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Abstract 
 
Radar quantitative precipitation estimates (QPE) have been assessed using reference values 
established by a geostatistical approach in the context of flash-flood prediction in the Cévennes 
region France. The reference values were estimated from rain gauge data using the Block 
Kriging technique and the reference meshes were selected on the basis of the Kriging 
estimation variance. An empirical radar error model was built by computing the spatial means 
and the covariance matrix of the errors, as well as their autocorrelation function. In addition, 
the conditional statistical distributions of the errors were established with respect to several 
variables and factors (rain amount, radar range, mountain versus plain region of the domain of 
interest) using the “generalized additive models for location, scale and shape” (GAMLSS) 
approach. The conditional bias of the errors presents a complex structure that depends on the 
space-time scales and the considered geographical sub-domains, while the standard deviation of 
the errors has a more homogeneous behaviour with a linear increase as a function of the rain 
amount. The probabilistic QPE generator proposed by Germann et al. (2009) was implemented 
for the 1-hour time step and for hydrological meshes of about 100 km², which are space-time 
scales relevant for the flash-flood prediction in the Cévennes region. Several improvements of 
the original approach were proposed with, in particular, the conditioning of the errors for the 
observed dependency on the rain amount. The way the errors propagate in the hydrological 
modelling system remains to be studied with the n-TOPMODELs model. 
 
Περίληψη 
Ποσοτικές εκτιμήσεις βροχόπτωσης από ραντάρ (ΠΕΒ) έχουν αξιολογηθεί χρησιμοποιώντας 
έγκυρες τιμές αναφοράς μέσω γεωστατιστικής προσέγγισης στα πλαίσια της πρόβλεψης 
πλημμυρών για την περιοχή Cévennes στην Γαλλία. Οι τιμές αναφοράς υπολογίσθηκαν με 
βάση βροχομετρικά στοιχεία και την τεχνική Block – Kriging, ενώ τα υδρολογικά πλέγματα 
αναφοράς, επιλέχθηκαν βάσει την εκτίμηση της διακύμανσης Kriging. Ένα εμπειρικό μοντέλο 
σφάλματος ραντάρ δημιουργήθηκε από τον υπολογισμό του χωρικών μέσων και τον πίνακα 
συνδιακύμανσης των σφαλμάτων, καθώς και τον βαθμό αυτοσυσχέτισής τους. Επιπλέον, η υπό 
όρους στατιστικές κατανομές των σφαλμάτων συστάθηκαν σε σχέση με πολλές μεταβλητές και 
παράγοντες (ύψος βροχής, εύρος ραντάρ, βουνό έναντι πεδιάδας της περιοχής ενδιαφέροντος) 
χρησιμοποιώντας την προσέγγιση "Γενικευμένα μοντέλα για τοποθεσία, μέγεθος και σχήμα» 
(GAMLSS). Η υπό όρους αμεροληψία από τα σφάλματα, παρουσιάζει μια πολύπλοκη δομή 
που εξαρτάται από χωροχρονικές κλίμακες και από γεωγραφικούς υπο-τομείς, ενώ η τυπική 
απόκλιση των σφαλμάτων έχει μια πιο ομοιογενή συμπεριφορά με γραμμική αύξηση σε 
συνάρτηση με το ύψος της βροχής. Η πιθανολογική εκτίμηση βροχόπτωσης που προτείνει  ο 
Germann et al. (2009) τέθηκε σε εφαρμογή για χρονικό βήμα μιας ώρας και για υδρολογικά 
πλέγματα των 100 km², τα οποία καθιστούν χωροχρονικές κλίμακες για την πρόβλεψη 
πλημμυρών στην περιοχή Cévennes. Αρκετές βελτιώσεις της αρχικής προσέγγισης  
προτάθηκαν, μεταξύ άλλων, την υπό όρους προετοιμασία των σφαλμάτων που παρατηρήθηκαν 
σχετικά με την εξάρτηση από το ύψος βροχής. Ο τρόπος που τα σφάλματα διαδίδονται στο 
υδρολογικό σύστημα μοντελοποίησης μένει να μελετηθεί με το n-TOPMODELs μοντέλο. 
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Résumé 
 
Des éstimations de précipitations quantitatives à partir de radar (QPE) ont été élaboré en 
utilisant des valeurs de références etablies par une approche géostatistique dans un contexte de 
prévision de crue éclaire dans la région des Cévennes en France.  
Les valeurs de références ont été estimé à partir de données de pluviométriques à l'aide de la 
technique de krigeage par bloc et les réseaux hydrographiques ont été sélectionné sur le base du 
krigeage de l'estimation de la variance. Un modèle empirique d'erreur radar a été construit en 
calculant les moyennes spatiales et la matrice de covariance des erreurs, ainsi que les fonctions 
d'autocorrélations. De plus, la distribution statistique conditonnelle des erreurs a été établi en 
respect de plusieurs variables et facteurs (quantité de pluie, portée du radar, les zones de 
montagnes contre les zones de plaines de la région d'intéret) en utilisant l'approche du modèle 
additif généralisé pour le lieu, l'échelle et la forme (GAMLSS). Le biais conditionnel des 
erreurs présente une structure complexe qui depent de l'échelle spatio-temporelle et du sous-
domaine géographique considéré, alors que l'écart-type de l'erreur a un comportement plus 
homogène avec une augmentation linéaire en fonction de la quantité de pluie. La génération 
probabilistique de QPE proposée par Germann et al. (2009) a été implémenté au pas de temps 
d'une heure pour des réseaux hydrographiques de l'ordre de 100km², qui sont à l'échelle spatio-
temporelle représentatif pour la prévision de crue éclaire dans la région des Cévennes. Plusieurs 
amélioration de l'approche originale ont été proposé avec, en particulier, le conditionnements 
des erreurs sur la dépendance des quantitées de pluies observées. La manière dont les erreurs se 
propagent dans un modèle hydrologique reste a étudié avec le modèle n-TOPMODELs. 
 
 
  
 
1. Introduction 
 
  A key component in many hydro meteorological forecasting systems is the rainfall – 
runoff hydrological models, which aims to translate observations and forecasts of rainfall into 
estimates for river flows. Distributed hydrological models (Ogden et al. 2001), although more 
complex compared to lumped models, provide additional insight on hydrological conditions, 
such as soil moisture and stream flow, at locations without existing flow observations 
(Carpenter and Georgakakos, 2003). For the development and application of hydrological 
models a widespread implementation of weather radar has been established, in order to 
advantage the high spatial and temporal resolution of the precipitation estimates from the 
radars.  However, it is crucial to consider the significant uncertainties which exist in radar 
rainfall estimates obtained from radar reflectivity, in hydrological parameters derived from 
available databases and in the model structure as well. This complexity leads to high spatial 
heterogeneity, forcing us to consider the error sources in radar rainfall measurements, in order 
to improve the quantitative precipitation estimation (QPE), assess the QPE errors and how they 
propagate in the hydrological modeling system. 
 Considering the context of flash floods, several European projects have been established 
(HYDRATE, FLOODsite), aimed to improve the flash flood forecasting by developing a 
coherent set of technologies for effective early warning systems. A crucial point at these efforts 
is the quantitative precipitation estimation, since the causative rain events may develop over 
very short space and time scales (Krajewski and Smith, 2002; Creutin and Borga, 2003).The 
rainfall measurements from operational rain gauges networks are often available at best at the 
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hourly time scale with often too low  spatial resolutions. So in order to describe the rainfall – 
runoff dynamics at hourly or over shorter time steps, ground-based weather radar data, are 
becoming widely available and used in hydrological forecasting. 
 The assessment of the radar data on hydrological modeling is complex since it depends 
on the system design (radar location and operating protocol) and on the data processing 
(Austin, 1987; Joss and Waldvogel, 1990; Yuter, 2002). Some of the main problems that we 
have to deal with are, the beam smoothing and post-detection integration (Zawadzki, 1982), the 
beam shielding and the vertical profiles of reflectivity (Joss and Waldvogel, 1990; Kitchen, 
1995; Joss and Lee, 1995; Pellarin et al., 2002; German and Joss, 2002; Bellon et al., 2007), 
variability in raindrop size distributions and related uncertainty in the relation between 
reflectivity and rain rate (Joss and Gori, 1978; Lee and Zawadzki, 2005). 
 Due to these uncertainties it is important to understand the processes and characterize 
the error structure of radar precipitation estimates. A physical approach would be to examine 
all sources of errors separately and to evaluate their cumulative effects. Several studies have 
been conducted based on this physical approach (Jordan et al., 2003; Pellarin et al., 
2002;Berenguer and Zawadzki 2008), which aimed to go a step closer to the understanding of 
the error structure of QPEs.  However the combined effects of the errors and the 
implementation of radar data processing algorithms (Delrieu et al., 2009; Tabary, 2007; Tabary 
et al., 2007) limit the relevance of this physical approach to error analysis and make it hardly 
tractable in practice. Therefore, in order to characterize the overall uncertainty, another 
common approach is to evaluate radar QPE accuracy with respect to an external reference. 
Dense raingauge networks are generally used for this purpose, although the raingauge 
measurements are known to suffer from lack of spatial representativity, especially for short 
integration time steps. In spite of significant progress, the residual errors between radar and 
reference values are still large and it is important to take them into account, in order to assess 
accurate flood forecasts. Additionally, it is expected that uncertainties in rainfall input data will 
be modified into predictions from hydrologic models (Morin et al. 2005; Hossain et al. 
2004;Borga 2002; Sharif et al. 2002; Winchell et al. 1998; Vieux and Bedient 1998; Pessoa et 
al. 1993). Therefore, accurate characterization of radar rainfall errors and their spatial and 
temporal structure, as well as the induced uncertainties in hydrological modeling is very 
important. The ultimate objective of this work is to provide a statistical framework for 
producing probabilistic space-time series of rainfall based on the QPE error model that would 
be used to assess the impact of rainfall uncertainties upon hydrological modeling at regional 
scale. 
 In order to express the residual uncertainties in radar estimates, a promising effort 
would be the generation of an ensemble of precipitation fields (e.g. Krajewski and 
Georgakakos, 1985). Each member on the ensemble is a possible realization and knowledge on 
the radar error structure (Germann et al., 2006a; Lee et al., 2007). The deterministic radar 
precipitation field is perturbed by a stochastic component, which has the correct space – time 
covariance structure as defined by the radar error covariance matrix (German et al, 2009).  
 A step forward is proposed in the present work in order to derive QPE ensembles for the 
Cévennes–Vivairais Mediterranean Hydro-meteorological Observatory window (CVMHO) and 
to study the propagation of the error structure of the simulated discharges as a function of the 
probabilistic QPE characteristics. Our work starts with the Germann et al (2009) approach and 
one of our main challenges was to account for the dependence of the residuals on the rain rate 
evidenced in previous works (Kirstetter et al. 2010; Delrieu et al. 2012). For the hydrological 
simulations the n-Topmodel codes which were developed and used in the LTHE laboratory 
(Pellarin et al. 2002; Le Lay and Saulnier 2009; Bonnifait et al. 2009), were implemented on a 
number of upstream tributaries of the main Cévennes rivers (Ardèche, Cèze, Gardons and 
Vidourle).  
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 A detailed description of CVMHO datasets used in the present study is presented in 
section 2. The radar error model with the spatial and temporal structure is analyzed is section 
3, while we present the generation of the QPE ensemble under two conditionings in section 4. 
The implementation of the hydrological model is described in Section 5, and this study ends up 
with the conclusions in section 6.  
 
 
2.  Case study basins and dataset 
 
 The south-eastern ridge of the Massif-Central in France, prone to flash-flooding, is 
included in the Cévennes Vivarais Mediterranean Hydrometeorological Observatory 
(CVMHO) window, covering a region of 200 x 160 km2. This area is characterized by a dense 
rain gauge network with measurements for hourly and daily time steps. Moreover, the 
installation of two weather radar systems, the Nimes S-band and Bollène 2002, provides 
satisfactory coverage for the most of the catchments in the southern part of the region (Figure 
1). The observed rain events that were selected for this study occured on the 8/09/2002, 
27/09/2007, 19/10/2008 and 31/10/2008 and concern the four main watersheds prone to flash 
flood (Ardèche , Cèze , Gardons and Vidourle rivers) (Figure 2). These rain events produced 
major traffic disturbances leading to lives and property casualties. The most severe event was 
that on 8/09/2002, which is one of the 23 severe flash – flood cases occurring in Spain, France, 
Italy, Austria, Greece and UK that were documented within the HY-DRATE project (Kirstetter 
et al,2010). 
 
 

 
Source: (http://www.ohmcv.fr/) 

Figure 1: CVMHO observation window. Location and 50-km range markers of the Bollène, Nimes, 
Sembadel weather radar with the available rain gauge system at hourly (left) and daily (right) time step 

superimposed on the orography of the Cèvennes – Vivarais region. The main waterheds are also 
displayed in the graph with the red line. 
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Source: (http://www.ohmcv.fr/) 

Figure 2: The four main watersheds (Ardèche River, 242km2; Cèze River, 1054km2; Gard River, 
1913km2; Vidourle River, 621km2) delimited with the red solid lines. The main rivers are also displayed 

in the graph with the blue solid line. 
 
 
 Regarding radar QPE, were used the products obtained from a radar processing system, 
called Traitements Régionalisés et Adaptatifs de Données Radar pour l’ Hydrologie 
(Regionalized and Adaptive Radar Data Processing for Hydrological Applications) (Delrieu et 
al, 2009). This development radar processing system , initiated in 2002  at LTHE, as part of the 
activities of the CVMHO, includes algorithms which relies on 1) a clutter identification 
technique based on the pulse-to-pulse variability of reflectivity Z for noncoherent radar, 2) a 
coupled procedure for determining a rain partition between convective and widespread rainfall 
and the associated normalized vertical profiles of reflectivity, and 3) a method for calculating 
reflectivity at ground level from reflectivities measured aloft. Several data - processing 
strategies, including non-adaptive, time-adaptive, and space–time-adaptive variants were 
assessed (Delrieu et al, 2009).  In the following we focus on the results of the space-time 
adaptive strategy. Moreover, effective Z-R relationships were optimized for each event 
separately using the procedure proposed by Bouilloud et al. (2010) in order to reduce the bias 
and the conditional bias of the radar QPEs. 
 In this work we consider the spatial discretization of the four of the main Cévennes 
watershed into hydrological meshes of 100 km2 (Figure 3).  The study was based on matrix 
computation of kxi entries, for a k number of meshes and i the number of the time steps. The 
08/09/2002 event was the more severe, with total rain amounts reaching locally 700mm in 28 h. 
The rainfall affected all of the four main watersheds. The characteristics of that flood event was 
controlled by the trajectory of the convective part of a mesoscale convective system (MCS), 
which remained stationary over CVMHO window for 28 h being responsible for the 
exceptional magnitude of the flood at this scale (Bonnifait et al, 2009). The 29/10/2007 event 
was a more localized event, with the excessive rain rate being localized in the downstream 
tributaries of the Vidourle and Gardons watersheds, while the 19/10/2008 and 31/10/2008 
events, and were intense rain events affecting the upstream parts of the Ardèche, Cèze and 
Vidourle watersheds (Figure 4). 
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Source:  (Kirstetter et al, 2010) 

 
Figure 3:  Spatial discretization of the four of the main Cèvennes watersheds (Ardèche River, 2500km2; 
Cèze River, 1054km2; Gard River, 1913km2; Vidourle River, 621km2), into hydrological meshes of 100 

km2. 
 
 
 
 

 
 

 
 

08/09/2002; 100km2; 1h 

29/10/2007; 100km2; 1h 

19/10/2008; 100km2; 1h 
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Figure 4: Examples of the evolution of rain for 3 successive hourly time steps taken during the 4 events 
over the main Cévennes watersheds (Ardèche River, 2500km2; Cèze River, 1054km2; Gard River, 

1913km2; Vidourle River, 621km2  discretized at the 100 km² scale. 
 
 
  In this study, we aim to analyse radar QPE uncertainties with their space – time 
structure by defining an empirical error model, then generate stochastically random error fields 
and impose them on radar measurements in order to obtain an ensemble of radar rainfall 
estimates. The generated radar rainfall estimates, will then, be tested with nTOPMODELs 
codes in order to estimate the propagation of the errors based on the simulated probabilistic 
discharges. 
 
 
3.  Radar Error model 
 
 The superposition of random and systematic errors from different sources characterizes  
the uncertainty of radar estimates. This work, aims to capture and study the error structure, by 
building up an empirical error model based on the evaluation of radar QPE accuracy with 
respect to an external reference. Dense rain gauge networks are generally used for this purpose 
although the lack on spatial representative ness.   
 In order to build our statistical framework, we introduce some concepts useful in the 
rest of this study, by noting the true unknown rainfall amount over a given area A, centered at a 
given location x, a given time T, centered as time i as: 

31/10/2008; 100km2; 1h 
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  (equ.1) 

 where R denotes the true rainfall amount at a given location and time. 
 The radar QPE products are grided, with good spatial resolution of 1km2 and expressed 
as: 
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  (equ.2) 

 

 where  ia  represents a radar pixel, AN  is a number of pixels covering a domain A and 
*
TR  is the radar estimated rain amount at time t during a time interval T. 

 On this study, the reference rainfall was established from the available rain gauge 
network by using the Block Kriging technique. Reference hydrological meshes were selected 
based on the Kriging estimation variance (Kirstetter et al, 2010). 
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    (equ.3) 

 
 where ),( txG iT  is the rain gauge amount at point ix  and time t during T and gN  is the 

number of rain gauges accounted for in the estimation. The coefficients  gi Ni ,1,   are the 
kriging weights obtained by minimizing the estimation variance: 
 

22 )( AT
ref
ATref RRE    (equ.4) 

 
under the unbiasedness condition : 
 

)()( AT
ref
AT RERE     (equ.5) 

 
 The definite advantage of this geostatistical method over concurrent interpolation 
technique is that the estimation variance (equ.4) provides a measure of the reference accuracy 
which depends on the spatial structure of the variable to be estimated and the relative 
configuration of the network and the domain A of interest. 
 The availability of such metrics, lead us to consider the residuals (rather than the ratios 
for instance) between the estimated and reference values as the working variable of our 
empirical error model.  

),(),(),( *
, ki

ref
ATkiATkikiAT txRtxRtx     (equ.6) 

where k index a given integration domain of size A and i a time step of duration T 
 We define our empirical error model as:   

)( *
,

ref
kkki RR      (equ.7) 

where i, k index the time step and the mesh respectively. 
The scatter graphs of the radar QPEs as a function of the reference rainfall and the 

empirical errors ( ki, ) as a function of the radar QPE are presented in Figure 5 . 
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Figure 5: Scatter graphs of the evolution of the radar QPE versus reference rainfall (left) for the four 
events together with the empirical errors (residuals) as a function of  radar QPE  for the (100km2;1h) 

space-time scale (right); all the meshes and all the time steps are considered. 
 

 
 From Figure 5 it is clear that the variance of the error increases as radar QPE increases 
and that the error structure is different for each event. Note also the upper part above 1/1 line of 
the Delta versus radar QPE graphs appears truncated. This fact is due to the expression of Delta 

)( *
,

ref
kkki RR  : for given radar QPE value R*, the reference rainfall can take values 

between 0 and infinity and so Delta varies between –infinity )(  and R*. 
 In the context of this study, we therefore found important to account on the dependency 
of the residuals on the rain rate. For practical reasons (generation technique) we consider the 
dependency of Delta as a function of radar estimates.  Based on that, we establish the 
conditional distributions of the residuals as a function of radar QPE, for a given space-time 
scale (100km2;1h  here) using the GAMLSS framework (Stasinopoulos and Rigby, 2008). This 
semi – parametric model, consists of two components: a parametric probability density function 
(pdf) given each value of the explanatory variable and a non – parametric relationship between 
the pdf parameters over the domain of the explanatory variable. The conditional densities are 
assumed to have the same parametric form for all value of the explanatory variable (Delrieu et 
al, 2012). With the GAMLSS package, a wide range of two – parameters (Gaussian, t-family, 
p-exponential) and three – parameters (exponential-Gaussian, reverse Gumbel, gamma, log-
normal etc) continuous probabilities density functions are available. Moreover, a number of 
non-parametric fitting techniques (cubic, penalized splines, etc) for the second component of 
the model are offered.  Figure 6 displays the fittings obtained for three events (the fitting did 
not converge for the 2007 event), by grouping all the meshes (left column) and by segregating 
the meshes according to the range to the radar (center column: ranges greater than 60 km right 
column: ranges less than 60 km). 
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Figure 6: Scatter plot of the GAMLSS fits on the residuals ki,
  conditional on the radar QPEs for the 

main rain events and the (100 m²; 1 h) space-time scale. The quantiles of the Gaussian distributions are 
displayed together with the conditional mean (dark dotted line) 

 
 In some cases, we note there is a conditional bias, i.e. an overestimation of the residuals 
which tends to increase with the radar QPE, and may vary significantly according to the range 
from the radar. This dependency is also event dependent. We have considered various 
possibilities for the modeling of the residual mean. The linear regression provides us most of 
the time poor fits, and was varying significantly between the close and long ranges. Adapting 
polynomial models for the residual mean for the long and close ranges, was not very 
satisfactory due to the fact that those residual means are established for a series of meshes (not 
showed here for the sake of simplicity). According to that, we would have discontinuity, 
between the close and long range meshes and some problems to extrapolate the relationships.  
Finally, we choose two options for the mean modeling: 
 
 Conditioning 1: use the mean model obtained from the GAMLSS analysis for all the 

meshes 
 Conditioning 2: use of the regression between the residuals Delta and the radar 

estimates for each single mesh. Additionally, we forced the regression to pass by 0 in 
order to reduce the spread of the results for rain rates close to 0. 

The code of the generator is adjusted according to these conditionings as follow:  
 

][*)]()([)( '
,22

'
,11,

*
, nininini yRR    L  (equ.22) 

where, )( , Rki , )( , Rki  are the conditional mean and standard deviation  of the empirical 

error model,  )( ,ki  is the unconditional standard deviation of the empirical error model and 
][ '

,22
'

,11, nininiy   L is the unconditional generated perturbation field ni,  .   
 The evolution of the standard deviation of the conditional distribution of the error as a 
function of the radar QPE was found to be more or less stable between the events and the radar 
ranges. We have used the following expression for the first conditioning: 
 

12.0)( ,  RRki     (equ.8) 
 
 For the second conditioning, the standard deviation model parameters were slightly 
adapted fot the generated errors to match the observed ones. 
 
  

 
  Spatial and Temporal structure 
 
 In order to define the spatial structure of radar QPE uncertainties, we assume the 
residuals  to be distributed  according to usual probability distribution functions ( Log-normal, 
Gaussian etc), so that the spatial component of the error model may be defined by the mean, the 
variances and the covariance of the residuals. 
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 where k  index the mesh and iN  the  number of time steps. 
  We estimate the mean and the variance/covariance matrix between all meshes of the 
discretized watersheds for the four events, so as to have an approximation of the spatial 

structure of the residuals and to compute the uncertainties in our empirical error model.   is a 

vector that contains the mean value for each mesh k and for all time step i, while the mkC ,  is a 
matrix with values of the covariance between k,m meshes in its entries. 
 

),........,,( 1 uNmuku mmm   (equ.12)  

where Nm  is the number of meshes  
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Figure 7: Spatial structure of the empirical error model ki,
,   as a function of the distance between the 

meshes. 
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 Figure 7 displays the correlation coefficients as a function of the distance between the 
center of the meshes for the various events. For a distance of 20 km, the correlation lies 
between 0.5 and 0.9 indicating that the errors are significantly correlated in space. For distances 
of 40 to 60 km the correlation drops to values around zero and below. 
 For the temporal structure, the autocorrelation function in order 1 and 2 were calculated 
locally for each mesh using (13) and the variability of the temporal error structure for all the 
meshes, is presented in Figure 7. 
 

))((
1

),(,
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, kkjikki

N

iT
jk

T

N
C   


   (equ.13) 
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Figure 8: Temporal structure of the empirical ki, , for the four main rain events. The autocorrelation 
function for lag time 1 to 6 is presented with the dotted line and the mean value with the black solid line 

for each of the events  
.    
 
 From Figure 8, it can be obtained, that there are some significant correlation of order 1 
for the majority of the meshes and for all of the four events. The temporal correlation at lag 1 (1 
hour) is comprised between 0.2 and 0.6. However, for the 2002 event, there are two meshes, 
(mesh 37, mesh 38), with high correlation of order one (r1= 0.78, mesh2=0.8 respectively). For 
lag 2, the mean temporal correlation is about 0.2, indicating the rather weak temporal 
correlation of the errors for the considered space-time scale. 
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4. Ensemble Generation 
 

The main idea is to generate random Gaussian additive error fields, accounting for the 
empirical space-time structure identified in section 3, and then add them to the original radar 
QPE. Thus we would get a set of probabilistic radar QPE (PQPE) to be used as input to 
hydrological model to assess model uncertainties. The algorithms that were implemented in this 
study were proposed in a paper by Germann et al (2009). We have extended this approach by 
accounting for the dependency of the errors on the radar QPE evidenced in Section 3.  

 
 

niini R ,, F          (equ.14) 

 

where ni,F
  is vector of the resulting precipitation values for the N meshes for a given 

time step i and for an ensemble member n ; iR  is the vector of the original radar rainfall QPEs 

at time i while ni,  is the vector of the Gaussian perturbations for a given time step i, and 
ensemble member n.  

 The first term of (equ.14) presents the probabilistic precipitation components while the 

iR  is the deterministic radar field and the ni,   is the stochastic component. For a given domain 
A , usually a watershed, the probabilistic precipitation field, give us N realizations of rainfall 

for k number of meshes and time step i, while the stochastic component ni, is consistent with 
the space – time structure of radar uncertainties. The N realizations can be used as input to 
hydrologic model, yielding a distribution of response values, the spread of which presents the 
propagation of the radar precipitation error. 

The core of the ensemble generator relies on the establishment of the perturbation field. 

In order to have the space – time correlated perturbation field ni,  it is important to introduce a 
technique to produce these Gaussian fields. The most versatile technique is the LU 
decomposition on the symmetric positive definitive covariance matrix of the residuals 
(Germann et al 2009):  

 

                                                    TLLC    (equ.15) 

We obtain the perturbed vector ni,  by multiply a random Gaussian vector ni,y
 with the 

“square root” of the covariance matrix of the residuals. The decomposition obtained by the 
LU algorithm expresses the covariance matrix as the product of a lower and an upper triangular 

matrix. Thus, the resulting perturbation fields ni,  are spatial correlated Gaussian with pre-

defined covariances. The LU  decomposition offers full flexibility regarding space – time 
dependence of errors (Goovaerts, 1997).  

 
                         (equ.16) 

 
where i,n are  the time step and the ensemble member  respectively. 
As a next step, we use the )2(AR  filtering for each one of the discretized meshes of the 

generated random errors ni,  so that to impose the desired temporal structure. Utilize the 

nini y ,, L
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)2(AR model, we calculate the perturbation field for  a time step i and mesh k, by combining 

niy ,L  with the )2(AR filtered perturbation fields of the previous two time steps 1i and 2i . 

Two parameters   1a  , 2a   were used, obtained by the Yule – Walker equations (Priestley, 1981) 

together with the square root of the )2(AR variance rescaling factor U. It is important to utilize 

the rescaling factor U, since with the )2(AR model, the variance changes by a linear factor, 
depending on the model parameters a1, a2. The mean value of its mesh is added in the end of this 

procedure in order to correct the generated ni,  in terms of bias.   

           nininini aay ,2
'

2,1
'

1,,
'

  L
            (equ.17) 

 

      nini U ,
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,        (equ.18) 
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 In order to account for the dependency show in Section 3 and since the relationship 
described the sigma parameter is more or less constant, we use a linear relationship for the 

conditional standard deviation ( 12.0)( ,  RRki ) and we considered two possibilities for 
accounting for the conditional bias. The code of the generator was adjusted according to these 
two conditionings. 
  
1st Conditioning 
 
   The first conditioning is implemented to (100km2; 1h) space- time scale hydrological 
meshes and we utilize the conditional mean and the approximate conditional sigma parameter 
(equ.8) derived from all the meshes with the GAMLSS model. For the sake of simplicity we 

note the conditional, generated perturbation fields as
*

,ni .  

 It was estimated that the variability using the 1st Conditioning was mostly affected by 

the evolution of the )( , Rki parameter rather than the conditional mean. Therefore, for the 

2008 events, we adapt the conditional sigma so that to be closer to the empirical model ni, , 
while for the 29/10/2007 event, this 1st Conditioning was not implemented because the 
GAMLSS fit did not converge. Generally, it was estimated that using the global mean, could 

not account for producing the variability that we have in the observed ki,  (Figures 
9;10;11;12). 
 

 
 
 

Institutional Repository - Library & Information Centre - University of Thessaly
10/04/2024 01:45:45 EEST - 54.90.236.25



 17

 
2nd Conditioning 
 

 In the 2nd conditioning, we use the conditional mean specific to each mesh with 
the conditional sigma parameter obtained from the GAMLSS model. The conditional mean is 
estimated by fitting a linear regression to the errors versus the radar QPEs for each single mesh. 
We found useful to force the regression offset to 0 so as to reduce the spread of the values 
around zero and to be closer to the empirical model. It was found necessary to adapt the 
parameters of conditional standard deviation for the 19/10/2008 and 31/10/2008 events with the 

use of the )( , Rni model fitted from the GAMLSS approach.  For the 29/10/2007 event we 

used  RRni 2.0)( ,   and the study was focused on the Vidourle and Gardons watersheds. 
The results for the 1st and the 2nd conditionings as well as for the unconditioned cases 

for all the events are presented in presented in Figures 9-12. Considering the 2nd conditioning, 

we were able to generate conditioned error fields ni, , based on more realistic results compared 

to the empirical error model, by adapting the conditioned mean )( , Rki  and the sigma 

parameter )( , Rki . For the 08/09/2002 events the utilize of these parameters helped to 
produce the variability that we observe in the empirical error model even though there is an 
increase of the spread of the negative values. For the 29/10/2007 the variability from the 
empirical error model cannot be generated totally even if we adapt the conditional sigma 
parameter while for the 19/10/2008 and 31/10/2008 events there were some unrealistic values 
of radar errors above the (1,1) line. 
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Figure 9: Scatter plots of observed and simulated errors for the 08/09/2002 event as a function of the 
radar QPEs. The errors derived from the observations (up, left), the unconditioned generator (up, right) 

and the conditionings 1 (bottom, left) and 2 (bottom, right) are displayed. 
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Figure 10: Scatter plots of observed and simulated errors for the 29/10/2007 event as a function of the 

radar QPEs. The errors derived from the observations ( left), the unconditioned generator (right) and the 
conditioning 2 (right) are displayed. 
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Figure 11: Scatter plots of observed and simulated errors for the 19/10/2008 event as a function of the 
radar QPEs. The errors derived from the observations (up, left), the unconditioned generator (up, right) 

and the conditionings 1 (bottom, left) and 2 (bottom, right) are displayed. 
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Figure 12: Scatter plots of observed and simulated errors for the 31/10/2008 event as a function of the 
radar QPEs. The errors derived from the observations (up, left), the unconditioned generator (up, right) 

and the conditionings 1 (bottom, left) and 2 (bottom, right) are displayed. 
 

 
4.1. Impact of the conditionings on the temporal and spatial structure of the simulated 
errors 
 
 In order to be more accurate for the results, we obtained the influence of the 
conditionings on the space – time structure of the simulated errors versus the observed errors. 
The results of the temporal and spatial structure obtained for the 08/09/2002 event are showed 
in Figure 13; 14. 
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Figure 13: Spatial structure of the simulated errors,   as a function of the distance between the meshes; 
the spatial structure of the empirical error model is presented in the upper left graph while the spatial 

variability of the unconditioned, 1st conditioning, 2nd conditioning are showed in the upper right, down 
left and down right graphs respectively 

 
 
 From Figure 13 compared to Figure 7 it can be estimated, that still for 20km there is a 
spatial correlation of the errors between 0.5 – 0.9  both for the 1st and the 2nd conditioning, 
while for the unconditioned situation the spatial structure is altered on an important degree. 
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Figure 14: Temporal structure of the simulated errors, for the four main rain events. The autocorrelation 

function for lag time 1 to 6 is presented with the dotted line and the mean value with the black solid 
line; the temporal structure of the empirical error model is presented in the upper left graph while the 
temporal variability of the unconditioned, 1st conditioning, 2nd conditioning are showed in the upper 

right, down left and down right graphs respectively 
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.    
 From Figure 14 compared to Figure 8 , it can be obtained that there is a significant 
temporal correlation at 1h time step, while we can estimate that we do not change the temporal 
structure of the errors so much (unconditioned situation.). The temporal correlation ,drops to 
0.2 in the 2nd time step for the majority of the meshes . 
  
 
 
Examples of hyetographs 
 
 The generated Deltas for the four main rain events (08/09/202, 29/10/2007, 19/10/2008, 
31/10/2008) and for 100km2 meshes of each of the watersheds (Ardèche, Vidourle, Céze and 
Gardons) were simulated 50 times and the error was subtracted to the radar QPE (due to the 
definition of the errors (equ.7)), in order to obtain the probabilistic QPEs. We present some 
hyetographs obtained for the 08/09/2002 event:  the 50 simulations with the unconditioned 
situation, 1st and the 2nd conditionings compared to the radar estimates and reference time 
series are presented in Figures 13 and 14 for two meshes which exhibit contrasted behaviour. 
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Figure 15: Probabilistic QPE (PQPE) with the unconditioned situation (top right), 1st (bottom left) and 

the 2nd (bottom right) conditioning for given meshes for the 08/09/2002 event; the radar QPE, the 
reference rainfall and the 50 simulations are displayed on the graphs with the black, red, light blue lines 

respectively; the regression analysis of the errors as a function of the radar QPE for the given mesh 
(ρ=0.3) is also displayed (top left) 
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Figure 16: Probabilistic QPE (PQPE) with the unconditioned situation (top right), 1st (bottom left) and 

the 2nd (bottom right) conditioning for given meshes for the 08/09/2002 event; the radar QPE, the 
reference rainfall and the 50 simulations are displayed on the graphs with the black, red, light blue lines 

respectively; the regression analysis of the errors as a function of the radar QPE for the given mesh 
(ρ=0.94) is also displayed (top left) 

 
 
 

Table I: Statistical parameters for the validity of the results; the mean; correlation; standard deviation; 
Kriging estimation variance are displayed 

 Mesh7 Mesh10 
refM  12.5 7.47 
*M  13.14 15.50 

refMM *
 1.05 2.07 

),( *
k

ref
k RRCor  0.93 0.7 

2
kriging  0.08 0.5 

DeltaM  0.6 8.03 

Deltasd  5.53 11.3 

regression
lconditionaM 1  78.116.0)( *

,  RRkki  
regression

lconditionaM 2  RRkki 09.0)( *
,   RRkki 6.0)( *

,   
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 In Figure 15, the consistency of the radar QPE with respect to the reference rainfall is 

rather good with a bias of 05.1* refMM  and a correlation coefficient of 0.93. Note that the 
quality of the reference is good with a normalised Kriging estimation variance of 0.08. The 
unconditioned generation leads to realistic hyetographs with quite a uniform spread of the 
ensemble whatever the radar QPE. Conditioning 1, based on the correction of the conditional 
bias calculated over all the meshes, tends to under-estimate the PQPE compared to both the 
reference and the radar QPE; one may note that, as expected, the variability of the PQPE 
depends now on the radar QPE. Conditioning 2 utilizes the regression analysis of the errors as a 
function of the radar QPE: in that case the correlation is poor and therefore the conditional 
mean dependency on the radar QPE is low. The mean values of the unconditioned Deltas of the 
meshes7, mesh10, are estimated to be  of order 0.6, 8.03  while the standard deviation for the 
given meshes is equal to 5.53, 11.3 respectively. Concerning the conditional statistical 
parameters, are estimated to be for the meshes7, mesh10: conditional mean equal to 3.98 and 
5.36 and the standard deviation of order 6.98 and 7.48 respectively. We note that the bias 
correction is lower than for conditioning 1. 
 In Figure 16, the consistency of the radar QPE with respect to the reference rainfall is 

much lower compared to the previous case ( 07.2* refMM ; 7.0),( * k
ref
k RRCor ). The radar 

QPE strongly overestimates the rainfall compared with the reference time series. Note that the 
quality of the reference is not good with a normalised Kriging estimation variance of 0.5. As in 
Fig. 15, the unconditioned generation leads to realistic hyetographs with quite a uniform spread 
of the ensemble whatever the radar QPE. Conditioning 1, based on the correction of the 
conditional bias calculated over all the meshes, slighty reduced the bias of the PQPE with 
respect to the reference. Conditioning 2 utilizes the regression analysis of the errors as a 
function of the radar QPE: in that case the correlation is good and therefore the conditional 
mean dependency on the radar QPE is high. We note that, due to the accounting of the local 
conditional bias, the PQPE tend to present a very good agreement toward the reference 
hyetograph. A desirable evolution of the method would be to account for the quality of the 
reference rainfall to decide if such a bias correction is desirable or not. In the present case, due 
to the high Kriging estimation variance, it could be suggested to use Conditioning 1 for this 
specific mesh. 
 
 
 
 
5. Hydrological modeling 
 
 The topographic based hydrological model, Topmodel, presented by Beven & Kirby 
(1979), conceptualizes the soil water storage as a sequence of storages with different properties. 
This hydrologic model, predicts the catchment’s responses following one, or a series of rainfall 
events (Chairat et al, 1993). It constitutes one of the first models representing the lateral 
subsurface flow in the first meters of soil which leads to the generation of runoff on saturated 
areas of the catchments. Some points of a watershed do not have hydrodynamic behaviour 
(hydraulic transmissivity, hydraulic gradient etc.), allowed them to evacuate from the upstream 
the amount of water that reaches. These points become superficial saturated, since the received 
water runs mostly to the water system. Such hydrological processes have been proved to 
dominate in the genesis of flash floods in the region of Cèvennes - Vivairais (Lardet and Obled, 
1994, Saulnier and Datin, 2004). 
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 The version of Topmodel that was used was developed at LTHE (Saulnier et al. 1997; 
Saulnier and Datin, 2004). This version, called n-Topmodel is a distributed version where the 
watershed of interest is divided into hydrological meshes of about the same size (100 km² 
herein). For each mesh, four parameters are to be specified: 
□The surface hydraulic conductivity (K; m.s-1) 
□The exponential decay of conductivity with the depth (m (m)). 
□The water content of the layer of topsoil at the beginning of the event (SRMax (m)). 
□The rate of evapotranspiration losses (Inter (m.s-1)). 
 The spatial discretization of the basin is achieved through a mesh which, in a given 
region, to derive Digital Terrain Model (DTM) surfaces of irregularly shaped and size selected 
by the user (see Figure 2). The jagged edges of these surfaces meet and define the topography 
and hydrology of the mesh to the contours of zero flows. Modeling n-TOPMODEL comes from 
a spatialization of TOPMODEL on this mesh. 
 

 
Figure 17: Example of the discretization of the Ardèche watershed provided in to hydrological meshes 

100km2 

 
 Unfortunately, time was missing during the project to implement and finalize the 
hydrological modelling with the available PQPEs. 
 
 
 
6. Conclusions 
 
  
 This work, presents a probabilistic approach to represent the uncertainty in radar 
estimates by providing a statistical framework for producing an ensemble of precipitation fields  
The methodology addressed so as to provide a preliminary version of an error model for radar 
QPE in the context of the Cévennes–Vivairais Mediterranean Hydro-meteorological 
Observatory window (CVMHO) using radar and rain gauge datasets. This error model was 
designed with respect to the reference rainfall data from available rain gauge network by using 
the Block Kriging technique, while reference hydrological meshes were selected based on the 
Kriging estimation variance. The empirical errors, designed for four events, where it was 
estimated that the different error structure for each of the events and it was clear the increase of 
the variance of the errors. 
 On the context for dependency of the errors as a function of radar QPE, the conditional 
distribution of the errors obtained for all the 100km2; 1h hydrological meshes and according to 
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the range from the radar showed that, in some cases there is a conditional bias, meaning, an 
overestimation of the errors which tends to increase with the radar estimates. This dependency 
varies significantly between close and long ranges, while is also event dependent. For modeling 
the conditional mean of the error, several approaches was taken into account by using linear or 
polynomial models which led to no satisfactory results. Thus, regression analysis of the errors 
versus the radar estimates was conducted. In order to account on the conditional bias, two 
possibilities of conditioning were used.  
 The results confirmed that radar rainfall estimates have a complex error structure. Radar 
errors showed a temporal and a spatial structure which has to be taken into account for rain 
field simulation. From the generation of the PQPE, it was obtained that, when there is a good 
agreement between the radar estimates and reference rainfall but  poor correlation between the 
radar estimates and the errors, the 1st conditioning tends to improve in terms of bias but with a 
significant underestimation, while in the 2nd conditioning, the dependency of the conditional 
mean on the radar estimates is low. However, with good correlation between the errors and the 
radar estimates but without accounting of the accuracy of the reference, the 1st conditioning 
reduces in terms of bias, and in the 2nd conditioning  there is a good agreement of the spread of 
the ensemble around the radar estimates. 
 Considering the radar data processing and parameterization with the dependency of the 
error model on climatological context, some factors may have significant influence on the 
empirical results. These, include residual beam blockage effects, uncertainty in the Z-R 
relationship caused by variability of the drop-size distribution and erroneous rain gauge 
measurements remaining after quality control. 
 To sum up, concerning the results that were obtained through the generation of the QPE 
ensemble we are now confident in the calculations of the code. It would be desirable to account 
for the accuracy of the reference rainfall in conditioning 2.The study of the propagation of the 
precipitation error with the n-Topmodel codes remains to be undertaken, as well as a sensitivity 
study on the space-time scales considered.. 
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APPENDIX 
 

GENERATOR CODE 
 

GENERATION OF THE MULTI - GAUSSIAN PERTURBATION FIELD 
ns: Simulations 
nt: number of time – steps 
Nmesh: Dimension of the mesh 
D_i: Simulated Delta (German approach) 
D_cond: Simulated Delta under conditionings 
-------------------------------------- 
ns<-c(50) 
nt<-dim(res)[1] 
Nmesh<-dim(res)[2] 
mat_delta<-matrix(nrow=Nmesh, ncol=nt) 
mat_DELTA<-matrix(nrow=Nmesh, ncol=nt) 
mat_Yr_m<-matrix(nrow=Nmesh, ncol=nt) 
DELTA<-matrix(nrow=Nmesh, ncol=nt) 
D<-array(NA, c(nt, Nmesh, ns)) 
D_cond<-array(NA, c(nt, nmesh, ns)) 
 
for (i in 1:ns){ 
 for (j in 1:nt){  
  Yr_m<-rnorm(Nmesh,m=0,sd=1) 
  mat_delta[,j]<-as.vector(lower_m%*%Yr_m) 
 }  
 mat_DELTA[,1]<-mat_delta[,1] 
 mat_DELTA[,2]<-mat_delta[,2]-vec_a_1*mat_delta[,1] 
 for (t in 3:nt){ 
  mat_DELTA[,t]<-mat_delta[,t] - vec_a_1*mat_delta[,t-1] - vec_a_2*mat_delta[,t-2] 
 } 
 mean_m<-as.numeric(vec_mean_col) 
 DELTA<-vec_U * mat_DELTA 
 D_i<- mean_m + DELTA  
 D[,,i]<-D_i 
  
 D_con <- sd_con*t(DELTA) 
  D_condi<-m_cod + D_con 
  D_cond[,,i]<-D_condi 
    
 }  
 

GENERATION OF THE ENSEMBLE OF PROBABILISTIC PRECIPITATION 
 

R<- d     
F<-array(NA, c(nt, Nmesh, ns)) 
 for (i in 1:dim(D)[3]){ 
  mat_F_i<-(R - D[,,i]) 
  F[,,i]<-mat_F_i 
} 

ELIMINATION OF NEGATIVE VALUES 
ind_negative<-which(F <= 0) 
F[ind_negative]<-0 
F_2<-array(F, c(nt, Nmesh, ns)) 
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