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CHAPTER 1 
 

INTRODUCTION 
 

1.1  Background 

1.1.1 Modern Parallel and Heterogeneous Computing 

The ever increasing demand for more efficient computing has pushed the 

evolution of computing systems to spectacular levels over the last few decades. 

Advances in computing systems are the key to the development of new domains and 

revolutionary technologies, such as personalized medicine, online social interaction, 

and immersive entertainment experiences. 

While appetite for high performance and more efficient computing is increasing, 

today's computing systems are struggling with technology limitations. The traditional 

way to improve performance by increasing clock frequency has already come to an 

end. As a result, computing systems are shifting towards energy-efficient parallel 

computation models. Using many slower parallel processors instead of a single high 

speed core has provided higher energy efficiency. 

Parallel architectures developed over the last decade, can be classified into 

different categories. The first category includes multiple instances of the traditional 

general purpose processor have been arranged within the same chip to produce multi 

core processors (MCPs). Another category includes the Graphic Processing Units 

(GPUs) with hundreds of simple processing cores. Nvidia GeForce256 was the first 

GPU released on 1999 [1]. Finally, streaming/Vector processors are multi-core 

processors, specially designed for streaming applications. Streaming processors like 

RSVP, Imagine, Raw, and Merrimac [2, 3, 4, 5] promoted high performance 

computing by exploiting heavy data parallelism in streaming applications and 

employing a distributed memory model.  
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While the many-core processing hardware technology is progressing rapidly, 

software development for parallel computing is falling behind. The challenge rising 

with parallel computing systems is to port already developed software for sequential 

processors on the newly introduced multi- or many-core processors. To cope with the 

new architectural trends, the parallel computing industry has developed a variety of 

parallel programming languages to allow programmers to exploit the multiple 

execution contexts available in the new multi-core architectures. The first class of 

parallel programming languages like OpenMP and Posix threads are extensions of 

sequential programming models, suitable for systems with few processing cores, and 

are widely used in the industry. New parallel programming models have been 

invented in the last few years to better suit systems with hundred or thousands of 

cores. Languages such as OpenCL, CUDA or various streaming languages fit the 

second category. 

Yet even the shift to parallel computing is not enough. Many-core chips suffer 

from high power density which restricts the number of cores that can be 

simultaneously active, a phenomenon called dark silicon [6, 7]. The dark silicon 

phenomenon puts limits on the prospect of building many-core chips with tens or 

hundreds of cores without significant degradation in efficiency. This inefficiency is 

promoting heterogeneous parallel computing systems. 

Instead of a parallel computing system built only from many-core chips, a 

heterogeneous computing system comprises multiple different computing 

components (Figure 1.1) each carefully optimized to efficiently execute a particular 

type of task. This heterogeneous parallel computing model presents an even greater 

challenge for developers. Now they must not only develop parallel applications, but 

they are responsible for deciding what types of processors to use for which 

calculations [6]. 

Heterogeneous systems development represents the best approach on energy-

efficient high performance computing. However, it is a new technology that requires 

extensive research and effort mostly in developing tools and compilers to help 

software developers to deal with the large pool of architectural variables and 

parameters of heterogeneous systems. Other than the architectural differences of 

heterogeneous system components, their programming tools and languages exhibit 
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vast differences making it extremely difficult to develop applications that can be 

executed on all components. For example, porting an application on a heterogeneous 

system comprising MCPs, GPUs and FPGAs, requires the use of completely different 

programming languages; for example OpenMP for MCPs, CUDA for GPUs, and 

Verilog/VHDL for FPGAs 

Recently, researchers in the parallel computing community have been moving 

towards unified programming models to support the heterogeneity of parallel 

computing platforms.  OpenCL [22] is an industry-supported standard for building 

parallel applications that are portable across heterogeneous parallel systems. OpenCL 

adopts an architecture-agnostic computations model, promoting application 

portability across different platforms. 

1.1.2 FPGA-based Computing Platforms 

The recent advances in FPGA technology have placed reconfigurable platforms on 

the map of heterogeneous computing. FPGA accelerators offer superior performance, 

power and cost characteristics compared to a homogeneous CPU-based platform, at 

the expense of complex and expensive software infrastructure. For instance, FPGAs 

have been shown to offer two orders of magnitude superior performance than 

conventional CPUs for a variety of data-intensive applications [8]. 

FPGAFPGA

GPUGPU

CPUCPU

 

Figure 1.1: Heterogeneous System. 
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Research in the last few years provided strong evidence on FPGA high 

performance computing capabilities. Applications in medical imaging [9], networking 

[10], multimedia [11], and financial applications [12], have been successfully 

implemented on FPGA platforms achieving orders of magnitude speedup and energy-

consumption reductions over CPU- and GPU-based solutions. 

Distributed logic and memory components of FPGA devices bear a significant 

resemblance to many-core processors. FPGA reconfigurable fabric consists of a sea 

of programmable logic cells and interconnects organized in rows and columns (Figure 

1.2). Recently, FPGA manufacturers have included hard IP cores, like multipliers and 

SRAM blocks, distributed within the logic cells to improve designs efficiency.  The 

distributed memory blocks over the FPGA architecture, provide the necessary 

memory bandwidth for building parallel computing architectures. 

Developing FPGA-based systems is a hard undertaking and a time consuming 

process. The designer requires firstly analyzing the problem under consideration, 

partition it into multiple tasks, each then implemented carefully to fulfill the 

performance requirements. The design then has to be implemented using a hardware 

description language like Verilog or VHDL before programming the FPGA device. 

Even with FPGA-based computing being up to the expectations of the high 

performance community, the integration of FPGAs in heterogeneous systems 

composed of CPUs and GPUs is far from mainstream. The main obstacle in the way 

of FPGAs being used in heterogeneous platforms is the need for hardware expertise 

 

Figure 1.2: FPGA fabric basic components. 
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to program the FPGA. The community of software programmers and especially 

programmers of parallel systems will resist a platform with its own programming 

language when the industry is moving towards unified higher-level programming 

models for multi-core and heterogeneous platforms. Using FPGAs in heterogeneous 

platforms ideally requires enabling FPGA programming using high level parallel 

programming languages like CUDA, and OpenCL.  

1.2 Research Objective and Contribution 

The problem of automatically generating system architectures from high level 

programming languages has been at the forefront of academic and industrial research 

in the last few decades. Generating system designs from high level programming 

languages such as C/C++ or Matlab has been investigated to increase design 

productivity and enable rapid design space exploration [13, 14, 15, 16, 17]. However, 

High Level Synthesis tools have not been so well adopted by the software engineer 

community because the design flow of the current commercial tools is more suited for 

the hardware rather than the software engineer. The designer is required to tune the 

application source code specifically for hardware design, and may have to intervene 

to specify low level details which may discourage most software engineers from 

using the technology. A successful high level synthesis tool targeting software 

engineers and parallel programmers will have to hide the architectural details from 

the programmer. 

Using parallel programming models like OpenCL, to generate FPGA-based 

systems, open up system hardware design for the large community of software 

engineers to exploit the capabilities of high-end FPGA devices without the need for 

hardware expertise.   

OpenCL programs express parallelism at its finest granularity. This is a 

particularly convenient feature for hardware generation, as the programmer explicitly 

exposes all available parallelism of the application. Exposing parallelism at its finest 

granularity allows hardware generation at different levels of granularity. Another 

favorable feature of OpenCL is the explicit expression of data movement in the form 

of buffer transfers between compute devices. Languages with C-like semantics, as 

well as traditional parallel programming models such as POSIX Threads or OpenMP, 
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express parallelism at a coarser granularity and at the same time ignore or obfuscate 

communication, thus placing the burden of re-discovering parallelism and 

communication patterns to an optimizing compiler and/or the user – usually with 

limited success. 

 Our research develops algorithms, and architectures to generate automatically 

hardware accelerators from OpenCL kernels. Our synthesis tool, Silicon OpenCL 

(SOpenCL), generates a hardware accelerator from a single OpenCL kernel using two 

phases: OpenCL to C source to source transformation and C to RTL generation. Our 

research concerns the second phase. A C function generated by the source to source 

transformation consists of one or more nested loops that encapsulate the 

computationally intensive parts of the OpenCL kernel.  

The contributions [18, 19, 20] of our research can be summarized as follows:  

1. Code Transformations: The tool flow performs novel transformations specific 

for architectural synthesis. Bitwidth analysis transforms variable bitwidth from 

the standard size (char, int, etc.) into arbitrary sizes to minimize the amount of 

hardware resources. Predication replaces control dependencies with data 

dependencies, thus increasing the size of basic blocks and the potential of 

instruction schedulers to find an optimal instruction schedule.  Code slicing 

decouples data movement from data computations, and overlaps their 

execution. A major transformation introduced in the tool flow is Code 

Clustering. SOpenCL analyzes patterns of instructions and produces 

application specific macroinstructions, where a macroinstruction consists of 

multiple basic arithmetic and logic operations. Macroinstructions provide a 

compact form of computation that can be implemented more efficiently than 

basic arithmetic and logic operations. 

2. Architectural Template: SOpenCL utilizes an architectural template designed 

and configured to meet user performance requirements and fit the target 

device. The architecture of a hardware accelerator of an OpenCL kernel has a 

hierarchal structure which resembles the loop hierarchy in the generated C 

function. Each nested loop is allocated a single cluster of hardware which 

allows pipelining the nested loops execution. The architectural template 
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decouples and overlaps the execution of data computation and data movement 

by allocating separated modules for data computations (Datapath) and data 

movement to and from memories (Streaming Interface Unit). 

3. Concurrent Execution Model: To exploit the separate hardware components in 

the architectural template, an asynchronous execution model is adopted. The 

operation of the streaming units and the computational datapaths is fully 

asynchronous, even across the boundaries of different loops and loop nests. 

Asynchronous execution model allows pipelined and parallel execution of 

multiple nested loops, and increases hardware utilization. 

The current state of the tool produces a single accelerator per OpenCL kernel. The 

supported kernels may consist of arbitrary loop nests and shapes. They may contain 

synchronization and any kind of standard arithmetic operations. The tool flow also 

provides an IP library for floating point operators and math functions optimized to 

enhance the performance of the accelerator. OpenCL kernels that include dynamic 

memory allocation or function call are not supported. 

1.3 Thesis Structure 

The structure of the thesis is as follows: 

Chapter 2 covers the background material necessary to understand the proposed 

algorithms and design techniques. More precisely, Chapter 2 presents the framework 

and infrastructure used by our tool flow.. 

Chapter 3 introduces the proposed architectural template for architectural 

synthesis. It describes the skeleton of the template, its basic structure and how an 

OpenCL kernel is mapped on the template components. The chapter addresses the 

architectural techniques used in handling synchronization and exploiting data reuse to 

reduce memory access overhead. The execution model of OpenCL kernel on the 

generated hardware accelerator is also discussed. 

Chapter 4 describes the low level transformations/optimizations and hardware 

generation methods applied on the OpenCL kernel source code to provide 

architectural optimizations. Transformations include bitwidth optimization, 

predication, code slicing and instruction clustering. Code slicing separates portions of 
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code responsible for addresses generation from computations to decouple and overlap 

their execution. Instruction clustering generates application specific instructions to 

build custom functional units.  Later in the chapter we introduce methods used in 

taking architectural synthesis decisions. More precisely, scheduling instructions on 

allocated resources, data caching configurations, and synchronization/interconnect 

data channels generation. Two scheduling algorithms are described: modulo 

scheduling and as soon as possible scheduling. 

Chapter 5 presents the experimental evaluation of the proposed techniques and 

architectural template. Finally, Chapter 6 completes this dissertation with the 

presentation of the conclusions and reference to future work. 
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CHAPTER 2 
 

SILICON-OPENCL TOOL FLOW 
 

2.1 Tool Flow and Infrastructure 

Silicon-OpenCL (SOpenCL) is an architectural synthesis CAD tool targeting 

heterogeneous parallel computing platforms (Figure 2.1). The objective is to allow a 

software programmer to develop an OpenCL application once, and deploy it on any 

platform, without the need for modifications. The tool consists of a two levels 

compilation process: High Level Compilation (HLC) and Low Level Compilation 

(LLC).  

The high level compiler processes an OpenCL application and partitions its 

kernels as appropriate across the available computing platforms (CPU, GPU, and 

FPGA). The low level compiler processes OpenCL kernels selected to run on FPGA 

platforms. The task of the LLC is to compile an OpenCL kernel, and generate an 

equivalent hardware design that fits the target FPGA device and fulfills performance 

requirements. SOpenCL tool infrastructure also provides runtime environments for 

each of the target platforms to facilitate their integration and the execution of 

FPGAFPGAGPUGPU
CPUCPU

HLC

LLC

(OpenCL to RTL)

OpenCL Application

 

Figure 2.1: Silicon-OpenCL Tool Flow. 
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OpenCL kernels. 

Figure 2.2 shows the low level compiler flow. The LLC converts unmodified 

OpenCL kernels into a system on chip (SoC) with hardware and software 

components. The tool flow generates a hardware accelerator for each OpenCL kernel 

in two phases: OpenCL-to-C transformation, and C-to-RTL. The tool flow also 

generates the runtime environment and drivers, in addition to the testbench generated 

for simulation and verification purposes. The OpenCL-to-C frontend developed by 

Daloukas [21] generates a C function from an OpenCL kernel by coarsening the 

computation granularity as will be detailed in section 2.3. The C-to-RTL backend 

developed in this thesis generates a hardware accelerator RTL description for each 

OpenCL kernel. 

Figure 2.3 shows the C to RTL back end tool flow which-along with the front end 

is based on the LLVM compiler infrastructure. LLVM compiler translates the input C 

function into an assembly-like intermediate representation, called LLVM-IR. The 

LLVM compiler provides conventional optimizations and transformations such as 

dead code elimination, redundant code elimination, constants propagation, algebraic 

transformations, loop transformations, loop unroll, and loop invariant code motion.  

Given the LLVM-IR, the backend performs two sets of tasks, low level 

transformations and optimizations, and hardware allocation and generation. 

 

Figure 2.2: SOpenCL Low Level Compiler (SOpenCL-LLC). (C-to-RTL 
backend is the result of this thesis research). 
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2.2 OpenCL Programming Model 

2.2.1 Overview 

OpenCL [22] is a programming framework for heterogeneous computing 

platforms. OpenCL was initially developed by Apple Inc. as a portable programming 

framework for the vast number of multi-core CPUs and GPUs. Apple submitted an 

initial proposal in collaboration with technical teams at AMD, IBM, Intel, and Nvidia, 

to the Khronos group. Within six months Khronos group released the first OpenCL 

specification for the public. OpenCL programming language is based on ISO C99 

with some limitations and extensions. The language is extended to provide explicit 

representation of parallelism, synchronization and memory regions. 

OpenCL programming framework was designed with software portability in mind. 

The vision is to write a single application that can run on a variety of potentially 

heterogeneous platforms, from embedded systems to workstations and 

supercomputers. The OpenCL platform model comprises a host processor and a 

number of compute devices (Figure 2.4). Each device consists of a number of 

compute units, which are subsequently divided into a number of processing elements. 

An OpenCL application consists of a host program and a number of kernel functions. 

The host part executes on the host processor and submits commands that can refer 

either to execution of a kernel function or to manipulation of memory objects. A 

kernel function contains the computational part of an application and is executed on 

the compute devices. 

 

Figure 2.3: C-to-RTL backend. 
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A key feature in OpenCL is that the compiler is built into the runtime system, 

which provides flexibility and portability, and allows OpenCL applications to select 

and use different compute devices in the system at runtime. 

2.2.2 Computation Model 

The work corresponding to a single invocation of an OpenCL kernel is called a 

work-item. Multiple work-items can be organized in a work-group. OpenCL allows 

for geometrical partitioning of the grid of computations to an N-dimensional space of 

work-groups, with each work-group being subsequently partitioned to an N-

dimensional space of work-items, where 1 ≤ N ≤ 3 (Figure 2.5). Once a command 

that refers to execution of a kernel function is submitted, the host part of the 

application defines an abstract index space, with a maximum of 3 dimensions of work 

groups and 3 dimensions of work items in each work group. A work-item is identified 

 

Figure 2.4: OpenCL Platform Model. 
 

 

Figure 2.5: 2-dimensional computations grid geometry (N = 2). 
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by a tuple of IDs defining its position within the work group, as well as the position 

of the workgroup within the computation grid. Based on these IDs, a work-item is 

able to access different data (SIMD style) or follow a different path of execution.  

Figure 2.6 shows an example of Chroma interpolation OpenCL kernel. Chroma 

interpolation computes sub-pixels from chrominance components in a video frame. 

Each work item (one kernel invocation) computes one sub-pixel by applying a 4-tap 

filter on 4 chrominance pixels. The filter output is then clipped to the value range 

[0,255]. The kernel utilizes 2-dimentional computations grid like the one shown in 

Figure 2.5. The get_global_id(0) and get_global_id(1) runtime functions return the 

unique global x- and y-coordinates of the work-item, respectively.  

OpenCL also provides runtime functions to return local work-item coordinates 

within a work group (Figure 2.7). For example, get_local_id(0) and get_local_id(1) 

return the x- and y-coordinates (Sx and Sy in Figure 2.5) of the work-item within the 

work-group.  

The programmer explicitly defines the dimensions of a single work group when 

she invokes the kernel function. The number of work groups is determined implicitly 

in the runtime depending on the size of the computation problem. For example, the 

chroma interpolation kernel of Figure 2.6 has 2-dimensional work group of size 4×4, 

i.e. 16 work-items, where each work-item processes  a single pixel. The number of 

work groups depends on the grid size, i.e. the video frame size. For 640×480 VGA 

frame, the grid includes 80×60 work-groups. 

 

Figure 2.6: Chroma Interpolation OpenCL kernel 
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2.2.3 Synchronization 

OpenCL uses what is called a relaxed memory consistency model which means 

that different work-items may see a different view of global memory as the 

computation progresses. Synchronization is required to ensure data consistency 

within the work items of a work group, while reads and writes to all memory spaces 

are consistently ordered within work-items. 

OpenCL programming model provides two types of synchronization functions 

among work-items inside a work-group, memory-fence and barrier function. A barrier 

function requires all work-items inside a work-group to rendevouz at the barrier call. 

In other words, every work-item in the same work group must execute the barrier 

function before any work-item is allowed to continue execution beyond the barrier 

command. A memory-fence only requires that loads and stores preceding the 

mem_fence all be committed to memory. On the other hand, there is no 

synchronization mechanism among work-groups, which means that work-groups can 

be executed in parallel. 

Figure 2.7, depicts an OpenCL kernel for naive matrix multiplication. Each work-

item first prefetches an entry from each matrix and stores it in local memory. After 

the barrier function, each work item computes an entry in the output matrix. The 

barrier (CLK_LOCAL_MEM_FENCE) function stalls the execution of every work-

 

Figure 2.7: Matrix Multiplication OpenCL kernel example. 
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item in the work group before allowing any work-item to execute the last statements 

in the kernel. The barrier synchronization here is necessary to enforce memory 

dependencies between work-items in the same work group; loaded matrices entries by 

each work item are used by the rest of work items to perform their computations. 

2.2.4 OpenCL Memory Structure 

OpenCL defines a memory hierarchy of four types: global memory, constant 

memory, local memory, and private memory (Figure 2.8). OpenCL standard only 

specifies the access level of different type of memory. Programmers can use memory 

region address qualifiers; __global, __constant, __local, and __private to specify the 

type of memory hosting data as in Figure 2.6 and Figure 2.7. 

Global memory has the largest size on a compute device. Global memory is visible 

to all work-items in the computations grid. While the largest and visible to all work-

items, global memory is considered the slowest memory. Constant memory is a read-

only section of the global memory visible to all work-items. Constant memory can be 

associated with specialized hardware optimizations to broadcast data. Local memory 

is much faster than global memory, and is typically located on-chip. A local memory 

is a shared section of memory within the work-items of the same work-group. 

Synchronization of memory accesses in the local memory is the responsibility of the 

programmer. A private memory is used within a work-item, and implemented 

generally using registers in a GPU or CPU core. A private memory is fast and can be 

 

Figure 2.8: OpenCL memory hierarchy. 
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used without the need for synchronization primitives. In situations where the compute 

device has inadequate number of registers, variables stored in private memory are 

spilled to global memory space causing significant performance drop. 

2.3 OpenCL to C transformation 

As explained in the previous section, OpenCL exposes parallelism at a fine level 

of granularity by allowing the programmer to embody the task executed by a single 

logical thread in an OpenCL kernel. For example, the OpenCL code for chroma 

interpolation (shown in Figure 2.6) describes the computation of a single loop 

iteration which comprises an OpenCL work-item in this case. Depending on 

performance requirements, and resource availability, any number of hardware 

accelerators can be generated spanning from a simple interpolator, executing a single 

thread per invocation, to an accelerator that produces the complete interpolated frame 

every time it is invoked. Between these two extremes, a hardware generation tool can 

generate any number of accelerators, each, potentially, being assigned a different 

amount of workload per invocation. 

In order to enable efficient mapping of OpenCL kernel functions to the underlying 

platform while at the same time taking into account any hardware constraint, 

SOpenCL tool applies a series of source-to-source transformations in the high level 

compiler frontend (Figure 2.2) that collectively aim at coarsening the granularity of a 

kernel function from the work-item to the work-group level.  

Daloukas [21] explains that the selection of a work-group as the preferred degree 

of granularity for logical threads serialization may seem arbitrary. However, taking 

synchronization within a work group into account, it will become evident that other 

options may present hard to overcome complications in the presence of 

synchronization operations or multiple exit points within the kernel. At the same time, 

work-group granularity is usually explicitly set by OpenCL programmers, often 

considering data reuse, or matching the work-group data footprint to the capacity of 

specific levels of the memory hierarchy. Therefore, introducing different degrees of 

work granularity at the runtime, despite being semantically correct, might introduce 

performance side-effects. 
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OpenCL-to-C frontend applies three source-to-source transformations: threads 

serialization, elimination of synchronization functions, and variable privatization, 

each one explained in the remainder of the chapter. 

2.3.1 Logical Threads Serialization 

The main step in the OpenCL-to-C frontend is logical thread serialization. Work-

items inside a work-group can be executed in any sequence, provided that no 

synchronization operation is present inside a kernel function. Based on this 

observation, execution of work-items is serialized by enclosing the instructions in the 

body of a kernel function into a triple nested loop, given that the maximum number of 

dimensions in the abstract index space within a workgroup is three. Each loop nest 

enumerates the work-items in the corresponding dimension, thus serializing their 

execution.  

Threads serialization of kernel Add_3D (Figure 2.9a) produces the C function in 

Figure 2.9b. Input argument local_size_array is an array of size 3, and is used to store 

the dimensions of the work group to be  used as boundaries in the triple nested loop. 

2.3.2 Loop Fission 

Thread serialization can lead to invalid execution of a kernel function if the 

OpenCL kernel body contains synchronization operations. In the presence of a barrier 

instruction, every work-item must execute that instruction before any work-item is 

__kernel void Add_3D(__global int * A,   

__global int * B, 

__global int * C,

int W, int H)

{

int id0 = get_global_id(0);

int id1 = get_global_id(1);

int id2 = get_global_id(2);

int pos = id2*W*H + id1*W + id0;

C[pos] = A[pos] + B[pos];

}   
(a) (b) 

Figure 2.9: Logical Threads Serialization. (a) Add_3D OpenCL kernel adds two 3D 
arrays. The three runtime functions return the coordinates (id0, id1, id2) of the pixel 
computed by a work-item. (b) C function after threads serialization. 
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allowed to continue its execution. However, in the modified C kernel function, every 

work-item finishes its execution before the next work-item is able to start. In order to 

ensure correct execution of the coarsened kernel function, the compiler applies loop 

fission transformation that facilitates logical thread serialization. 

Loop fission is applied in order to enforce the execution ordering that is required 

by a synchronization instruction. A triple-nested loop enforces synchronization 

among work-items before its first and after its last iteration. Based on this 

observation, we partition the instructions of a kernel function into blocks such that no 

barrier instruction is present inside a block. Afterwards, we enclose each block into a 

triple-nested loop, Figure 2.10 depicts this transformation for the MatrixMul kernel of 

Figure 2.7. Since there is one synchronization statement, barrier, two triple nested 

loops are required to ensure correct execution of the C kernel function. 

A similar problem occurs for kernel functions with multiple exit points, i.e. when 

break, continue or return statements are present. We treat each of the aforementioned 

instructions as an additional synchronization point and apply loop fission around it 

(Figure 2.11). For example, in Figure 2.11b, the if-statement works as a 

synchronization barrier. Hence, triple nested loops (loops) are created around each 

statement (S1 and S2). 

2.3.3 Variable Privatization 

Loop fission presents a complication for variables that are defined in one triple-

__kernel void MatrixMul(__global float* a, __global float* b, 

__global float* c, int * global_id)

{

int row, col, sum, j; 

__local float aTile[HEIGHT][WIDTH], bTile[HEIGHT][WIDTH]; 

triple_nested_loop {

row = global_id[1] + i1; 

col = global_id[0] + i0;

aTile[i1][i0] = a[row*WIDTH + col]; 

bTile[i1][i0] = b[row*WIDTH + col]; 

}

// barrier(CLK_LOCAL_MEM_FENCE); 

triple_nested_loop {

row = global_id[1] + i1; 

col = global_id[0] + i0;

sum = 0;

for(j = 0; j < WIDTH; j++)

sum += aTile[i0][j] * bTile[j][i1];

c[row*WIDTH + col] = sum;

}

}  
Figure 2.10: Loop Fission example. 
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nested loop construct and used in another. A work-item that defines the value of a 

variable in the first loop cannot use it in a subsequent loop, as its contents will be 

polluted by the execution of subsequent work-items, thus violating semantics.  

SOpenCL compilation infrastructure conducts a live-variable analysis to identify 

the variables that are live beyond the boundaries of the loops introduced by loop 

fission. Next, we apply variable privatization for these variables, namely we allocate 

them to a separate memory area for each logical thread. Each logical thread is 

therefore provided with a private copy of such variables.  

Figure 2.12 shows an example of loop privatization. In Figure 2.12b, the variable k 

computed by each work-item (i.e. loop iteration) in the first nested loop, will be 

overwritten by other work-items (loop iterations). When the k variable is used in the 

second nested loop its value has been polluted with the last iteration of the first nested 

loop. Figure 2.12c shows the result of applying variable privatization on loop fission 

 

Figure 2.11: Barrier Elimination examples. 

 

Figure 2.12: Variable privatization example. (a) Original OpenCL kernel. (b) Loop 
fission output (wrong). (c) Variable privatization output (correct). 
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output. A local memory array (_K) is allocated with size equal to the number of work-

items per work group (LOCAL_SIZE_0). Each work-item stores its k value in the 

allocated array at a unique position to be later used in the second nested loop. 

For further details on the OpenCL compiler transformations, the interested reader 

should consult [21].   

2.3.4 Output C function structure 

Figure 2.13a depicts an OpenCL kernel which implements LU Decomposition is 

used as a running example to explain the sequence of steps to generate the hardware 

accelerator. This kernel is part of the Rodinia benchmark suite [23].  

LU Decomposition kernel consists of three parts, separated by barrier instructions. 

All work-items that execute the first part of the code, prefetch a segment of the input 

array m to three local buffers, and have to rendevouz to the first barrier before they 

proceed. The second part of the code performs the main LU Decomposition 

operation, and, likewise, forces all work-items to synchronize to the second barrier, 

before proceeding to the final writeback to array m. 

Figure 2.13b depicts the block structure of the modified kernel function for our 

running example. The kernel code separated by barrier instructions is enclosed in 

triple nested loops (T i). 

One may assume that transforming the parallel OpenCL representation into the 

sequential C representation, we lose the desirable features of OpenCL language, i.e.  

explicit parallelism and data movement. However, the specific structure of the 

generated C functions and the knowledge of what each portion of the function 

represents, we can ensure that the desirable features of OpenCL are preserved. 

Multiple nested loops in the C function indicate the existence of synchronization 

commands within the OpenCL kernel. Multiple nested loops have to be executed 

sequentially, but their execution can be pipelined. 

The body of a triple nested loop represents the workload of a single work-item, 

which leads to the conclusion that multiple iterations of a triple nested loop can 

correspond to multiple work-items, and hence, can be executed in parallel and out of 

order.  
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Explicit local memory representations are transformed into local data arrays in the 

C function, and can be implemented as on-chip distributed memory blocks. 

2.4 LLVM Compiler Infrastructure 

LLVM compiler infrastructure [24] has been developed to provide a machine 

independent framework for program optimization, analysis, and refactoring. To 

provide support for multiple programming languages and different target 

architectures, LLVM adapts a three-step compilation flow (Figure 2.14). The LLVM 

  
(a) (b) 

Figure 2.13: OpenCL kernel for LU Decomposition with marked loops (Li_j) 
and basic blocks out of loops (Bi_j). In this kernel, a work-item (or thread) 
performs LU Decomposition for a 32x32 sub-matrix. Some parts of the code 
have been omitted for brevity. 
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compiler model provides a RISC-style, yet rich, intermediate representation (LLVM-

IR) between the frontend, optimizer, and backend.  

The clarity and completeness of the LLVM-IR, provides a simple way for 

conveying information between multiple analysis and transformation passes as well 

between the frontend and backend. Using LLVM-IR, the compiler framework is a 

collection of libraries of transformations and optimizations can be used to build a 

compiler for any language and target architecture. In particular, LLVM-IR is both 

well specified and the only interface to the optimizer. This property means that all 

you need to know to write a frontend for LLVM is what LLVM-IR is, how it works, 

and the invariants it expects. 

2.4.1 LLVM Intermediate Representation (LLVM-IR) 

The LLVM-IR instruction set captures the key operations of ordinary processors 

but avoids machine-specific constraints such as physical registers, pipeline 

architecture, and low-level calling conventions. LLVM-IR provides an infinite set of 

typed virtual registers which can hold values of primitive types (boolean integer, 

floating point, and pointer). The virtual registers are in Static Single Assignment 

(SSA) form [58]. LLVM-IR is a load/store architecture: programs transfer values 

between registers and memory solely via load and store operations using typed 

pointers. 

LLVM-IR uses SSA as its primary code representation (Figure 2.15). SSA is an 

Intermediate Representation (IR) used in several compilers (including LLVM 

compiler). In SSA each instruction is assigned a unique register name and each use of 

a register is dominated by its definition. In the example of Figure 4.4, the two 

assignments for the register x is transferred into two assignments on two different 

registers.  

 

Figure 2.14: LLVM compiler Infrastructure 
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A key feature of SSA IR is the Phi instruction which selects the proper value to 

pass to the next blocks, depending on the last control transfer event. In the example 

given, the assignment to register y does not read the values of the assignments for x1 

and x2 directly but, instead, the proper value is passed through the Phi instruction 

assignment.  

Memory locations in LLVM-IR are not in SSA form because many possible 

locations may be modified at a single store through a pointer, making it difficult to 

construct a reasonably compact, explicit SSA code representation for such locations. 

SSA form provides a compact def-use graph that simplifies many dataflow 

optimizations and enables fast, flow-insensitive algorithms to achieve many of the 

benefits of flow-sensitive algorithms without expensive dataflow analysis. Non-loop 

transformations in SSA form are further simplified because they do not encounter 

anti- or output dependences on SSA registers. Non-memory transformations are also 

greatly simplified because registers cannot have aliases. 

Figure 2.16 shows an example of LLVM-IR generated for a C function that clips a 

value in the range [0, 255]. A function in LLVM-IR consists of one or more basic 

  
(a) (b) 

Figure 2.15: SSA Representation (a) Code portion without SSA representation. (b) 
Code with SSA representation. 

 

Figure 2.16: LLVM-IR Example. 
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blocks of instructions. A program in LLVM is represented as a module of code that 

includes one or more functions.  A feature in LLVM-IR is its arbitrary bitwidth data 

type representation, which is convenient for hardware bitwidth optimizations.  

2.5 Related Work 

There is a large body of literature that deals with conversion of an application 

written in a high level language to hardware. The majority of research efforts used a 

variation of C as their input programming language which was driven mainly by the 

existence of a large body of C programmers, and the extensive use of C in embedded 

applications. C-based architectural synthesis research can be classified into two 

categories: using a restricted format of C written in specific way, or extending extra 

language constructs and syntax to support hardware synthesis. 

PICO-NPA [13], SPARK [25], Trident [26], and Streamroller [27] belong to first 

category. PICO-NPA is a synthesis system that generates non-programmable 

accelerators from a C function. PICO restricts a C function to consist only of a single 

perfectly nested loop. In addition to nested loops, PICO make use of C pragmas to 

pass application specific information to simplify program analysis. Those pragmas 

allow the user to declare no-standard data widths, to indicate that specific global 

variables are not live-in or not live-out. Also pragmas could be used to advise the 

compiler to create local memory for certain arrays, like lookup tables. PICO does not 

support recursion, and dynamic memory allocation. 

SPARK and Trident impose no stylizations or modeling on the input C functions. 

The only restrictions in SPARK C model include function recursion and dynamic 

memory allocation. Trident imposes additional restrictions: the code cannot contain 

print statements, function arguments or returned values, calls to functions with 

variable-length argument lists, or arrays without a declared size. 

Streamroller emulates the stream programming model by some extensions of the C 

language to capture parallelism and decouple communication from computation.  The 

system takes as input the application written in C, expressed as a set of 

communicating kernels. The input program consists of two logical parts, a set of 

kernel specifications and system specification. A kernel is expressed as a single C 
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function. All inputs and outputs to the kernel have to be provided as arguments to the 

function. The body of the kernel has to be perfectly nested for loops. The system 

specification describes one “packet” forward flow through the pipeline. The system 

specification is expressed as a C function whose body contains a sequence of calls to 

the kernel functions. 

The second category of C-based hardware synthesis research includes work that 

created new programming languages as variations of ANSI-C, such as Handel-C [28], 

Mitrion-C [29], haydn-C [30], and SA-C [31, 32] Handel-C retains most of the pure C 

syntax and sequential execution model. However, to support compilation for 

hardware, Handel-C supports several hardware implementation features like arbitrary 

bitwidth declarations of variables. Parallelism in Handel-C is supported through a 

“para” qualifier to declare a block of statements that will run in parallel. Handel-C 

provides a channel declaration to communicate between parallel blocks. RAMs and 

ROMs are declared in Handel-C like arrays, with exception that RAMs and ROMs 

are accessed once each clock cycle.  

Haydn-C has many similarities to Handel-C. Like Handel-C, it uses parallel blocks 

of statements, VHDL-like components/entities to describe parallelism in the program. 

The Handel-C and Haydn-C are timed languages, i.e. require from the programmer to 

keep exact timing of the program execution, by defining the time execution of each 

expression as one clock cycle, and providing the user with a “delay” construct to 

control the timing of execution. 

Mitrion-C main concept centers on parallelism and data dependencies and there is 

no order-of-execution; any operation may be executed as soon as its data-

dependencies are fulfilled. To capture the custom features of hardware 

implementation, Mitrion-C enables the user to specify the exact variable precision by 

declaring the bit-width of the variable. Like other static single assignment languages, 

each statement in Mitrion-C is an expression, statements like FOR, WHILE loops 

return values, and each variable within a scope is assigned once. The single-

assignment is required in Mitrion-C since statements within scope could run in 

parallel rather than sequential. In addition, since Mitrion-C targets FPGAs, it supports 

the use of RAM blocks and banks through a group of memory read/write functions.  
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SA-C differs from C in some important ways. It is an expression-oriented, 

functional language. Its scalar types include signed and unsigned integers and fixed 

point numbers with specified bit widths. It has no explicit pointers, and is non-

recursive. It has true multidimensional arrays, including array sections similar to 

those in Fortran 90. It also allows any function, loop or conditional expression to 

return multiple values. 

Other prior research based on C programming model chose to provide libraries of 

functions and types to support hardware synthesis instead of creating a new language. 

Stream-C [33] is a combination of annotations and library functions callable from C 

program. There are three distinguished objects declared in Stream-C program: 

process, stream and signal. Stream and signal carry data and control bits between 

processes. Processes are the computation kernels that implemented by hardware or 

host processor. Process declaration consists of head where the name and IN/OUT 

streams/signals are declared, and body encloses the computational operations. The 

body is written using callable functions and a subset of supported C. 

Impulse CoDeveloper is an ANSI C synthesizer [34] based on the ImpulseC 

language. ImpulseC is distinct from standard C in that it provides a parallel streaming 

programming model for mixed processor and FPGA platforms. For this purpose, 

Impulse C includes extensions to C, in the form of functions and datatypes, allowing 

applications written in standard C to be mapped onto coarse-grained parallel 

architectures that may include standard processors along with programmable FPGA 

hardware. Using ImpulseC, an application could be described as a collection of 

parallel, pipelined processes, each of which has been described using one or more C 

subroutines. 

At the heart of the ImpulseC streaming programming model are processes and 

streams. Processes are independently synchronized, concurrently executing segments 

of an application. Hardware processes are written using a subset of standard C and 

perform the work of an application by accepting data, performing computations and 

generating outputs. In a typical application, data flows from process to process by 

means of buffered streams, or in some cases by means of messages and/or shared 

memories. The characteristics of each stream, including the width and depth of the 

generated FIFOs, may be specified in the C application. 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154



 27 

Another category of research efforts used the stream-programming model as their 

high level languages. In Proteus [35], a program consists of two objects: streams 

descriptors and stream data-flow graph (sDFG). A stream descriptor declares stream 

access patterns from main memory. The sDFG describes a computational kernel, and  

declares IN/OUT streams. Using those two objects a program can be written as a set 

of communicating sDFG blocks through streaming channels. 

Optimus [36] takes programs written in StreamIt stream programming language. 

Programs in StreamIt are represented as graphs where nodes, called filters 

encapsulate computation, and edges represent FIFO communication. StreamIt is 

based on the synchronous dataflow (SDF) model of computation [50]. Each filter 

consists of a work function that repeatedly executes when sufficient data is available 

on its input FIFO (queue). The work function reads data from its input queue using 

pop operations, and writes data to its output queue using push operations. The work 

function can also inspect input without removing them from the FIFO using a peek 

operation.  

Prior research has investigated the use of different programming models like 

MATLAB and Simulink. MATLAB and especially Simulink have traditionally been 

used for algorithm design. The availability of a mature tool with specialized modules 

(toolboxes, blocksets) along with the possibility of integrating C code makes the tool 

a very attractive development platform. Work in [16] presents a MATLAB-to- RTL 

compilation flow. One of the issues to be resolved in generating hardware from 

MATLAB is to figure out the type/shape of the variables since MATLAB variables 

have no notion of type or shape. To generate hardware, the compiler must determine 

the exact data type i.e. integer or floating point, or complex numbers etc. The 

compiler also needs to determine the shape i.e. how many dimensions the matrix 

(array) has, and what are the extents in each dimension. 

The majority of current high level synthesis commercial tools use SystemC as 

input representation [14, 37, 38]. SystemC is a set of C++ classes and macros used to 

simulate concurrent processes, each described using plain C++ syntax. SystemC is 

closer to HDL languages VHDL and Verilog. A program in SystemC usually consists 

of several modules which communicate via ports. SystemC Modules include 

concurrent processes as the main computation elements. Modules communicate via 
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channels, which could be either wires or complex communication mechanisms like 

FIFOs or bus channels. SystemC libraries provide datatypes extensions like arbitrary 

bitwidth integer datatypes, and fixed point datatypes, in addition to C++ standard 

types. 

Lately, research in architectural synthesis have focused on  parallel programming 

languages such as FCUDA, a tool that converts CUDA kernels to synthesizable 

hardware [39]. CUDA is a parallel programming model developed by Nvidia for 

graphics processing. A CUDA kernel implicitly describes multiple CUDA threads 

that are organized in groups called thread-blocks.  Thread-blocks are further 

organized into a grid structure similar to that of OpenCL. FCUDA is based on source-

to-source transformation that generates a C function for each CUDA kernel. The 

generated C code is annotated with pre-processor directives (FCUDA pragmas) 

inserted by the FPGA programmer into the CUDA kernel. These directives control 

the FCUDA translation of the expressed parallelism in CUDA code into explicitly-

expressed coarse-grained parallelism in the generated AutoPilot code. The FCUDA 

pragmas describe various FPGA implementation dimensions which include the 

number, type and granularity of tasks, the type of task synchronization and 

scheduling, and the data storage within on and off-chip memories. 

The AutoPilot Compiler [15] generates RTL descriptions for each function in a C 

program. Each function is translated into an FPGA core. AutoPilot provides code 

directives to indicate parallel-code regions, and further unrolls inner-loops to run 

concurrently when no across iterations dependencies are detected. AutoPilot allocates 

all arrays onto local BRAMs. It also supports arbitrary bitwidth data types to achieve 

optimized hardware implementations. 

Jääskeläinen et al. [40] introduce a compilation infrastructure based on LLVM to 

generate transport-triggered architectures from OpenCL codes in an approach 

seemingly similar to our work. The processors generated with their design flow are 

statically scheduled VLIW-style architectures with up to hundreds of programmer 

visible general-purpose registers. Parallelism at the granularity of work-items is 

exploited in order to overlap memory access latency with computations. They also 

introduce and use OpenCL extensions in order to code performance-critical parts of 

the kernels. Our approach is inherently different. We do not favor OpenCL 
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extensions, but perform extensive compile-time analysis instead, and granularity 

coarsening in order to avoid putting additional burden to the programmers. 

Altera Inc. started an initiative to build FPGA-based systems from OpenCL 

programs [41]. The concept of Altera’s OpenCL-to-FPGA is similar to that of 

Jääskeläinen et al.; OpenCL threads are mapped on customized processing cores. The 

system is populated with many of the processing cores on which the entire 

computations grid is mapped. An embedded on-chip RISC processor (e.g. Nios) plays 

the role of host processor that manages OpenCL threads. The processing cores are 

either custom pipelines or a VLIW/Vector processor. 

Finally, OpenRCL platform utilizes OpenCL to schedule fine-grain parallel 

threads to a large number of MIPS-like cores [42]. OpenRCL does not generate 

customized hardware accelerators, although each MIPS core can be configured to 

match application characteristics. 
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CHAPTER 3 
 

ARCHITECTURAL TEMPLATE 
 

3.1 Overview 

 In a conventional hardware design flow, application functionality and structure 

determine the target design architecture. A hardware designer performs firstly a 

thorough analysis of the application functionality to extract parallelism and data 

communication patterns. Based on the analysis output, the designer partitions the 

application into a hierarchal structure of parallel tasks and subtasks each implemented 

separately, and determines the communication network connecting the set of tasks. 

Hardware designers exploit all kinds of available parallelism in the application like 

instruction parallelism, data parallelism, pipeline parallelism, and task level 

parallelism.. Moreover, each task implementation is optimized according to its 

specific computational patterns.  

Figure 3.1 depicts the block diagram of a manual implementation of the motion 

compensation block in AVS video codec system [43]. A hardware designer typically 

partitions a complex task into multiple subtasks each performing a specific function: 

chroma interpolation, and luma interpolation (Figure 3.1a). Such partitioning 

exploits task level parallelism by concurrently executing chroma and luma 

interpolation, and pipeline parallelism by overlapping the execution of multiple 

blocks of data (called macroblocks in the context of video codecs). The designer may 

go further by partitioning each subtask into smaller blocks each performing a specific 

functionality exploiting more task parallelism, pipeline parallelism and data 

parallelism (Figure 3.1b). At the low level partitions, a hardware designer will exploit 

computation patterns to build efficient circuits to perform the basic computations 

(Figure 3.1c). Hardware designers traditionally design separated components for data 

streaming and interfacing to overlap I/O data communication and computations. 
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In this work, the SOpenCL backend transforms a C function, corresponding to an 

OpenCL kernel, to synthesizable HDL based on an architectural template that can be 

instantiated to match the performance requirements of the application and the 

available FPGA resources. In the following sections we will describe the structure 

and components of the architectural template, and how the C function is mapped onto 

it. 

3.2 High Level Architecture 

3.2.1 Hierarchical Structure 

The use of an architectural template is necessary to relieve the programmer from 

specifying the tasks partitions and mapping by providing a systematic approach in 

partitioning and mapping the kernel code onto the hardware fabric while exploiting 

available parallelism. The proposed architectural template has a hierarchal structure 

that closely follows the computational hierarchy of the input kernel. Figure 3.2b 

shows the architecture of the hardware accelerator of the LU Decomposition kernel 

shown in Figure 3.2a. The architectural template is built mainly of two types of 

components: Processing Element (PE) and Control Element (CE). A PE is a 

customized architecture that executes an inner-most loop. A CE implements the 

functionality of the outer loops and loop invariant statements. Based on this 

classification, the kernel in Figure 3.2a translates into the accelerator of Figure 3.2b 

as follows: 

•••• Inner Loops: Each of the inner loops {L0_2, L0_3, L1_0, L2_0, and L2_1} is 

allocated a PE module. 
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Figure 3.1: Motion Compensation Block Manual design. 
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•••• Nested Loops: Each of the nested loops {T0, T1, and T2} is allocated a CE 

module {CE0, CE1, and CE2}. Moreover, CE modules CE0 and CE2 are also 

used for processing outer loop basic blocks {B0_0, B0_1} and {B2_0, B2_1}, 

respectively. 

•••• Loop Invariant Code: Loop invariant code outside any nested loops in the 

kernel body is allocated a CE module {CE_g}. 

In this hierarchal structure a parent-child relationship exists between a CE module 

and another CE or PE module. In addition to executing outer loops and loop invariant 

code, a parent CE initiates the execution of its children. For instance, module CE0 is 

responsible for controlling execution of PE modules PE(L0_2) and PE(L0_3). 

Local arrays in the kernel (peri_row, peri_col, and dia in Figure 3.2a) are each 

allocated a local memory implemented using dual port Block RAMs (BRAMs). Local 

memories could be either double buffered or work as a FIFO to enable pipeline 

parallelism of multiple PE and CE modules.  

The architectural template allocates arbiters to manage data read and write 

  
(a) (b) 

Figure 3.2: (a) Program structure of LU Decomposition kernel after coarsening 
the granularity to the equivalent of a work-group. (b) The block diagram of the 
automatically generated hardware accelerator for LU decomposition. 
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requests to global memories. Each separate memory port has its own arbitration logic. 

Multiple PE and CE modules that access the same global memory will compete to 

gain access to a global memory port. 

 The resemblance between the source code structure and the generated architecture 

provides several benefits: 

•••• Exploiting multi-level parallelism: Multiple nested loops can be pipelined and 

hence execute in parallel. Multiple PE modules are allowed executing in parallel 

if they are independent or can be pipelined if they have cross iteration 

dependencies.  

•••• Full Customization: An architecture that resembles the hierarchal structure of the 

kernel code captures every feature and characteristic of the code much better than 

a random RTL structure or a microprocessor-like architecture. Separate datapaths 

built to execute computations in different loops are designed more specifically to 

match the computational pattern of each loop, instead of having more generalized 

datapath for multiple loops.  

•••• Control distribution: Control signal delay and logic becomes more critical when 

it covers large hardware blocks. Building architecture with multiple hardware 

blocks each executing independently and using a hand-shaking synchronization 

mechanism will localize control logic and reduce significantly the distance a 

control signal needs to travel within a single clock cycle. 

3.2.2 Interconnection network 

The interconnection network connecting all components uses FIFO channels 

between two components (PE or CE) that exchange data. The use of FIFO channels 

allows asynchronous execution and overlaps the execution of loop iterations, as will 

be described in Section 3.5. 

Figure 3.3 depicts two types of data channels; scalar data point-to-point FIFO 

channel, and local streams buffer. Scalar FIFO channels are implemented using Flip 

Flops, and local stream buffers are implemented using FPGA Block RAMs 

(BRAMs). Multiple scalar FIFO channels are allocated for the same scalar variable if 

it has multiple consumers (Figure 3.3a). On the other hand, a local stream is allocated 
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only one local buffer channel shared by all producers/consumers of the same local 

stream (Figure 3.3b). 

A scalar FIFO channel transfers scalar variables in the C function between 

producer and consumer components (PE, and CE modules). A producer continues to 

write data as long as all FIFO channels have free space (full signal equal to 0), and a 

consumer absorbs data as long as the FIFO is not empty. A FIFO channel will store 

incoming data if the valid signal is true, and will output data to the producer if the 

absorb signal is true. A consumer absorbs data tokens from the FIFO by setting the 

absorb signal to 1 (i.e. true), e.g. consumer_0 sets absorb_0 signal equal to 1 to 

absorb data from its own FIFO channel. The FIFO channel flushes one data token 

each clock cycle if the input absorb signal is true. Hence, if a consumer wants to read 

one data token from its FIFO channel, the absorb signal should stay true (equals 1) 

only for one clock cycle. The FIFO channel sets the full signal to 1 if there is no more 

space to store incoming data tokens (i.e. the FIFO is full), and forces the producer to 

stop generating new data tokens. 

A local buffer channel is created for each data array which is local to a kernel. A 

local buffer channel is built using dual port Block RAMs providing separate 

Read/Write ports. A local buffer address space can be partitioned into two or more 

blocks (In Figure 3.3b local buffer has two blocks) to enable double buffering and 

  
(a) (b) 

Figure 3.3: Interconnect communication channels. (a) FIFO channels. (b) Local
Buffers channels. Local buffer two blocks are used for double buffering. 
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pipelined execution. In fact, a local buffer partitioned into multiple blocks is 

implemented as shared FIFO between the multiple consumers and producers. A 

producer first writes into Block_0 address space of the local buffer, and when it 

finishes it sets its output finish signal to 1 so a consumer could start reading data from 

Block_0. While a consumer reading data from Block_0, the producer starts a new 

write session to Block_1, then it sets the finish signal again to declare finishing the 

second write session and starts a third write session to Block_0 as soon as the 

consumers finished reading from Block_0. This switch forth and back between 

Block_0 and Block_1 allows overlapping read and write sessions to local buffers.  

A producer/consumer generates a finish signal stored in a FIFO and used by buffer 

arbiters to enable/disable successors read/write requests. A finish signal becomes true 

once a consumer/producer submits as many read/write requests that fulfill its 

dependencies. For example, PE(L0_2) in Figure 3.2b, generates a true finish signal 

when the execution of the last iteration of loop T0 terminates  (and the write operation 

into dia local array). Likewise, consumer PE(L1_0) produces true finish signal when 

the execution of the last iteration of loop T1 terminates. A finish signal is stored in a 

FIFO channel when it is equal to 1. A read port arbiter examines all FIFOs finish 

signals and allows a consumer to start reading data only when all its dependencies are 

fulfilled, i.e. all its predecessors produced a true finish signal. When a consumer 

finishes its reading session, the read port arbiter flushes the corresponding finish 

FIFOs of all its predecessors. The same operation also performed by the write port 

arbiter. 

3.3 Processing Element (PE) Architecture 

Figure 3.4 shows the architecture of a PE module, which is used to execute inner 

loop computations in a kernel. The PE architecture decouples and overlaps data 

movement and execution, by allocating separate modules for computation 

(Datapath), and data movement (Stream Interface Unit). The stream interface unit 

allocates a set of memory traffic management modules, including a programmable 

Address Generation Unit (AGU) for memory read requests. Separate modules are 

allocated for input and output streams to allow overlaping data read and write 

operations. 
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The architecture favors streaming applications with regular and predictable 

memory access patterns by allocating separate modules for addresses generation and 

data computations and by processing memory read and write requests independently. 

However, in case memory access patterns are dependent on runtime computations, 

addresses and data computations are mapped on a unified-as opposed to decoupled-

datapath. If irregular or a runtime-dependent RAW dependency exists, then separate 

input and output streaming units are also merged to preserve the execution order of 

memory read and write operations. This unified configuration of the PE architecture 

is more suitable for non-streaming applications with I/O traffic dependences that can 

be resolved only at runtime. 

3.3.1 Datapath and AGU Modules 

The Datapath module absorbs data tokens loaded from memory, performs 

computations, and then pushes output data tokens back to the streaming unit for write 

back to local or global memory. In a unified datapath configuration, it also performs 

address computations. An Address Generation Unit (AGU) aggressively generates 

 

Figure 3.4: Processing Element (PE) architectural template. 
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addresses for data prefetching, and feeds them to the Requests Generation Module 

(RGU). The tool flow guides the generation of the AGU by first identifying the code 

slice responsible for data I/O, and then performing modulo scheduling on that code, 

as we will show in Section 4.3. The output of the code slice and, therefore, the output 

of the generated AGU hardware, is an address sequence for all elements of the input 

stream. The architecture of the AGU is very similar to that of the datapath, thus the 

same methodology is used to generate hardware in both cases. Figure 3.5 shows the 

datapath generated for PE(L1_0) module in Figure 3.2b. A datapath includes three 

types of components: functional units (FUs), storage units, and the control unit. 

3.3.1.1 Functional Units 

The datapath (and AGU) consists of a network of functional units (FUs) that 

produce and consume data elements using explicit input and output FIFO channels to 

the streaming units (Sin0, Sin1 and Sout0 in Figure 3.4). Each FU is preceded by a 

multiplexer tree, which, at each time-slot, directs data elements into the correct input 

port. The multiplexers are driven by a periodic-count of the initiation interval (II) 

generated by the control unit.  

Each FU supports the execution of specific operation type. SOpenCL tool supports 

a large pool of operation types classified as follows: 
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Figure 3.5: Datapath of the PE(L1_0) module in Figure 3.2b. 
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• Primitive Integer Operations: Basic arithmetic and logic operations like Add, 

Mul, And, Shift, and so on. 

• Single Precision Floating Point Operations: SOpenCL uses a library of single 

precision IEEE-754 compliant floating point units (FP Unit). Multiple versions of 

each floating point operation are implemented. Each implementation is tagged 

with its precision, its latency, as well as the number of its pipeline stages. At 

compile time, the system selects and integrates the appropriate implementation 

according to precision requirements and the target initiation interval. We used FP 

units generated by FloPoCo [94] arithmetic unit generator. 

• Mathematical Operations: The tool utilizes a library of commonly used 

mathematical operations, such as square root, exponent, sine, cosine, arctan, etc. 

The library includes two FUs supporting the sine and cosine operations: one FU 

implementation is based on Taylor series with latency equal to 28 clock cycles, 

and the second one implemented using CORDIC algorithm [95] with 40 clock 

cycles latency.  The latter also supports the execution of arctan operation. The 

square root FU core uses a polynomial approximation with latency equal to 5 

clock cycles. Square root and exponent FUs are generating by FloPoCo [94]. 

• Application Specific Operations: The tool flow analyzes computation patterns in 

the loop and extracts common computational expressions to implement then as 

custom FUs. Section 4.4 details the methods used in extracting application 

specific instructions. 

The size and number of functional units and types of supported operations are 

configurable parameters, decided by the tool flow to achieve the computations 

requirements and user performance specifications. 

3.3.1.2 Storage Units 

The datapath also includes registers and FIFOs that hold loop invariant data 

generated by outer loops executed in parent CE modules. Figure 3.5 shows few of the 

data FIFOs generated, used to temporarily store incoming data from local arrays such 

as peri_row and peri_col, and inner-loop invariant variables like the outer-loop index 

i. The size of each FIFO is a configurable parameter that can be assigned to match the 

data rate at the specific FIFO channel. 
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 Tunnels are storage elements used to bypass the streaming unit and channel data-

tokens stored in earlier iterations to be used by loads in later iterations. Tunnels are 

generated wherever a load instruction has a RAW dependency with another store 

instruction with constant cross-iteration distance larger than or equal to one, for 

example for code portions like the following: 

for(int i = 0; i < N; i++) 

   a[i] = a[i-1]+1; 

The tunnel size (i.e. the number of tunnel registers)is equal to the dependency 

distance, because once a valid data token leaves  the tunnel, the corresponding pop 

FU starts reading data tokens from the tunnel and ignores data from the input FIFO 

channel (Sin0, Sin1, etc.) coming from the Stream Interface Unit.  

Figure 3.6 shows the C code of the inner loop L1_0 in Figure 3.2a. Due to the need 

to accumulate values on the peri_row and peri_col arrays, the loop has two RAW 

dependencies with distance 1 in each of these two data arrays. Two tunnels are 

generated one for each with tunnel size equal to 1 as shown in Figure 3.5. 

3.3.1.3 Control Unit 

The control unit is responsible for initiating the execution of the datapath and 

generating a periodic count (II) used by the FU multiplexers to select proper input 

data at each time slot. The control unit stalls the datapath if any of the input data 

FIFOs (e.g. i, loc_idx<16) and streams FIFOs (e.g. dia) is empty, or any of the output 

streams FIFOs (e.g. peri_row) is full. 

The control unit is also responsible for terminating the execution of the datapath by 

monitoring the loop termination condition, such as the comparator output in Figure 

3.5. As soon as the termination condition turns true, the control unit waits for a 

 

Figure 3.6: L1_0 Loop C source code in Figure 3.2a. 
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predetermined number of clock cycles until the last loop iteration ends, and then it 

resets the datapath. Section 4.5.1.3 details how modulo scheduled loop is terminated. 

3.3.2 Stream Interface Unit 

The stream interface unit handles all issues regarding data transfers between the 

main memory and the datapath. These include data alignment, data ordering, and bus 

arbitration and interfacing. The streaming unit allocates multiple independent input 

and output streams processing modules. Those modules process generated addresses 

and prevent redundant or unnecessary requests from reaching local or global memory. 

Local arrays (peri_row, peri_col, and dia in Figure 3.2a) or input arrays are 

considered distinct streams of data. Each stream of data is allocated its own set of 

processing units.  

3.3.2.1 Input Streaming Units 

Each input data stream is processed by a couple of tightly connected units: 

Requests Generation Unit (RGU) and Input Stream Alignment Unit (SinAlign). The 

RGU module receives addresses generated by the AGU and issues read requests to 

external memories, while SinAlign unit retrieves data tokens, and packs them in order 

to the datapath.   

The RGU coalesces read requests generated by SinAGU (or the datapath) to the 

word width of the underlying memory interconnect (for example, a PLB bus for 

Xilinx FPGAs), or to burst size if bursting is enabled. The RGU aims to eliminate 

redundant transactions on the memory interconnect. Before issuing a transaction 

request to the arbiter it checks if the addresses aliases with previously requested ones 

or if the data are available in the cache (if the cache has been instantiated).  

Figure 3.7 depicts how the RGU and SinAlign unit process each generated read 

address from the AGU (or the datapath) until the data token is loaded from the 

memory and presented to the datapath. The process flow can be summarized as 

follows:  
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• The RGU first checks if the input address aliases with previously issued addresses 

stored in WReqs and SReqs FIFOs (Figure 3.9) or not. If an address alias is found, 

the RGU issues a local address to the cache and the SinAlign unit to retrieve data 

token from input data line (Data_line in Figure 3.4). The cache uses the local 

address to store the incoming data line (data_in in Figure 3.4) and writing 

Data_line to the SinAlign unit.  

• If no address alias is detected, the RGU checks if the cache has valid data (if the 

cache allocated) or not. If the cache has valid data then a local address is issued to 

the cache and SinAlign unit to retrieve the data token from input data line 

(Data_line in Figure 3.4).   

• If the cache has no valid data, then the RGU issues a read request to the arbiter, 

and then issues a local address to the cache and SinAlign units to retrieve data 

token from input data line. 

• The SinAlign unit stores input local address in the corresponding Data unit 

(Figure 3.9) and then waits for incoming data line (Data_line). A local address is 

shortcut of the complete address consists of two components: Offset and Code. 

Figure 3.8a shows a 5-bit local address. The code component is a unique ID given 

for each read request stored in the WReqs and SReqs FIFOs. The SinAlign unit 

compares this ID with the incoming data line tag (Data_line_tag signal not 

shown in Figure 3.9, accompanies Data_line) to check if the incoming data line 

contains the required data token. If true, the SinAlign unit extracts the proper data 

token from the input data line using the offset component. The offset component 

 

Figure 3.7: RGU and SinAlign modules operations flow. 
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is used to retrieve the proper data token bytes within a data line. For example, for 

a 1-byte data token, Figure 3.8b shows the offset value for each byte in a 64-bit 

data bus.  

The RGU module can be configured to process multiple addresses in parallel or 

once a time. The RGU module takes different shapes depending on the data stream 

type and characteristics. Figure 3.9 shows three basic shapes of the RGU module. For 

a global or local input data stream, the RGU follows the configuration in Figure 3.9a. 

The Cache Access Logic block is not used for local data streams, as well for streams 

that don’t use the cache. A data stream of constants will use a much simpler RGU; 

each input address port is allocated a ROM that stores the array of constants (Figure 

3.9b). 

 
 

(a) (b) 

Figure 3.8: Local Address Encoding. (a) 5-bit local address. (b) Offset values for 1-
byte data token in 64-bit Data Bus. 

   
(a) (b) (c) 

Figure 3.9: RGU and SinAlign modules configurations for (a) cached and non-cached 
data streams. (b) stream of Constants. (c) Streams with runtime RAW dependencies. 
WReqs FIFO refers to Waiting Requests FIFO. SReqs FIFO refers to Sent Requests 
FIFO. 
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The RGU module could serve data write requests (Figure 3.9c) as well in the 

special case of irregular or runtime dependent RAW dependencies as in the following 

code:   

                for (i = 1; i < N; i++)  
                         a[c[i-1]] = a[c[i]] + b[i];  

In this special case the datapath will be responsible for generating read and write 

addresses. The scheduler will consider the available RAW dependency and produce a 

correct schedule. However, since the SoutAlign Unit and RGU are completely 

independent, and the datapath does not wait for write acknowledge signal, there is no 

guarantee that the read/write requests order generated by the datapath will be 

preserved on the interconnect bus. Hence, both read and write requests, are served by 

the same RGU module which preserves their execution order. Moreover, the RGU 

module will exploit address coalescing resources to retrieve data tokens from a write 

request, and prevent unnecessary read request from reaching the interconnect bus. 

The SinAlign module retrieves data from the cache unit or the data_in incoming 

data in case the data stream is not cached, and presents them in-order to the datapath. 

For each load instruction in the loop, the SinAlign module allocates separate 

alignment logic and FIFOs (Data Unit_m in Figure 3.9). This allows the SinAlign 

modules to serve multiple load instructions in parallel and out of order.  

The Local Address Select block in Figure 3.9 works as demultiplexer by directing 

each incoming local address to the proper Data Unit. The Tag signal that accompany 

each local address indicates to the corresponding load instruction produced the 

address, and hence to which Data Unit the local address should be directed. 

The SinAlign Unit is tightly coupled with the RGU module, and variations on its 

configuration follow closely any variations on the RGU configuration. For global and 

local data streams, the Align Path (Data Unit in Figure 3.9) includes a FIFO that store 

local addresses and retrieves data tokens. A single Data Unit can retrieve multiple 

data tokens simultaneously, if multiple local addresses  stored in its FIFO  have 

the same request code component. For a data stream of constants the Data Unit is a 

FIFO that stores only data tokens obtained from the ROM. 
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3.3.2.2 Output Streaming Units 

Each output data stream is allocated its own Output Stream Alignment unit 

(SoutAlign). The SoutAlign unit aligns the output data tokens coming from the 

datapath in a FIFO of data-lines of bus-width bytes (Align Data FIFO in Figure 3.10).   

The operation of the SoutAlign unit can be summarized as follows: 

• For each incoming write request (which includes address and data token), the 

Align Logic unit (Figure 3.10) checks if the input write address aliases with 

previous addresses stored in the Align Data FIFO. If an alias found, the proper 

data line in the Align Data FIFO is updated with the input data token.   

• If an address alias is not found, the Align Logic unit stores the input address and 

data token in an empty line in the Align Data FIFO. If the Align Data FIFO is 

full, then the Align Logic unit sets the issue signal to true. The Issue Request unit 

then issues a write request to the arbiter (or a local memory) to make a space in 

the Align Data FIFO. 

• When the datapath terminates, all data in the Align Data FIFO is written to the 

memory before new write requests stemming from the datapath are written in the 
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Figure 3.10: SoutAlign module. BE refers to the Byte Enable bus signal. (a) 
Generic SoutAlign unit configuration. (b) SoutAlign unit configuration when 
no address aliases detected at compile time. 
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Align Data FIFO. 

The Align Logic unit provides parallel alignment capability, by writing aligned 

data tokens to multiple data lines in the Align Data FIFO, and by writing multiple 

data tokens in the same data line simultaneously.  

The SoutAlign unit eliminates repetitive writes to the same memory location by 

overwriting old data tokens in the Align Data FIFO with newly produced data tokens. 

The mechanism of overwriting old data in the Align Data FIFO is applied until the 

datapath terminates or the Align Data FIFO is full and a data line (where data is 

overwritten) must be written to the memory to make space in the FIFO. Also if the 

Align Data FIFO is full RAW dependencies are not violated by the overwriting of old 

data. Regular RAW dependencies are served using tunnels, and irregular 

dependencies are served by directing write requests through the RGU module and 

removing the SoutAlign unit. Write-after-write (WAW) dependencies are considered 

by the scheduler, and since they pass through the same SoutAlign unit, their execution 

order is preserved. 

The SoutAlign unit follows a simpler configuration (Figure 3.10b) if the SOpenCL 

detects no aliases between successive addresses at compile-time, and hence, remove 

the Align Logic unit and Align Data FIFO. The SoutAlign unit in this configuration 

simply works as arbiter serving one data token each clock cycle. 

3.3.2.3 Local Cache 

The cache unit exploits temporal and spatial locality and reduces latency of 

memory accesses by saving recently loaded data for future reuse. The cache unit is 

implemented using dual ported Block RAMs so that accesses from the arbiter and the 

SinAlign unit can be served simultaneously.  

A cache line is equal in size to the bus width. The cache unit is not instantiated if 

compile time analysis determines that the input memory access pattern has limited 

reuse. The cache unit is configured as a set of data blocks possibly with different 

sizes. Each distinct data stream stored in the cache is allocated a number of data 

blocks with specific size determined by SOpenCL, as will be discussed in Chapter 4. 

Compared to conventional caches, the cache unit has the following differences: 
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•••• It is a read only cache; data transferred from main memory to the cache but not 

the other way. 

•••• A block of data is allocated a space in the cache but no read operation on the 

whole block is performed. A data line in the block will be transferred from the 

main memory only if a data request to a data token in that line is generated by the 

SinAGU. In other words, a data line is read on demand. 

•••• The cache is accessed only by the PE module associated with it. No other PE 

modules have access to that cache. 

•••• The lifetime of a data stream in the cache ends when another PE or CE module 

starts a write transaction to the data stream in the main memory. 

It is not necessary that all input data streams utilize the cache. SOpenCL will 

detect data streams with temporal and spatial locality and recommend whether a 

cache will be instantiated as part of the architecture. 

3.4 Control Element (CE) Architecture 

The control element (CE) serves as the glue connecting all the accelerator 

components by directing the execution flow. The CE module implements and 

executes outer loops and loop invariant statements. In Figure 3.2b, CE modules CE0, 

CE1, and CE2 execute the statements (blocks of instructions) in outer loops T0, T1, 

and T2, respectively. Figure 3.11 outlines the architectural template of the CE 

module. The architecture consists of three types of components: 

•••• Computational components: functional and storage units. 

•••• Control FSM: A finite state machine used to control the execution flow and 

provide synchronization information for the CE children (PE and other CE 

modules). 

•••• Streaming and memory interface: a set of streaming units used to issue read/write 

requests, and retrieve data tokens and acknowledgements. 
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3.4.1 Functional and Storage Units 

Computational components include a network of functional units (FUs), 

multiplexers, registers and queues. The instructions blocks within the loops are 

statically scheduled on the allocated FUs, and the multiplexers are configured at 

compile time to fulfill the interconnection requirements of the scheduled FUs, i.e. 

direct the proper FU output or registered data to the proper FU input port at each time 

slot in the schedule period.  

The CE module supports the same types of functional units mentioned in section 

3.3.1.1. However, the amount of FU resources allocated is typically less than the 

resources allocated for a datapath. The storage units in the CE module include scalar 

data static registers and FIFOs (similar to the ones described in section 3.3.1.2), and a 

register file. The register file holds scalar variable with lifetime outside the 

boundaries of a basic block. Figure 3.12 shows some of the Loop T0 statements 

mapped on CE0 (Figure 3.2), and the register file generated for CE0. In Figure 3.12, 

variables r0, and r3 in block bb0 (not shown) are used in block bb5, hence, they are 

 

Figure 3.11: Control Element Architectural Template.  
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saved in the register file to be used later, because the queue of an FU is reset after 

block execution finishes. 

3.4.2 Control Unit 

The Control Unit implements the control transfer logic between blocks of 

instructions as well as with successor CEs and PEs. The transition between FSM 

states is guided by the execution of the control transfer instructions (br instructions in 

Figure 3.12) in the current executing basic block.  

The FSM state drives the generation of control signals such as the schedule length, 

and trigger signals of children modules such as start_pe0, start_pe1, etc. Schedule 

length is the number of clock cycles required to finish the execution a block of 

instructions, e.g. the schedule length of block bb3 in Figure 3.12 equal to 4 clock 

cycles. The value of schedule length is computed at compile time after instruction 

scheduling. The FSM selects the proper schedule length value depending on the block 

currently executing.  

Similar to the control unit in the PE datapath, the FSM control unit stalls CE 

module execution when there is a read/write request waiting in a stream unit to be 

served, and when input scalar data is not available or the register file is stalled by a 

hold signal from another PE/CE module. 

 

Figure 3.12: CE Register File allocation. (a) Part of the outer loop statements 
of Loop T0 in Figure 3.2. (b) Snippet of the Register file of module CE0 in 
Figure 3.2. 
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3.4.3 Streaming Interface 

The streaming interface in the CE architecture consists of a set of stream 

processing units and off-chip memory arbitration. Each data stream is allocated its 

own Stream Units. The stream units have the simple task to issue read/write request 

address and to retrieve data tokens or write request acknowledgement. Unlike PE 

architecture streaming units, the CE streaming units serve one read/write request each 

time; there is no address coalescing, no reuse mechanisms, and no cache support 

(Figure 3.13). The assumption is that the CE memory traffic is very small compared 

to that of the PE module; as the PE module normally has more data traffic executes N 

times the number of its parent CE execution iterations (where N is the loop trip of the 

inner loop executed by the PE module). 

In Figure 3.2, CE1 module executes the statement peri_col[idx][i] /= dia[i][i]  

where two read and one write operations are performed on local data arrays peri_col 

and dia. Hence, CE1 module allocates two input stream units (as in Figure 3.13a) for 

read operations from peri_col and dia local streams, respectively, and one output 

stream unit (as in Figure 3.13c) for write operation to peri_col local stream. The 

stream units in a CE module share the same local buffer or global memory ports with 

PE modules. In Figure 3.2, CE1 shares peri_col and dia local buffers with PE 

modules (interconnects are not shown in the Figure for clarity). 

The CE streaming interface includes an arbiter that manages requests to an off-

chip memory; all stream units accessing an off-chip memory assigned an arbiter that 

manages their requests and acknowledgements. A stream unit that processes data 
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Figure 3.13: CE Stream Unit Configurations. (a) Typical input stream streaming 
unit. (b) Stream unit supports array of constants. (c) Typical output stream streaming 
unit. 
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arrays in local buffers has a direct link to the local buffer system. The stream units 

also support arrays of constants (Figure 3.13b). Like the RGU module, the stream unit 

allocates ROM storing the array of constants.  

3.5 Execution Model 

Figure 3.14a shows a synopsis of the FSM of CE0 in Figure 3.2b. In a sequential 

execution model, a control transfer occurs (FSM state changes) when a basic block of 

instructions (e.g. B00, B01) finishes execution and a control transfer operation (br, 

switch) is executed. According to this model, a CE will not initiate a new execution of 

a successor module (PE or CE) until that successor finishes previous execution. A PE 

(or CE) emits a true finish signal to transfer control back to its parent CE. For 

example PE02_finish and PE03_finish signals used in Figure 3.14a FSM are 

generated by PE(L0_2) and PE(L0_3) (Figure 3.2b), respectively. This FSM model will 

reduce the architecture into a sequential processor consisting of multiple hardware 

units executing one at a time. Figure 3.15a depicts the sequential execution flow of all 

architecture components. 

SOpenCL uses a concurrent execution flow, instead of the slower sequential 

model. A control transfer from a basic block occurs when it finishes execution, but a 

control transfer from a successor PE or CE will not wait for a finish signal, given the 

destination is known at compile time. 

Figure 3.14b shows a synopsis of the FSM with concurrent execution model. 

When the FSM state reaches states PE02, and PE03, CE0 children PE(L0_2) and 

 

Figure 3.14: Synopsis of the FSM of CE0. (a) Sequential execution mode 
FSM. (b) Concurrent execution mode FSM. The FSM in (b) drops signals 
PE02_finish and PE03_finish in states PE02 and PE03, respectively. 
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PE(L0_3) are triggered.  The FSM in Figure 3.14b drops signals PE02_finish and 

PE03_finish in states PE02 and PE03 respectively. Both PE(L0_2) and PE(L0_3) will be 

triggered with distance one clock cycle. In other words, both modules will execute in 

parallel as long as there are no data dependencies between them. Figure 3.15b depicts 

the concurrent execution flow. 

Concurrent flow requires a mechanism to preserve data dependencies between 

multiple PE and CE modules. A simple handshake synchronization mechanism is 

used. Two PE or CE units that have either a memory or scalar data dependency will 

exchange two signals: Finish and Hold, and if they have multiple dependencies they 

exchange multiple pairs of Finish and Hold signals one for each dependency. A 

producer will emit a Finish signal as soon as it finishes data computations required by 

other PEs and CEs. A consumer scans the Finish signal continuously and saves the 

incoming data in a FIFO when the Finish signal is true. If the data FIFO at a 

consumer is full, the consumer will emit a Hold signal and the producer will stall 

execution until the consumer can absorb the data. For memory dependencies, the 

consumer (reader or writer) will save the Finish signal itself in the FIFO since the 

data saved either in local or global memory. 

Adopting the concurrent execution model allows parallel execution of multiple 

independent PE and CE modules. One major benefit is hiding prologue and epilogue 

latencies of inner most loops (Figure 3.16). In the PE module, the AGU and datapath 

run as separated entities. Figure 3.16a shows the sequential execution model, 

 

Figure 3.15: Timing for a work-item execution for the architecture of Figure 3.2b 
using (a) sequential execution flow, and (b) concurrent execution flow. 
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according to which the next iteration of an outer loop can be initiated only after the 

last iteration of the inner loop. The sequential model creates execution bubbles at the 

prologue and epilogue of each outer loop iteration (ET0 and ET2, respectively), 

during which computing resources remain idle, thus causing unnecessary execution 

delays. ET0 refers to the execution time of computations in the outer loop executed 

before a PE module is initiated. ET1 refers to the execution time of the PE module. 

And ET2 refers to the execution time of computations in the outer loop executed after 

the PE module finishes execution.  Tin in Figure 3.16 refers to the time required to 

initialize the datapath (and the SoutAlign unit) with input data.  In the sequential 

execution model, at least one of the PE module components (AGU, datapath or 

SoutAlign unit) stays idle. 

Using the concurrent execution model we can ameliorate the sequential execution 

model inefficiency. By initiating the next outer loop iteration, the parent CE will 

retrigger the successor PE while it still executes the work load of previous iterations. 

In Figure 3.14b, the FSM state will reach the PE02 and PE03 states while the 

corresponding PE children still executing previous iterations. This early trigger of a 

child, forces the AGU and datapath to start execution of next outer loop iterations as 

soon as it finishes previous ones (Figure 3.16b). 

  
(a) (b) 

Figure 3.16. Nested loop execution model (a) when there is no overlap 
between successive outer loop iterations (sequential model) and (b) when 
successive outer loops overlap (concurrent mode). SinAGU: yellow, 
Datapath: blue, and SoutAlign: green 
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3.6 Related Work 

Prior research in architectural synthesis has investigated a variety of hardware 

accelerators architectures. The variations between the introduced architectures 

resulted mainly from the way each architecture partitioned the input specification into 

multiple blocks and the interconnect between them.  

PICO-NPA [13] generates a Non-Programmable Accelerator (NPA) for a C 

function comprising a single perfectly nested loop. The NPA architecture consists of 

an array of multiple instances of a datapath processor, a memory controller, a control 

unit, and an interface to the host processor (Figure 3.17a). The architecture includes 

also local memories shared by the datapath processors. A datapath instance 

implements a modulo-schedule of the inner most loop in the loop nest (Figure 3.17b). 

The PICO-NPA compiler distributes outer loops iterations over the allocated datapath 

processors equally. It is the responsibility of the host processor to initiate processors 

execution, initialize processors with data and loops indices.  

The PICO-NPA architecture is a paradigm for a coprocessor with a host processor 

as its central control unit. While this paradigm provides an efficient implementation 

of a coprocessor and can speedup loop execution, shifting the control logic to the host 

processor restricts parallelism between multiple NPA coprocessors, and reduces 

NPAs to application specific execution units in a VLIW processor. 

The Trident system [26] synthesizes a hardware accelerator from a C function 

with one or more arbitrary loop nests. Trident performs if-conversion (predication) to 

generate hyper blocks of instructions. A hyper block is created by removing all 

  

(a) (b) 

Figure 3.17: PICO-NPA system. Figure copied from [13]. (a) NPA architecture: 
systolic array of processing cores. (b) Processing core datapath.  
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branch instructions between a set of basic blocks and putting their instructions in a 

single block. Trident uses If-conversion to create hyper blocks. The Trident system 

generates an architecture consisting of multiple subcircuits each implements a 

hyperblock (Figure 3.18). A subcircuit consists of a state machine and a datapath. All 

subcircuits share a single file register to store scalar variables. The architecture top 

circuit includes a control module that manages control transfers between hyper blocks 

and exchange control signals with a host processor. Trident is one of the few 

synthesis tools that support floating point operations using multiple libraries. 

Like PICO-NPA, Trident system doesn’t provide any sort of synchronization 

mechanism between multiple hyper blocks, hence, blocks of Figure 3.18 execute 

sequentially. On the other hand, Laura [44] architecture utilizes sophisticated 

synchronization mechanisms allowing multiple processing units to run in parallel. 

Laura architecture (Figure 3.19) follows closely a Kahn Process Network (KPN) 

specification [45]. Laura uses the Compaan compiler [46] to generate a KPN 

specification from Matlab applications. The work in [47] builds upon Laura 

framework to support C functions.  

A KPN computation model assumes concurrent autonomous virtual processes 

(VP) that communicate in point to point fashion over unbounded FIFO channels. In 

KPN model, a VP is a perfectly nested loop. KPN computation model is applicable on 

streaming applications with regular data streams. The streaming feature of KPN 

models allows pipelining producer-consumer VPs. To overcome the issue of 

 

Figure 3.18: Trident system target architecture. Figure copied from [26]. 
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unbounded FIFO channels in a KPN, Laura supports the use of bounded FIFO 

channels by applying blocking write synchronization and blocking read 

synchronization mechanisms.  

Virtual process architecture includes three units; read unit, execute unit, and a 

write unit. In [44], PICO system is used to generate the hardware for the execute unit. 

Read and write units pop and push data from the proper FIFO channel without the 

need for address generation. A VP starts execution once all its input data are valid. 

ROCCC compiler [48] implies architecture similar to Laura architecture. ROCCC 

architecture consists of a network of modules, in which each module implements a C 

function. According to ROCCC programming model, a C function consists of an I/O 

interface represented as a data structure and an instantiation of a function performs 

the computation. ROCCC module architecture (Figure 3.20a) decouples memory 

accesses from datapath computations. Since ROCCC supports regular memory 

accesses known at compile time, memory accesses are configured at compile time. A 

smart buffer handles data reuses by keeping data tokens for their lifetime. This 

requires the compiler to perform data reuse analysis and configure the buffers at 

compile time. 

Similar to Laura and ROCCC architectures, Optimus [36] generates uses an 

architectural template called filter (Figure 3.20b). Optimus stream programming 

model represents a program as communicating filters. The template consists of five 

main components: input queues, output queues, memories, the filter itself, and the 

controller. Input and output queues are used to send and receive data. Each filter can 

  
(a) (b) 

Figure 3.19: Laura target architecture. Figure copied from [44]. (a) Network of 
KPN virtual processes. (b) Architecture of a VP process.  
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be connected to several memory components. All the memory modules are local to 

each filter. The hardware block implementing the filter consists of the work module 

(datapath) which performs the computations and an optional init module which 

executes once to initiate the filter. The controller makes sure that the init function gets 

executed only once before the first invocation of the work function. 

Contrary to Laura and ROCCC interconnect model, MARC system [49] uses 

many-core style architecture. The architecture consists of a C-core (Control 

processor), and many A-Cores (Arithmetic cores) as depicted in Figure 3.21. Each 

core has its own private/local memory (P/L), and access to global multiport memory 

through the interconnect network. The datapath of an A-Core can be a simple RISC 

style processor with 5-stage pipeline, or an application specific core. MARC system 

builds application specific A-Core datapaths each supporting a set of Super 

Instructions. A super instruction is a cluster of simple instructions that have a 

common computation pattern. The scheduler is responsible for mapping statically 

scheduled instructions on proper A-Core datapaths.  

MARC architecture allows as many A-cores to execute in parallel as soon as each 

core has all its input data available. To exchange data, A-cores will go through global 

memory, because there are no registers between A-cores. Instructions executing on 

the same A-Core, share data through A-Core private and local memory. While 

application specific A-Cores achieve a significant speedup in computations, the 

absence of point-to-point communication between A-Cores increases the pressure on 

  

(a) (b) 

Figure 3.20: (a) ROCCC Module architecture model. Figure copied from [48]. 
(b) Optimus Filter template. Figure copied from [36]. 
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global memory. Scheduling instructions on A-Cores should be done carefully to 

minimize the number of data dependencies between multiple cores. 

 

Figure 3.21: MARC System Architecture. Figure copied from [49]. 
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CHAPTER 4 
 

SILICON OPENCL BACKEND 
 

SOpenCL backend applies a series of transformations prior to hardware generation 

(Figure 4.1). These transformations are used for hardware optimizations and are used 

as a means for generating customized hardware accelerators based on the template 

described in Chapter 3. Each transformation has a corresponding hardware support in 

the architectural template of Chapter 3 as will be explained in this section.  

4.1 Bitwidth Optimization 

General purpose processors (GPP) include functional units, such as ALUs, 

multipliers, etc. of standard size, (32 or 64 bits). As a result, compilers targeting GPP 

based platforms produce assembly instructions of the same bitwidth. However, when 

we design a customized hardware accelerator for a given application, we can control 

the size of each allocated functional unit. Hence, it is important to remove any 

redundant bits in every instruction size to minimize the size of functional units, and 

reduce overall area. 

Bitwdith optimization has been developed as a separate LLVM optimization pass 

to compute the minimum number of bits needed to represent every integer variable 

(i.e. instruction) in the application. On the other hand, floating point variables are 

 

Figure 4.1: SOpenCL backend transformations. 
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IEEE-754 compliant and use the 32-bit for single and 64-bit for double precision, 

respectively.  

Bitwidth optimization for integer variables is a value-range propagation problem. 

The value range (e.g. 0 to 255 for char variables) of a variable is propagated through 

the program data flow graph (DFG) to compute the value range of subsequent 

variables. The bitwidth optimization algorithm uses three types of information as 

input to the value propagation engine: 

• Variable data type: Data types like char, unsigned char indicate a value range    

[-128,127] and [0,255], respectively. 

• Static Array Size: Static arrays size like A[256] can be used as an upper bound on 

array index variables. 

• Loop carried linear expressions and loop trip count: a loop carried expression, 

like most loop iteration index variables (e.g. k += 2), can be solved provided that 

the loop trip count is known and the expression is linear. 

As an example, refer to Figure 4.2.  Input data stream A, and B have char data type 

with value range [-128, 127]. Propagating their value range to variables s0 and s1 

leads to value range [-256, 254] and [-255,255], respectively. The static array C[16] 

size places a bound on the variable N, hence the value range [1, 16] . The variable i 

value range is computed using its loop carried expression, and value range of N, 

hence the variable i takes value range [1, 16]. Using the computed value range for 

each variable, we compute the number of bits required to represent that value range 

 

Figure 4.2: Bitwidth optimization example. 
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(as shown in Figure 4.2). 

Bitwidth optimization significantly reduces the size of functional and storage 

units. Instead of 32×32 multiplier, we need only a 9×9 multiplier to compute s1*s0, 

and instead of a 32-bit adder, a 9-bit adder suffices to compute s0 + s1. 

4.2 Predication 

4.2.1 Overview 

Wide-issue architectures require a sufficient amount of instruction level 

parallelism to achieve peak performance. Control transfer instructions impose a 

significant restriction on available Instruction Level Parallelism (ILP), and hence, 

lead to a serious restriction on performance.  

Many studies proposed predicated execution as a method to increase ILP [51, 53, 

55]. Predicated execution eliminates control transfer instructions and replaces them 

by predicate-defining instructions and guarding instructions. This transformation 

replaces control dependencies with data dependencies. An instruction is executed as 

soon as its data operands and predicates are available. Compilers support predicated 

execution by applying If-Conversion transformation, in which code with multiple 

basic blocks of instructions is translated into a single block  Figure 4.3 shows a 

simple example of the outcome of If-conversion. Instructions I0 and I1 define 

predicates, while I2 and I3 are predicated instructions. The effect of a predicate on the 

instruction is to validate (allows it to write its result) or invalidate its output. In cases 

of load/store instructions, a predicate qualifies memory accesses. 

Predication offers many benefits. ILP is increased by allowing separate control 

paths to be executed in parallel. Some optimizations like modulo scheduling are 

difficult to be applied on code segments with control-flow. Optimizations like 

bb0:

c = cmp eq t, 0 

br c, bb1, bb2

bb1:

r2 = ldw 0(A) 

bb2:

r2 = add a, 1 

bb0:

I0:      p0 = cmp eq t, 0

I1:      p1 = not p0

I2: (p0) r2 = ldw 0(A)

I3: (p1) r2 = add a, 1

 

Figure 4.3: IF-Conversion using LLVM assembly. Multiple blocks of 
instructions are merged into a single block. 
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redundant and dead instructions elimination will be more effective on a code free of 

control instructions. 

4.2.2 Prior Work 

For many years, If-conversion studies have been conducted by simulating code 

generated by experimental compilers. Recently, predicated execution is supported on 

almost all high performance processors VLIW/EPIC processors. Multiflow-200 

architecture [53] provided a Select instruction to select a data outcome from multiple 

control paths. Later Multiflow architectures supported conditional-write for store and 

floating point instructions [53]. Many architectures adopted conditional move 

instruction (CMOV) as in DEC/Compaq Alpha and SUN SPARC V9 [55, 57].  

Cydra5 was the first architecture that fully supported word-wide instruction 

predication. Every wide-word instruction can be made conditional on a bit in the 

predicates register file (Iteration Control Register) [53, 55] Intel IA-64 (Itanium) was 

the first general purpose architecture that fully supported predication. Each 

instruction specifies a 1-bit predicate register, and if the value is true the instruction is 

executed, otherwise, the instruction will have no effect [52, 54]. Predicate registers 

are set by compare instructions, where each compare instruction is specified with the 

predicate registers to update. 

4.2.3 Predication Algorithm 

SOpenCL implements If-conversion as a separate pass in LLVM compiler. If-

conversion is used to transform control dependencies in inner-most loops into data 

dependencies in order to facilitate modulo scheduling and increase ILP. 

4.2.3.1 If-conversion algorithm 

Algorithm 4.1 depicts the pseudo code of the used If-conversion algorithm. The 

algorithm first put the blocks of the inner most loop in execution order, i.e. a block 

comes in the list after all its predecessors. The algorithm then iterates the ordered 

blocks and for each block it first computes the block predicate using 

computeBlockPredicate function. Then, it process block instructions by replacing Phi 
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instructions, removing branch instructions and computing destination blocks partial 

predicates. At the end, it computes the loop header block predicate. 

The replacePhiInstruction function replaces a Phi instruction in block Bi with a 

sequence of Select instructions using partial predicates computed for block Bi. A 

partial predicate is a predicate of block Bi generated from only one of its 

predecessors. Block Bi will have as many partial predicates as the number of its 

predecessor blocks. In Figure 4.4c, c1 instruction is a partial predicate of block bb4 

corresponding it its predecessor block bb1. A Phi instruction is replaced by a 

sequence of select instructions each selecting an input data token if its condition (i.e. 

partial predicate) is true, or the previous data token select instruction. In this sequence 

only a single partial predicate will be true, and so the true data token will be passed. 

In Figure 4.4c, the Phi instruction r3 is replaced by a sequence of two select 

instructions: t0 and r3 in Figure 4.4d. 

The computePartialPredicates function removes a branch instruction and 

computes partial predicates of destination blocks using the branch instruction 

Algorithm 4.1: If-conversion algorithm. 

Input: Inner loop code in LLVM assembly code with multiple instructions blocks. 
Output: Inner loop with single block of instructions. 

1: 
2:  
3:  
4:  
5:  
6:  
7:  
8:  
9:  

10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
20:  
21:  
22:  
23:  

BB   → List of Inner loop Blocks  
PP   → Blocks Partial Predicates List  
 
// Main If Conversion algorithm 
IfConversion ( BB ){ 
 
 BB` = ExecutionOrder ( BB);  
 
 foreach  block Bi  in BB`  do 
   p = computeBlockPredicate ( Bi , PP); 
   foreach  instruction I  in block Bi  do  
      if  I  is Phi  instruction then  
          replacePhiInstruction ( I , PP); 
      else if  I  is Branch  instruction then  
          computePartialPredicates ( p, I , PP); 
      else  
          copyInstruction ( I ); 
      end if 
   end for 
 end for 
  
 ComputeHeaderPredicate (PP );  
} 
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condition operand. For the true destination block, the partial predicate is computed as 

the AND operation of the branch condition and the predicate of the source block. In 

Figure 4.4d, c2 is the partial predicate for bb4 computed from its source bb2. This is 

the AND operation of the branch condition negation c1 from source block bb2 and 

the predicate c0 of bb2. 

The computeBlockPredicate function computes the predicate defining instruction 

of block Bi as a logical OR of all the block partial predicates. In Figure 4.4d, block 

bb4 has one source block bb2 only, hence its partial predicate c2 is also its predicate 

instruction. The same applies to block bb2, its only partial predicate c0 is also as its 

predicate. 

Even the loop header block bb0 is valid at each loop iteration, we introduce the 

predicate p for the header block.  The predicate p takes true value for the first loop 

iteration and for the rest of loop iterations it takes the negation of the loop exit 

condition c3. The header block predicate is necessary for implementing loop 

termination and schedule flushing. Header predicate instruction is computed in 

Algorithm 4.1 using ComputeHeaderPredicate. 

Note that we do not need to replace the Phi instruction of the loop header block, 

because the accelerator architectural template provides special function units to 

 

Figure 4.4:  If-conversion transformation for value-clipping example. (a) C code 
interpolator sample. (b)  Control flow graph (CFG) of the LLVM code in (c). (c)  
Generated LLVM assembly code. (d) Predicated LLVM code after applying 
Algorithm 4.1. 
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implement such Phi instructions in the loop header block. In Figure 4.4 the initial 

value is 0, and the loop carried value is r6 which is the increment of the loop index. 

Another issue to address in if-conversion is the multiple exiting points in the loop. 

The exit condition represents the predicate for the exit block, the block the loop 

reaches when it terminates (e.g. block exit in Figure 4.4). We compute this predicate 

as any other predicate by ORing its partial predicates. The example of Figure 4.4 has 

a single exiting point with a single exit condition (r5) which is used as predicate for 

the exit block. If another block in the loop reaches the exit block, the predicate of exit 

block is computed as the OR between the two partial predicates. 

4.2.3.2 Architectural Support for Predication 

The architecture template of Chapter 3 provides support for predicated 

instructions, by annotating each data token by a valid bit used to indicate whether the 

token carries valid data or not. This valid bit is used to support predicated execution.  

The architectural support we propose is exemplified in Figure 4.5. We only apply 

predicate-bits (predicate signal in Figure 4.5) on a limited set of instructions, such as 

phi, store, and load instructions, beside instructions that have effects outside the loop. 

The predicate signal in Figure 4.5 is the predicate defining instruction of the load 

operation running on the load FU. A false predicate signal invalidates the load FU 

output data token.  Similarly, a false predicated data token is ignored when it changes 

memory or output data register as in store operations. This is the same effect when a 

valid-bit equals 0. In the implementation of Figure 4.5, a falsely predicated 

instruction resets the valid bit of the FU output queue. The effect of invalidating data 

tokens propagates through the valid bits of each functional unit.  

 
Figure 4.5: Predicated execution architectural support 
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4.3 Code Slicing 

4.3.1 Overview 

The aim of code slicing is to disassociate computation from data I/O and facilitate 

their overlap. Decoupled data movement and computations hide memory latency by 

prefetching data tokens required in later loop iterations while computations performed 

on early loaded data.  

Code slicing has been early introduced by Weiser [60] to facilitate programs 

debugging. Later it has been used in software analysis and maintenance. According to 

Weiser’s approach, a slice is computed by gathering consecutive sets of indirectly 

relevant statements, based on data and control dependencies. Two types of slices had 

been mentioned depending on the traversal direction of a data flow graph; backward 

traversal slices, and forward traversal slices. A backward slice consists of all 

program statements that affect a given statement in the program. A forward slice 

consists of all program statements that are affected by a given statement. Figure 4.6b 

shows a backward slice that consists of all statements affecting the statement 

write(product) .   

The slice represents a precise portion of the program that produces correct results. 

Note that multiple backward (and forward) slices of a program will have replicated 

statements. For example, a backward slice that computes the statement 

write(sum)  will include many of the statements appearing in the backward slice of 

Figure 4.6b. 

 

Figure 4.6: Code slicing. (a) Program Snippet. (b) Backward slice that computes 
product statement (10). Figure copied from [60]. 
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The form shown in Figure 4.6 is known as static program slicing, performed 

statically, when all dependencies in a data flow graph are considered. Dynamic 

program slicing is a notion used when a program is sliced only according to 

dependencies occurring in a specific execution of the program. 

4.3.2 Slicing Algorithm 

SOpenCL implements static backward code slicing in each inner loop of the 

predicated C kernel as a separate pass in LLVM compiler. Code slicing is used to 

identify instructions responsible for computing the input (read) addresses in each 

Algorithm 4.2: Code slicing algorithm. Output streaming kernel generation is 
similar to the input streaming kernel, with stores being the instructions of interest. 

Input: Inner loop code in LLVM assembly code 
Output: Two distinct modified kernels in LLVM assembly code 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
26:  
28:  
29:  
30:  
31:  
32:  
33:  
34:  

// Input Streaming Kernel generation 
get_sin_kernel (inner_loop, InstructionList * sin_list ){ 
  sin_list = NULL; 
  foreach (instruction It  in inner_loop)  
      if ( It  is a load  instruction)  
               add( It , sin_list ); 
 
  It  = select any instruction from sin_list ; 
  while ( It != NULL) { 
      foreach ( predecessor ( It ) != NULL) 
              add ( predecessor ( It ), sin_list ); 
      It  = select any ( predecessor ( It )!= NULL); 
  } 
 
  It  = select any instruction from sin_list ; 
  while ( It != NULL) { 
      pred  = predicate ( It ); 
      if ( pred != NULL){ 
          foreach ( predecessor ( pred ) != NULL) 
             if ( sin_list ( predecessor ( pred )) == NULL){ 
                pred  = NULL; break; } 
          if( pred  != NULL) 
            add ( pred , sin_list ); 
  }}} 
//Computational Kernel generation 
get_comp_kernel (inner_loop,  InstructionList * sin_list  , 
                         InstructionList * comp_list ){ 
  comp_list = NULL; 
  foreach (instruction It  in inner_loop)  
      if ( It  not in sin_list  ) 
          add ( It , comp_list ); 
          if ( predicate ( It )!=NULL) 
              add (  predicate ( It ), comp_list );  
} 
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inner loop. Code slicing step partitions the code to two distinct kernels: 

Input Streaming Kernel: This kernel consists of all the load instructions and any 

instruction participating to the calculation of load addresses. The kernel drives the 

hardware generation of the Input Stream AGU (SinAGU module).  

Computational Kernel: This is the core of the PE architecture, and comprises all 

instructions that receive input data from the Input Stream Units and produce output 

data to the Output Stream Units. Since data are streamed in the datapath in-order, a 

pop instruction consumes the next element from the input stream without the need to 

specify a memory address. Push instructions produce data to the output stream units 

in addition to the memory write address. The computational kernel drives the 

hardware generation of the datapath module. 

Algorithm 4.2 depicts the pseudo code of code slicing for Input Streaming kernel 

and Computational kernel. All load instructions of the inner loop and all their 

predecessors, i.e. instructions used to compute memory addresses and their control 

predicates are allocated to the Input streaming units. In the computational kernel, 

these instructions are substituted by pop instructions used to stream data from the 

input streaming unit to the datapath. 

Figure 4.7b depicts a slicing example of a chroma interpolation kernel (the 

LLVM-IR is shown in Figure 4.7a).  The Input streaming kernel comprises all four 

load instructions, their address (getelementptr instructions in LLVM assembly), their 

predicates, and the instructions used to compute their addresses and predicates. In the 

computational kernel the load instructions are converted to pop instructions that sink 

data from input stream channels (SIN0, SIN1, SIN2 and SIN3) without the need to 

generate address. 

The code slicing process is applied only I/O addresses are known at compile time, 

i.e. they are not dependent on runtime information. Unless this requirement is not 

satisfied, the AGU cannot run ahead of the datapath since it needs to wait for data 

computations. In that case, irregular runtime read/write dependencies makes it 

impossible to pipeline input and output streaming units. As a result, the tool flow will 

skip code slicing and the unified datapath architecture generated will also be 

responsible for address generation as well data computations. 
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Moreover, if control predicates in the Input Stream kernel are data dependent, the 

slicing algorithm will bypass adding control predicates to the Input streams kernel 

and will make load instructions always truly predicated. In that case, load instructions 

always generate valid addresses and read.  

  
(a) (b) 

Figure 4.7: Code Slicing. (a) Predicated Chroma Interpolation kernel. (b) Input 
Streams and Computations code slices. Predicate variable r34 is used to guard 
execution of load instructions in the Input Streaming Kernel, and pop and store 
instructions in the Computational Kernel.  
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4.4 Instruction Clustering 

4.4.1 Overview 

One of the most challenging tasks of FPGA design is achieving fully routed 

circuits, especially in datapath dominated designs. According to our experimental 

analysis on a set of benchmarks, routing resources, in the form of multiplexers and 

interconnects occupy 70% to 80% of the design area and account for 90% of the 

signal delay in computationally intensive designs, such as the LDPC benchmark 

(described in section 6). Moreover, Placement and Routing (P&R) in modern FPGAs 

is a very computationally intensive process, even with the use of state-of-the-art 

routing algorithms. A placement and routing tool may take hours or even days to 

generate a fully placed and routed design, especially in the presence of routing 

congestion. 

Given the routing complexity for large designs, the pressure is growing for 

techniques that address the placement and routing problem at a higher abstraction 

level. In a typical high level synthesis approach, the tasks of resource allocation, 

scheduling and binding are applied on a set of primitive operations (basic arithmetic 

and logic operations). The cost of routing resources per primitive functional unit is 

increasing rapidly in modern FPGAs. For example, the area cost of a 32-bit adder 

with a 4-input multiplexer on each input port is dominated by the multiplexers tree 

(67% of the FPGA slices).  

Generation of application specific macro-instructions is a common practice among 

instruction-set extensions designers [61, 62, 63, 64]. Such macro-instructions can 

substitute a set of primitive operations and consume fewer resources. Regular 

computation patterns that appear repetitively in a program DFG are strong candidates 

to be implemented as macro-instructions. As an example, macro-instruction K in 

Figure 4.8b which consists of two successive additions results into a more compact 

and efficient circuit, requiring fewer resources (i.e. multiplexers) than the individual 

primitive ADD operations. A macro-instruction can be designed to optimize a set of 

different criteria, such as silicon real-estate or latency, compared with the set of 

corresponding primitive operations. 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154



 70 

The generation of application specific macro-instructions is a two steps process: a) 

candidate instructions identification, and b) candidate instructions selection. During 

candidate instructions identification, a space exploration of a given DFG results to the 

identification of a set of subgraphs, of primitive operations, each subgraph 

representing a potential macro-instruction that fulfills a specific set of constraints. In 

the next step, a subset of the candidate instructions is selected for the final 

implementation based on a number of optimality criteria, like latency and area. A 

variety of approaches have been used for the candidate instructions generation and 

selection problem, including subgraph enumeration methods and techniques based on 

pattern recognition [61, 62, 63, 64, 65, 66]. Our target is to exploit the characteristics 

of MFUs to reduce datapath complexity, and hence, reduce routing overhead and 

improve performance.  

In this work we propose the use of a grammar-induction approach for macro-

instructions generation and selection. Grammar induction is an established technique 

used in string and tree compression algorithms [67, 68]. It is a very efficient approach 

to extract repetitive patterns from a data sequence and to create hierarchical models of 

such patterns that can be readily understood, analyzed and applied in other domains.  

In this paper we extend a grammar induction technique called Sequitur [67], to 

identify and generate a set of candidate macro-instructions. The generated grammar is 

composed of a set of non-terminals, where a non-terminal is a subgraph of the DFG. 

A non-terminal can, in turn, be composed of other non-terminals and/or primitive 

operations.  

Contrary to the thousands of subgraphs generated by enumeration and pattern 

recognition methods, the generated grammar has a regular hierarchal structure with 

 

Figure 4.8: Scheduling and binding of a DFG with: (a) primitive instructions. 
(b) Mixture of primitive and macro instruction. Macro instruction K is 
scheduled on the Macro FU (MFU) K which is a pipelined 3-input adder. 
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few non-terminals, each serving as a potential macro-instruction. This simple 

hierarchal structure results to a simpler and more compact form of macro-instructions. 

To keep routing overhead to minimum, a macro functional unit (MFU) closely 

follows the structure of a single type of macro-instruction (i.e. non-terminal in the 

grammar) and supports the execution of only this type. Making an MFU support the 

execution of different types of macro-instructions (rules with different subgraphs) 

requires adding internal configurable multiplexers on the internal edges of the MFU. 

This, in turn, would come at the expense of complexity and hence would limit the 

effectiveness of our approach. 

One might reason that the reduction of inter-FU interconnects potentially leads to 

an increase of intra-FU interconnects. However, the increase of intra-FU 

interconnects does not translate into an area overhead. Intra-FU interconnects are 

multiplexers free and localized. They are short interconnects between neighboring 

logic slices. Moreover, intra-FU interconnects can be optimized out using the 

approach for pipelining MFUs we introduce in section 4.3. In fact, the transformation 

of costly, inter-FU interconnects into light weight intra-FU interconnects is the main 

technique exploited by the proposed grammar driven synthesis methodology to 

reduce area overhead. 

4.4.2 Grammar Generation 

In this section we introduce a grammar generation algorithm for systematically 

discovering all repetitive computation patterns inside the DFG, or equivalently 

identifying candidate sets of primitive operations to be implemented as macro-

instructions. Our algorithm is based on the Sequitur grammar inference technique, 

 
(a) 

 
(b) 

Figure 4.9: Grammar representation applied on (a) a sequence of data 
symbols, and (b) a data flow graph (DFG). Notation x(y,z) means that 
operation x has inputs y and z.  
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originally designed for data strings compression [67]. 

4.4.2.1 Grammar Representation 

Figure 4.9a depicts an example of a grammar representation of a sequence of 

symbols. A grammar representation consists of a set of statements called rules or non-

terminals (we will use both terms interchangeably through the rest of the paper). Each 

rule is a sequence of symbols that contains other rules and/or data symbols called 

terminals. In Figure 4.9a, rule B includes both non-terminal symbol A and terminal 

symbols, a and d. Rule S includes non-terminal B and rule A consists of terminal 

symbols b and c. The original statement S can be restored by substituting each non-

terminal with its production, namely the right-hand side of the rule, until all non-

terminals are eliminated.  

In this work we extend grammar inductions to also represent data flow graphs. 

Figure 4.9b depicts a subgraph of a DFG represented as a compound statement S. A 

simple grammar can be deduced by introducing rule A. We treat each primitive 

instruction a, and b as a terminal symbol. A concern in using grammar 

representations for DFGs is the operand order for non-commutative operations, such 

as subtraction or division. We use clockwise numbering of input operands to denote 

their order. In a DFG that consists merely of primitive instructions, each rule can be 

considered as a potential compound macro-instruction. 

A convenient property of grammar representations is their hierarchical structure, 

which inherently integrates multiple levels of granularity. Such a multi-granular 

representation of a DFG proves very handy when it comes to hardware 

implementation of computationally intensive algorithms. For example, assume the 

DFG subgraph S in Figure 4.9b is part of a larger DFG, populated with multiple 

subgraphs of type S. In this case, S can function as a non-terminal in the larger DFG. 

The synthesizer has the choice to implement either the macro-instruction A that 

represents a fine granularity computation, or the macro-instruction S which represents 

a coarser granularity computation.  

An MFU that implements a macro-instruction with coarser granularity requires 

lower routing overhead because most interconnects tend to be within the FU, and not 

across the FUs. By reducing inter-FU routing, final datapath implementation tends to 
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suffer less from routing congestion and to require lower P&R overhead. However, a 

coarser granularity macro-instruction like S is not necessarily fitter for 

implementation. This is, for example, the case when the implementation of S requires 

many resources and at the same time there are just a few occurrences of S in the 

program to reuse the MFU that implements S. In this case, a finer granularity macro-

instruction like A which costs less resources and may have many more similar 

patterns in the program seems to be fitter for implementation. In section 4.4.3 we will 

introduce a systematic method for selecting between different granularity levels.  

4.4.2.2 Generation of Grammar-based DFG representation 

The grammar generation algorithm traverses the DFG and discovers repetitive 

patterns by matching pairs of instructions. A pair of instructions b(a) denotes that the 

output of instruction a is an operand to instruction b as shown in Figure 4.9b. We call 

instruction b destination node and instruction a source node. The parenthesis in b(a) 

Algorithm 4.3: Grammar Extraction Algorithm 
Input: Data  Flow Graph 
Output: Set of Grammar Rules 

1:  
2:  
3:  
4:  
5:  
6:  
7:  
8:  
9:  

10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
27:  
28:  

D[N]      → Data Flow Graph (DFG) nodes list 
N         → Number of DFG nodes 
M         → Set of matched node pairs 
G         → Grammar’s rules set. 
 
Order D nodes in reverse topological order; 
 
index = 0; 
while  (index < N) do 
  R    = D[index];  
  Max = 0; 
  for  each operand P of instruction R do  
     Pair = R ( P) 
     if ( ! check_output_ports( Pair  ) ) continue ; 
     if ( ! check_convexity( Pair  ) )    continue ; 
     ( Size, Mt) = find_matching_pairs(  D, Pair  ); 
     If  ( Size  > Max ) then  
       M   = Mt  
       Max = Size 
     end if 
  end for  
  if ( Max > 0 ) then  
     update_grammar( G, M ); 
     update_destination_nodes( D, M );  
  else  
     index += 1;  
  end if  
end while  
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is used to express the instruction-operand relationship of instructions b and a. 

The rules of a grammar generated according to Sequitur share two properties:  

(1) Digram uniqueness: A digram is a pair of adjacent symbols, each being a 

terminal or non-terminal e.g. aA in Figure 4.9a. Each digram should appear 

exactly once in the productions (right-hand side) of the grammar rules.  

(2) Rule Utility: Each rule in the grammar should appear at least twice in the 

productions of other, higher-level rules. This property ensures that all rules are 

useful. 

In addition to the above constraints we introduce the following constraints, 

specifically for data flow graphs: 

(1) Output ports number: The number of outputs of a compound statement described 

by a rule S should not exceed an upper limit Nout. For Nout larger than one, MFU 

with multiple output ports (e.g. performs multiple computations in parallel) is 

feasible. This constraint helps reduce the complexity of the pattern identification 

and selection process by reducing the amount of feasible patterns. 

(2) Convexity: A rule is a representation of a convex subgraph in the DFG. A 

subgraph S is convex if there is no path from a node Su∈  to a node 

Sv∈ through a node Sw∉ . 

(3) Data computation instructions only: Load, store, and control instruction nodes 

cannot be included as terminals in the grammar rules.  

Algorithm 4.3 outlines the pseudo code of the grammar generation algorithm and 

Figure 4.10 shows the steps using a motivational example. The algorithm starts by 

sorting the DFG nodes in a reverse topological order. In Figure 4.10a, each node is 

assigned a number indicating its reverse topological order. 

Given the sorted DFG, the algorithm selects the first node, n0 (destination node) 

in our example, and builds the template pairs for each operand of the node (n0(n2) 

and n0(n3) in our example). If a template pair satisfies the output ports number and 

convexity tests, the algorithm searches for additional instances of the template in the 

DFG, using the subroutine find_matching_pairs. The function returns a list Mt of 
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pairs of instructions matching the template pair. 

A matching instance should have the same operations as the template pair and, 

generally, the same order of operands. The order of operands is ignored in case the 

destination node in the template pair is a commutative operation such as addition. 

From all the template pairs derived from n0, namely n0(n2) (Figure 4.10b) and n0(n3) 

(Figure 4.10c), we greedily choose to consider the template pair with the maximum 

number of instances for implementation as a macro-instruction. In our example 

(Figure 4.10d) we chose the template pair a(b) (corresponding to n0(n3)) which has 5 

occurrences rather than the template pair a(a) (corresponding to n0(n2)) which has 2 

occurrences. 

When a template pair is chosen, the algorithm will update the grammar using the 

 

Figure 4.10: Motivational example showing the steps of Algorithm 4.3. In this case 
output ports number constraint is set to one (Nout = 1). The final generated grammar 
is depicted in (k).Three potential clusters of instructions can be implemented as a 
Macro FU.  
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subroutine updategrammar in one of two ways: 

(1) If the destination node in the pair is a terminal, i.e. a primitive instruction, the 

algorithm generates a new rule. In Figure 4.10d we create a new rule A for the 

pair a(b) because a is a primitive operation. 

(2) If the destination node in the pair is non-terminal (e.g. node A in Figure 4.10e), 

then; 

a. If all its occurrences in the DFG have a matching pair (e.g. A(a) in Figure 

4.10e), we extend the non-terminal rule of the destination node. 

b. Otherwise, we create a new rule.  

In Figure 4.10e, not all the occurrences of the destination node A have a matching 

pair A(a) (only 2 of the 5 occurrences of A), so we create the new rule B. However, in 

Figure 4.10g, all occurrences of the destination node B have a matching pair B(c), so 

we extend the rule of B to include c. 

After updating the grammar, the algorithm updates the destination node in each 

matching pair using the subroutine update_destination_nod as follows: 

(1) Substitute the destination node of each matching pair by a non-terminal node. 

E.g. node a in the pair a(b) of Figure 4.10c  becomes non-terminal node A in 

Figure 4.10d. 

(2) Add the source node in the pair (b in the pair a(b) of Figure 4.10c) to the internal 

subgraph of the destination node. Each node marked as non-terminal has an 

internal subgraph which is a cut of the original DFG. In Figure 4.10d, non-

terminal node A corresponds to subgraph a(0, b(1, 2)).  

(3) Finally, the algorithm updates the operands list of the newly created non-terminal 

node to include the operands of the source node in the pair, and empties the 

operands list of the source node.  

The process is repeated on the new state of the DFG, searching for templates 

(pairs of nodes) having the newly inserted non-terminal as destination. In Figure 

4.10e, after merging terminal node a to non-terminal node A, the algorithm repeats 

the process of building template pairs and searching for matches using destination 

node A which now has two more operands: c and A, to node b. If the algorithm fails to 
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find matching pairs having the newly inserted non-terminal as destination node, it 

continues with the next node in the sorted DFG list. The iterative process continues 

until there are no more nodes to consider as destination nodes. 

4.4.2.3 Computational Complexity and Correctness 

For a DFG with N nodes and E edges, the grammar generation algorithm 

computational complexity in the worst case scenario (where the DFG has no 

repetitive patterns) is O(N2). The computational complexity for the worst case 

scenario can be derived as follows: 

(1) Each edge ei in the DFG is compared with each other edge ej in the DFG where i 

≠ j. Hence, the maximum number of search steps is E*(E-1), in the case no 

patterns are detected. Otherwise, each time a pattern instance is substituted by a 

macro instruction, the total number of edges in the DFG is reduced by at least 2 

(at least 2 instances of the pattern, involving at least 2 edges, are substituted by 

macro nodes), and the total number of search steps is reduced accordingly. 

(2) For a DFG without recurrent circuits and, the total number of edges E in the DFG 

is linearly dependent on the number of nodes N, hence the maximum number of 

search steps is O(N2). 

Figure 4.11 depicts the computational complexity (in terms of the total number of 

instruction pair comparisons) observed experimentally by applying the algorithm on 

the benchmark base used in the experimental evaluation (Section 5). Their 
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Figure 4.11: Experimental evaluation of the computational complexity of Algorithm 
4.3. The data points represent the number of instruction pair comparisons observed 
experimentally on the benchmarks set of Table IV. The theoretically predicted worst 
case complexity is also depicted in the graph (continuous line). Both the x- and y-axis 
are in logarithmic scale. 
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characteristics are summarized in Table IV. The graph also includes a plot of f(N) = 

N2 (Worst Case). It is clear that in all cases, the overhead of the algorithm is lower 

than the O(N2) worst-case complexity. In fact in practice the worst-case upper bound 

proves overly conservative. 

The computational complexity of the algorithm is significantly lower than that of 

enumeration based algorithms, which are characterized by exponential complexity. 

For all experiments described in Section 5, the execution time of the algorithm was 

less than 1 second. Moreover, the significant reduction in synthesis, placement & 

routing runtime for large values of N in the vast majority of the experiments 

overweighs the grammar generation runtime overhead, leading to overall reduction in 

the design generation runtime. 

The algorithm does not remove DFG nodes, not even reorganize them. It just 

groups them together without changing their external or internal connections in the 

DFG, so essentially, the original and the compressed DFGs are equivalent. Therefore, 

the algorithm is correct. 

4.4.3  Grammar-Driven Datapath Synthesis Flow 

The hierarchical grammar representation of a DFG can be exploited in many 

practical problems such as DFG compression. Since each FU in a datapath can be 

typically reused for multiple DFG operations, a multiplexer tree is needed at the input 

ports of each FU to select among a multitude of inputs. Multiplexer trees may cost 

more in terms of area than the FU itself, specifically for simpler FUs that perform 

basic arithmetic and logic operations. For example, a 2-input 32-bit multiplexer 

consumes as many FPGA logic cells as a 2-input adder or a logic operator of the same 

bitwidth. Therefore, if a 2-input adder is driven by an 8-input multiplexer tree at each 

of its inputs, the cost of the adder will be smaller than the cost of the multiplexer tree. 

If all instances of a grammar rule are implemented as a macro functional unit (MFU), 

where the internal data flows are free of multiplexers, the area gain may be 

significant; furthermore, reducing routing complexity leads to reducing routing 

latency, and time the P&R tool chain requires to place and route the design.  
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Figure 4.12 shows the complete grammar-driven datapath synthesis flow, 

including instruction clustering. For each input DFG we generate the datapath RTL 

that implements the DFG functionality. Given the original input DFG, the synthesis 

flow starts by slicing the DFG into one or more smaller subgraphs. Then, the 

grammar generation engine processes each DFG slice separately and generates the 

grammar. A subset of the non-terminal rules is selected to generate macro-

instructions. Given the selected set of rules, the algorithm will produce a new DFG 

incorporating primitive instructions and macro-instructions. 

4.4.3.1 Data Flow Graph Slicing 

A preliminary step before grammar generation in our tool is the slicing of the 

given DFG into smaller DFGs (Figure 4.13). In some cases, for example when the 

DFG expresses computation of an unrolled, data-parallel loop, the graph consists of 

multiple strongly connected subgraphs (slices), each corresponding to a loop iteration. 

The objective of DFG slicing is to treat parallel data flows within a DFG 

independently in grammar generation, scheduling and binding. For grammar 

generation, the search space for matching pairs is smaller when applied on DFG slices 

rather than the original DFG, which will speed up the grammar generation algorithm. 

Another important benefit is the creation of isolated islands of resources (FUs, 

registers) by preventing an instruction in a DFG slice from being scheduled on 

resources of another DFG slice. These isolated islands of resources make the task of 

the placement & routing much easier. 

DFG slicing corresponds to identifying the strongly connected components of the 

DFG. We use a modified version of the path-based strong component algorithm 

described by Cheriyan and Mehlhorn [69]. Starting from each leaf node of the 

original DFG, n0, n1, and n2 in Figure 4.13, the slicing algorithm iteratively moves 

up the graph and tracks the operand nodes of each selected node. At first, both DFG 

slices A and B of Figure 4.13 include two common nodes: c0 and c1 (Figure 4.12). 

 

Figure 4.12: Grammar based datapath synthesis flow. 
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Since the two slices are strongly connected, we exclude the two common nodes from 

both slices. A slice of a DFG is created from each leaf node and DFGs with no 

common nodes belong to different slices. 

4.4.3.2 Grammar Generation & Selection 

Following DFG slicing, the flow continues with the grammar generation algorithm 

described in Section 4.4.2, which is applied independently on each slice. Hence, each 

DFG slice will end up with its own grammar representation. 

Grammar-driven data compression algorithms normally use all the grammar rules 

to compress a sequence of data symbols. However, in our case, a subset of rules can 

be used to implement MFUs. As mentioned earlier, grammar rules correspond to 

candidate macro-instructions – which can be implemented as custom MFUs – at 

different granularities. Therefore, the synthesizer needs to select the optimal 

granularity for the generation of macro-instructions, according to a set of criteria. 

The purpose of this step is to identify an optimal subset of grammar rules that 

minimizes routing density and reduces total area. Algorithm 4.4 summarizes the 

greedy selection heuristic we introduce in our work. The selection heuristic uses a 

fitness function to assign weights to each rule in the generated grammar. At each step, 

the rule with the highest fitness value is selected to be implemented as an MFU and 

all instances of the selected rule are removed from the grammar. Note that when a 

rule is selected, all grammar rules using this rule as a non-terminal in their 

 

Figure 4.13: DFG slicing example. The original DFG is partitioned into two 
independent slices. 
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productions are essentially also removed from the grammar and they are no longer 

considered for implementation as MFUs. Otherwise, multiple different MFUs would 

be generated, executing the same primitive operations. After each step, the fitness 

function updates the fitness of the remaining rules. The process is repeated until the 

grammar is empty. 

The fitness function (1) uses a set of metrics to estimate the gain from 

implementing rule i as an MFU. The metrics aim to rank the grammar rules based on 

their potential to reduce routing complexity:  

             
( ).

i
MUXG

i
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i
CG

i
W +∗=

                                         (1) 

The following paragraphs detail the parameters of (1). 

Coverage Gain (CG): The coverage gain for rule i is a normalized value of the 

total number of primitive instructions in the DFG covered by the specific rule. The 

metric is computed in (2). Higher coverage of the DFG nodes means fewer primitive 

FUs will be implemented individually, hence, smaller multiplexer trees. To compute a 

Algorithm 4.4: Grammar Rules Selection 

Input: List of Grammar Rules. 
Output: Select set of grammar rules. 

1:  
2:  
3:  
4:  
5:  
6:  
7:  
8:  
9:  

10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
20:  
21:  
22:  
23:  
24:  

G        → set of discovered Rules 
SR       → Selected set of Rules 
r size      → Rule instances count 
 
computeMetrics( G, BWA ); 
 
while  ( G != Ø ) do 
  OrderRules ( G ); 
  R = getMaxFitnessRule ( G ); 
   
  if  ( R.  r size  > 2 ) then  
    add R to SR; 
    foreach Rule Sk != R do  
      if  Sk uses R as non-terminal then  
        remove Sk from G 
      else if R uses Sk as non-terminal then 
        remove all instances of Sk in R from G 
      end if  
    end for 
  end if 
  remove R from G;  
  computeMetrics( G ); 
 
end while 
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fair metric value, we compute the total number of primitive instructions that can be 

covered by a given rule, instead of relying only on the count of rule instances 

(occurrences) or the number of primitive instructions (operations) per rule instance.  
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The coverage gain factor functions as a multiplier for two metrics LG and MUXG 

that correspond to area gains. It is important to notice that the value of the coverage 

gain metric will change each time we select a rule to be implemented as an MFU. 

This happens because some of the rule instances are removed from the grammar if 

they appear as non-terminals in the production of a rule selected earlier. Also the 

current maximum coverage value will change, and hence, the normalized values of 

CG. 

Multiplexers Gain (MUXG): This metric quantifies area gains due to reduction of 

number of multiplexers per instance of each rule. The metric is computed using (3). 

The nominator in (3) is the difference between the total number of inputs of all 

primitive FUs of an MFU (Σ#Operands) and the number of the MFU inputs 

(#RuleOperands). To quantify the gain from this difference, we divide it by 

“Σ#Operands”. 
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Based on formula (3), we can find that the value of MUXG tends to increase when 

the number of primitive instructions in a rule increases. In other words, larger rules 

will have higher multiplexers gain. However, the algorithm does not always favor 

larger rules over smaller ones. A smaller rule with lower multiplexers gain per 

instance may be associated with a much higher coverage gain which makes it fitter 

for implementation.  
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Logic Gain (LGi): This metric quantifies the potential for reduction of logic cells 

through packing of primitive instructions within an MFU (or equivalently a grammar 

rule). The metric is computed using equation (4). Consider an MFU implementing the 

function f(x0, x1 …xn). The nominator in (4) quantifies the efficacy of fusing the logic 

cells of all the primitive FUs of the MFU. LUTs in FPGAs (an LUT serves as a 

function generator with limited number of inputs) have a limited number of inputs, 

hence, the more the number of MFU inputs increases the more difficult it becomes to 

map its function on fewer LUTs, and therefore, we divide by the number of the MFU 

input signals (#RuleOperands) in equation (4). 
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The value of the parameter Al in (4) is normalized in the range [0, 1] and is 

characteristic for each primitive instruction type l. It quantifies the difficulty to fuse 

this instruction with additional ones, in the same set of logic cells. Al is dependent on 

the nature of the instruction, the FPGA architecture, and the synthesis, placement and 

routing tool chain. We developed a set of representative subgraphs, with various 

primitive instructions types and configurations, which can be used as micro-

benchmarks for systematically estimating Al on each target platform. A micro-

benchmark is a subgraph synthesized to analyze primitive FUs resources 

requirements. Subgraphs A, B, and C in Figure 4.10 are examples of micro-

benchmarks. This approach is described in detail in Section 4.4.3.3. For the Xilinx 

Virtex 6 FPGA family for example, the characterization assigned the Al value 0.5 to 

add operations, whereas logical and operations have an Al value of 0.20. The shift 

operation was assigned an Al value of 1.0 indicating that its logic cells cannot 

accommodate additional operations, when the shift amount is variable.  

Figure 4.14 shows how we apply rule selection on the grammar of the example of 

Figure 4.10. The left table of Figure 4.14 contains the normalized metric parameters 

and the corresponding fitness for each rule according to (1). After selecting the rule 

with the maximum fitness (B in Figure 4.10), we update the metric parameters, and 
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normalize their values again. Note that after removing rule B from the grammar, we 

also removed two instances of rule A, which appears now in only 3 instances. Rules A 

and C now have the same coverage since they both cover 6 instructions. After 

updating the metrics (right table of Figure 4.14), both rules A and C have the same 

weight. Since rule C is using rule A, OrderRules subroutine prioritizes rule C over 

rule A, and hence the algorithm selects rule C for implementation and removes 2 

more instances of the rule A. Since rule A now appears in only one instance, we can 

no longer consider it for MFU implementation, because of the rule utility constraint: 

each rule must appear in the grammar with at least two instances.  

4.4.3.3 Macro Functional Unit Pipelining 

Since MFUs have a more complex structure than simple FUs, it is possible that 

they will stretch clock frequency if they are assigned a single cycle for execution.  

Prior to scheduling macro-instructions on the generated MFUs, we have to determine 

the pipeline depth of each MFU and therefore its cycle latency, aiming at retaining 

the same clock frequency as if we had no MFUs in the accelerator. Algorithm 4.5 

drives the decision process of inserting pipeline registers between pairs of primitive 

FUs in a given MFU. The algorithm attempts to balance timing delay by placing FUs 

CG MUXG LG W
A 1 0.5 0.95 1.45
B 0.8 1 1 1.6
C 0.6 0.67 0.72 0.83

CG MUXG LG W
A 1 0.75 1 1.75
C 1 1 0.75 1.75

 
Figure 4.14: The selection process of Rules in the grammar of Figure 4.10. The 
selected set of rules: {B, C}. 

   

(a) (b) (c) 
Figure 4.15: (a) reference pipeline scheme used as template for the pipelining 
algorithm. (b) Logic level of pipelined Xor and Add operators. (c) Fused Xor and 
Add operations logic level.  
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of approximately equal latency in each pipeline region.  

The algorithm uses as a reference a default pipelining scheme for inserting 

pipeline registers in MFU. The default pipelining scheme blindly adds a pipeline 

register after each primitive FU, as in the case when primitive FUs implemented 

individually and not part of an MFU (Figure 4.15a). In this reference pipeline scheme, 

the combinational path of a single primitive FU (4-bit XOR and 4-bit ADD FUs in 

Figure 4.15b) is considered as one level of logic. Hence, using the default pipelining 

scheme, only one level of logic exists between two successive pipeline registers. 

Algorithm 4.5 traverses the MFU subgraph and removes a pipeline register if its 

removal doesn't increase the levels of logic between two other pipeline registers. For 

example, in Figure 4.15a, pipeline register R1 will be removed if it does not increase 

the levels of logic between pipeline registers R0 and R2. Contrary to the intuition, the 

removal of a pipeline register doesn't necessarily increase the levels of logic on a 

combinational path between two registers on an FPGA. For example, in Figure 4.15c, 

the removal of pipeline register R1 allowed fusing the logic cells of the XOR FU with 

the logic cells of the ADD FU. The removal of a pipeline registerR1 produces a new 

boolean expression that may be implementable using one level of logic cells (LUTs). 

In most cases, a primitive FU does not consume the whole capacity of its LUTs. 

To determine if the removal of a pipeline register will increase the number of logic 

Algorithm 4.5: Custom Instruction Pipelining 
Input: Custom instruction subgraph. 
Output: Pipelined Macro Functional Unit. 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  

N       → Rule’s primitive operations 
 
reverse_topological_order ( N) 
foreach node Nl  in N do     
  max = 0 
  foreach user Uk of Node Nl do    
    if  ( heights [ k ] > max ) then 
      max = heights [ k ] 
    end if  
  end for 
  if  ( ( max + Al ) < 1.0 ) then 
    remove_pipeline_register ( Nl  ) 
    heights [ l ] =  A k 
  else 
    heights [ l ] =  max  + Ak  
  end if 
end for 
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levels – in the form of LUTs –, algorithm 4.5 uses the same set of Al parameters used 

in (4) to compute the logic gain metric LGi. Parameter Al quantifies an estimation of 

the percentage of the implementation capacity of the LUT taken by the primitive 

instruction l. Similarly, if two primitive instructions l and l΄ are fused on the same 

LUT, the summation of the corresponding area estimation parameters Al and Al΄ 

provides a good estimation of the consumption of the LUT implementation capacity 

by both instructions. 

In general, if the summation of area estimation parameters Al in a DFG sub-path, 

is less than or equal to 1.0, we estimate that the corresponding primitive instructions 

can be fused and implemented on a single LUT, or equivalently, they require the 

same levels of logic as one primitive instruction. As a result, intermediate registers in 

the sub-path can be removed without affecting the timing characteristics of the 

circuit.  

The value of the parameter Al for each primitive instruction is derived by 

systematically applying an experimental method on a set of micro-benchmarks. The 

following subsection describes in details the experimental method we introduce. 

The pipelining algorithm (Algorithm 4.5) is characterized by linear (O(N)) 

computational complexity for a single MFU type, with respect to the number of 

primitive FUs (N) in the MFU. For each FU node in the DFG, the algorithm examines 

one or more output edges (user node Uk in Algorithm 4.5). Since the maximum 

number of FU operands is 3 (for the select FU), the average number of output edges 

per node in the MFU graph is a constant, independent of N. Therefore, the total 

number of edges in the MFU is O(N) and the computational complexity of the 

algorithm is O(N) as well. 

Algorithm 4.5 is essentially a heuristic that could potentially lead to timing errors 

if applied alone. However, the Xilinx toolchain, responsible for Synthesis, Placement 

and Routing, guarantees timing correctness by appropriately manipulating frequency. 

In Section 5 we present the experimental timing evaluation (Table 4.3) on a set of 

microbenchmarks (Figure 4.16) using both full and selective pipelining. Moreover, 

we present (Table 5.6) the frequency attained by the Xilinx toolchain on a set of 

kernels optimized using our approach. Both sets of experimental results prove that 

Algorithm 3 works efficiently. 
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4.4.3.3.1 Experimental Area Estimation.  

The experimental method incrementally builds sets of micro-benchmarks, 

computes an initial estimate of the parameter Al, and refines the initial estimations at a 

subsequent step. Algorithm 4.6 describes the steps of the experimental method. 

Algorithm 4.6: Al parameters estimation. 

Input: Set of micro benchmarks. 
Output: Al parameters estimated values. 

1:  
2:  
3:  
4:  
5:  
6:  
7:  
8:  
9:  

10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
27:  
28:  
29:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
39:  
40:  
41:  
42:  

N     → Primitive Operations Population.  
Âl     → The value of parameter Al  plus an error δl  
FUl    → Primitive FU performs only operation s of type l    
MFU   → Macro FU composed of one or more primitive FUs 
 
// Step 1: Initial estimate of parameter A l  
foreach primitive operation Nl  in N do      
   Count  = 0 
   MFU    = FU l  
   L l       = getAreaLUTs ( MFU ) 
   L_mfu  = L l  
   while ( L_mfu ≤  L l  ) do    
     MFU   = addNewFU( MFU, FU l  ) 
     L_mfu  = getAreaLUTs ( MFU ) 
     Count  += 1  
   end while 
   Âl  = 1 / Count 
end for 
 
 Order primitive operations in N from min to max Â l  
// Step 2: Refine initial estimate of parameter A l  
foreach primitive operation Nl  in N do    
  MFU  = FU l   
  L l      = getAreaLUTs ( MFU ) 
  foreach operation Nk in N where k  less than  l  do   
     if  Ak  < Âl     then  
        Count   = 0 
        MFU    = addNewFU( MFU, FU k ) 
        L_mfu   = getAreaLUTs ( MFU ) 
        while ( L_mfu ≤  L l  ) do    
          MFU   = addNewFU( MFU, FU l  ) 
          L_mfu  = getAreaLUTs ( MFU ) 
          Count  += 1  
        end while 
        if   ( Count × Ak  + Âl  ) > 1   then 

          δl = Count × Ak  + Âl  – 1  
          Âl  = Âl  – δl  
        end if 
     end if 
   end for 
   Al   = Âl  
end for 
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The initial estimate of Al is computed by determining how many primitive FUs of 

the same type l can be packed in one level of logic of the same LUTs. The procedure 

getAreaLUTs performs synthesis, placement and routing on the given FU (or MFU) 

and returns the number of consumed LUTs (the combinational logic cells). The 

procedure addNewFU adds the given FUl to the subgraph of the given MFU. The 

process of adding more FUs of the same type continues, until the resulting subgraph 

requires more LUTs for its implementation than the single, primitive LUT.  

The initial estimate is a rough approximation that represents an upper bound for 

Al. For example, for an addition operation, two adders can be packed in the same 

number of LUTs required for the implementation of one adder of the same bitwidth. 

If a third adder is added, it will occupy a different set of LUTs. Therefore, the initial 

estimate of Aadd takes the value 0.5. If packing a third adder on the same set of LUTs 

succeeded, the estimate would be 0.33. Therefore, the real, accurate value of Aadd has 

range [0.5, 0.33). 

Given the computed initial estimates of parameters Al, the algorithm performs a 

refinement step which attempts to reduce the range of error in the initial estimate. The 

second step refines the parameter Al for primitive operation of type l by computing 

how many primitive operations of type k, with Ak < Al, can be packed in the same 

LUTs already occupied by operation l. If the summation of parameters Ak and Al of all 

successfully packed operations is larger than one, we conclude that the value of 

parameter Al is over-estimated and needs to be reduced to approximate the real value.  

The reason why we reduce the value of Al not Ak is because the error in the value 

of Ak is smaller than that in Al. Note that the algorithm refines operations with smaller 

Al before others with larger Al. This means the error in Ak has been already refined to 

approximate its real value before using it to refine a larger Al. For example, from the 

parameter Aadd value range the error is up to 0.17. On the other hand, for Bitwise logic 

operations the value range of parameter Alogic is [0.2, 0.17), and hence the error span 

Table 4.1: Experimentally derived values of the Al parameter for primitive 
operations for Xilinx Virtex-6 and Virtex-4 FPGA families. 

 And, Or, Xor, Not Select Add, Sub, Cmp 
Mul, Div, Shift,  
FP operations 

Virtex 6 0.2 0.4 0.5 1.0 
Virtex 4 0.33 0.67 0.67 1.0 
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for Alogic equals 0.03 which is much smaller than that of Aadd. 

Table 4.1 shows the values of parameter Al on two Xilinx FPGA architectures; 

Virtex-6 based on 6-input LUTs architecture, and Virtex-4 based on 4-input LUTs 

architecture. Figure 4.16 depicts a subset of the micro-benchmarks generated and 

tested using algorithm 4.6 (all FUs are 16-bit wide). Figure 4.16a corresponds to the 

reference fully pipelined configurations. Pipelined configurations according to 

algorithm 4.5 for Virtex-6 and Virtex-4 appear in Figure 4.16b and Figure 4.16c 

respectively. 

Table 4.2 summarizes the consumed LUTs for each micro-benchmark (Figure 

4.16a) when all pipeline registers are removed. The Output FU column in Table II 

refers to the area of the output FU (the one directly producing the output data) in the 

micro-benchmark subgraph: in the examples of Figure 4.16 this is the Adder FU for 

micro-benchmarks 1 & 2, and the Select FU for the rest.  

The PR-Free Configuration column reports the LUTs required for the 

implementation of the full set of FUs in the micro-benchmark, whereas ΣAl is the 

sum of the Al area estimation parameters of all FUs participating in the benchmark. 

The results in the table are a testament of the accuracy of our area estimation 

approach, even after one step of refinement. A quick summation of the Al parameters 

is an excellent predictor of the area that will be required for the implementation of the 

compound instruction. Whenever ΣA l exceeds 1.0, an additional set of LUTs will be 

required to implement the set of FUs. For example, micro-benchmark #1 has a ΣAl of 

Table 4.2: Examples of the area (number of LUTs) consumed by a set of micro-
benchmarks.  All primitive operations are 16-bits wide. We use the notation 
introduced in section 4.4.2 to describe the micro-benchamrks. PR refers to Pipeline 
Register. 

Virtex-6 Virtex-4 

# Micro-Benchmarks Output 
FU (one 
instance) 

PR-Free 
Configuration ΣAl 

Output FU 
(one 

instance) 

PR-Free 
Configuration ΣAl 

1 Add ( Add (0,  1), 2) 16 16 1.0 16 30 1.34 

2 
Add ( Add (Add (0,  

1),  2), 3) 
16 32 1.5 16 46 2.01 

3 
Sel ( 0, Sel (1, 2, 3) , 

4) 
16 16 0.8 16 32 1.34 

4 
Sel ( 0, Sel (1, 2, 3) , 

XOR(4, 5) ) 
16 16 1.0 16 32 1.67 

5 Sel ( 0, 1 , XOR(2, 3) ) 16 16 0.6 16 16 1.0 
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1.0 for Virtex-6, hence our estimator predicts that it will fit in the same set of LUTs 

as a single Add operation. 

The prediction is confirmed by the experiment. Moreover, if we implement the 

compound statement as a macro FU, we do not need to insert a pipeline register 

between the adders. However, for Virtex-4 ΣAl equals 1.34, meaning the adders 

cannot be fused to a single level of LUTs (as again confirmed by the experiment). 

Therefore, if we decide to implement the compound statement as a macro FU, we will 

have to insert a pipeline register between the adders. In micro-benchmark #2 for 

Virtex-6, the third adder increases the summation of parameters Al to 1.5 and hence 

we have to insert a pipeline register after the second adder. 

 The same can be seen in the other benchmarks. In micro-benchmark #4, the 

summation on the Select-Select path equals 1.34 for Virtex-4, so we do add a pipeline 

register. However, on the Select-Xor path the summation equals 1.0, so no pipeline 

register is not inserted. Observe also the case of benchmark #2 for Virtex-4: The ΣΑl 

marker has a value above 2.0. This indicates that even a second set of LUTs will not 

be enough, and a third set will be needed. The prediction is, once again, confirmed by 

the experimental results. 

In Table 4.3 we compare the critical path delay of the reference fully pipelined 

micro-benchmarks (Figure 4.15a), with selectively pipelined configurations generated 

using Algorithm 4.5. In general, pipelined configurations according to our approach 

   
(a) (b) (c) 

Figure 4.16: Experimental method micro-benchmarks. PR refers to Pipeline 
Register. (a) Fully pipelined configurations. (b) Configurations pipelined 
according to Algorithm 4.5 for Virtex-6 FPGA. (c) Configurations pipelined 
according to Algorithm 4.5 for Virtex-4 FPGA. 
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have a slightly longer critical path with very little effect on the clock frequency in the 

context of a large datapath. The critical path delay is composed of logic and route 

delay between the registers of inputs and outputs ports. Our analysis of the critical 

path delay, showed that the logic delay is the same, and the slight overhead comes 

from route delay. This can be expected, since when fusing two operations, more 

inputs are brought to the same LUTs, which may increase slightly the route delay of 

the farthest input source. Once again, the results of Table 4.3 are indicators of the 

accuracy of the automated, experimental area estimation approach we use as input to 

the selective pipeline registers insertion algorithm. 

4.4.3.4 Scheduling and Implementation 

Once a set of rules is selected for MFU implementation, each instance of a rule is 

converted to a macro instruction of the specific type. Each macro instruction type will 

be bounded to its own macro FU (MFU latency is computed after applying the 

pipelining algorithm described in Section 4.4.3.3. 

After macro-instruction formation, the resulting DFG is scheduled using modulo 

scheduling. A macro instruction is scheduled only when all input data are available, 

so that the functionality and internal organization of MFUs does not need to be 

known to the scheduling algorithm. For example in Figure 4.10, when scheduling the 

macro instruction represented by rule B, all three input operands should be available. 

We use Swing Modulo Scheduling (SMS) to generate a schedule of the DFG nodes, as 

will be detailed in Section 4.5.  

Table 4.3: Examples of some micro-benchmarks critical path (ns) for two cases: 
Fully pipelined configuration Figure 4.16a, and a configuration selectively 
pipelined using algorithm 4.5 (Figure 4.16b and Figure 4.16c for Virtex 6 and 
Virtex-4 respectively). All primitive FUs are 16-bits wide. 

Virtex-6 Virtex-4 
# Micro-Benchmarks Full-

Pipelining 
Selective 

Pipelining 
Full-

Pipelining 
Selective 

Pipelining 
1 Add ( Add (0, 1), 2) 2.324 2.720 2.771 2.771 
2 Add ( Add (Add (0, 1), 2), 3) 2.460 2.770 2.766 2.766 
3 Sel ( 0, Sel (1, 2, 3) , 4) 1.479 1.580 1.596 1.596 

4 
Sel ( 0, Sel (1, 2, 3) , XOR(4, 

5) ) 
1.570 1.740 1.669 1.709 

5 Sel ( 0, 1 , XOR(2, 3) ) 1.523 1.562 1.650 1.661 
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4.5 Scheduling 

Our infrastructure applies two types of scheduling algorithms: a modulo 

scheduling algorithm called Swing Modulo Scheduling (SMS) [87] which is applied 

on datapath and AGU kernels (input streams kernel and computational kernel), and 

As Soon As Possible (ASAP) scheduling [89] applied on basic blocks assigned to the 

CE modules. 

Scheduling techniques are machine dependent algorithms. Scheduling instructions 

on the datapath or AGU requires first allocating a number of functional units (FUs) 

before scheduling applied. The amounts and types of functional units in each AGU 

and datapath are passed as an XML-based file representation specified by the user. 

4.5.1 Modulo Scheduling 

4.5.1.1 Overview 

Modulo scheduling is a software pipelining technique typically applied for 

pipelining loop iterations. Software pipelining on loops overlaps the execution of 

successive iterations to increase throughput and to reduce the total execution time. A 

modulo scheduler produces a schedule for one iteration of the loop (after several 

unrolls if required), such that when this same schedule is repeatedly applied at regular 

intervals, no intra- or inter-iteration dependence is violated, and no resource usage 

conflicts arise between operations of either the same or distinct iterations. This 

constant interval between successive iterations is called the initiation interval (II). 

A modulo schedule of a single iteration is divided into stages with stages’ count 

recorded as SC [88]; each stage has a duration equal to the initiation interval. 

Successive iterations of the loop are initiated after each stage finishes or after II time 

slots. Figure 4.17 shows a modulo-schedule of a loop with 10 iterations and an II 

equal to 3. A schedule of a single iteration spans 4 stages. The full loop execution 

flow consists of three phases: prologue execution, kernel execution, and epilogue 

execution. The prologue represents a transient phase from the beginning of loop 

execution until all hardware resources become active. The kernel phase represents a 

steady state in the loop execution flow, which in Figure 4.17a, takes place when the 

fourth iteration is initiated. In steady state all resources are fully utilized by 
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instructions of different loop iterations. The number in the brackets indicates the loop 

iteration the instruction belongs to. The kernel pattern will repeat (Figure 4.17b) until 

no more loop iterations are launched. Then the epilogue phase begins, which 

gradually drains the pipeline. 

The following steps summarize a generic algorithm to generate a modulo 

schedule. The next section describes SMS, the specific modulo scheduler used for 

SOpenCL.  

1. Calculate a minimum II bound called MII. The minimum initiation interval (MII) 

is a lower-bound on the number of cycles required by any feasible schedule of the 

loop body. 

2. Put the instructions population of a loop iteration in an ordered list. 

3. Perform scheduling by picking instructions from the ordered list sequentially. 

Insert instructions in a free time slot in the partial schedule. If the partial schedule 

fails to accommodate more instructions, increment II and restart scheduling. 

The computation of MII is not always adequate for correctness of the schedule, but 

to avoid trying II that is too small to succeed, thereby speeding-up the modulo 

scheduling process [87, 88]. MII is computed as the maximum of two parameters; 
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Figure 4.17: Modulo Scheduling. (a) Loop Schedule Sample. (b) Loop Execution 
time Flow. 
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Resources bound MII (ResMII), and Recurrence bound MII (RecMII). 

ResMII is a measure of how many cycles are required to map all the instructions in 

a single loop iteration on the available resources (functional units) without any 

resource conflicts (regardless of dependences).  

ResMII for FU type f is computed as the division of the total bitwidth allocated for 

FU type f, allocatedBitwidth(f) (e.g. 256-bits ALU), and the total bitwidth of 

instructions in the kernel supported by the FU type f (e.g. add, sub operations on 

ALU). ResMII is determined as the worst case constraint across all FU types. 

)()()(Re fwidthuctionsBitTotalInstrfitwidthAllocatedBfsMII =  

RecMII is derived from the latency calculations around elementary circuits in the 

dependence graph for the loop body. Assume that the sum of latencies along some 

elementary circuit c in the graph is Latency(c) and that the sum of the distances along 

that circuit is Distance(c). RecMII for circuit c is computed as the division: 

)(tan)()(Re cceDiscLatencyccMII =  

The RecMII is determined by considering the worst case constraint across all circuits.  

4.5.1.2 Swing Modulo Scheduling 

Swing modulo-scheduling algorithm [87] is a modulo scheduling technique 

designed to minimizing registers requirements and critical path delay. The algorithm 

starts by building a DFG to represent all data dependences in the loop. Then, the DFG 

nodes are ordered in a list. The scheduler then run on the ordered list and tries to 

allocate the necessary time slots for each instruction. 

Swing modulo scheduling differentiates from other modulo scheduling algorithm 

in its DFG nodes ordering algorithm. It starts by ordering recurrence circuits nodes 

giving the circuit with highest RecMII the highest priority. Then, it goes forth and 

back on the DFG (swinging) ordering predecessors of partially ordered nodes then 

successors, then predecessors and so.  The later pattern of ordering is what minimizes 

variables lifetimes since nodes ordered for schedule near their predecessors and 

successors. 
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4.5.1.3 Hardware Support 

SOpenCL does not generate separate code segments for the prologue and epilogue 

portions of the modulo schedule but instead uses the concept of valid bits.  

As described in section 4.2, each data token exchanged between functional units, 

or streamed in or out of the datapath is accompanied by a valid bit. That bit shows 

whether the value carried by the data token is valid or not. The operation carried out 

by a FU will only be valid, if all input data to the FU are valid. Since at the beginning 

of a loop execution, all data tokens are reset to invalid, only data sourced by the input 

streaming unit are valid. In each cycle, these data tokens spread to the rest of the 

datapath-in a movement reminiscent to a wave-thus gradually enabling execution on 

the FUs. This gradual triggering of the FUs implements the prologue schedule.  

Figure 4.18 depicts the flow of valid bits over the whole loop execution duration 

for the kernel of Table 4.4. Phi instructions always become valid (green) at the first 

loop iteration, while the rest of the instructions become valid once all their input 

operands are valid. After 10 cycles all instructions become valid, i.e. the schedule 

Table 4.4: Modulo Scheduled kernel example 

Kernel 
t = 0 i2[3], i23[3],  i8[2], i21[2], i12[1], i15[0] 
t = 1 i0[3], i18[3], i9[2] 
t = 2 i4[3], i6[3], i7[3], i19[3], i14[1] 

  

i2

i23

i8

i21

i12

i0

i18

i9

i4

i6

i7

i19

i14

i15

0  1   2   3  4   5   6   7   8  9 ...

Prologue Kernel Epilogue

Header predicate 

turns FALSETime slot

 

Figure 4.18: Valid-bit flow over the loop execution duration for the kernel of 
Table 4.4. Green for true valid-bits and red for false valid-bits. 
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execution reaches the steady state.  

Loop termination occurs once the header predicate (predicate of the loop header 

block) became false. The header predicate is always a phi instruction (i23 in Table 

4.4) with its back-edge value is the negation of the termination condition (i21 in the 

Table 4.4). In Figure 4.18, when the header predicate i23 becomes false it invalidates 

the output of the other phi instructions (i2, and i0). The false valid bit of the phi 

instructions propagates for few cycles (10 cycles) until all instructions output is 

invalid, then the loop terminates. 

4.6 Cache Instantiation 

The target of the cache in the PE architecture is to exploit temporal and spatial 

locality in the access pattern of each input stream of the inner loop. A cache will be 

instantiated only if at least one input stream is deemed to be able to benefit from the 

use of a cache. The decision is taken independently for each input data stream, 

however all input data streams eventually use the same physical cache resources. 

An input data stream is a candidate to use the cache, only if it has a predictable, 

regular memory access pattern, and accesses off-chip memory. Local arrays mapped 

on on-chip memories are excluded because of their very low latency compared to off-

chip memories and similar to the cache latency. An input data stream with an 

irregular or dynamic access pattern is not expected to benefit significantly from a 

cache, since cache size is essentially just a few kilobytes due to resource limitations.  

4.6.1 Memory Addresses Profiling 

SOpenCL backend uses profiling of memory read accesses to determine cache 

requirements. The profiler computes all addresses generated for each read operation 

in the inner loop code over all the iterations of the nested loop. Then the addresses are 

placed in blocks of continuous addresses. In a block of continuous addresses, the 

distance between two addresses does not exceed the width of the system data bus 

width (in bytes), otherwise a block of cached data will have gaps of data lines never 

used. Since allocated cache has limited size (few kilobytes) and we only allocate 
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cache for regular data streams, hence, the gaps between useful data lines in the access 

pattern will appear regularly, such gaps are expensive and are avoided. 

Figure 4.19b shows the set of generated addresses blocks for the C code sample of 

Figure 4.19a. In the given example a continuous addresses block represents all 

continuous addresses generated for single outer loop iteration.  The profiler produces 

output only for data streams with regular access pattern. A data stream considered 

regular if all the generated blocks of addresses have the same size, and have an 

identical addresses distances. Generated addresses blocks annotated with the outer 

loop index. This annotation is used later to compute the cache reuse distance while 

determining the cache configuration. 

4.6.2 Cache Configuration Computation 

To determine whether a cache should be instantiated or not, the hardware should 

check whether a data stream is a candidate for being stored in the cache. This happens 

if it is a read-only stream and has a regular access pattern which can be determined 

from the profiler output. In more detail: 

• Compute stream cache configuration: for each candidate data stream estimate the 

degree of data reuse, reuse distance, and the cache size required to effectively 

host reused data. 

• Select a subset of the candidate streams for being supported by the cache.  

For each candidate stream the tool computes two parameters: reuse ratio and 

cache configurationReuse Ratio (reuse): For a data stream, the reuse parameter 

measures how many repetitive addresses generated over the loop trip as in (1). The 

 

Figure 4.19: Example of data reuse across outer loop iterations. (a) C code sample with 
row wise access pattern. (b) Memory accesses profiler output, set of continuous 
addresses blocks. 
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reuse parameter value is in the range [0, 1]. 

ssesTotalAddre

essesUniqueAddrssesTotalAddre
reusei #

#    # −
=

                                        (1) 

Cache Configuration (Size): Each data stream has its own preserved space in the 

cache unit that cannot be used by other data streams. The tool flow decides the space 

size and configuration for each data stream to host the amount of data reuse computed 

earlier. A cache configuration consists of two parameters: Data Block Size (DBSize) 

and Data Blocks Count (DBCount). The cache space size allocated for the stream is 

the multiplication of both values as shown in (2). 

iii DBCountDBSizeSize *=                                                 (2) 

A data block size (DBSizei) is computed from the size of a continuous addresses 

block generated by the profiler. The size computed as the distance between the 

minimum and maximum addresses. Then the distance is rounded to the nearer upper 

power of 2. In Figure 4.19b, the data block size computed initially equal to 40 bytes 

rounded up to 64 bytes. The DBSizei size is rounded to a power of 2 value because the 

addressing scheme of cache data blocks dictates that. A cache data block is assigned 

an address space that spans a power of 2 bytes. For example a 256-byte data block is 

assigned a base address 0x******00 . The specific address space simplifies the 

process of detecting valid/invalid data in the cache. 

The count of data blocks is equal to the cache reuse distance. Conventionally, 

cache reuse distance [96] is the number of distinctive data elements accessed between 

two consecutive uses of the same element. In our design flow, we apply a slightly 

different definition: the cache reuse distance is the number data blocks written to the 

cache before a data reuse occurs. In Figure 4.19b, after 2 outer loop iterations a data 

reuse occurs and 4 blocks are loaded to the cache, hence, DBCounti equals 4.  

The reason behind choosing DBCounti to be equal to the cache reuse distance is 

the regular access pattern of a candidate data stream. Because a candidate data stream 

has a regular access pattern, data reuse occurs at regular distances. Hence, once we 

reach the iteration where data reuse starts, data blocks loaded earlier will be reused 

regularly. So we need to keep all loaded data blocks until a data reuse starts, because 

after that we can replace old blocks with new ones. 
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The regular access pattern of a candidate data stream also drives the replacement 

policy of the cache data block. Initially, the cache blocks are empty; the cache fills an 

empty block for each read request that has no data in the cache. When the cache is 

full, the oldest block in the cache with no pending read requests is evicted and the 

block is allocated for the new read request. If all blocks have pending read requests, 

the first block finish serving its current pending requests is allocated for the new read 

request.  

Given the computed parameters reuse and size for each data stream, we solve the 

problem of maximizing the amount of data reuse within an upper bound constraint on 

the cache size as in (3). We use exact enumeration techniques to solve the problem in 

(3). An enumeration of all possible combinations is performed and the combination 

with maximum total reuse is selected. 









≤∑∑

∈
SizeCacheSizeSoreuse

i
i

i
i

SINi
_     ,  max

                               (3) 

4.7 Local Buffers Synchronization 

A key feature of the proposed architectural template of chapter 3, are the 

asynchronous interconnect channels between a producer and a consumer, namely 

scalar data FIFO channels and local streams buffers (see section 3.2.2). In the case of 

scalar data FIFO channel, the dependencies appear as instruction operands, hence the 

datapath (or AGU) and CE modules allocate the proper data FIFOs (as discussed in 

chapter 3, section 3.3.1). However, the generation of local streams buffers requires 

dependency information extraction through memory access pattern analysis, in order 

to build a dependency graph and guide the generation of synchronization signals. 

Figure 4.20 depicts the dependency graphs generated for each local data stream in 

the LUD kernel (Figure 3.2). SOpenCL generates dependency graphs for each local 

stream by analyzing memory dependencies between individual load/store operations 

in each PE and CE module. 

A dependency graph consists of nodes, where a node is a PE or a CE module. 

Each node is labeled by its memory access type for the specific data stream: Write 

(W), Read (R), or Read/Write (R/W). A dependency can occur between two nodes as 
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long as at least one of the nodes performs a write operation. The dependency is 

represented by a directed edge labeled by the dependency distance. The latter is the 

cross-iteration interval at which the dependency occurs. For example, in Error! 

Reference source not found.a, the dependency PE(L0_3) → CE1 with distance 0, 

means that CE1 cannot start read operation until PE(L0_3) finishes its write operation. 

On the other hand, the dependency PE(L0_3) ← CE1 with distance 1, means that 

PE(L0_3) waits for CE1 to finish its read operation before starting a write operation for 

the next iteration. An edge with distance 0 is called a forward edge, whereas an edge 

with distance greater than 0 is called a backward edge. 

After building the dependency graph for a data stream, the tool performs a 

redundant dependency elimination optimization in order to reduce the number of 

synchronization channels corresponding to dependency edges. Error! Reference 

source not found. depicts the pseudo-code of this optimization. The algorithm first 

generates an ordering of the graph nodes such that a node comes after all its 

 
Figure 4.20: Memory Dependency Graphs for LUD OpenCL architecture in 
Figure 3.2. W: refers to Write memory, R: refers to Read memory. (a) Dia 
local stream dependency graph. (b) Non-optimized peri_row local stream 
dependency graph. (c) Non-optimized peri_col local stream dependency 
graph. (d) Optimized peri_col local stream dependency graph. (e) Optimized 
peri_row local stream dependency graph. 
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predecessors. Then, for each node Ni the algorithm performs elimination of forward 

and backward predecessors (incoming edges) separately. A forward edge from 

predecessor Pi is eliminated if there is a path PPi between Pi and any of the node 

predecessors (excluding Pi) fullfils the following constraint: 

Distance (PPi)  ≤   Distance (Pi→ Ni) 

Where Distance() returns the summation of distance label on all edges of the given 

path. The distance constraint on the path PPi ensures that the dependency implied by 

the path PPi occurs before or at the same iteration as the eliminated dependency edge 

Algorithm 4.7: Redundant Dependency Elimination. 

Input: Memory dependency flow graph. 
Output: Optimized memory dependency graph. 

1:  
2:  
3:  
4:  
5:  
6:  
7:  
8:  
9:  

10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
18:  
19:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
27:  
28:  
29:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  

G  → Dependency flow graph. 
//  
eliminate_redundant_edge( G ){ 
   G’  = predecessor_first_order ( G ); 
   foreach  node Ni  in G’  do 
      eliminate_forward_edges ( Ni , G’ ); 
      eliminate_backward_edges ( Ni , G’ ); 
   end for 
} 
//   
eliminate_forward_edges( Ni, G’){ 
    
   foreach  predecessor( Ni ) Pi  do 
      if ( distance ( Ni , Pi  ) == 0 ) then  
         foreach  predecessor( Ni ) Pi ’ != P i  do 
           if ( has_path ( Pi  ,P i ’ ) ) then  
              delete  Pi  
              break ; 
           end if 
         end for 
      end if 
    end for 
} 
//   
eliminate_backward_edges( Ni, G’){  
   foreach  successor( Ni ) Si  do  
      if ( distance ( Ni , Si  ) > 0 ) then  
         foreach  successor( Ni ) S’ i  do  
           if ( has_path ( S’ i  , S i ) ) then  
              delete  Si  
              break ; 
           end if 
         end for 
      end if 
    end for 
} 
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Pi→ Ni. 

A backward edge to successor Si is eliminated if there is a path between any of the 

node’s successors and Si such that, the maximum distance on such a path should be 

less than or equal to the edge Pi← Ni. Error! Reference source not found.d and 

Figure 4.19e shows the result of applying Error! Reference source not found. on 

dependency graphs of Figure 4.19c and Figure 4.19b respectively. 

The equivalence of the new dependency graph to the old one can be verified as 

follows: for each eliminated direct dependency edge Pi→ Ni, there is at least one path 

in the dependency graph from node Pi to node Ni, that fullfils the distance constraint. 

For example, in Figure 4.20c, the edge PE(L0_3) → CE1 is eliminated. In the 

optimized graph of Figure 4.20d, the path “PE(L0_3)  → PE(L1_0) → CE1” is 

equivalent to the eliminated one and both has distance equal to 0 which fulfils the 

distance constraint. 

Dependency graph optimization simplifies the local buffers synchronization.. Each 

dependency edge is served by a 1-bit finish signal (refer to Figure 3.3) and a FIFO 1-

bit wide.  Redundant dependency edges elimination leads to eliminating 

corresponding finish signal and its FIFO. While the FIFOs cost is small, eliminating 

finish signals affects significantly the routing complexity and control signals 

computation at each node. For example, the dependency graph of Figure 4.20c 

produces a network of 10 synchronization finish signals spreading all over the 

accelerator, while the optimized graph in Figure 4.20d has only 4 finish signals flow 

in a pipeline pattern.  

Once we have the optimized dependency graph for each local data stream, the 

backend allocates as many Block RAMs required for each local array. For example, 

in the LUD kernel (Figure 2.14) each of the local arrays, peri_col, peri_row, and dia 

has size equal to 256 floating point elements, hence 1 KB of memory space is 

required for each local array. To support doubling buffering we allocate a 2 KB local 

buffer for each local array. The backend then uses the optimized dependency graph 

for each local array to generate synchronization logic. A finish signal and a FIFO is 

generated (as in Figure 3.3) for each dependency edge. Then the hardware generator 
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builds the local buffer Read/Write ports arbitration considering double buffering and 

computed dependencies. 

4.8 Related Work 

Research in architectural synthesis traditionally applied a series of optimizations to 

achieve efficient hardware designs. Prior research that avoided arbitrary bitwidth 

datatypes extensions employed a sort of bitwidth analysis to compute the minimum 

bitwidth to represent a variable [70, 71, 72, 73, 74].  

The majority of previous work applied a series of loop transformations. PICO-

NPA [13] performs loop tiling. The compiler selects the best tile shape and size to 

reuse already loaded data. Additionally, the tile size should match the possible 

available registers and local memories resources.   

SPARK compilation framework [25] applies a variety of transformations 

including code motion using percolation scheduling, ,, and speculative code motion. 

Transformations like dynamic renaming while reordering operations and dynamic 

common subexpression elimination (CSE) also have been applied to reduce the size 

of required resources. 

Traditional compiler optimizations have been used with all works compilation 

frameworks. Optimizations include dead code elimination, common sub expression 

elimination, constant propagation, array value propagation, and function inlining. 

Extracting regular computation patterns has been the focus of prior research in 

behavioral datapath synthesis [65, 66, 76, 77, 78]. Regularity extraction also has also 

been used for custom instruction generation [61, 62, 64, 63, 79]. The proposed 

approaches can be categorized based on how they resolve candidate subgraph 

generation and candidate subgraph selection.   

Candidate subgraph generation. Early work used variations of enumerations 

techniques augmented with a set of constraints or a guide function to prune the search 

space.  

Atasu [62] exhaustively enumerated all possible subgraphs in the DFG using a 

binary tree representation. To prune the search space, Atasu used convexity and upper 
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limit of inputs/outputs as constraints to generate a candidate subgraph. Atasu 

considered single and multiple outputs subgraphs as candidates, weakly connected 

subgraphs also considered as a class of multiple outputs subgraphs. Goodwin [80] 

adapted the work of Atasu to generated fused operations for application specific 

processors. Goodwin added the subgraph latency constraint in addition to the number 

of inputs/output operands constraints used by Atasu. A less expensive enumeration 

technique was proposed in the work by Bonzini [79]. The proposed algorithm uses 

the same set of inputs/outputs and convexity constraints used in previous works, and 

achieves a polynomial time complexity with respect to the input/output port number. 

Yu [63] proposed a more efficient enumeration approach that produces all possible 

subgraphs using a two phase process. In the first phase, it enumerates all upward and 

downward cones in the DFG, and in the second phase a union operation is applied on 

the generated set of upward and downward cones to produce more complex 

subgraphs. Yu also used the convexity and inputs/outputs number constraints to 

eliminate illegal subgraphs. The approach of Yu can run faster than that of Atasu 

because it eliminates illegal subgraphs, early in the first step. Both enumeration 

techniques have a worst case exponential time complexity.  

Cong [81] used the method of cones enumeration. Instead of considering upward 

and downward cones, Cong restricted the enumeration process to upward cones only, 

hence supporting single output subgraphs. Cong used the number of input operands 

and execution time as constraints on feasible upward cones. Our algorithm also 

considers upwards cones only, similarly to Cong et al., however without constraining 

the number of input operands, thus allowing us to generate the maximal patterns. 

Cong considers any cut of a feasible cone to be a feasible candidate subgraph. In our 

approach, a cut T of a candidate upward cone Ci (i.e. a grammar rule Ci) is a feasible 

candidate subgraph (i.e. translated into new rule) in two cases: if the cut T pattern 

appears in other candidate cones (i.e. in other grammar rules productions), or if the 

cut T pattern appears more than once within the same candidate cone subgraph. For 

example, candidate Rule B → AA, includes two instances of rule A. Otherwise, for 

our purposes of multiplexers size reduction, implementing a candidate upward cone is 

more efficient than just implementing a cut of its subgraph. Hence we dismiss 

generating such patterns in our grammar structure. 
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Work by Clark [64] examines each node in the DFG and uses it as a seed for a 

candidate subgraph. This seed is grown downwards along dataflow edges to create 

new candidates. A guide function is used to determine which nodes are the best 

directions to grow, and when to stop growing a subgraph. The guide function assigns 

a priority to each edge in the DFG based on its criticality, latency, and area.  

Another set of early work used pattern recognition techniques to extract 

computations regularities in a DFG. Rao et el. [65] used string pattern recognition 

techniques on a DFG to extract regular computation patterns. First, he converts the 

DFG into a string of characters (operations), and then a string matching algorithm is 

used to find regular patterns of characters. User-defined patterns library also used in 

work [76] to improve quality of logical synthesis at the behavioral level. Other 

interesting work used predefined patterns library include scheduling and binding 

algorithms based on patterns matching [77, 78]. 

Cong [66] proposed a pattern-recognition based approach for FPGA resources 

reduction. According to Cong et al., a pattern type includes instances not completely 

identical. In our grammar approach, instances of a pattern (represented by a grammar 

rule) are completely identical. Cong et al. approach produces MFUs with extra 

multiplexers on intra-FU interconnects. The extra multiplexers cost increases the area 

overhead of MFUs. Moreover, multiplexers on the intra-FU interconnects would 

prevent generating compact, optimized MFU circuits using our pipelining algorithm. 

The pattern recognition approach Cong et al. used is based on exhaustive subgraph 

enumeration. First, each DFG node is considered as a candidate pattern. For each 

node, all possible subgraphs are enumerated by adding one neighboring node 

(predecessor or successor), thus creating subgraphs of size 2. The algorithm then 

traverses the current pattern types set and adds the created subgraph to a matching 

pattern.  If the subgraph does not match any previously created pattern, a new pattern 

is created, as long as it satisfies the convexity constraint.  After processing subgraphs 

of size 2, subgraphs of size 3 are created from subgraphs of size 2 and the previous 

process is repeated. The algorithm continues until patterns cannot be grown any 

further. If the instances of a pattern are less than a pre-defined number, the pattern and 

all its instances are removed from the search space. Cong et al. also remove patterns 

totally encapsulated within a larger pattern (called maximal pattern). 
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Our grammar generation algorithm also grows patterns from each DFG node 

incrementally, however moving only upwards (add predecessors), unlike Cong et al. 

patterns which grow in any direction. In our case, since we start growing patterns 

upward from nodes at the bottom of the DFG, there is no need to grow patterns 

downward. This unidirectional growth reduces the complexity of the search space and 

thus of the algorithm. Contrary to Cong et al. our algorithm considers patterns 

completely contained in other larger patterns and dismisses patterns partially contained 

in other larger patterns. In fact this feature is the basis for hierarchical grammar 

structure. Our experimental study indicated that such patterns characterized by a finer 

computations granularity could often be fitter for implementation than larger, coarser 

patterns. 

Cong et al., pattern recognition algorithm generates a large number of patterns (in 

the order of thousands) covering all possible patterns in the DFG. While their 

approach is complete and more efficient than others, it still produces a large amount 

of unnecessary and redundant patterns and takes minutes to process a DFG with a few 

hundreds of nodes. Our grammar-based algorithm produces just a handful of patterns 

within one second, for DFGs with thousands of nodes. At the same time, it achieves a 

similar reduction in area (~20%) to that achieved by Cong et al. algorithm. 

Several papers used candidate generation algorithms based on iterative 

combination of primitive operations [61, 82, 83, 84]. The basic idea behind iterative 

combination of primitives is to use a profiling approach to find the frequency of a 

combination of two operations in the input program, replace them with new super-

node and repeat the process until a stopping condition is met. Brisk [61] extracts 

regular computation patterns from a DFG by examining each edge in the DFG and 

record the number of occurrences for each edge type. Consequently, the most 

frequently edge types are converted to super-nodes. The process I s repeated 

iteratively until a stopping condition (like graph coverage) is met. Work by Bennett 

[83] considers the combination of two operations that occur in subsequent line of 

code to reduce static code size. This technique is irrespective of the dataflow graph 

and is used mainly for code size reduction. 

Our work utilizes the same concept of replacing a combination of two operations 

(or an edge) with a super node (i.e. rule). The work of Brisk et al. destroys a 
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previously created super node S when a new super node A is created contains the 

super node S. Such behavior prevents building hierarchical models of super nodes 

(i.e. rules). An instance of super node S will be available in the final set of super 

nodes only if not all its instance have been destroyed when the algorithm reaches the 

stopping condition. Our approach preserves all instances of a super node allowing 

creating hierarchical models of supper nodes. Such super nodes may be more fit for 

implementation than their parent super nodes. Removing them during the creation of 

their parent super nodes we lose the opportunity to exploit them leading to sub-

optimal design. 

 Candidate subgraph selection. All previously mentioned papers approached the 

candidate subgraph selection problem in a similar manner: a cost function and a set of 

metrics have been used to weigh the performance gain and the feasibility of a 

candidate subgraph. Previous research that has targeted application specific 

processors and instructions set extension [61, 62, 63, 64], where the concern is 

increasing processors performance, metrics that estimate latency, area, and 

inputs/outputs number have be used. Clark used a greedy selection algorithm based 

on dynamic programming. A ratio of cycles savings and area is computed for each 

candidate subgraph and used as a priority metric for selection. 

Cong [66] used metrics that estimate multiplexers cost reduction and latency to 

reduce FPGA resources. The latency metric gives higher priority to flat subgraphs to 

reduce latency overhead. Our patterns selection algorithm has few similarities with 

that of Cong et al. Both algorithms are greedy and use metrics for area reduction 

estimation. In our case however, latency is not a primary concern at the instruction 

clustering phase. The critical path latency is actually effectively reduced during MFU 

pipelining. However, using the flatness metric of Cong et al. could help reduce the 

variables lifetime overhead 

Work described in [85] uses a speedup analysis to select an optimal set of 

subgraph candidates. Speedup analysis is performed by comparing the approximate 

subgraph execution time in software, as a sequence of instructions, with the 

approximate time the subgraph takes if implemented in hardware, as a single special 

instruction. The most promising candidates are then passed for hardware mapping. 
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The enumeration techniques in previous research have a worst case exponential 

computational complexity. Moreover, the generated set of candidate subgraphs is 

typically very large (thousands of subgraphs) for large DFGs, and most of them are 

redundant or cannot produce optimized designs. Our grammar-driven approach 

performs a very fast search and produces a small number of subgraphs by focusing 

only on repetitive patterns as candidates. Another distinct difference is the clear 

hierarchal relationship among the generated grammar rules. On the other hand, in 

enumeration based approaches, only a portion of subgraph nodes may be members of 

tens other subgraphs. This complex relationship among the subgraphs and their large 

number increases the complexity of candidate subgraph selection algorithm.  

Prior work addressed the problem of multiplexers size reduction in a variety of 

ways. The majority of works are based on resources binding techniques in datapath 

synthesis. Huang et al. [97] developed a weighted bipartite matching approach to 

minimize the multiplexers following a step-by-step method. First, variable-register 

binding is applied, followed by an operation-FU binding step. The register binding 

method tries to minimize the total number of operation types with outputs bonded to 

the same register, and at the same time minimize the total number of input registers 

used by operations with outputs bonded to the same register. The FU binding method 

tries to minimize the number of new input registers required when assigning an 

operation to an FU instance. Chen et al. [98] enhanced Huang methods and updated 

the method of calculating the weighted bipartite graph. Moreover, they applied the 

register-binding algorithm after FU binding.  

Cong et al. [99] apply a similar algorithm to Huang et al. on a distributed register 

file architecture. The proposed architecture model consists of one or more islands of 

registers and functional units. The binding algorithm concentrates on reducing inter-

island interconnects and multiplexers. 

The drawback of previous binding algorithms is that they fail to exploit regular 

patterns and rely solely on iterative algorithms to minimize the multiplexers overhead 

generated during resources binding. 

Our work tackles the problem of multiplexers area overhead earlier in the design 

flow, similarly to Cong et al. [66], by identifying and exploiting regular patterns in 
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the problem DFG. Cong et al. uses a multiplexer area overhead metric that favors 

MFUs with less internal multiplexers and does not consider the overall reduction in 

multiplexers count. Exploiting regular patterns we create islands of primitive FUs (i.e. 

MFUs) with multiplexers-free internal interconnects. Since we only support MFUs 

with no multiplexers on internal interconnects, the rules selection algorithm 

(Algorithm 2) uses a metric (MUXG in equation 3) that favors MFUs which result to 

a higher reduction in the total number of multiplexers in the design. This objective is 

similar to that of binding algorithms. 

Few research papers addressed the problem of MFU implementation. Works in the 

field of custom instruction set generation [64, 86] considered implementations of 

MFU that support different types of macro-instructions. Clark proposed a wildcard 

approach to share resources between different subgraphs. Wildcards are subgraphs 

that have a similar shape, but operations in one node may differ. This approach 

increases routing complexity of the MFU when internal multiplexers introduced to 

support different types of subgraphs. Pothineni [86] proposed a heuristic that accounts 

for internal multiplexers in merged subgraphs. The heuristic merges multi-cycle 

subgraphs, by first decomposing them into single cycle subgraphs that can be merged 

during the binding process. 
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CHAPTER 5 

 

EXPERIMENTAL EVALUATION 

 

In this chapter we present our experimental evaluation and analysis of SOpenCL. 

We examine independently the impact of asynchronous execution model, bitwidth 

optimization, instruction clustering and cache utilization on performance and area.  

5.1 Benchmark Suite 

Table 5.1 outlines the set of benchmarks used in our experimental evaluation. 

Some of the kernels base source is OpenCL and others are from C source origin. The 

kernels are from a variety of fields: multimedia, cryptography, telecommunication 

and linear algebra. Following is a brief description for each kernel highlighting its 

specific characteristics. 

CMC is the Chroma motion interpolation kernel of the AVS video standard. CMC 

performs pixels interpolation on the chrominance pixels in a video frame. CMC uses 

a 2-dimensional sliding window of size 2×2 to compute the interpolation of a single 

pixel. The coefficients of the interpolation filter are derived from the motion vector 

for each Macroblock (16×16 block of pixels) [90]. The Chroma component 

interpolation (Figure 5.1) follows the equation: 

Table 5.1: Applications used for experimental evaluation. 

Application Description Source Data 
CMC AVS Video Decoder Chroma motion interpolation [90] OpenCL Int 
LMC AVS Video Decoder Luma motion interpolation [90] C Int 
DCT H.264 Video Encoder 8x8 Integer DCT [91] OpenCL Int 
SEAL Seal cryptography kernel [8] C Int 

CN Forward Error Correction (FEC) decoder CheckNode Kernel [92] OpenCL Int 
BN Forward Error Correction (FEC) decoder BitNode Kernel [92] OpenCL Int 

LUD LU Decomposition-Perimeter [23].  OpenCL FP 
Deblocking AVS Video Decoder Deblocking Filter [93]. C Int 
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The CMC kernel consumes 10 pixels per loop iteration and produces 4 pixels per 

iteration. 

LMC is the Luminance motion interpolation kernel of the AVS video standard.  

LMC performs pixel interpolation on luminance pixels in a video frame. Like CMC, 

LMC kernel uses sliding window for interpolation, but the size of the sliding window 

is variable (1×4, 1×5, 4×1, 5×1, 4×4, 4×5, and 5×4) depending on the motion vector 

of each Macroblock. LMC kernel consumes up to 20 pixels per loop iterations and 

produces 1 pixel per iteration. 

Discrete Cosine Transform (DCT) kernel, used in H.264 video encoder among 

others, converts 2D 8x8 pixel blocks in an image frame to frequency coefficients each 

time it is invoked. . The kernel consists of a nested loop which encapsulates two inner 

loops. The first inner loop processes the input pixels block and produces a partially 

transformed 8×8 block stored in a local array. The second inner loop operates on the 

partially transformed block and completes the DCT computations.  

SEAL is a fast, software-oriented encryption algorithm. SEAL is a stream cipher, 

i.e. incoming data to be encrypted are streamed in the algorithm and continuously 

encrypted. SEAL encryption uses a random 160-bit encryption key and has a longer 

initialization phase during which a large set of tables is done using the Secure Hash 

Algorithm. An invocation of the SEAL kernel encrypts a 4KB plaintext message. The 

algorithm is divided in two steps: Tables generation, and a pseudo-random function 

execution. Tables generation is typically performed once for a communication 

 

Figure 5.1: Sub-pixel Chroma interpolation in AVS Motion Compensation. 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 15:25:00 EEST - 3.128.171.154



 112 

session. Given the generated tables and a 32-bit position index n, the pseudo-random 

function stretches n to L-bit pseudo-random string. L can be made arbitrarily large 

ranging from a few bytes to thousand of bytes. In our SEAL kernel, L equals 4 KB. 

In terms of implementation characteristics, the C code includes an inner loop 

which forms a recurrence circuit limiting the initiation interval (II) to 60 in all 

configurations. To make things worse, the memory access pattern in the SEAL kernel 

is runtime dependent, i.e. read addresses computation depends on data loaded from 

the memory. As a result, a unified PE architecture (the datapath performs addresses 

computation) is generated for the SEAL accelerator. 

BN and CN kernels are forward error correction kernels used in the DVB-S2 

standard (Digital Video Broadcasting – Satellite second generation). The standard is 

based on, and improves upon its predecessor DVB-S. It uses a new coding scheme 

based on a modern LDPC code. It also uses VCM (Variable Coding and Modulation) and 

ACM (Adaptive Coding and Modulation) modes, which allow optimizing bandwidth 

utilization by dynamically changing transmission parameters. Both BN and CN kernels 

have a 1-dimensional computations grid. The kernels are computationally intensive. 

For example the CN kernel DFG has 3962 nodes. The kernels require a significant 

memory bandwidth: BN kernel consumes 128 Bytes per loop iteration, and CN kernel 

consumes 96 Bytes per iteration.  

Deblocking Filter is a video filter applied to blocks in decoded video to improve 

visual quality by smoothing the sharp edges between macroblocks. Video frames 

normally partitioned into macroblocks, which further partitioned into smaller blocks 

processed independently, a process leads to distortions at the blocks edges. Each 

block edge is assigned a boundary strength based on whether it is also a macroblock 

boundary, the coding (intra/inter) of the blocks, whether references (in motion 

prediction and reference frame choice) differ, and whether it is a luma or chroma 

edge. Stronger levels of filtering are assigned by this scheme where there is likely to 

be more distortion. The filter can modify as many as three samples on either side of a 

given block edge. In most cases it can modify one or two samples on either side of the 

edge. Deblocking kernel has a RAW memory dependency across outer loops iteration 

of distance equals 1 preventing pipelining and overlapping the execution of 

successive outer loop iterations.  
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LU Decomposition is an algorithm to calculate the solutions of a set of linear 

equations. The LUD kernel decomposes a matrix as the product of a lower triangular 

matrix and an upper triangular matrix. The product sometimes includes a permutation 

matrix as well. LU decomposition is a key step in several fundamental numerical 

algorithms in linear algebra such as solving a system of linear equations, inverting a 

matrix, or computing the determinant of a matrix. LU Decomposition kernel consists 

of three nested loops: the first and third nested loops perform data prefetching and 

write back, respectively. The second nested loop performs the main LU 

Decomposition kernel computations. The three nested loops have a clear forward 

dependency flow (prefetch → compute → write) that allows for execution pipelining. 

5.2 Methodology 

The aforementioned backend transformations and hardware generation algorithms 

in chapter 4: If-conversion, code slicing, instructions clustering, scheduling and cache 

instantiation have been implemented as separated passes in the LLVM compiler.   

To evaluate the efficiency of the methodology and the potential of the proposed 

architectural template, we used three different hardware configurations (CA, CB and 

CC) to guide the module scheduling of the Computational and I/O streaming kernels. 

These configurations represent three levels of resource availability; CA is an extreme 

configuration, which allocates just a single FU of each required type (e.g. one adder, 

one multiplier, etc.) and one word I/O bandwidth. However, for some kernels as BN 

and CN, hundreds of instructions scheduled per FU produce very large multiplexers, 

hence multiple FUs are allocated. CC configuration allocates as many FUs as required 

to achieve the minimum possible II for each loop. Barring any cyclic dependences, 

this corresponds to II=1. The CB configuration is selected differently for each 

Table 5.2: Experimentation Data Set Size. 

Application Data Set 
CMC VGA Frame: 640×480 
LMC VGA Frame: 640×480 
DCT VGA Frame: 640×480 
SEAL 4 KB Plaintext message.  

CN 32400 Data points 

BN 64800 Data points 
LUD 128×128 Data matrix 

Deblocking VGA Frame: 640×480 
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application to achieve the average II between the two extremes. For applications with 

little computation in each loop (such as LUD) the CB configuration proved similar to 

CC. In SEAL kernel a recurrence circuit limited the II value to 60 cycles for all 

configurations. 

Besides the three resource configurations, architectural exploration also considers 

parameters such as sequential/concurrent execution, instruction clustering, bitwidth 

optimizations and cache availability.  For the evaluation of our design we used the 

Xilinx Virtex-6 LX760 FPGA and Xilinx ISE 12.4 toolset for synthesis, placement 

and routing. The Virtex-6 LX760 device includes 118560 slices, 720 RAMB36 

Block-RAMs, and 864 DSP48 modules. The tool flow generates a testbench (Figure 

5.2) used for simulation and verification. Table 5.2 summarizes the data set size used 

in verification/simulation of each benchmark. 

5.3 Execution Model Evaluation 

The concurrent execution model adopted in the proposed architectural template 

increases the utilization ratio of the allocated resources and reduces the duration each 

component stays idle through overlapping the execution of multiple components. In 

this section, we experiment with the concurrent execution mode for each of the three 

configurations CA, CB, and CC All other optimizations are enabled by default.  

Table 5.3 summarizes the area results after the synthesis performed for the 

benchmarks of Table 5.1. The general trend is that area requirements increase from 

configuration CA to configuration CC when the loop body encompasses enough 

computations to exploit the additional resources. Concurrent mode configurations 

tend to consume more slices than sequential ones. The additional hardware is used to 

implement the synchronization FIFOs of the PE and CE modules and synchronization 

 

Figure 5.2: Simulation and Verification Testbench. 
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flags for Local Buffers. 

The results show that this hardware overhead is nearly the same in all 

configurations (CA, CB, and CC), and it depends on the number of scalar variables 

FIFO channels and Local buffers synchronization signals available in the architecture. 

For example, in the LUD kernel, there are 25 scalar variables (LLVM instructions) 

computed in different parent CE modules and passed to children PE modules. Note 

that most of the scalar variables here are LLVM assembly instructions that do not 

change during the course of the inner most loop iterations, the backend applies loop-

invariant code motion and move them to outer loops, hence they computed in CE 

modules and must passed through FIFOs to the consumer PE modules.  Each scalar 

variable uses a FIFO channel of size equals 3. The total increase in slices in the LUD 

kernel (around 800 slices) is a combination of the scalar variables channels and local 

buffers synchronization channels for each one of the streams dia, peri_col, and 

peri_row as depicted in Figure 4.19.  

An additional overhead stems from the routing overhead of the synchronization 

signals valid and hold in each channel. The use of the valid and hold in the control 

mechanisms at each module (e.g. stall execution at hold signal) increases control 

Table 5.3: Concurrent/Sequential modes area results for the benchmarks implemented 
on Xilinx Virtex-6 LX760 device.  

CMC  
Concurrent Sequential 

Config. CA CB CC CA CB CC 
Slices 2051 2074 3421 1596 1652 2947 

RAMB36 1 1 1 1 1 1 
DSP48 12 12 20 12 12 20  

LMC  
Concurrent Sequential 

Config. CA CB CC CA CB CC 
Slices 2989 3540 5395 2909 3447 5304 

RAMB36 1 1 1 1 1 1 
DSP48 5 10 18 5 10 18  

LUD  
Concurrent Sequential 

Config. CA CB CC CA CB CC 
Slices 4788 4895 4895 3908 4191 4191 

RAMB36 3 3 3 3 3 3 
DSP48 17 19 19 17 19 19  

DCT  
Concurrent Sequential 

Config. CA CB CC CA CB CC 
Slices 3481 3615 5323 2916 3074 4416 

RAMB36 1 1 1 1 1 1 
DSP48 14 14 14 14 14 14  

Deblocking  
Concurrent Sequential 

Config. CA CB CC CA CB CC 
Slices 2464 2736 3379 1868 2157 2714 

RAMB36 0 0 0 0 0 0 
DSP48 3 3 3 3 3 3  

SEAL  
Concurrent Sequential 

Config. CA CB CC CA CB CC 
Slices 2089 2112 2112 1905 1945 1945 

RAMB36 0 0 0 0 0 0 
DSP48 0 0 0 0 0 0  

BN  
Concurrent Sequential 

Config. CA CB CC CA CB CC 
Slices 22304 25692 32168 22268 25640 32150 

RAMB36 0 0 0 0 0 0 
DSP48 4 4 4 4 4 4  

CN  
Concurrent Sequential 

Config. CA CB CC CA CB CC 
Slices 20675 27390 22044 20640 27350 22005 

RAMB36 0 0 0 0 0 0 
DSP48 2 6 10 2 6 10  
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complexity and routing overhead. 

The area overhead in the asynchronous configuration is very small or none exist if 

there are no scalar variables exchanges between multiple PE and CE modules, and no 

local streams synchronization is required. This is the case for BN and CN kernels. 

The LMC kernel also has a very small area overhead since only four scalar variables 

are exchanged between a CE and a PE module and each variable is 13-bits wide. 

Dual port Block RAMs are used for both local buffers and caches. LMC and CMC 

are the only benchmarks that utilize their Block RAMs as a cache, while the rest of 

the benchmarks use their Block RAMs to implement local buffers for local arrays. In 

LUD, each of the local arrays dia, peri_row, and peri_col is allocated a Block RAM 

of 36Kbit. In all applications, the Block RAMs are configured as 512 lines in size, 

each size being 64-bits wide. The caches and local buffers work in simple dual port 

mode (one port allocated for write-only and the second port allocated for read-only) 

to allow pipelining write and read transactions. 

Figure 5.3 depicts the execution time (in ms) and clock rate for four benchmarks 

under different configurations for the work data set shown in Table 5.2. As expected, 

performance increases moving from configuration CA to configuration CC when there 

is enough memory bandwidth to serve the datapath I/O requirements. The limited 

memory bandwidth problem appears in the DCT benchmark for the concurrent 

configurations. The memory bandwidth of 8 bytes/cycle fails to support the datapath 

I/O requirements 16 bytes/cycle and 32 bytes/cycle for configurations CB and CC 

respectively. 

As expected, the concurrent mode implementations in all benchmarks achieve 

higher computational rate and reduced execution time compared to configurations 

supporting sequential mode. Sequential operation (without data prefetching) 

frequently throttles the throughput of PE modules. Concurrent operation tends to 

become performance critical when II is small. This is typically the case in the CC 

configuration. Faster datapaths and AGUs make better use of the control element 

(CE) module executing the outer loops and preparing data used by the PE modules in 

subsequent operations. 
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The performance of concurrent operation may be limited by the existence of data 

dependences between loops at different level of the loop nest, i.e. when computations 

in the outer-loops (executed by CE modules) are dependent on results produced from 

the innermost loops (executed by PE modules). This is the case in LUD between 

PE(L1_0) and its parent CE1 as appear in dependency graph discussed in Chapter 4 

(Figure 4.19), where an outer loop computation waits data to be written to a local 

buffer, performs multiplication and division operations and only then initiates the 

next iteration. Even in this case, the experimental results indicate that concurrent 

execution outperforms synchronous one. 

 Figure 5.4 shows of the rest four benchmarks that achieved very limited 

performance gain using the concurrent operation. Deblocking filter (Figure 5.4a) 

achieves limited performance mainly because of data stream dependencies. The inner 

most loop of the deblocking kernel has a RAW memory dependency across outer 

loops iterations with distance equal to 1. In the generated architecture, the input 
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Figure 5.3: Execution Time (bars in ms) And clock frequency (lines in MHz) for 
concurrent and sequential configurations. 
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streaming units wait for a finish signal from the output streaming units before sending 

read requests. The minimal execution time improvement is due to overlapping the 

execution of the PE module with its parent CE module. 

SEAL benchmark has a unified PE architecture; no AGU modules generated 

because addresses computations can be computed only at runtime. Hence, the PE 

module consists only of a datapath and input/output streaming units (RGU, SinAlign 

and SoutAlign units). As a result, successive outer loop iterations will not promote 

data prefetching since addresses generation for later iterations cannot start until the 

datapath finishes computations of earlier iterations. As in the Deblocking filter case, 

the limited reduction in execution time came from overlapping the execution of the 

PE module with its parent CE module. 

BN and CN kernels in Figure 5.4c and 5.4d show another case where concurrent 

operation achieves no performance gain. BN and CN kernels have 1-dimensional 

computational grid. In other words, the trip count of the outer loops of the triple 
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Figure 5.4: Execution time (bars, in ms) And clock frequency (lines in MHz) for 
concurrent and sequential configurations. 
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nested loop is one; hence the PE module (the inner loop) is initiated just once for 

execution. 

Analyzing data dependencies and grid dimensions, the tool flow can determine if 

the concurrent operation could possibly improve performance or not.  Figure 6.4 

compares the maximum performance gain (decrease in execution time) achieved in 

using concurrent operation for each benchmark to its corresponding area overhead 

(increase of consumed resources) in each benchmark. The comparison of 

performance gain to the area overhead reveals the efficiency of the concurrent 

operation compared to the cost. Figure 5.5 shows that, the 4 benchmarks of Figure 5.3 

that achieved respectable performance gain (over 30%), did so at much less area 

overhead. On the other hand, area overhead surpassed performance gain for 

benchmarks with limited concurrent operation. Performance gain and area overhead 

are computed as follows: 
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One can conclude that efficiency of concurrent operation is dependent on the 

application characteristics. 

Concurrent operation has a mixed effect on clock frequency. A FIFO channel 
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Figure 5.5: Concurrent operation performance gain and area overhead 
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plays a role in balancing the routing delay between a producer and a consumer. On 

the other hand, the increase in routing and control signals computation overhead 

caused by the synchronization signals like valid and hold produces a negative effect 

that may degrade clock frequency. 

5.4 Bitwidth Optimization Evaluation 

In this section, we experimentally evaluate bitwidth optimization for the three 

different target configurations. All other optimizations, i.e. asynchronous execution, 

instruction clustering and cache allocation are enabled, by default. In Conventional 

compilers targeting architectures with standard FU size (i.e. 32- and 64-bits wide), the 

result value is represented in 32-bits format, while 8-bits format is enough for its 

representation. Figure 5.6 shows the area results for each of the benchmarks with 

bitwidth optimization enabled (optimized case) or not (original case). As we 

expected, bitwidth optimization succeeds in reducing the amount of consumed 

resources. In the figure we can see that up to 36% reduction in area has been 

achieved. The negative percentage values indicate the ratio of area reduction for each 

configuration.  

In particular, deblocking Filter (Figure 5.6h) achieves most gains from bitwidth 

optimization. Filter computations operate on pixel variables with char data type which 

is automatically extended to 32-bits by the LLVM compiler. Moreover, many kernel 

operations have one of their operands to a constant value equal to 2, 3 or 4.  The 

bitwidth optimization (similar to instruction clustering) performs efficiently on 

computations which contain small constants, such as CN and BN as well as SEAL 

kernels. 

In the case of LUD benchmark, bitwidth optimization affected the FIFO channels 

width because many scalar variables are exchanged between multiple CE and PE 

modules. As a result, both FUs and the FIFO channel width are optimized. 

Moreover, the effects of bitwidth optimization vary from one configuration to 

another, since, for example, Configurations with lower II value (such as CC) are more 

successful in reducing area overhead. Higher II values force the scheduler to allocate 

fewer functional units which should be wide enough to serve multiple instruction 
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bitwidths, hence, instructions with small bitwidth (e.g. 8-bits), could be scheduled on 

FUs wider than their instruction bitwidth. 

Bitwidth optimization has also a positive effect on clock frequency (Table 5.4). In 

BN and CN kernels, the reductions in functional units width significantly reduced 
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Figure 5.6: Area results for Bitwidth optimization. The percentage value above 
the bars indicates the percentage of Area reduction. 
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datapath routing complexity of the giving more room for the router and hence 

increasing clock frequency. Another noticeable improvement on clock frequency 

appears in the DCT benchmark. The main source for clock delay in the DCT is 32-bit 

multiplications. With bitwidth optimization, 20-bit multiplication is only required 

reducing significantly the clock delay.  

5.5 Instruction Clustering Evaluation 

Instruction clustering is a powerful optimization aiming at reducing area overhead 

and routing complexity especially in computation bound designs. In this section, we 

experimentally evaluate instruction clustering optimizations for the three different 

target configurations. All other optimizations are enabled, be default.  

Table 5.5 summarizes DFG statistics after grammar generation and rule selection. 

Column “#Rules” lists the grammar size in numbers of rules generated for each 

application. Column “#Used Rules” lists the number of selected rules from each 

grammar to be implemented as MFUs in the final representation of the DFG. Column 

Table 5.4: Bitwidth optimization Frequency (MHz) results for the test kernels 
on Xilinx Virtex-6 LX760. 

Original Optimized App. 
CA CB CC CA CB CC 

CMC 165 179 161 166 186 163 
LMC 160 160 162 158 164 164 
DCT 134 134 134 161 161 163 

SEAL 184 184 184 201 201 201 
LUD 158 161 160 159 161 163 

Deblocking 160 158 162 162 161 163 
CN 69 66 66 101 85 100 
BN 71 66 67 111 100 85 

       

Table 5.5: Grammar generation results on the kernels DFGs. 

App. #Rules 
#Used 
Rules 

Rule Size #Insts. #Insts(g) Reduction Coverage 

CMC 6 3 [2-9] 136 86 -37% 53% 
LMC 18 11 [2-4] 299 219 -27% 50% 
DCT 10 8 [2-3] 307 197 -36% 52% 
SEAL 8 5 [2-3] 143 107 -25% 45% 

CN 18 7 [2-5] 3962 2500 -37% 40% 
BN 8 5 [2-7] 2917 1677 -43% 41% 

Deblocking 9 5 [2-4] 176 150 -15% 32% 
LUD 1 1 [2] 20 18 -10% 10% 
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“Rule Size” shows the range of number of instructions per rule for the selected rules 

subset. Columns “#Insts” and “#Insts(g)” list the DFG size before and after grammar-

based representation, respectively. Column “Reduction” shows the percentage of 

reduction in the number of primitive instructions. Finally, column “Coverage” shows 

the percentage of the DFG covered by the generated grammar. 

Several conclusions can be drawn from table 5.5. Unlike pattern recognition and 

enumeration approaches, the generated set of subgraphs (i.e. rules) is much smaller in 

both the total number of subgraphs and subgraph size, yet it covers 40% – 53% of the 

program DFG. 

Figure 5.7 shows the area and synthesis time results (for datapaths and AGUs 

only) for the benchmarks for the original and the optimized cases. A noticeable result 

appears in Figure 5.7e and 5.7f for CN and BN kernels, respectively. The two DFGs 

have very large sizes (approximately 4000 & 3000 nodes, respectively) which lead to 

routing congestion. Without the grammar-driven synthesis approach the ISE synthesis 

tool failed to successfully finish placement & routing. On the other hand, after the 

grammar-driven synthesis optimizations the tool took less than three hours to 

generate a fully placed and routed design. The reduced DFG size with grammar-based 

compression required around 20% less time on average to schedule and synthesize, 

which correlates with the reduction in DFG size. 

Grammar-based designs typically involve more FU types than original designs in their 

datapath, due to the introduction of MFUs. The additional MFU types impose an area 

overhead. The issue manifests itself more clearly in the CC configurations, where few FU 

instances (normally one or two) are allocated for each FU type. In Fig. 11.b and 11.c, we can 

notice that our algorithm achieves 30% and 17 % reduction in area for the CB configuration in 

the DCT and LMC kernels respectively. For the CC configuration the area gains are limited to 

20% and 13% for DCT and LMC. The two kernels use 8 and 11 MFU types respectively in 

their datapath. While using MFUs reduces multiplexers’ area in the design, the area overhead 

from the large number of used rules limits the overall area reduction for configuration CC. On 

the other hand, CMC and SEAL kernels use only 3 and 5 rules respectively, with limited area 

overhead, hence configuration CC outperforms configuration CB. Note also that MFU area 

overhead can be reduced whenever the pipeline algorithm (Algorithm 3) identifies 

opportunities to produce compact and lightweight MFUs, which is the case for CMC and 
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SEAL. On the contrary, MFUs in DCT and LMC datapaths consist of heavyweight primitive 

FUs, that could not be effectively fused. 
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Figure 5.7: Area (slices) and Synthesis, Placement & Routing time (SPR Time in minutes).
Results for original configurations, and optimized configurations (with grammar-driven 
datapath synthesis). In (e) and (f) the missing configurations for the original case are due to 
the fact that the Xilinx ISE tool chain failed to fully place & route the generated circuit. 
unless we apply our compression.. The numbers above the bars represent the schedule 
latency (in clock cycles) of a single loop iteration in each configuration. 
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DGFs characterized by patterns with a very low number of occurrences and low DFG 

coverage are also potentially susceptible to area overheads from the introduction of MFUs. In 

this case, the combination of MFUs overhead with the limited multiplexers area reduction 

might produce designs with very little or no area reduction, which is the case for LUD and 

Deblocking kernels. However, during our experimental evaluation with a variety of kernels we 

observed that, even for DFGs with a small number of pattern repetitions (see Table V, 

#Instances per Rule), area reductions are achieved because these repetitions cover 45% to 53% 

of the DFG. Therefore, instruction clustering led to a significant reduction in the area spent for 

multiplexers, overweighing the MFUs area overhead. 

It appears from the experimental evaluation that the grammar-based approach sometimes 

performs poorly at II = 1. This is expected because in this case there are no multiplexers to 

optimize out. For some benchmarks (DCT and Luma) the consumed area is slightly more than 

that of the original configurations. For these benchmarks, the pipeline algorithm (Algorithm 3) 

produced fully pipelined MFUs, because they contained heavyweight primitive FUs that could 

not be fused with others.  

Moreover, using macro-instructions in those benchmarks increased variable lifetimes, 

which led to allocating more registers. This is, for example, the case for the BN 

kernel(configuration CA). The version produced after instruction clustering requires more area 

than the original one, despite the fact that the pipelining algorithm efficiently produced more 

compact MFUs. Most of the generated MFUs in BN kernel are not flat. They have latencies 

between 3 and 4 cycles (after being optimized down from 7 cycles by the pipelining algorithm). 

The large amount of MFUs with such latencies imposed an overhead on the scheduler, leading 

to increased variable lifetimes and registers requirements. 

On the other hand, the proposed approach worked well even at II = 1 for other benchmarks 

(CMC, Deblocking and CN), in which the logic gain for generated macro-instructions was 

significant. The MFUs produced were compact and lightweight, which subsequently led to the 

area reduction. Compact MFUs generated using Algorithm 3 have a positive impact on 

variables lifetime at II = 1 – if the MFUs latency is not larger than 2 cycles – leading to 

reductions in registers requirements. Therefore, at II = 1, area reductions are obtained mainly 

by compressing and optimizing the generated MFUs using Algorithm 3. Otherwise designs 

incorporating MFUs would be expected to pose an area overhead compared with the original 

designs. 

The schedule latency tends to be smaller for optimized configurations, except 

when the pipelining algorithm inserts a pipeline register after each primitive 
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instruction, as in DCT and Luma benchmarks. However, the schedule latency effect 

on the datapath throughput is very small, since we pipeline the loop iterations that 

execute on the datapath, and for large number of loop iterations the II value is the 

main parameter that determines the datapath throughput. 

Figure 5.8 depicts the synthesis, placement & routing (SPR) speedup achieved on 

the standard Xilinx toolset for the optimized versus the original DFGs.  Synthesis, 

placement & routing for grammar-based designs is on average faster than for the 

original designs achieving an average speedup 1.2x. In CN and BN kernels original 

designs (without MFUs) in CB and CC configurations were processed for over 12 hours 

before eventually failing to produce fully placed and routed designs because of routing 

congestion. The DFGs produced for the same benchmarks and configurations by the 

grammar-based approach succeeded in less than 3 hours. CN kernel achieves the 

highest speedup (2.2x) among the other benchmarks, mainly because of the significant 

area reduction attained by the optimized design. 

SPR runtime is affected by a wide range of factors. The synthesis phase is affected 

by the total number of allocated resources and potential logic cells optimizations. The 

placement & routing runtime is even more sensitive on the size of the generated 

netlist, routing complexity and user constraints. In Fig. 12, LMC kernel optimized 

configurations CA and CB are slower to SPR than the original configurations. Analysis 

of the SPR time for LMC showed that both original and optimized designs took the 

same time for synthesis and routing steps for configurations CA and CB. However, the 

“Global Placement” step, during which the design netlist is placed on the FPGA 

fabric, the optimized design took more time to finish leading to slower SPR runtime. 
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Figure 5.8: Synthesis, Placement & Routing (SPR) Speedup. CB and CC bars in BN and CN 
kernels are missing because the original designs failed to finish placement and routing 
successfully after 12 hours of runtime, while optimized designs succeeded within 3 hours. 
The numbers above the bars are the SPR time (in minutes) required for the original,  
unoptimized DFGs. 
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We did not manage to identify any correlation with any of the design parameters. 

Moreover, the lack of information on the algorithmic and implementation details of 

this step in Xilinx tools does not allow us to further reason on the problematic 

increase in runtime. 

Fig. 13 demonstrates the correlation between area reduction and either the number 

of macro instructions per rule or the DFG coverage for the three configurations, CA, 

CB, and CC. From Fig. 13 we can conclude that for configurations with large II (and 

thus complex, large multiplexers as in CC), the reduction in area is highly correlated 

with the number of macro-instructions per rule and DFG coverage (correlation equals 

0.95 for both cases). As II becomes smaller (and so does the multiplexers overhead), 

so does the correlation. For configuration CB where II = 8, the correlation equals 0.8 

for both cases. For configuration CA where II = 1, the correlation of area reduction 

with the number of macro-instructions per rule and DFG coverage is 0.15 and 0.12 

respectively. As explained earlier, in this case the area reduction is expected to come 

mainly from the pipelining algorithm and not from instruction clustering. 

Area and synthesis results demonstrate the effectiveness of the grammar-driven 
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Figure 5.9: Area Reduction (AR) correlation with the number of macro-instructions 
per grammar rule (a, c, e) and the DFG coverage (b, d, f).  
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approach to reduce the amount of multiplexers and their routing overhead. The 

generation of MFUs and the selective pipelining algorithm (algorithm 4.5) produced 

compact macro FUs that performed computations with fewer logic cells and latency. 

The achieved clock frequency (Table 5.6) for optimized configurations has a 

deviation between +8% to -1.2% from the original configurations. 

In general, the proposed approach achieves higher gain with increasing value of II, 

in cases where the multiplexer tree has a significant area overhead. Also, for II = 1, 

significant gain can be achieved if the primitive FUs in each MFU can be packed 

tighter (high logic gain). If this is not the case, the use of macro-instructions tends to 

put more constraints on scheduling, increasing the lifetime of variables. The proposed 

grammar-based algorithm proved to be very fast; in all cases the grammar generation 

and rules selection took less than a second to finish and to produce a new DFG. 

5.6 Cache Allocation Evaluation 

The cache unit is useful in holding data across outer loop iterations, especially 

when the computation of a single data element requires a block of data which will be 

reused for the computation of following elements. SOpenCL determines allocating a 

cache if it detects continuous blocks of data reused across loop iterations. 

The SEAL kernel has runtime dependent addresses, hence no memory access 

pattern can be detected and no cache is allocated. The Deblocking kernel has a RAW 

dependency across outer loops iterations which limit cache utilization. In addition, no 

data reuse was detected across inner loop iterations. In LUD, CN, and BN kernels, 

also no data reuse has been detected across loop iterations since data is accessed 

Table 5.6: Instruction Clustering Frequency (MHz) results for the test kernels 
on Xilinx Virtex-6 LX760. 

Original Optimized App. 
CA CB CC CA CB CC 

CMC 165 184 160 166 186 163 
LMC 154 161 161 158 164 164 
DCT 160 161 163 161 161 163 

SEAL 184 184 185 201 201 201 
CN - - 97 101 85 100 
BN - - 84 111 100 85 

Deblocking 162 162 159 162 161 163 
LUD 159 160 163 159 161 163 
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column wise. In DCT data reuse is within each single loop iteration, but non across 

loop iterations.  The tool does not generate a cache to serve only data reuse within 

single loop iteration, because these are already served by the requests generation unit 

(RGU). 

Only two CMC and LMC kernels have forced SOpenCL to allocate a data cache. 

Figure 5.8 depicts the data reuse pattern for each kernel. Shaded area represents 

pixels shared between successive outer loop iterations. Here a row of pixels 

represents a continuous block of data. Based on the reuse pattern, SOpenCL allocates 

the following cache blocks for each kernel: 6 blocks of size 32 bytes for luma kernel, 

and 2 blocks of size 16 bytes for chroma kernel. 

Table 5.7 depicts area results for both kernels with and without cache. For both 

kernels, configurations with cache allocated consume one 36k-bit Block RAM (not 

shown in the table). Column “Cache” represents configurations with cache enabled. 

Column “N/C” refers to configurations without cache allocation, and column 

“Overhead” refers to the area overhead computed as follows: 

CN

CNcache

Slices

SlicesSlices
Overhead

/

/−
=  

 

Figure 5.10: Luma (LMC) and Chroma (CMC) kernels data reuse pattern. The shaded 
area represents the data (pixels) reused in later outer loop iterations. The pixels 
surrounded with the dashed rectangle represent the data loaded in a single outer loop 
iteration. 

Table 5.7: FPGA Slices for CMC and LMC kernels with and without cache. N/C 
refers to configurations with No cache allocated.  

CA CB CC 
 

Cache N/C Overhead Cache N/C Overhead Cache N/C Overhead

CMC 2051 1984 +3.4% 2074 2009 +3.3% 3421 3041 +12.5% 

LMC 2989 2487 +20.2 3540 2630 +34.6% 5395 4290 +20.5% 
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Configurations with cache tend to consume more resources for managing cache 

data blocks dynamic allocation and incoming read requests. One can see that LMC 

configurations have higher area overhead than CMC configurations because LMC 

configurations have more cache blocks allocated. 

Figure 5.9 depicts execution time for LMC and CMC cache configurations. The 

negative percentage value represents the decrease in execution time in cache 

configurations compared to configurations without cache. Interestingly, one can 

notice that the execution time reduction percentage correlates with percentage of 

reused pixels: 50% for CMC kernel, and 80% for LMC kernel. 

Cache allocation successfully achieves its goal, reducing memory traffic and 

increasing performance. For these two benchmarks, performance gain achieved with 

cache allocation surpasses area overhead. 

5.7 Overall Performance Analysis and Comparisons 

Figure 5.10 depicts, for each benchmark, the optimal execution time when all 

optimizations are enabled, for two cases: full accelerator execution (memory transfers 

+ computations) and datapath computations only (i.e. assuming zero cycle memory 

accesses). The latter case assumes input data always available when needed.  The 

system architecture is a PLB bus based system with peak memory bandwidth equal to 

64-bits per clock cycle.  
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Figure 5.11: Execution time for LMC and CMC configurations with and without 
cache. The negative percentage value represents the decrease in execution time in 
cache configurations compared to configurations without cache. 
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Figure 5.10 shows that most kernels are I/O bounded. BN and CN datapaths 

require 304 bytes/cycle and 256 bytes/cycle respectively, to keep datapath 100% 

utilized and the memory system provides only 64 bytes/cycle in the best case. While 

I/O requirements of the deblocking filter are within bus bandwidth limits, execution 

time spikes when memory transfers are considered. Irregular access patterns push the 

effective memory bandwidth away from its theoretical peak value. Half of the loop 

iterations require 10 continuous pixel data per cycle, i.e. pixels are accessed row-

wise, and can be served with two read/write requests on the PLB bus. In the second 

half of loop iterations, each of the 10 bytes requested is in a different frame row, i.e. 

pixels are accessed column-wise, hence the read/write requests spike to 10 requests. 

To better assess the efficacy of our tool flow and methodology to provide high 

quality designs, we have compared the accelerators generated using SOpenCL with 

manual, fully optimized designs. Table 5.8 compares Deblocking filter accelerator 

generated our tool (SOpenCL) with the manual design described in [93]. The 

throughput numbers are for 1280×720 HD video format (720p). SOpenCL synthesis 

tool area and clock frequency results are very close to the manual design results. Even 

with the large gap in throughput SOpenCL produced an accelerator that fullfils real-

time requirements (30 frames per second).  

The Deblocking filter processes vertical and horizontal edges in every 16x16 
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Figure 5.12: Comparison of execution time for Memory transfers plus computations
and computations only. The numbers above the bars indicate the I/O rate required by 
each kernel. The Cc configuration with all optimizations have been enabled is used 
in this figure. 
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macroblock in a specific sequence: first vertical edges then horizontal edges. As a 

result, computed pixels only at the corners of horizontal edges are used in later 

computations of pixels at the corners of vertical edges. This irregular dependency 

pattern significantly limited the efficiency of the streaming unit in the SOpenCL-

based deblocking accelerator. The C code consists of a single nested loop that process 

both horizontal and vertical edges sequentially which hid potential parallelism 

between horizontal and vertical edges. 

Contrary to SOpenCL generated accelerator, the manual design includes separate 

datapaths for processing horizontal and vertical edges. Moreover, a specific 

mechanism has been designed to handle the data dependency that only occurs at the 

horizontal and vertical edges corners. Extra registers allocated specifically to hold 

only required pixels for later computations. This special mechanism, allowed more 

efficient pipelining of successive macroblocks processing. 

The manual design only builds the datapath assuming input frame pixels available 

in On-chip Block RAMs and output pixels are written to another bank on-chip Block 

RAM. On the other hand, SOpenCL based design requires over 1400 slices for 

Table 5.8: SOpenCL based design of Deblocking filter compared to manual 
design. The throughput numbers are for 1280×720 HD video format (720p). MB 
latency refers to the number of clock cycles required to complete the processing of 
a single Macroblock. 

SOpenCL based design 
Application 

Complete Accelerator Datapath Only 
Manual design  

(Datapath Only) 
Slices 2714 1295 1430 

Throughput 
(frames/Second) 

31 260 379 

Frequency 
(MHz) 

161 161 160.5 

MB Latency  
(Clock Cycles) 

172 172 118 

Table 5.9: SOpenCL based design of SEAL kernel compared to manual 
design. The throughput numbers are for 1 Gbit plaintext messages.  

Application 
SOpenCL based design 
Complete Accelerator 

Manual design  

Slices 2112 1450 
Execution Time 

(second) 
8.35 9.3 

Frequency (MHz) 201 158 
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read/write requests for data alignment and synchronization. 

Finally, table 5.9 compares SEAL kernel accelerator with the manual design of 

[8]. The manual design consists of three components: tables generation, initialization 

and the main body of SEAL encoder. SOpenCL accelerators implement only the last 

two components, i.e. initialization and the main body. For a 1 Gbit plaintext session, 

Tables generation components executes only for the first 32 Kbit plaintext message, 

hence, its execution time overhead can be ignored compared to the main processing 

operations in the other components.  

Our design achieved slightly smaller execution time compared to the manual 

design with acceptable area overhead 44% FPGA slices. The improvement on 

execution time was mainly caused by the lower clock frequency achieved via 

SOpenCL. For a clock frequency similar to the manual design our design would 

require higher execution time (10.62 ms). The additional area cost in our 

implementation is due to the input and output streaming units and bus arbitration. The 

datapath only consumes only 54% of the accelerator area (i.e. 1135 slices). 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

In this dissertation we have investigated and described a methodology to generate 

hardware accelerators from complex, unmodified OpenCL kernels and C functions. 

One of the main tasks of this work was the evaluation of the presented methodology 

which consists of two parts: architectural template design and hardware-driven 

transformations and optimizations.  

The architectural template design and transformation addresses the following 

issues: 

• Generating hardware for imperfect loop nests and data- and control-flow DAGs. 

The template distinguishes inner most loops code from outer loops code and loop 

invariant code and maps them on different resources. This mapping paradigm 

allows arbitrary shapes of loops to be supported for hardware generation. 

• Hiding memory latency and overhead through the disassociation of computational 

operations and data-transfers, effectively facilitating the overlap of computation 

and communication. Moreover, the template allocates resources and mechanisms 

to exploit data reuse and reduce memory traffic and bandwidth requirements. 

• Exploiting inherent parallelism in OpenCL kernels (and generated C functions) as 

in task- and pipeline parallelism. The template allows concurrent execution of 

multiple loop iterations, and pipelines multiple loop nests.  

• Customized and application specific datapath design through bitwidth 

optimization, and instruction clustering. Instruction clustering allows designing 

optimized application specific functional units which provide improved 

performance reduced area. 
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All the aforementioned capabilities are based on compiler analysis of memory 

access patterns, control- and data-dependencies and require no programmer 

intervention. Equally important, the hardware generator can be tuned to match the 

available FPGA resources and respect target performance requirement. 

We introduced instruction clustering a grammar-based instruction clustering 

algorithm. Our approach targets the reduction of the routing complexity and overhead 

in FPGA designs, allowing FPGA implementation of kernels that could not be routed 

otherwise, such as the DVB-S2 kernels. The core of the methodology is the 

production of a hierarchical grammar representation of a DFG. The rules of the 

grammar correspond to subgraphs of the DFG which can be considered as candidate 

macro-instructions. The proposed algorithm performs the tasks of grammar 

generation, rule selection and implementation with negligible computation 

complexity. Furthermore, we presented a simple yet systematic area estimation 

technique, which can be applied to characterize each target FPGA architecture and 

toolchain. The results of the area estimation are used to both guide the rules selection 

phase, and drive the insertion of pipeline registers in the produced macro FUs. 

The experimental evaluation proved the potential of our infrastructure to generate 

efficient hardware. Moreover, it quantified the tradeoffs of different hardware 

configurations, as well as of optimizations like the asynchronous execution model, 

instruction clustering and data streams caching. 

The concurrent execution model proved its efficiency achieving up to 56% 

increase in performance as in the DCT kernel case. Our analysis showed that 

applications written in OpenCL kernels with multi-dimensional computations grid 

will achieve significant performance gain using concurrent execution model.  

Decoupled computations (on datapath) and address generation (on AGU), 

combined with concurrent execution model, efficiently reduced the effect of memory 

latency on the overall performance. Data prefetching reduced the idle state time gaps 

of the memory system over the course of a kernel invocation. 

Experimental evaluation of data caching proved the effectiveness of the caching 

mechanism. While the cache utilization is limited to regular data streams, the cache 
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allocation methods consumed small amount of memory (96 byte for CMC and 256 

bytes for LMC) to achieve over 50% increase in performance.  

Experiments showed the efficiency of the proposed instruction clustering approach 

in reducing routing complexity and hence reducing area. Moreover, the pipelining 

algorithm used to design macro functional units, typically produced schedules with 

smaller latency and no penalty on clock frequency. Most importantly the grammar-

driven optimization allowed successful placement and routing on complex designs 

that were not deemed implementable before. 

Instruction clustering and the corresponding algorithms and tool prototypes are 

another necessary step in the direction of producing efficient FPGA designs from 

algorithmic descriptions expressed in high level parallel programming languages. 

This process moves FPGA development closer to the realm of software engineers, 

thus facilitating the wider adoption and exploitation of FPGAs in everyday, 

embedded and high-performance computing. 

Concluding, the proposed methodology and techniques compared well with 

manually optimized designs. The generated designs achieved comparable 

performance with little area overhead. 

Hardware generation from high level programming language is a promising 

technology and the key for promoting FPGA integration in heterogeneous systems. 

Our research showed that developing a fully automatic architectural synthesis tool 

that enables software engineers to target FPGA based platforms is not an easy 

undertaking since it requires extensive analysis of the input programs and 

sophisticated compiler transformations. 

Our future work includes automating the configuration selection process based on 

the target device and user performance requirements. We are also planning to extend 

the underlying architectural model to include multiple kernels (or multiple 

instantiations of the same kernel) with multiple accelerators interconnected through 

customized memory hierarchies. Last but not least, area and performance estimation 

algorithms are necessary to guide hardware/software partitioning in the high level 

compiler. 
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