% / * CcMC § 10% / * CMC
< 0% |.unv Deblocking < 0% ‘LUD _Deblocking .
0 2 4 6 10 0% 14% 28% 42% 56% 70%
Macro Instruction pre Rule Coverage
© @
Area Reduction vs. Macro Inst per Rule (Ca) ¢ AR —— Linear (AR) Area Reduction vs. Coverage (Ca) & AR ——Linear (AR)
40% 40%
é 30% é 30%
S 20% . S 20% .
B Deb\ockmg. SEAL CcMC 3 Deblockmg. SEAL CMC
X 10% * X 10% *
—_— —_—
LUD, LUD,
§ 0% + T % T § 0% T - T T > T
< DCT, < LMC DCT
10% 2 4 6 LMC 8 * 10| _10%0/0 14% 28% 42% 56%* 70%
Macro Instruction pre Rule Coverage
(@ [0}
Figure 5.9: Area Reduction (AR) correlation with the number of mastodction:

per grammar rule (a, c,) and the DFG coverage (b, d, f).

127

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

approach to reduce the amount of multiplexers and their routing overhead. The
generation of MFUs and the selective pipelining algorithm (algorithm 4.5) produced
compact macro FUs that performed computations with fewer logic cells and latency.
The achieved clock frequency (Table 5.6) for optimized configurations has a

deviation between +8% to -1.2% from the original configurations.

In general, the proposed approach achieves higher gain with increasing value of I,
in cases where the multiplexer tree has a significant area overhead. Also, for Il = 1,
significant gain can be achieved if the primitive FUs in each MFU can be packed
tighter (high logic gain). If this is not the case, the use of macro-instructions tends to
put more constraints on scheduling, increasing the lifetime of variables. The proposed
grammar-based algorithm proved to be very fast; in all cases the grammar generation
and rules selection took less than a second to finish and to produce a new DFG.

5.6 CacheAllocation Evaluation

The cache unit is useful in holding data across outer loop iterations, especially
when the computation of a single data element requires a block of data which will be
reused for the computation of following elements. SOpenCL determines allocating a

cache if it detects continuous blocks of data reused across loop iterations.

The SEAL kernel has runtime dependent addresses, hence no memory access
pattern can be detected and no cache is allocated. The Deblocking kernel has a RAW
dependency across outer loops iterations which limit cache utilization. In addition, no
data reuse was detected across inner loop iterations. In LUD, CN, and BN kernels,
also no data reuse has been detected across loop iterations since data is accessed

Table5.6: Instruction ClusterinfFrequency (MHz) results for the test kerr
on Xilinx Virtex-6 LX760.

Original Optimized
App. Ca Cs Co Ca Cs Ce
CMC 165 184 160 166 186 163
LMC 154 161 161 158 164 164
DCT 160 161 163 161 161 163
SEAL 184 184 185 201 201 201
CN - - 97 101 85 100
BN - - 84 111 100 85
Deblocking | 162 162 159 162 161 163
LUD 159 160 163 159 161 163
128

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Table5.7: FPGA Slices for CMC and LMC kernels with and without cache.
refers to configurations with No cache allocated.

Ca Cs Cc
Cache| N/C |Overhead Cache| N/C |Overhead| Cache| N/C |Overhead
CMC | 2051 | 1984| +3.4%| 2074 2000 +3.3% 3421 3041 +12,5%
LMC | 2989 | 2487| +20.2| 3540 263D +34.6% 53p5 4290 +20.5%

column wise. In DCT data reuse is within each single loop iteration, but non across
loop iterations. The tool does not generate a cache to serve only data reuse within
single loop iteration, because these are already served by the requests generation unit
(RGU).

Only two CMC and LMC kernels have forced SOpenCL to allocate a data cache.
Figure 5.8 depicts the data reuse pattern for each kernel. Shaded area represents
pixels shared between successive outer loop iterations. Here a row of pixels
represents a continuous block of data. Based on the reuse pattern, SOpenCL allocates
the following cache blocks for each kernel: 6 blocks of size 32 bytes for luma kernel,

and 2 blocks of size 16 bytes for chroma kernel.

Table 5.7 depicts area results for both kernels with and without cache. For both
kernels, configurations with cache allocated consume one 36k-bit Block RAM (not
shown in the table). Column “Cache” represents configurations with cache enabled.
Column “N/C” refers to configurations without cache allocation, and column

“Overhead” refers to the area overhead computed as follows:

Slices, .— Sliceg,c

Overhead=

Sliceg,,c

Luma Kernel Chroma Kernel
% Iter0,___________| % Iter0,— ~—— — — —
= | Iterl =
s | EEEEEEEEEEEEEEEN £ | Iterl| ,
e e
2 | EEEEEEEEEEEEEEA| 2 _ EANEEEEEE
g I
= | - EEEEEEEEEEEEEEnY =

Figure 5.10Luma (LMC) and Chroma (CMC) kernels data reuse pattern. The ¢
area represents the data (pixels) reused in later outer loop iterations. Th
surrounded with the dashed rectangle represent the data loaded in a single ¢
iteration.

129

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Configurations with cache tend to consume more resources for managing cache
data blocks dynamic allocation and incoming read requests. One can see that LMC
configurations have higher area overhead than CMC configurations because LMC
configurations have more cache blocks allocated.

Figure 5.9 depicts execution time for LMC and CMC cache configurations. The
negative percentage value represents the decrease in execution time in cache
configurations compared to configurations without cache. Interestingly, one can
notice that the execution time reduction percentage correlates with percentage of
reused pixels: 50% for CMC kernel, and 80% for LMC kernel.

Cache allocation successfully achieves its goal, reducing memory traffic and
increasingperformanceFor these two benchmarks, performance gain achieved with

cache allocation surpasses area overhead.

5.7 Overall Performance Analysisand Comparisons

Figure 5.10 depicts, for each benchmark, the optimal execution time when all
optimizations are enabled, for two cases: full accelerator execution (memory transfers
+ computations) and datapath computations only (i.e. assuming zero cycle memory
accesses). The latter case assumes input data always available when needed. The
system architecture is a PLB bus based system with peak memory bandwidth equal to
64-bits per clock cycle.

Luma @ Without Cache | With Cache CMC @WithoutCache B With Cached
480 4,00
420 3,50
—~ 360 |— 3,00 —
2] —
£ 300 — D 250 [—
p £ -55%
240 © 200 —
E -80.6%
= 180 | | E 150 [—
-83% [-55%
120 1,00
-49%
60 |— 050 |—
-82%
0 0,00
Ca Cb Cc Ca Cb Cc

(@) (b)
Figure 5.11: Execution time for LMC and CMC configurations with and without
cache. The negative percentage value represents the decrease in execution time in
cache configurations compared to configurations without cache.

130

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Figure 5.10 shows that most kernels are I/O bounded. BN and CN datapaths
require 304 bytes/cycle and 256 bytes/cycle respectively, to keep datapath 100%
utilized and the memory system provides only 64 bytes/cycle in the best case. While
I/0 requirements of the deblocking filter are within bus bandwidth limits, execution
time spikes when memory transfers are considered. Irregular access patterns push the
effective memory bandwidth away from its theoretical peak value. Half of the loop
iterations require 10 continuous pixel data per cycle, i.e. pixels are accessed row-
wise, and can be served with two read/write requests on the PLB bus. In the second
half of loop iterations, each of the 10 bytes requested is in a different frame row, i.e.
pixels are accessed column-wise, hence the read/write requests spike to 10 requests.

To better assess the efficacy of our tool flow and methodology to provide high
guality designs, we have compared the accelerators generated using SOpenCL with
manual, fully optimized designs. Table 5.8 compares Deblocking filter accelerator
generated our tool (SOpenCL) with the manual design described in [93]. The
throughput numbers are for 1280x720 HD video format (720p). SOpenCL synthesis
tool area and clock frequency results are very close to the manual design results. Even
with the large gap in throughput SOpenCL produced an accelerator that fullfils real-

time requirements (30 frames per second).

The Deblocking filter processes vertical and horizontal edges in every 16x16

. Execution Time (MS g vemory+Computations B Computations Only
ms,

32,00

[304 B/Cycle
28,00

24,00

20,00

16,00
8 B//Cycle

12,00 10 B/Cycle 256 B/Ccyle
32 BICycl (]
8,00 ycle 20 B/Cycle
4,00
10 B/Cycle 8 B/Cycle
0,00
DCT LUD cMC LMC SEAL Deblocking BN CN

Figure 5.12: Comparison of execution time for Memory transfers plus computations
and computations only. The numbers above the bars indicate the I/O rate rec

each kernelThe Cc configuration with all optimizations have been enabled it

in this figure.

131

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

Table 5.9: SOpenCL based design of SEAL kernel compared to m
design. The throughput numbers are for 1 Gbit plaintext messages.

I SOpenCL based design .
Application Complete Accelerator Manual design
Slices 2112 1450
Execution Time 8.35 9.3
(second)
Frequency (MH2) 201 158

macroblock in a specific sequence: first vertical edges then horizontal edges. As a
result, computed pixels only at the corners of horizontal edges are used in later
computations of pixels at the corners of vertical edges. This irregular dependency
pattern significantly limited the efficiency of the streaming unit in the SOpenCL-
based deblocking accelerator. The C code consists of a single nested loop that process
both horizontal and vertical edges sequentially which hid potential parallelism

between horizontal and vertical edges.

Contrary to SOpenCL generated accelerator, the manual design includes separate
datapaths for processing horizontal and vertical edges. Moreover, a specific
mechanism has been designed to handle the data dependency that only occurs at the
horizontal and vertical edges corners. Extra registers allocated specifically to hold
only required pixels for later computations. This special mechanism, allowed more

efficient pipelining of successive macroblocks processing.

The manual design only builds the datapath assuming input frame pixels available
in On-chip Block RAMs and output pixels are written to another bank on-chip Block
RAM. On the other hand, SOpenCL based design requires over 1400 slices for

Table 5.8: SOpenCL based design of Deblocking filter compared to mi
design. The throughput numbers are for 1280x720 HD video format (720p). MB
latency refers to the number of clock cycles required to complete the processing of
a single Macroblock.

Application SOpenCL based design Manual design
PP Complete Accelerator | Datapath Only | (Datapath Only)
Slices 2714 1295 1430
Throughput
(frames/Second) 31 260 379
Fregquency
(MH2) 161 161 160.5
MB Latency
(Clock Cycles) 172 172 118

132

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

read/write requests for data alignment and synchronization.

Finally, table 5.9 compares SEAL kernel accelerator with the manual design of
[8]. The manual design consists of three components: tables generation, initialization
and the main body of SEAL encoder. SOpenCL accelerators implement only the last
two components, i.e. initialization and the main body. For a 1 Gbit plaintext session,
Tables generation components executes only for the first 32 Kbit plaintext message,
hence, its execution time overhead can be ignored compared to the main processing

operations in the other components.

Our design achieved slightly smaller execution time compared to the manual
design with acceptable area overhead 44% FPGA slices. The improvement on
execution time was mainly caused by the lower clock frequency achieved via
SOpenCL. For a clock frequency similar to the manual design our design would
require higher execution time (10.62 ms). The additional area cost in our
implementation is due to the input and output streaming units and bus arbitration. The

datapath only consumes only 54% of the accelerator area (i.e. 1135 slices).

133

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

CHAPTER 6

CONCLUSIONSAND FUTURE WORK

In this dissertation we have investigated and described a methodology to generate
hardware accelerators from complex, unmodified OpenCL kernels and C functions.
One of the main tasks of this work was the evaluation of the presented methodology
which consists of two parts: architectural template design and hardware-driven

transformations and optimizations.

The architectural template design and transformation addresses the following

issues:

e Generating hardware for imperfect loop nests and data- and control-flow DAGs.
The template distinguishes inner most loops code from outer loops code and loop
invariant code and maps them on different resources. This mapping paradigm

allows arbitrary shapes of loops to be supported for hardware generation.

e Hiding memory latency and overhead through the disassociation of computational
operations and data-transfers, effectively facilitating the overlap of computation
and communication. Moreover, the template allocates resources and mechanisms

to exploit data reuse and reduce memory traffic and bandwidth requirements.

o Exploiting inherent parallelism in OpenCL kernels (and generated C functions) as
in task- and pipeline parallelism. The template allows concurrent execution of

multiple loop iterations, and pipelines multiple loop nests.

e Customized and application specific datapath design through bitwidth
optimization, and instruction clustering. Instruction clustering allows designing
optimized application specific functional units which provide improved

performance reduced area.

134

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

All the aforementioned capabilities are based on compiler analysis of memory
access patterns, control- and data-dependencies and require no programmer
intervention. Equally important, the hardware generator can be tuned to match the
available FPGA resources and respect target performance requirement.

We introduced instruction clustering a grammar-based instruction clustering
algorithm. Our approach targets the reduction of the routing complexity and overhead
in FPGA designs, allowing FPGA implementation of kernels that could not be routed
otherwise, such as the DVB-S2 kernels. The core of the methodology is the
production of a hierarchical grammar representation of a DFG. The rules of the
grammar correspond to subgraphs of the DFG which can be considered as candidate
macro-instructions. The proposed algorithm performs the tasks of grammar
generation, rule selection and implementation with negligible computation
complexity. Furthermore, we presented a simple yet systematic area estimation
technigue, which can be applied to characterize each target FPGA architecture and
toolchain. The results of the area estimation are used to both guide the rules selection
phase, and drive the insertion of pipeline registers in the produced macro FUs.

The experimental evaluation proved the potential of our infrastructure to generate
efficient hardware. Moreover, it quantified the tradeoffs of different hardware
configurations, as well as of optimizations like the asynchronous execution model,
instruction clustering and data streams caching.

The concurrent execution model proved its efficiency achieving up to 56%
increase in performance as in the DCT kernel case. Our analysis showed that
applications written in OpenCL kernels with multi-dimensional computations grid

will achieve significant performance gain using concurrent execution model.

Decoupled computations (on datapath) and address generation (on AGU),
combined with concurrent execution model, efficiently reduced the effect of memory
latency on the overall performance. Data prefetching reduced the idle state time gaps

of the memory system over the course of a kernel invocation.

Experimental evaluation of data caching proved the effectiveness of the caching

mechanism. While the cache utilization is limited to regular data streams, the cache

135

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

allocation methods consumed small amount of memory (96 byte for CMC and 256

bytes for LMC) to achieve over 50% increase in performance.

Experiments showed the efficiency of the proposed instruction clustering approach
in reducing routing complexity and hence reducing area. Moreover, the pipelining
algorithm used to design macro functional units, typically produced schedules with
smaller latency and no penalty on clock frequency. Most importantly the grammar-
driven optimization allowed successful placement and routing on complex designs

that were not deemed implementable before.

Instruction clustering and the corresponding algorithms and tool prototypes are
another necessary step in the direction of producing efficient FPGA designs from
algorithmic descriptions expressed in high level parallel programming languages.
This process moves FPGA development closer to the realm of software engineers,
thus facilitating the wider adoption and exploitation of FPGAs in everyday,

embedded and high-performance computing.

Concluding, the proposed methodology and techniques compared well with
manually optimized designs. The generated designs achieved comparable
performance with little area overhead.

Hardware generation from high level programming language is a promising
technology and the key for promoting FPGA integration in heterogeneous systems.
Our research showed that developing a fully automatic architectural synthesis tool
that enables software engineers to target FPGA based platforms is not an easy
undertaking since it requires extensive analysis of the input programs and

sophisticated compiler transformations.

Our future work includes automating the configuration selection process based on
the target device and user performance requirements. We are also planning to extend
the underlying architectural model to include multiple kernels (or multiple
instantiations of the same kernel) with multiple accelerators interconnected through
customized memory hierarchies. Last but not least, area and performance estimation
algorithms are necessary to guide hardware/software partitioning in the high level

compiler.

136

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

BIBLIOGRAPHY

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

Nvidia Inc. “nVIDIA GeForce 256 User Guide”, March, 2000.

www.nvidia.com

S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, and A.
Saidi, “The Reconfigurable Streaming Vector Processor (RSVP In Proceedings of

the International Symposium on MicroarchitectyddICRO), December, 2003, San
Diego, CA, U.S.A.

J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Evaluating the Imagine
Stream Architecture”]n Proceedings of the International Symposium on Computer
Architecture(ISCA) June 2004, Munich, Germany.

M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P.
Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S.
Amarasinghe, and A. Agarwal, “Evaluation of the Raw Microprocessor: An Exposed-
Wire-Delay Architecture for ILP and Streamdh Proceedings of the International

Symposium on Computer Architecture (ISCline 2004, Munich, Germany.

W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, “Merrimac: Supercomputing with
Streams”,In Proceedings of ACM/IEEE International Conference on Supercomputing
(SC) November 2003, Phoenix, Arizona, U.S.A.

M. Duranton, D. Black-Schaffer, S. Yehia, and K. De Bosschere, “Computing Systems:
Research Challenges Ahead, The HIPEAC Vision 2011/2012", October 2011.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scalingln Proceedings of the International
Symposium on Computer Architecture (ISCRIne, 2011, San Jose, CA, U.S.A.

K. Theoharoulis, C. Antoniadis, N. Bellas, and C. D. Antonopoulos, “Implementation
and Performance Analysis of SEAL Encryption on FPGA, GPU and Multi-Core
Processors”in Proceedings of IEEE International Symposium on Field-Programmable
Custom Computing Machines (FCCMypril, 2011, Salt Lake City, UT, U.S.A.

Z.H. Chen, W.Y. Su, M.T. Sun and S. Hauck, “Accelerating Statistical LOR Estimation
for a High-Resolution PET Scanner using FPGA Devices and a High Level Synthesis

137

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Tool”, In Proceedings of IEEE International Symposium on Field-Programmable
Custom Computing Machines (FCCMpril, 2011, Salt Lake City, UT, U.S.A.

S. Muhlbach, and A. Koch, “A Scalable Multi-FPGA Platform for Complex Networking
Applications”, In Proceedings of IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCKpril, 2011, Salt Lake City,
UT, U.S.A.

B. Sukhwani, B. Abali, B. Brezzo, and S. Asaad, “High-Throughput, Lossless Data
Compression on FPGAsIn Proceedings of IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCKpril, 2011, Salt Lake City,

UT, U.S.A.

R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch and V. Natoli, “Low-latency FPGA
Based Financial Data Feed Handldr’ Proceedings of IEEE International Symposium
on Field-Programmable Custom Computing Machines (FCONyil, 2011, Salt Lake
City, UT, U.S.A.

R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cronquist, and M.
Sivaraman, “PICO-NPA: High-Level Synthesis of Nonprogrammable Hardware
Accelerators”, Journal of VLSI Signal Processing Systems, Vol. 31(1), pp 127-142,
June 2002.

S. McCloud. “Catapult C Synthesis-based Design Flow: Speeding Implementation and
Increasing Flexibility”, Mentor Graphics Inc., October 2003.

Z. Zhang et al. “AutoPilot: A Platform-Based ESL Synthesis System”. In “High-Level
Synthesis: From Algorithm to Digital Circuit”, Springer Netherlands, 2008,

www.autoesl.com.

P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar, P. Joisha,
A. Jones, A. Kanhare A. Nayak, S. Periyacheri, M. Walkden, and D. Zaretsky, “A
MATLAB Compiler For Distributed, Heterogeneous, Reconfigurable Computing
Systems”,In Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCMApril 2000, Napa Valley, CA, U.S.A.

138

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Caniset al. “LegUp: High-Level Synthesis for FPGA-Based Processor/Accelerator
Systems”. In Proceedings of the IEEE International Symposium on Field
Programmable Gate Arrays (FPGAjebruary, 2011, Monterey, CA, U.S.A.

M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos, “Synthesis of Platform
Architectures from OpenCL Programsi, Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCMay, 2011, Salt Lake City, UT,
U.S.A.

M. Owaida, N. Bellas, C. D. Antonopoulos, K. Daloukas, C. Antoniadis, “Massively
Parallel Programming Models Used as Hardware Description Languages: The OpenCL
Case”, In Proceedings of the International Conference on Computer-Aided Design
(ICCAD), November, 2011, San Jose, CA, U.S.A.

G. Falcao, M. Owaida, D. Novo, M. Purnaprajna, N. Bellas, C. D. Antonopoulos, G.
Karakonstantis, A. Burg and P. lenne, “Shortening design time through multiplatform
simulations with a portable OpenCL golden-model: the LDPC decoder chmse”,
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM)April, 2012, Torronto, Canada.

K. Daloukas, C. D. Antonopoulos, and N. Bellas. “GLOpenCL: OpenCL Support on
Hardware- and Software-Managed Cache Multicoresi. Proceedings of the
International Conference on High Performance Embedded Architectures & Compilers
(HIPEAC), January, 2011, Heraklion, Greece.

Khronos OpenCL Working Group. Editor: A. Munshi, “The OpenCL Specification”,

Version: 1.1 Document Revision, June, 2010.

S. Cheet al “A Characterization of the Rodinia Benchmark Suite with Comparison to
Contemporary CMP Workloadsliy Proceedings of the IEEE International Symposium
on Workload Characterization (IISWQ)ctober, 2009, Austin, TX, U.S.A.

L. Chris, and A. Vikram, “LLVM: A Compilation Framework for Lifelong Program
Analysis Transformation”)n Proceedings of the International Symposium on Code
Generation and Optimization (CGOWarch, 2004, Palo Alto, CA, U.S.A.

139

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK : A High-Level Synthesis
Framework For Applying Parallelizing Compiler Transformations”Proceedings of
the International Conference on VLSI Design (VLJ&huary, 2003, New Delhi, India.

J. L. Tripp, M. B. Gokhale, and K. D. Peterson, “Trident: From High-Level Language
to Hardware Circuitry”JEEE Computer JournaNol. 40(3), pp.28-37, March 2007.

M. Kudlur, K. Fan, and S. Mahlke, “Streamroller: Automatic Synthesis of Prescribed
Throughput Accelerator Pipelinesin Proceedings of International conference on
Hardware/Software Codesign and System Synthesis (CODES+IS&8her, 2006,

Seoul, Korea.
M. Bowen, “Handel-C Language Reference Manual”, Embedded Solutions Ltd.
S. Méhl, “The Mitrion-C Programming Language”, Mitrionics AB. 2005.

J. Gabriel, F. Coutinho, and W. Luk, “Source-Directed Transformations for Hardware
Compilation”, In Proceedings of IEEE International Conference on Field-

Programmable Technology (FPT)ecember, 2003, London, UK.

W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker, J. R. Beveridge, M.
Chawathe, and C. Ross, “High-Level Language Abstraction for Reconfigurable
Computing”, IEEE Computer JournaVol. 36(8), pp. 63-69, August 2003.

W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker, and J. R. Beveridge,
“Cameron: High Level language Compilation for Reconfigurable Systerrs”,
Proceedings of International conference on Parallel Architectures and Compilation
Techniques (PACTYctober, 1999, Newport Beach, CA, U.S.A.

M. Gokhale, J. Stone, J. Arnold, “Stream-Oriented FPGA Computing in the Streams-C
High Level Language”|n Proceedings of IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCMpril, 2000, Napa, CA, U.S.A.

Impulse Accelerated Technologies Inc, “Impulse Tutorial: Using C-Language

Simulation for Algorithm Verification”, 2003.

N. Bellas, S. Chai, M. Dwyer, and D. Linzmeier, “FPGA implementation of a license
plate recognition SoC using automatically generated streaming accelerators”,
Reconfigurable Architectures Workshop (RAAfril, 2006, Napa, CA, U.S.A.

140

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

A. Hormati, M. Kudlur, S. Mahlke, D. Bacon, and R. Rabbah, “Optimus: Efficient
Realization of Streaming Applications on FPGAs!' Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
October, 2008, Atlanta, Georgia, U.S.A.

Cadence Design Systems, Inc. “Cadence C-To-Silicon Compiler High Level Synthesis”,

2008, www.cadence.com.

Forte Design Systems, Inc. “Cynthesizer: The most productive path to silicon”, 2008,

www.forteds.com.

A. Papakonstantincet al “FCUDA: Enabling efficient compilation of CUDA kernels
onto FPGASs; In Proceedings of the Symposium on Application Specific Processors
(SASP) July, 2009, Boston, MA, U.S.A

E. Jaaskelainen, C. S. de La Lama, P. Huerta, and J. Takala, “OpenCL-based Design
Methodology for Application-Specific Processordh Proceedings of SAMOS X:
Embedded Computer Systems: Architectures, MOdeling, and Simuladign 2010,

Samos, Greece.

Altera, Inc. “Implementing FPGA Design with the OpenCL Standard”, 2011,

www.altera.com.

M. Lin, I. Lebedev, and J. Wawrzynek. “OpenRCL: Low-Power High Performance
Computing with Reconfigurable DevicesIn Proceedings of the International

Conference on Field Programmable Logic (FPSgptember, 2010, Milano, Italy.

M. Owaida, N.Bellas, C. D. Antonopoulos, K. Daloukas, Ch. Antoniadis, K.
Krommydasand G. Tsoumblekas, “Implementation and Performance Comparison of
the Motion Compensation Kernel of the AVS Video Decoder on FPGA, GPU and
Multicore Processors”In Proceedings of IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCKpril, 2011, Salt Lake City,

UT, U.S.A.

C. Zissulescu, T. Stefanov, B. Kienhuis, and Ed Deprettere, “LAURA: Leiden
Architecture Research and Exploration Tooly Proceedings of the International
conference on Field Programmable Logic and Applications (FBleptember, 2003,

Lisbon, Portugal.

141

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

G. Kahn, “The semantics of a simple language for parallel programming”,
Proceedings of the IFIP Congress, Morth-Holland Publishing Co., 1974.

B. Kienhuis, E. Rypkema, and E. Deprettere, “Compaan: Deriving process networks
from Matlab for embedded signal processing architectunes’Proceedings of the
International Workshop on Hardware/Software Codesign (CODER), 2000, San
Diego, USA.

S. van Haastregt, and B. Kienhuis, “Automated Synthesis of Streaming C Applications
to Process Networks in Hardwaréhf, Proceedings of Design, Automation & Test in

Europe conference (DATEApril, 2009, Nice, France.

J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing Modular Hardware
Accelerators in C With ROCCC 2.0fTn Proceedings of IEEE Symposium on Field
Programmable Custom Computing Machines (FCCMpy, 2010, Charlotte, NC,
U.S.A.

I. Lebedev, S. Cheng, A. Doupnik, J. Martin, C. Fletcher, D. Burke, M. Lin, and J.
Wawrzynek, “MARC: A Many-Core Approach to Reconfigurable Computirig”,
Proceedings of IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCMApril, 2011, Salt Lake City, UT, U.S.A.

E. A. Lee and D. G. Messerschmitt, “Synchronous Data FI®B#E Proceedings
September, 1987.

D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier, B. Cheng, P. R.
Eaton, Q. B. Olaniran, W. W. Hwu, “Integrated Predicated and Speculative Execution
in the IMPACT EPIC Architecturein Proceedings of the International Symposium on
Computer Architecture (ISCAJune, 1998, Barcelona, Spain.

N. Snavely, S. Debray, G. Andrews, “Predicate Analysis and If Conversion in an
Itanium Link Time Optimizer”In Proceedings of the Workshop on Explicitly Parallel
Instruction Set (EPIC) Architectures and Compilation Technigudarch, 2002,
Seattle, Washington, U.S.A.

W. Chuang, B. Calder, J. Ferrante, “Phi-Predication for Light-Weight If-Conversion”, In
Proceedings of the International Symposium on Code Generation and Optimization
(CGO), March, 2003, San Francisco, CA, U.S.A.

142

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

P. Y. T. Hsu, and E. S. Davidson, “Highly Concurrent Scalar Processing”,
Proceedings of the international symposium on Computer architecture (1SG#A9,
1986, Tokyo, Japan.

Y. Choi, A. Knies, L. Gerke, and T. Ngai, “The Impact of If-Conversion and Branch
Prediction on Program Execution on the Intel ItanRmocessor’|n Proceedings of the
ACM/IEEE International Symposium on Microarchitecture (MICR®Jovember,
2002, Istanbul, Turkey.

B. R. Rau, D. W.L. Yen, W. Yen, and R. A. Towle, “The Cydra 5 Departmental
Supercomputer Design Philosophies, Decisions, and Trade-dE&E Computer
Journal, Vol. 22(1), pp. 12-26, January 1989.

R.E. Kessler, “The ALPHA 21264 MicroprocessdEEE Micro Journa) Vol. 19(2),
pp. 24-36, March, 1999.

F. de Ferriere, “Improvements to the Psi-SSA RepresentatiofProceedings of the
International Workshop on Software & Compilers for embedded systems (SGOPES)
April, 2007, Nice, France.

C. Bruel, “If-Conversion SSA Framework and TransformatiolmsRroceedings of the
SSA annual meetingdpril, 2009, Monterey, CA, U.S.A.

M. Weiser, “Program Slicing”Jn Proceedings of the International Conference on
Software Engineering (ICSBWarch, 1981, San Diego, CA, U.S.A.

P. Brisk, P. Kaplan, A. Kastner, and M. Sarrafzadeh, “Instruction Generation and
Regularity Extraction for Reconfigurable processordty, Proceedings of the
International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES)ctober, 2002, Grenoble, France.

K. Atasu, L. Pozzi, and P. lenne, “Automatic application-specific instruction-set
extensions under micro-architectural constraints”Proceedings of the International
Design Automation Conference (DAC), June, 2003, Anaheim, CA, U.S.A.

P. Yu, and T. Mittra, “Scalable Custom Instructions Identification for Instruction-Set
Extensible Processorsih Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASEeRjember, 2004,
Washington, DC, U.S.A.

143

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

N. Clark, H. Zhong, and S. Mahlke, “Automatic custom instruction generation for
domain-specific processor acceleratiodEEE Transactions On Computerd/ol.
54(10) pp. 1258 — 1279, October, 2005.

D. S. Rao, and F. J. Kurdahi, “On Clustering for Maximal Regularity ExtractieR’E
Transactions On Computer Aided Design of Integrated Circuits and Systems
Vol.12(8), pp. 1198-1208, August, 1993.

J. Cong, and W. Jiang, “Pattern-based behavior synthesis for FPGA resources
reduction”, In Proceedings of the international ACM/SIGDA symposium on Field

programmable gate arrays (FPGAjebruary, 2008, Monterey, CA, U.S.A.

N. Manning, H. Witten, and L. Maulsby, “Compression by Induction of Hierarchical
Grammars” InProceedings of Data Compression Conference (DQW@3rch, 1994,
Snowbird, UT, U.S.A.

M. Lohrey, S. Maneth, and R. Mennike, “Tree Structure Compression with RelRair”,
Proceedings of Data Compression Conference (DC®larch, 2011 Snowbird, UT,
U.S.A.

J. Cheriyan, and K. Mehlhorn, “Algorithms for Dense Graphs and Networks on the
Random Access Computer”, Algorithmica, Vol. 15(6) 521-549, June, 1996.

G. A. Constantinides, “Perturbation Analysis for Word-length Optimizatidn”,
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM)April, 2003, Napa, CA, U.S.A.

B. Le Gal, C. Andriamisaina, and E. Casseau, “Bit-Width Aware High Level Synthesis
for Digital Signal Processing Systemsfi, Proceedings of IEEE International System-
on-Chip Conference (SoCC3eptember, 2006, Austin, Texas, U.S.A.

A. Abdul-Gaffar, O. Mencer, W. Luk, P.Y.K. Cheung, and N. Shirazi, “Floating-point
Bitwidth Analysis via Automatic Differentiation”,In Proceedings of the IEEE
International Conference on Field-Programmable Technology (FBP&cember 2002,

Hong Kong.

A. Abdul-Gaffar, O. Mencer, W. Luk, P. Y.K. Cheung, “Unifying Bit-width
Optimization for Fixed-point and Floating-point Designis’,Proceedings of the IEEE

144

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Symposium on Field-Programmable Custom Computing Machines (FCEMI,
2004, Napa, CA, U.S.A.

Y. Pu, and Y. Ha, “An Automated, Efficient and Static Bit-width Optimization
Methodology Towards Maximum Bit-width-to-Error Tradeoff With Affine Arithmetic
Model”, In Proceedings on the Asia and South Pacific Design Automation Conference
(ASP-DAC) January, 2006, Yokohama, Japan.

M. Weinhardt, and W. Luk, “Pipeline VectorizatiohEEE Transactions on Computer-
Aided Design of Integrated Circuits and Syste¥d. 20(2), February, 2001.

M. Corazao, M. Khalaf, L. Guerra, M. Potkonjak, and M. Rabaey, “Performance
Optimization Using Template Mapping for Datapath-Intensive High Level Synthesis”,
IEEE Transactions On Computer Aided Design of Integrated Circuits and Systems
Vol. 15(8) 877-888, November, 2006.

T. Ly, D. Knapp, R. Miller, and D. Macmillen, “Scheduling using Behavioral
Templates”, In Proceedings of the International Design Automation Conference,(DAC)
June, 1995, San Francisco, CA, U.S.A.

O. Bringmann, and W. Rosenstiel, “Resource Sharing in Hierarchal Synthesis” In
Proceedings of the IEEE/ACM Conference on Computer Aided Design (ICCAD)
November, 1997, San Jose, CA, U.S.A.

P. Bonzini, and L. Pozzi, “Polynomial-Time Subgraph Enumeration for Automated
Instruction Set Extension’ln Proceedings of the Conference on Design automation
and test in Europe (DATERpril, 2007, Nice, France.

D. Goodwin, and D. Petkov, “Automatic Generation of Application Specific
Processors”, In Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASE®per, 2003, San Jose,
CA, USA.

J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-Specific Instruction Generation
for Configurable Processor Architecturesih Proceedings of the ACM/SIGDA
International Symposium on Fieald Programmable Gate Arrays (FPGApruary,
2004, Monterey, CA, U.S.A.

145

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[82] R. Kastner, S. Memik, E. Bozorgzadeh, and M. Sarrafzadeh, “Instruction Generation for
Hybrid Reconfigurable Systems”ACM Transactions On Design Automation of
electronic System¥ol. 7(4) 605-627, October, 2002.

[83] J.Bennett, “A Methodology for automated design of computer instruction sets”, PhD.

Thesis, University of Cambridge, 1988.

[84] J. V. Praet, G. Goossens, D. Lanneer, and H. Man, “Instruction Set Definition and
Instruction Selection for ASIPs'In Proceedings of the international symposium on
High-level synthesis (ISSSJay, 1994, Ontario, Canada.

[85] A. Peymandoust, L. Pozzi, P. lenne, and G. Micheli, “Automatic Instruction Set
Extension and Utilization for Embedded Processohs”Proceedings of the IEEE
International Conference on Application-Specific Systems, Architectures, and
Processors (ASAPJune, 2003, Hague, Netherlands.

[86] N. Pothineni, P. Brisk, P. lenne, A. Kumar, and K. Paul, “A High-Level Synthesis Flow
for Custom Instruction Set Extensions for Application-Specific Processdns”,
Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC)
January, 2010, Taipei, Taiwan.

[87] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero, “Swing Modulo Scheduling: A
Lifetime-Sensitive Approach’ln Proceedings of International conference on Parallel
Architectures and Compilation Techniques (PACTDctober, 1996, Boston, MA,
U.S.A.

[88] B. Ramakrishna Rau, “Ilterative Modulo Scheduling: An Algorithm For Software
Pipelining Loops”, 1994,In Proceedings of the International Symposium on
Microarchitecture (MICRO)November, 1994, San Jose, CA, U.S.A.

[89] P. G. Paulin, and J. P. Knight, “Scheduling and binding algorithms for high-level
synthesis”,In Proceedings of the ACM/IEEE Design Automation Conference (DAC)
June, 1989, Las Vegas, NV, U.S.A.

[90] W. Gao, S. MA, L. SU, and D. Zhao, “AVS Video Coding Standard”, In Studies in
Computational Intelligencevol. 280, 125-166, 2010.

146

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

[91]

[92]

(93]

[94]

[95]

[96]

[97]

[98]

[99]

J.A. Michell, J. Solana, and G. Ruiz, “A high-throughput ASIC processor for 8x8
transform coding in H.264/AVC”In ACM Image Communicatior26(2), pp. 93-104,
February, 2011.

S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and N. When, “A novel LDPC
decoder for DVB-S2 IP"In Proceedings of the Conference on Design, Automation and
Test in Europ€DATE), April, 2009, Dresden, Germany.

A. Karapatis, “Implementation of AVS video decoder on FPGA”, Undergraduate

Diploma, University of Thessaly, July 2011, Volos, Greece.

F. de Dinechin, B. Pasca, and E. Normale, “Custom Arithmetic, Datapath Design for
FPGAs using the FloPoCo Core GenerattEEE Design & Test of Computergol.
28(4), August, 2011.

R. Andraka, “A survey of CORDIC algorithms for FPGA based computéns”,
Proceedings of the ACM/SIGDA International Symposium on Fieald Programmable
Gate Arrays (FPGA)February, 1998, Monterey, CA, U.S.A.

K. Beyls, and E.H, D Hollander, “Reuse Distance as a Metric for Cache Behéwior”,
Proceedings of the IASTED International Conference on Parallel and Distributed
Computing and Systems (PDC8ugust, 2001, Anaheim, U.S.A.

C. Y. Haung, Y. S. Chen, Y. L. Lin, and Y. C. HSU, “Data Path Allocation Based on
Bipartite Weighted Matching”, IfProceedings of the 27th annual ACM/IEEE Design
Automation Conference (DAC)une, 1990, San Orlando, FL, U.S.A.

D. Chen, and J. Con{j.ow-Power High-Level Synthesis for FPGA Architectures”, In
Proceedings of the International Symposium On Low Power Electronics and Design
(ISLPED),June, 2003, Seoul, Korea.

J. Cong, Y. Fan, and W. Jiang, “Platform-Based Resource Binding Using a Distributed
Register-File Microarchitecture”, IfProceedings of the IEEE/ACM Conference on
Computer Aided Design (ICCADYovember, 2006, San Jose, CA, U.S.A.

147

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154

