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Objectives 

 

 The importance to study the calendering process lies to the fact of the high 

volume capacities and that the formed sheet can have very high quality. Thus, operating 

variables used in engineering calculations need to be evaluated beforehand with the most 

important being the maximum pressure that develops in the process. Pressure distribution 

is developed in the machine and cross–machine direction, primarily due to the rotational 

movement of the calenders. A lot of work has been carried out in the past on an effort to 

study the flow numerically using one–dimensional or two–dimensional models as well as 

experimentally. However, there are very few studies concerning the three–dimensional 

effects occurring during the physical process. These effects, which in the past were 

observed experimentally, are the pressure distribution in the cross–machine direction 

which is described by a quasi–parabolic pressure profile, the spiraling flow pattern of the 

material in the melt bank and the spreading of the sheet as it passes through the calenders. 

The scope and the contribution of the present work is to employ the Generalized 

Newtonian Fluid model and solve the fully 3D Navier–Stokes equations so that to predict 

the three–dimensional effects as stated above. This was carried out by making several 

assumptions and approximations concerning the rheological behavior of the material as 

well as the computational flow domain. All the numerical experiments were carried out 

using the Open Source Field Operation and Manipulation (OpenFOAM) software. 
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THESIS OUTLINE 

 

In Chapter 1 a brief overview concerning the calendering process is presented, 

explaining the way polymeric melts form thin sheets by the process. Chapter 2 presents 

the mathematical formulation used to describe the process by means of the Lubrication 

Approximation Theory (LAT) and how the equations under the LAT can be derived from 

the well-known Navier–Stokes equations making assumptions concerning the physical 

behavior of polymer melts. Under certain flow conditions and geometries the Navier–

Stokes can be simplified. The formulation is done for Newtonian and non–Newtonian 

fluids. Chapter 3 presents a literature survey concerning previous studies on the process, 

with the pressure distribution in the machine direction and the pattern of the flow being 

the most important aspects studied. The survey covers one-dimensional and two-

dimensional analyses of the calendering process. In Chapter 4, the Finite Volume Method 

that OpenFOAM employs, is briefly discussed. It is presented the type of equations the 

software solves and how these equations were solved for the study of the calendering. In 

Chapter 5, the analytical solution obtained from the Lubrication Approximation Theory is 

compared against the numerical solution of the Navier–Stokes equations, using the open 

source software OpenFOAM. We consider both, Newtonian and Generalized–Newtonian 

Fluids utilizing the power–law and Carreau viscosity models. The dimensions of the 

calendering apparatus as well as the rheological parameters of the fluids were obtained 

from the literature and represent actual industrial equipment and real materials. The 

polymeric material was Poly–VinylChloride (PVC). Finally, in Chapter 6, we focus on 

the three-dimensional flow features of the process. There is only a limited amount of 

published work concerning 3D calendering and this is presented and discussed here, in 

light of our own 3D computational results for Newtonian and non–Newtonian fluids. 
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Chapter 1 

Introduction 

 

 The term “calender” is derived from the Greek word Κύλινδρος (cylinder) and 

according to Merriam–Webster’s International Dictionary, it means “to press (as cloth, 

rubber or paper) between rollers or plates in order to smooth and glaze or to thin into 

sheets”. Calendering is the process in which molten material is dragged through the 

narrow region between two rotating (counter rotating or co–rotating) heated rolls in such 

a way as to produce a film or sheet. Figure 1 shows a schematic representation of the 

calendering process. It is observed that due to the reduced area, a melt bank is created 

before the region where the distance between the rollers is the smallest (the nip region). 

In this melt bank, a very interesting flow pattern develops with multiple recirculation 

regions (this is shown later on the thesis). The number of rolls of a calendering line is 

determined primarily by the nature of the material processed as well as the desired 

product. For example, rubber can be processed and calendered on a two–roll calendar, 

with four roll calenders generally used for double coating of substrates (Figure 1.2.a). 

However, the surface requirements for good to excellent quality of calendered 

thermoplastic polymer require four–roll calenders as shown at Figures 1.2.b and 1.2.c 

which are the standard calender configurations typically called “inverted L” or “Z” 

configurations. Calender sizes range up to 900 mm in diameter and 2500 mm wide, with 

polymer throughputs up to 4000 kg/h. The surface temperature of the rollers is carefully 

controlled by using drilled rolls (i.e. axially drilled holes all around the periphery) in 

which a temperature – controlling liquid is circulated [1,2,3]. 
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Figure 1.1. Sketch showing the calendering process between two counter–rotating rolls [3].  

 

In an analysis of the calendering process one seeks the relationships among 

performance variables, such as the sheet thickness as well as design and operational 

variables, such as roll diameter and the speed of the rollers. Also, the effect of the 

different rheological parameters on these relationships is sought. Calenders may also be 

used for the production of a certain “finish” on a surface, either a degree of “gloss” or 

smoothness which might be required for a desired use, or even produce a sheet with 

intentional degree of roughness or pattern. Finish is a result of interaction between the 

fluid and the surface of the rollers in the region where the calendered sheet separates 

from the rollers [1].  

 

 

Figure 1.2. (a) A four–roll, inclined “Z” calender for double casting of tire cord. (b) A four–roll, inverted 

“L” calender. (c) A four – roll “Z” calender [2].  
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The calendering process, is commonly used for shaping high melt viscosity 

thermoplastic sheets and is particularly suitable for polymers susceptible to thermal 

degradation or containing substantial amounts of solid additives. This is due to the fact 

that the calender can convey large rates of melt with a small mechanical energy input (in 

comparison to a single–screw extruder for example). 

 

 A very important aspect in the calendering process is the thickness uniformity of 

the produced sheet in both the machine and cross – machine direction. Variations in gap 

size due to the dimensions of the roll, thermal effects, and roll distortions due to high 

pressures developing in the gap, will result in product nonuniformity in the cross–

machine direction. Eccentricity of the roll with respect to the roll shaft, as well as roll 

vibration and feed uniformity, must be tightly controlled to avoid non - uniformity in the 

machine direction. A uniform empty gap size will be distorted in operation because of 

hydrodynamic forces, developed in the nip region, which deflect the rolls. From such a 

condition, the resulting product will be thick in the middle and thin at the edges. 

 

 Calendering lines are very expensive in terms of capital investment in machinery. 

Film and sheet extrusion are competitive processes because the capital investment for the 

extruder itself is only a fraction of the cost of a calender. However, the high quality and 

volume capabilities of calendering lines make them advantageous for many types of 

products, especially for temperature sensitive materials. Polyvinylchloride (PVC) is the 

major polymer that is calendered.  

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:45:25 EEST - 18.219.73.110



 

 

4 

 

 

 

Chapter 2 

Mathematical Formulation of Calendering 

2.1 General Considerations 

 Polymer melts flow at very low Reynolds numbers (e.g. Re = 10
-2

–10
-4

) and the 

creeping flow approximation is applicable, in which, the intertial forces are very small 

compared to the viscous forces and the flow is steady in time. Thus, the conservation 

equations can be simplified into the following 

 

  0 U                                                      (2.1) 

 p0                                                   (2.2) 

  UUU  : TkTCp                             (2.3) 

 

where ρ is the density, U = U(ux,uy,uz) the velocity vector, p the pressure,   the stress 

tensor, Cp specific heat, T temperature and k thermal conductivity. The last commonly 

used set of approximations in liquid flow (isothermal, as well as nonisothermal) and in 

conductive heat transfer, is to treat k, Cp, and ρ as constant quantities, independent of T 

and p. In polymer processing, where both heat transfer and flow take place, typical 

pressure variations may reach up to 40 MPa for most extrusion processes, such as flat die 

extrusion and this suggests density and viscosity changes. While the effect of pressure in 

melt density is small (perhaps 5% under the most severe extrusion conditions) the effect 

on viscosity is larger. Cogswell [4] suggests as a very rough approximation that 10 MPa 

of pressure have as much effect as a reduction of 5
o
C of temperature. While, the viscosity 
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dependence on temperature is nearly always taken into consideration the author is not 

aware of any serious attempts to consider pressure dependence of viscosity in the 

extrusion and the calendering process. For those reasons, in the presentation below the 

incompressibility assumption will be used and the viscosity will be a function of shear 

rate but not of pressure. In the Generalized Newtonian Fluid (GNF) model, which will be 

presented later on the present study, the viscosity is always a function of temperature, 

usually through an exponential equation. However, in the present study any thermal 

effects of the process were neglected, and it was decided that the viscosity will be only a 

function of the shear rate. Thus, Eq. 2.1, 2.2 and 2.3 can be written in the following form 

 

0 U                                                        (2.4) 

 p0                                                    (2.5) 

UU  :2  TkTCp                                          (2.6) 

 

Moreover, assuming that the fluid does not spread as it enters the gap between the rolls, 

we may write Eq. 2.4, 2.5 and 2.6 in two dimensions, where x is the direction of the flow 

and y perpendicular to roll axis (thus neglecting phenomena in the direction of the 

cylinder axis), as 

 

0









y

u

x

u yx                                                     (2.7) 

yxx

p xyxx

















0                                               (2.8) 

yxy

p yyyx

















0                                               (2.9) 
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





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


2

2

2

2

      (2.10) 
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Furthermore, it can be assumed that the most important effect in the calendering process, 

namely the build-up of pressure and the orientation of the polymeric molecules, occur in 

the region of the minimal roll separation, which is called nip region.  

 

 
Figure 2.1. Schematic representation for definition of the calendering flow analysis with the Lubrication 

Approximation Theory. 

 

In that region and extending to either side (in the ±x direction) by a distance of the order 

of xf as shown in Figure 2.1, the roll surfaces are nearly parallel if, as is usually the case 

Ho << R. For that reason, it is reasonable to assume that the flow in the gap will be nearly 

parallel so that the key assumptions of the Lubrication Approximation Theory (LAT) may 

be applied 

 

 yxuuuu
yx

xxxy ,,, 








    and    )(xpp   

 

thus we have  

 

0









y

u

x

u yx                                                   (2.11) 

centerline 
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ydx

dp xy







0                                                  (2.12) 

y

u

y

T
k

x

T
uC x

xyxp















2

2

                                        (2.13) 

 

The process of transforming problems from Eq. 2.8 and 2.9 into Eq. 2.12 is often referred 

to as Lubrication Approximation. The reference to lubrication comes from the fact that 

lubrication problems themselves typically involve a geometry such that Eq. 2.12 is valid. 

The continuity equation (Eq. 2.11) may be replaced by the integral form 

 



)(

0

2

xh

xdyuQ                                                     (2.14)  

 

where Q is the volumetric flow rate.  

 

For the above equations to be solved a constitutive equation that relates stress to 

the rate of strain is also needed. Constitutive equations are relations between stresses and 

strains (deformations) and are solved together along with the continuity and momentum 

equations. In its simplest form (simple shear flow), the Newtonian equation is a linear 

relation between the shear stress and the shear rate 

 

dy

dux                                                       (2.15) 

 

where   is the shear rate. This expression for   is valid for simple shear flows between 

two flat plates for instance, and it is directly applicable to unidirectional flows. In 

polymer processing, however, most interesting flow problems require two– or three– 

dimensional analyses (like the present study), of creeping (low Reynolds, Re<<1) flows 

and the shear rate is expressed in a tensor form that will be subsequently presented.
  

The stress tensor  , in Eq. 2.5 is a (second order) tensor as shown below
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

















zzzyzx

yzyyyx

xzxyxx


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

                                                   (2.16) 

  

To generalize the Newtonian equation in three dimensions we must propose a 

linear relation between stress components and rate of strain components. The rate of 

strain tensor is the following 

  

 




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u
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1

2

1
uu                                      (2.17) 

 

Where the components of the velocity gradient tensor, u  are the following 

 

j

i
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x

u
u




 ,                                                     (2.18) 
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where  
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and similarly the other components can be written out explicitly in terms of the 

components in the x, y and z directions. The Newtonian constitutive equation can be 

generalized in the form  

 






 D2                                                        (2.21) 

 

and this means that   

 

 
x

u
D x

xxxx



  22 ,   

















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x

u

y

u
D

yx
xyxy  2

 

etc.                 (2.22) 

 

where in the above equations η is the fluid viscosity, which, under the assumption of a 

Newtonian fluid is constant, independent on both, shear rate and temperature. To account 

for the shear–thinning behavior of polymer melts, a number of models have been 

proposed in the literature. These include the power–law, Carreau–Yasuda (the model will 

be presented further on the present study) and Cross models, are generalized by replacing 

  by the function (IID) which is the second invariant of the strain rate tensor D2 . Thus 

we have the power–law equation which can be written as  

 

  1


n
Tm                                                       (2.23) 

 

where η is the viscosity, m is the consistency index (the larger the m the more viscous the 

polymer melt), n is the power–law index, expressing the strength of the influence of shear 

rate on viscosity (for n=1 we have Newtonian behavior) and  is the magnitude of the 

rate of strain tensor and is given by the following equation 

 

DΙΙ
2

1
                                                         (2.24) 
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A severe limitation of the power-law model and the source of large errors when 

used in 2D or 3D flows is that at very low shear rates, it predicts abnormally large 

viscosities and thus flow fields which can be severely unrealistic. 

  

Other viscosity models which are widely used and do not share the above 

limitation, are the Carreau – Yasuda and Cross models. The Carreau – Yasuda model is 

the following 

 

                           
a

a

n









1

1  
                                                 (2.25) 

 

For α=2 the model is simply called Carreau. The Cross model is the following 

 

                         
  n




1
1 


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
                                                   (2.26) 

 

where η0 is the zero–shear rate viscosity. The parameter λ is a constant with units of time. 

In the Carreau–Yasuda model, λ determines the shear rate at which a transition occurs 

from the zero–shear rate plateau to the shear thinning portion of the viscosity versus shear 

rate curve. In the present study, except the Newtonian model, power–law and Carreau 

viscosity models will be used. 

 

 In the power–law model the consistency index m (i.e. the value of the viscosity at 

shear rate 11  s ) is a function of temperature in the same way as zero–shear viscosity. 

The power–law n parameter is usually not a function of temperature. The viscosity 

dependence of temperature is usually expressed either by an Arrhenius expression, 

mostly used in polymer physics and rheology 
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






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
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or simple exponential, mostly used in equipment design 

 

             ]exp[ .refref TTb 
                                           (2.28)

 

 

where ηref. is a viscosity measured at a reference temperature, E is the activation energy 

and R is the gas constant. The temperature sensitivity coefficient b is usually between 

0.01 and 0.1 
o
C

-1
 for most commercial polymers. For HDPE (linear polymer) the value of 

b is roughly 0.01, while for LDPE (branched) it may reach 0.03. 

2.2 Lubrication Approximation with the Newtonian Model 

 For a Newtonian fluid the stress is related to the rate of strain in the following 

way 

 

y

ux
xy




                                                         (2.29)  

 

where μ is the Newtonian viscosity. The momentum equation with the Lubrication 

Approximation analysis for the rectangular coordinate system shown at Figure 2.1 is 

 

2

2

y

u

x

p x









                                                     (2.30) 

 

The above equation can be solved with the no–slip and symmetry boundary conditions  

 

Uux   on  xhy       and     0




y

ux
 on 0y                        (2.31) 

 

where U is the velocity of the calenders, and they give  
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 
dx

dpxhy
Uux

2

22 
                                                (2.32) 

 

 Examining h(x), which is the y distance from the centerline, it is easy to verify the 

change of that distance with respect to the position x along the centerline by the following 

expression 

 

    2122 xRRHxh o                                            (2.33) 

 

However, in order to simplify the analysis the above equation can be expressed with a 

remarkable degree of accuracy by a second order polynomial since it is more likely to 

confine the analysis to values that x<<R. Thus Eq. 2.33 can be approximated as 

 

  











RH

x
Hxh

o2
1

2

                                              (2.34) 

 

The above equation actually treats the surfaces of the calenders as parabolic. It is 

convenient now to define a set of dimensionless variables as below 

 

oRH

x
x

2
'

  oH

y
y '

 

      
U

u
u x

x '

              U

pH
p o


'

 

 

Then, we can find an expression for the pressure gradient from the integrated form of the 

continuity equation (Eq. 2.14) like below 

 

 
 









  dx

dpxh
UxhdyuQ

xh

x
3

22
2)(

0

                                  (2.35)  
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Then the equation above can be solved for dp/dx and find in dimensionless form 

 

 32

22

'1

'18

'

'

x

x

H

R

dx

dp

o 





                                             (2.36)  

 

where λ is a dimensionless parameter  

 

1
)(2 

oH

xH
                                                      (2.37)  

 

From a physical point of view, the effects occurring at the detachment point (i.e. at y=Hf 

and x=xf), will exert a strong influence on the overall behavior of the process. Eq. 2.36 

gives zero pressure gradient at 'x . The distance 'x  represents the point where the 

sheet leaves the rolls (the point of detachment) and 'x  is the point of maximum 

pressure. The point of detachment is obtained if we ignore the forces acting at the 

separation boundary and then we expect the stress just inside the fluid to be the same as 

the ambient pressure. It is also assumed that right at separation, the profile is flat and the 

viscous stresses vanish at that point. The flat profile corresponds to 0 yux
 and 

0
22  yux

. For those reasons the boundary condition for the pressure at the 

detachment point is the following  

 

0'p   at   'x                                                 (2.38)  

 

Eq. 2.36 may be integrated with respect to 'x  and if the boundary condition of Eq. 2.38 is 

imposed, then the solution for  '' xp  is found to be the following 

 

 
 

  




















  







2

2
112

22

222

1

31
tan'tan31'

'1

5131'

32

9
' xx

x

x

H

R
p

o

               (2.39)  
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Figure 2.2, shows qualitatively the shape of the pressure distribution along the centerline. 

The maximum pressure occurs just upstream, at distance 'x  from the nip region and 

 

 
Figure 2.2. Schematic representation of the pressure distribution between the calenders as sketched by 

Middleman [1]. 

 

has the value of  

 

 

oH

RC
p

22

3
'max


                                                (2.40)  

 

where  

 

    



 12

2

2

tan31
1

31 



C                                      (2.41)  

 

and becomes zero at 'x
 
where the polymer detaches from the calenders. At that point 

the pressure gradient vanishes. There is also another value of 'x  at which the pressure 

gradient vanishes and is seen to be at 'x .
 
The pressure there is obtained if we set

'x  in Eq. 2.39 from which it is obtained 

 

    




















  






 12

2

2
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2

31
1

31
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9
'

oH

R
xp                  (2.42) 
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The most reasonable assumption to be made here is  

 

  0' xp                                                   (2.43) 

 

from which is followed that the dimensionless parameter λ has a finite value, namely 

 

475.0o                                                        (2.44) 

 

and substituting that value in Eq. 2.43 then it can be seen that 

 

226.11
2
 

o

f

H

H
                                              (2.45) 

 

and that the sheet thickness depends only on Ho. At that point it is noted that λο is the 

dimensionless leave–off distance when Eq. 2.43 is imposed. Thus, using the Lubrication 

Approximation Theory the final sheet thickness can be evaluated by measuring the 

distance Ho of the calenders at the nip region. The velocity and the pressure profiles can 

be derived with the assumption of infinite reservoir far upstream behind the nip region.  

 

 
Figure 2.3. Recirculation flow pattern in the nip region. In the schematic only the half–region is shown 

from the top roller to the centerline [1]. 

 

Also the velocity profile can be easily obtained from Eq. 2.32 with the help of Eq. 2.36 

and can be expressed as 
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  
 2

222

'1

''1

2

3
1

x

xy
ux







                                              (2.46) 

 

The velocity distribution across the gap through the calenders can be seen at Figure 2.3. 

Because of the pressure build-up at the nip region, there is a backflow component for 

'x  which is superimposed onto the drag flow component. Thus, near the entrance of 

the region between the calenders a recirculatory flow pattern develops. More on this topic 

will be discussed in a subsequent chapter. 

2.3 Lubrication Approximation with the Power–Law Model 

 For the power–law viscosity model, the derivation of the pressure solution 

according to the LAT proceeds in a manner similar to that outlined earlier for the 

Newtonian fluid. For a power–law fluid, the shear stress τxy can be expressed in the 

following simple form 

 

y

u

y

u
m x

n

x
xy










1

                                                    (2.47) 

 

where the absolute value sign on the velocity gradient term avoids the problem of taking 

a fractional root of a negative number.  

 

From the Lubrication Approximation Theory solution for the Newtonian model we 

anticipate two flow regions, a region where the pressure gradient is positive   'x  

and a region where the pressure gradient is negative  'x . Thus, integrating Eq. 

2.12 by means of Eq. 2.47 separately for each region we have  

 

  
















  n

n
n

n
n

x xhy
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dp

mq
Uu 11

1

11
                                    (2.48) 
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Introducing either of the above equations into the integrated equation of the conservation 

of mass (Eq. 2.14) and then solving for the pressure gradient, we have  

 

 

  122

1
2222

'1

''212

'

'














 


n

n

o

n

x

xx

H

R

n

n

dx

dp 
                              (2.49)  

 

where the dimensionless pressure is the following 

 

n

o

U

H

m

p
p 








'                                                         (2.50)  

 

This equation is valid for both flow regions i.e. for where the pressure gradient is positive 

and for where the pressure gradient is negative. The pressure distribution is obtained by 

integration of Eq. 2.49, with the result 
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






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

 



                              (2.51)  

 

The computation of the integral in Eq. 2.51 must be performed numerically and the 

boundary condition   0'' xp  has been used.  

 

 It is simpler, computationally, to integrate Eq. 2.51 from λ (where 0'p ) to 'x  

with the result 
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
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

 
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                              (2.52)  

 

Then, the maximum pressure occurs at 'x  , so we may write 
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The dimensionless parameter λ can be obtained then from Eq. 2.51 taking into account 

the boundary condition which is described by Eq. 2.43. Thus λο is found from the 

following equation 

 

 
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dx
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n

  








  
                                        (2.54) 

 

Note again here, that the notation λο is used to refer to that value of λ corresponding to the 

entrance condition   0' xp . Then it can be calculated based on the dependence to 

the power–law index n as shown at Figure 2.4, where it is apparent that the effect of non–

Newtonian behavior is to increase the sheet thickness. 

 

 
Figure 2.4. Thickness of the calendered sheet, in terms of λο or H/Ho, as a function of the power–law index 

n  [1]. 

 

Once λο is determined from n, the maximum pressure may be found by the 

following equation 
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Chapter 3 

Literature Survey of Calendering 

 A description of the calendering process as well as the hydrodynamic behavior of 

the fluid has been extensively studied and can be found in the literature. The earliest 

reported study concerning the calendering process was performed by Gaskell [5]. The 

analysis was based on the assumption that the diameter of the rolls is large enough 

compared to the gap between the calenders, thus approximating the flow as one 

dimensional. The developed analysis by Gaskell employed the flow of Newtonian fluids 

as well as Bingham plastic fluids.  

 

Middleman [1] and McKelvey [6] summarized previous works on calendering and 

described a model for the calendering of Newtonian and power–law fluids. In his model 

they treated the flow with the Lubrication Approximation Theory simplifying the Navier–

Stokes equations. By this, the analysis was restricted in unidirectional flow ignoring any 

fluid flow in the cross–machine direction (this direction is the same with the direction of 

the symmetry axis of the calenders). Although, such an approximation seems rational and 

holds for processes where the width of the sheet is very large, it is far from reality when 

the sheet is narrow. A theoretical approach on studying the calendering of power–law 

fluids was also showed by Brazinsky et al [7].  

 

Alston et al [8] developed a one dimensional model to study the calendering 

process of non–Newtonian fluids which are described by a hyperbolic tangent model, 

they called it tanh model, exhibiting Newtonian behavior at high and low shear rates and 

a shear–thinning behavior at several intermediate shear rates. The authors also suggested 
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that extension of their work is the solution of a two–dimensional flow between the 

calenders.  

 

Kiparissides and Vlachopoulos [9] studied symmetric and asymmetric calendering 

of Newtonian and non–Newtonian fluids numerically. In their model they simplified the 

Navier–Stokes equations by the Lubrication Approximation Theory and the resulting 

equations were solved by the finite element method. The pressure distribution along the 

centerline for a Newtonian fluid showed very good agreement at lower values of λο while 

at higher values there was a substantial deviation due to the coarse mesh they used 

consisting of long and narrow elements. The power–law viscosity model they also used in 

their analysis, produced results with the maximum pressure being substantially higher for 

Newtonian fluids than the non–Newtonian ones and the asymmetry (in calenders radii 

and speed) did not influence the results for the Newtonian fluid, but reduces the 

maximum pressures of non–Newtonian fluids as shown at Figure 3.1. Moreover, the 

same authors [10], used a finite–differences non–isothermal model to study the 

temperature distribution in the calendering process due to viscous dissipation phenomena, 

reporting two maxima of the temperature near the surfaces of the calenders caused by the 

large amount of shear. 

 

 
Figure 3.1. Pressure profiles along the centerline for calendering of a Power – Law fluid with n=0.25. The 

calenders (R=100 mm, Ho=0.1 mm) are rotating at different velocities [9].   
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Furthermore, Agassant [11,12], studied the flow between the calenders 

theoretically using a two–dimensional Finite Elements method, for rigid PVC, and also 

carried out experiments concerning the formed melt bank. In the computational method 

used, the streamlines in the calendering melt bank where calculated and the pressure 

distribution, in good agreement with the experiment, using the Lubrication 

Approximation. The numerical results, concerning the streamlines, are shown at Figure 

3.2 in which there are two recirculation patterns. At Figure 3.3 is shown the flow pattern 

in the calender melt bank as observed experimentally with a huge vortex covering a large 

portion in the melt bank, while two smaller ones develop near the entering sheet and the 

nip region. It was also pointed out that when the calendering process is unstable (too 

large melt bank or too high output rate) the bank as well as the recirculating flow patterns 

flow in the third direction, and a spiral flow occurs. The spiral flow in the third direction 

and the existence of three vortices was firtsly observed by Unkrüer [13] and more results 

by his study will appear further on in the present thesis.  

 

 

Figure 3.2. Numerically calculated streamlines in the melt bank [11, 12]. 

 

 

 

Figure 3.3. Experimental flow pattern in the melt bank of calendered PVC [11, 12]. 
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Vlachopoulos and Hrymak [14] studied on a theoretical and experimental 

framework calendering of rigid PVC with an isothermal power–law model. The 

Lubrication Approximation method of solution with no–slip gave significantly higher 

pressure distribution in the nip region than the experiment. However, the experimental 

pressure was measured 80 mm from the center without reporting which was the 

experimental maximum pressure at the center. The Lubrication Approximation with slip 

predicted lower maximum pressure than the analysis with the no–slip approximation. 

 

 Moreover, Mitsoulis et al. [15,16] performed a two–dimensional, non–isothermal 

analysis with a purely viscous model without using the Lubrication Approximation 

Theory  for Newtonian and power–law fluids (rigid PVC with data from Vlachopoulos et 

al [14]) by means of the Finite Elements method. In the analysis they captured the two 

recirculation flow patterns as it can be seen at Figure 3.4 and the temperature distribution 

for the region between the calenders including the melt bank as shown at Figure 3.5. 

Lubrication Approximation cannot predict the asymmetric recirculation patterns in the 

melt bank. The analysis also predicts the pressure distribution along the centerline. The 

numerical scheme used gave reasonable predictions for the pressure distribution 

especially when slip is included.  

 

 
Figure 3.4. Calculated streamlines for the calendering of rigid PVC with data obtained from Vlachopoulos 

and Hrymak [14], indicating two recirculation regions [15,16].  
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Figure 3.5. Calculated isotherms for the calendering process of rigid PVC [15,16]. 

 

More recent studies were carried out by Sofou and Mitsoulis [17, 18] for the 

calendering of viscoplastic and pseudoplastic materials using the Lubrication 

Approximation with no–slip and slip at the calenders surfaces but the results were of little 

importance. 

 

Moreover, concerning the processing of carbon nanotubes with calendering a 

couple of studies are presented obtained from the literature [19, 20]. Kovacs et al. [19] 

studied the conductivity of Multi–Wall Carbon Nanotubes (MWCNT) by the help of a 

dissolver disk or additionally with a three roll calender. Specifically it was concluded that 

nanotube agglomerates were efficiently separated and dispersed through the calendering 

process due to the high shear forces they undergo in the nip region of the calender but 

this is not favourable for electrical conductivity applications. It was also pointed out that 

the flow forces exerted on the nanotubes caused attrition with a reduction of their aspect 

ratio from 1000 to 60. Moreover, Seyhan et al. [20] made a study which exhibits that a 

three–roll–milling process (a process which is very similar to calendering) is sufficient 

for the dispersion of carbon nanotubes in a thermoset polyester resin than other processes 

such as direct mixing.   

 

 In all the studies presented above, the calendering process was studied using two–

dimensional numerical schemes (mostly Finite Elements Method) or one–dimensional 
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models such as the Lubrication Approximation. Of course, such approximations, give 

reasonable results concerning the pressure distribution along the centreline using no – slip 

or even slip assumptions at the calender surfaces. However, these studies neglect any 3D 

effects that take place, such as the spreading of the sheet from the entrance to the exit or 

the pressure distribution in the cross – machine direction as observed by Unkrüer [13]. 

The only known 3D study using numerical methods is by Luther and Mewes [21] who 

studied 3D effects in the melt bank when calendering non–Newtonian fluids. An 

extensive experimental analysis, as stated above, was carried out by Unkrüer [13]. More 

on this matter in calendering will be discussed further on in the present thesis. 
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Chapter 4 

Finite Volume Method 

Introduction 

For all of the calculations at the present study the OpenFOAM (Open Source Field 

Operation and Manipulation) package is used which employs the Finite Volume Method 

(FVM) which subdivides the flow domain into a finite number of smaller control 

volumes. The transport equations are then integrated over each of these control volumes 

by approximating the variation of flow properties between mesh points with differencing 

schemes. The solver used in the present work is simpleFoam which is a steady – state 

incompressible solver that uses the FVM to simulate the flow of Newtonian and non – 

Newtonian fluids with the SIMPLE algorithm. The SIMPLE acronym stands for Semi – 

Implicit Method for Pressure Linked Equations and it was adopted by Patankar and 

Spalding [22] and it is actually a guess – and – correct procedure for the calculation of 

pressure. This section gives only a brief overview on the FVM [23,24], for a complete 

discussion on the FVM the reader is referred to An Introduction to Computational Fluid 

Dynamics by Versteeg and Malalasekera [25]. 

4.1 Discretisation of Continuous Operations 

 A computer can only process discrete quantities and therefore continuous 

quantities like space and time need to be discretised before processed. There are two 

main distinctive discretisation procedures that must be made in order to obtain the 

solution of a flow problem. These procedures are: 
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Spatial discretisation: Discretisation of the solution domain produces a computational 

mesh on which the governing equations of the flow are subsequently solved. The 

procedure can be split into two parts, discretisation of space and time. The discretisation 

of space for the Finite Volume Method used in this study requires a subdivision of the 

flow domain into control volumes (CV) or cells which do not overlap and completely fill 

the computational domain. It follows naturally that the boundary of the flow domain is 

decomposed into faces (f ) connected to the cell next to it. The cell connected from the 

lower side of the face is called “owner” (P) and the cell connected from the higher side of 

the face is called “neighbor” (N) as shown at Figure 4.1. Generally, variables are stored at 

the cell centroids although they may be stored on faces or vertices. A cell is bounded by a 

set of flat faces with no limitation on the number of faces or their alignment, which can 

be called arbitrarily unstructured. The capability of OpenFOAM to discretise with 

arbitrary control volumes and produce unstructured meshes gives considerable freedom 

in mesh generation and appears to be useful in meshing complex geometrical 

configurations in three spatial dimensions.   

 

 
Figure 4.1. Arbitrary control volume [24]. (P) refers to the “owner” cell, (N) refers to the “neighbor” cell, 

(f) denotes the shaded area which is the face and (S) is the face area vector. 

 

Transport equations discretisation: The partial differential equations that are 

appropriate for certain cases must be discretised in order to be processed. OpenFOAM 

solves certain fields, like pressure and velocity, through a translation from the partial 

differential equations and the computational flow domain into a set of algebraic 

expressions. Specifically, the simpleFoam solver implements the Navier–Stokes 
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equations and supports the option to choose between turbulent or laminar flow. Since 

polymer melts are characterized by very low Reynolds numbers (i.e. 10
-2

 – 10
-4

) their 

flow behavior is characterized as creeping and laminar. This was presented in a previous 

chapter. For that reason, it was chosen the option of laminar flow for the solver. 

4.2 Governing and Constitutive Equations of the Solver 

 Fluid flow, in general, is mathematically described by the conservation of mass, 

momentum and energy. The simpleFoam solver, solves the equations presented below. 

These equations are the conservation of mass in a fully three dimensional form and the 

fully three–dimensional Navier–Stokes equation along with a constitutive equation that 

relates the stresses with the rates of strain. The study of any thermal effects and 

temperature distribution that take place in the calendering process is out of the scope of 

the present thesis, thus the energy equation was no solved. The general form of a 

conservation equation for a flow quantity   if the flow is in steady state, is: 

 

 S )()( U                                         (4.1) 

 

where ρ is the density, U= U(ux,uy,uz) is the velocity, is the diffusivity and S  is a 

source term. The transport equation for the conservation of mass, or continuity equation, 

is derived by setting 1  in Eq. 4.1 and not having any mass source terms. This 

subsequently leads to the following equation if incompressibility is taken into account 

 

0 U                                                       (4.2) 

 

The fully three – dimensional Navier – Stokes equation, neglecting any 

gravitational effects, and accepting that the flow is steady in time is the following 

 

  p)( UU                                            (4.3) 
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where   is the stress tensor, a second order tensor, which was showed in a previous 

chapter. The equation above, was presented in a previous chapter but in a slightly 

different form. In the solver the inertial term of the momentum equation is taken into 

account. In the following sections is presented how each term of the Navier–Stokes 

equation is discretised.  

4.3 Discretised Equations 

4.3.1 System of Equations 

 The discretisation and linearization procedure outlined in the previous sections 

produces a linear algebraic equation for each control volume. The exact form of these 

linear algebraic equations depends on the governing equation and the discretisation 

practices used, but they can be re–written in a generic formulation, in matrix form such as 

below 

 

    b                                                         (4.4) 

 

where [A] is a tridiagonal matrix in the form below 

 







































C

CC

CC

CC

CC

C

                                              (4.5) 

 

 [x] is the column vector of dependent variable, in the form below 

 





























2

1

                                                             (4.6) 
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and [b] is the source vector 

 





















b

b

b

b

2

1

                                                             (4.7) 

 

The solution of this system approximates the solution to the original equations at 

some pre–determined locations in space (and time for unsteady flows). The numerical 

methods for the solution of the above type of matrix fall into two main categories, direct 

methods and iterative methods. Direct methods involve direct solution of Eq. 4.4 and 

require inversion of the matrix [A]. Iterative methods, start with an initial guess and then 

continue to improve the current approximation of the solution until some tolerance is met. 

For direct methods, the number of operations necessary to reach for the desired solution, 

scales approximately with the cube of the number of equations (or the unknowns), thus 

making them computationally very expensive especially for large systems. On the other 

hand, the total number of operations required by iterative methods, typically of the order 

of N per iteration cycle, cannot be predicted in advance. Stronger still, it is not possible to 

guarantee convergence unless the system of equations satisfies fairly exacting criteria. 

The main advantage of the iterative methods is that only non–zero coefficients of the 

equations need to be stored in memory thus, making these methods for solution more 

economical computationally. 

 

On a specific number of iterations, for iterative methods, the solution will be n , 

and it will not fully satisfy Eq. 4.4, in the sense of a non–zero residual r
n
. 

Mathematically, this can be expressed as 

 

      nn
rb                                                     (4.8) 

 

The aim is to minimize the value of the residual. If that value is small enough, then it can 

be approximated that  
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    
n

                                                         (4.9) 

 

In the present study the conjugate gradient method is used in order to reach for the 

solution after a certain number of iterations which was introduced by Hestenes and 

Stiefel [26].  

4.3.2 Linearization of the Navier – Stokes Equations 

  In the present study each term of the Navier – Stokes equation (Eq. 4.3) is 

discretised. Finite volume (FV) discretisation of each term is formulated by integrating 

the terms of the equations over a cell volume V (control volume). If not all, at least most, 

spatial derivatives are converted to integrals over the cell surface S that bounds the 

volume by means of Gauss’s theorem 

 

 
sV
d  S                                                   (4.10) 

 

where S is the surface area vector and   can represent any variable. The calculated 

values of pressure (p) and velocity (U) are stored at the same nodal points which are 

actually the centroid of each cell. Such an arrangement of the computational domain is 

called collocated arrangement. OpenFOAM utilizes such type of arrangements, like in 

the present study. 

 

The Diffusive Operator 

The diffusion term is integrated over a control volume and linearised as follows 

 

  
f

fff
SV

ddV USSUU  )(                          (4.11)  

 

where μ is the viscosity for a Newtonian fluid and the index f refers to the face 

interpolated values. The previous can be discretised when the length vector d between the 
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centre of the cell of interest P and the centre of a neighboring cell N is orthogonal to the 

face 

 

 
d

UU
SUS P

fff


                                             (4.12) 

 

In the present work, the term was evaluated using Gaussian integration which requires 

the interpolation of values from the cell centroid to the face centers. The interpolation 

scheme used is central differencing for the μf  and the surface normal gradient U , which 

is second order accurate. As explained in detail in Breuer [27], a second–order accurate 

scheme is even appropriate for LES of turbulent flows and consequently is reliable for the 

simulation of laminar flows carried out within the present study. The same scheme was 

also used by Biswas et al. [28] who investigated laminar and creeping flows in a 

backward–facing step at low and moderate Reynolds numbers. 

 

The Convective Operator 

The convection term, as previously, is integrated over a control volume and linearised as 

shown below using Gaussian integration 

 

     
f

f

f

fff
SV

FddV UUUSUUSUU  )(                     (4.13)  

where F in Eq. 4.13 represents the mass flux through the face. The face field fU  can be 

evaluated using a variety of schemes. In the present work, the used interpolation scheme 

is the upwind differencing which is first order accurate but bounded and determines f  

from the direction of flow. That scheme was used for stability reasons. 

 

The Gradient Operator 

The gradient term, which is described here, is an explicit term. Usually it is evaluated 

using Gaussian integration (as in the present study) which requires the interpolation of 

values from the control volume centroid to the face centers. The interpolation scheme 
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used is central differencing. Therefore, applying Eq. 4.10 to the volume integral we have 

the following 

 

(4.14) 

 

where fp  is the value obtained from the interpolation and Sf  is the area of the surface 

that bounds the control volume. There are more ways to evaluate the gradient term. For 

more information the reader is referred to the OpenFOAM Programmer’s Guide [29] and 

the User’s Guide [23]. 

4.4 Numerical Setup 

 For the simulations, the simpleFoam solver of the OpenFOAM package was 

employed which is a steady – state solver for incompressible, viscous fluids. The flow is 

assumed to be laminar. For the pressure calculation, a pressure–correction equation 

taking mass conservation expressed in Eq. 4.2 into account was solved iteratively along 

with Eq. 4.3. The entire procedure follows the well–known SIMPLE algorithm proposed 

by Patankar and Spalding [22]. The solution of the algorithm was met until a desired 

tolerance was reached. It was assumed the tolerance for the pressure and the momentum 

equation to be 10
-7

 both for the Newtonian and the Generalized Newtonian Fluid. 
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Chapter 5 

Calendering Validation with OpenFOAM  

Introduction 

 In order to validate the simpleFoam solver against the approximated analytical 

solutions, a computational flow domain is constructed based on an arbitrary geometry 

which is rather common in the commercial calendering machines. Firstly, it was tested a 

geometry with a Newtonian fluid and further on with the Generalized Newtonian Fluid 

model for the same geometry. The approximate geometry along with the boundary 

conditions of the Lubrication Approximation Theory, pose a two–dimensional solution 

but on a three–dimensional geometry. For the sake of saving computational time, it could 

be constructed a two–dimensional geometry. However, the present three–dimensional 

geometry will be, in subsequent chapter, the basic computational flow domain on which 

the three dimensional effects of calendering will be studied after small modifications in 

the flow domain. 

5.1 Newtonian Fluid 

5.1.1 Flow Domain Geometry 

At this chapter the flow behavior of a simulated Newtonian isothermal fluid 

between the calenders is studied using OpenFOAM and is directly compared to the 

analytical solution. The flow domain generated with the software is presented at Figure 

5.1 and Figure 5.2 and the geometry dimensions are shown at Table 5.1. The x–axis will 
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represent the machine direction (that axis will always be parallel to the centerline shown 

at Figure 2.1). The y–axis will represent the vertical distance from the top to the botton 

surface of the calenders and finally z–axis will represent the cross – machine direction 

(which means that z–axis is parallel to the symmetry axis of each calender). The values 

for the geometry used are arbitrary but close enough to the dimensions of commercial 

calenders. 

 

 
Figure 5.1. Side view (cross–section) of the computational flow domain, for xi,res. = -100.00 mm 

 

 

 
Figure 5.2. Inclined view of the computational flow domain for xi,res. = -100.00 mm.  
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The results of the present simulations are based on the pressure distribution along the 

centerline (x–direction), which is the machine direction, and then they are directly 

compared to the analytical solution from the Lubrication Approximation Theory.  The 

analytical solution was obtained using the CALENDERCAD [29] which solves the 

Lubrication Approximation equations with a fourth–order Runge–Kutta formula and can 

calculate the pressure distribution along the centerline as well as the approximated point 

where the sheet detaches from the calenders with no–slip.  

 

Table 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

As far as the detachment point is concerned, the adopted value was the one 

derived from Eq. 2.42 of the Lubrication Approximation theory with λo = 0.475 being the 

dimensionless detachment point (or xf =6.72 mm) and Hf / Ho = 1.226 as it seems a very 

reasonable approximation. The geometry of the computational flow domain is calculated 

through the following simple equation by which the shape of the calenders is cylindrical 

(and thus, their cross–section circular) 

 

    2
1

22 xRRHx o                                          (5.1) 

 

where H(x) is the half gap between the rollers at each position x. However, Middleman 

[1] refers that for positions which are relatively close to the nip region, in order to 

Dimension of the Geometry Value  

Nip gap (2Ho) 1.000 mm 

Final sheet thickness (2Hf) 1.226 mm 

Roller diameter (D) 400.000 mm 

Roller velocity (V) 0.0334 m/s 

Roller width (W) 500.000 mm 

Attachment point from 

Lubrication Approx. (xi) 

               -40.000 mm 

Detachment point (xf) 6.72 mm 

Infinite reservoir point (xi,res.) -100.000 mm 

Flow rate (Q) 55 kg/hr 

Viscosity (μ) 15000 Pa·s 

Density (ρ) 1000 kg/m
3
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simplify his analysis with the Lubrication Approximation, the surfaces of the calenders 

can be approximated as a parabolic shape. Thus Eq. 5.1 is approximated as 

 

  











RH

x
Hx

o

o
2

1
2

                                           (5.2) 

 

Since, in the present study an infinite reservoir is assumed upstream which is located far 

behind the nip region, the only reasonable approximation for the construction of the 

computational domain was to treat the calenders surface as circular and use 5.1. A similar 

procedure is followed by Mitsoulis [17,18] for the numerical simulation of calendering 

viscoplastic fluids using the Finite Element Method. Following Middleman’s [1] 

approach it is also assumed in the present study that far behind the nip region the feeding 

is done from an infinite reservoir. It was also approximated that pressure becomes zero 

(p=0, x→-∞) far away behind the nip region. The computational domain shown at 

Figures 5.1 and 5.2 does not necessarily represent the true physical boundaries of the 

process, since in the real process the feeding is done with a sheet of finite thickness and a 

melt bank appears near the attachment point. The shape of the free surface that describes 

the melt bank is however, beyond the scope of this study. The approach of the 

computational domain adopted in the present study is done for the sake of imposing the 

boundary conditions as described by the Lubrication Approximation and for further 

comparison with the analytical solution. 

5.1.2 Boundary Conditions 

The flow domain consists of regions that coincide with the boundaries of the 

physical domain. To correctly simulate the conditions between the two rollers, boundary 

conditions at all boundaries also need to be specified. Below the used boundary 

conditions of the Newtonian case study are shown following the same notation as in 

[23,30] and the boundaries are shown at Figure 5.3. In the formulation below the vector n 

denotes the direction normal to the boundary. 
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 Top and bottom rollers 

- Pressure: Normal gradient of pressure is zero, 0




n

p
 

- Velocity: no – slip at the roll surface (tangential velocity ut=V, normal 

velocity un=0) 

 

 Sides 

- Pressure: Normal gradient of pressure is zero, 0




n

p
 

- Velocity: Normal gradient is zero, 0




n

U
 

 

 Outlet 

- Pressure: Fixed value, p = 0 

- Normal gradient of velocity is zero, 0




n

U
 

 

 Inlet 

- Pressure: Fixed value, p = 0 

- Velocity: Known flow rate  it HWuQ 2   

where 2Hi is the distance between the rollers at the inlet. 

 

 
Figure 5.3. Side view of the computational domain with notation of each boundary. 
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Some comments concerning the boundary conditions should be made to this 

point. First of all it was approximated that the inlet boundary is far away from the nip 

region of the calenders and the material is fed continuously from an extruder or any other 

device. The fluid flow at the inlet is not delayed by any means of obstacles (i.e. there is 

not any pressure build–up) thus, the only reasonable assumption that can be made is to set 

the pressure equal to zero as this boundary is in contact with the atmosphere. Concerning 

the velocity boundary condition at the same boundary, it is assumed that the flow rate is 

known with a constant velocity profile. For the velocity boundary at the exit, where the 

detachment point lies, it is accepted that the gradient of the velocity normal to the 

boundary is zero, as presented above. This implies fully developed flow along the normal 

direction. On that same boundary, it was imposed that p=0. In Lubrication 

Approximation according to numerous publications such as Middleman [1], McKelvey 

[6], Mitsoulis [15-18] and Tanner [31] the boundary condition imposed at the detachment 

point is p=dp/dx=0. In a similar, almost convenient manner, and since that boundary is 

actually a free surface, it is treated as a surface with p=0 (as it is assumed that is in 

contact with the atmosphere) and zero gradient for the velocity, considering that in the 

present study the detachment point is obtained from the Lubrication Approximation. By 

this it is implied that from this boundary there is outflow. Concerning the side 

boundaries, it was approximated that there is no spreading of the sheet in the z–direction 

(cross–machine direction) and the prescribed boundary conditions basically assume 

calenders with infinite length along that direction and in that the effects along the z–

direction are not taken into account for the present chapter. 

5.1.3 Results and Discussion 

The results obtained from simulations for the pressure distribution along the 

centerline are presented at Figure 5.4 for a Newtonian fluid with the well know bell–

shaped curve. As it was previously discussed, it was assumed that far behind the nip 

region there is an infinite reservoir of the material where it is assumed that p=0 as 

described by the Lubrication Approximation Theory. The question that arises here is how 

much far that point should be. At first it was assumed that p=0 at xi =-40.00mm (value 

obtained from CALENDERCAD [29]) and at the second simulation that p=0 at xi,res.=-
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100.00 mm as shown at Figure 5.4. Also, based on the analytical solution by 

CALENDERCAD [29] at the attachment point the pressure is not taken to be zero but it 

has a small pressure build–up. This might be due to the approximations the software 

performs to calculate the attachment point. So, the location of xi,res.=-100.00mm seems as 

a rational approximation as the numerical results exhibit very good matching with the 

analytical solution. The maximum pressure reported by the Lubrication Theory is 

Pmax=10.77MPa and the simulation gives Pmax=10.75MPa. The simulations were 

performed for a flow domain filled with 225000 cells and the detachment point was at 

6.72 mm and calculated from the Lubrication Approximation Theory.  
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Figure 5.4. Pressure distribution along the centerline with p=0 at xi=-40.00 mm and at xi,res.=-100.00 mm. 

The pressure is plotted at W/2 (middle section).  

 

Furthermore, the behavior of the numerical solution with different levels of 

refinement of the computational flow domain was investigated as shown at Figure 5.5. 

For 2000 cells the solution shows a relatively small oscillation (wiggles) around the point 

of the maximum pressure and this is caused due to the poor domain discretisation, 

whereas for the 27750 cells the numerical solution was good enough to the one of 225000 

cells.  
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Figure 5.5. Pressure distribution along the centerline for three different levels of mesh refinement at W/2. 

 

At Figure 5.6 the effect of displacing the detachment point 0.2 mm and 1 mm is 

exhibited. In the curves of Figure 5.6 we show how the displacement of this point effects 

the shape of the pressure distribution along the centerline as well as its peak value. This is 

done since in practice, even Newtonian fluids tend to slip at the exit of a die or a channel 

[34,35], which means that the exact point or line of detachment is difficult to predict. The 

analytical solutions derived in a previous chapter, do not take into account any slip 

phenomena that occur at the surfaces of the calenders and the value for the detachment 

point is obtained through various simplifications which were presented earlier in the 

present section. At first, we displace the detachment point by approximately 0.2 mm 

backwards and then at 0.2 mm forward. The shape of the bell–shaped curve is not altered 

at all with the maximum pressure preserved to Pmax=10.75 MPa approximately. By this, it 

can be concluded that the exact location of the detachment point is not a critical 

parameter in estimating the maximum pressure as well as the shape of the pressure curve. 

For larger displacements of the detachment point, of the order of 1 mm backwards and 

forwards, the plotted pressure profile had the same distribution as in the previous 

simulations and the maximum pressure was Pmax=10.75 MPa for the displacement at xf 

=5.72 mm and Pmax=10.71 MPa for the displacement at xf =7.72 mm. Therefore, the above 
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conclusion can be extended for uncertainty in the location of the detachment point of the 

order of ±1 mm.  
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Figure 5.6. Pressure distribution concerning the displacement of the detachment point. The Lubrication 

Approximation gives a detachment point at xf  =6.72 mm. The infinite reservoir is assumed to start at xi,res.= 

-100.00 mm. All the values are plotted at W/2 (middle section). 
 

At Figure 5.7 and Figure 5.8 the velocity field and the streamlines are shown 

respectively for a flow domain of 760000 cells and for xi,res.=-100.00 mm and xf =6.72 

mm. The numbers of cells for that simulation was increased to 760000 cells because we 

were interested to capture the details of the flow regime. The results show clearly two 

symmetric to the centerline recirculation patterns, something that has been mentioned in 

numerous publications discussed in a previous chapter for calendering of Newtonian 

fluids. These vortices are a result of the drag induced flow of the Newtonian fluid 

between the calenders and the back–flow due to the pressure build–up at the nip region. 

From Figure 5.9, it can be concluded that the maximum velocity of the flow is developed 

in the nip region. Due to the fact that the distance between the calenders in the nip is the 

minimum, the velocity of the material increases. Such velocity behavior is observed in 

entry flows where the material enters to a small tube from a large reservoir. Extensive 

simulations on the entry flows were made by Mitsoulis [32] in his doctorate thesis. 
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Figure 5.7. Streamlines for a flow domain of 760000 cells. xi,res. = -100.00 mm and xf =6.72 mm. 

 

 

 

 

Figure 5.8. Variation of fluid speed along the flow domain of 760000 cells. xi,res. = -100.00 mm and xf = 

6.72 mm. 
 

Furthermore, it can also be concluded that the outlet boundary (which is marked in Figure 

5.3) appears to have the same velocity with the velocity of the calenders implying that the 

Newtonian fluid leaves the point of detachment with the same velocity. 
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Figure 5.9 Velocity vectors for a flow domain of 760000 cells. xi,res. = -100.00 mm and xf = 6.72 mm. The 

vectors are plotted at a computational domain slice located at W/2. 

 

Middleman [1] reports such a behavior in his study with the analytical approximation, 

where it is assumed that after the detachment point the velocity is constant (plug flow) 

and equal to the velocity of the calenders. This is validated and further on the present 

study by calculating the velocity profile at the exit boundary. However, in Mitsoulis [33] 

study it is reported that the material at the exit leaves the rollers with a little lower 

velocity. Finally, the velocity vectors are plotted on a slice of the computational domain 

in the middle region (located at W/2) as shown at Figure 5.9. 

 

Moreover, at Figures 5.11, 5.12 and 5.13 the velocity components and their 

magnitude in the y–direction are plotted for different positions as showed at Figure 5.10. 

It can be seen at Figure 5.11 that at x=-70.00 mm, ux is maximum near the calenders and 

near the centerline decreases, taking negative values. The negative values imply backflow 

and this is why the recirculation patterns occur. The velocity component in the y–

direction, uy, appears to be maximum near the surfaces of the calenders and holds small 

to zero values for a region close enough to the centerline. This implies, that near the 

centerline the dominant velocity component is in the x–direction. The velocity in the z–

direction, uz, is approximately zero something which was anticipated based on the set of 

boundary conditions at the two side boundaries. The velocity magnitude exhibits 

maximum values near the surfaces of the calenders, and as we move to the centerline 
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from the calender surfaces, it decreases and finally exactly on the centerline increases 

again. The increase on the centerline is due to the occurring backflow and since the 

velocity magnitude is always a positive value, its values lie on the positive side of the 

axis, resulting in Umag. profile showed at Figure 5.11. Similar velocity profiles are found 

at x=-30.00 mm, with the maximum absolute value of ux being smaller than the location 

of  x=-70.00 mm. 

 

 
Figure 5.10. Cross–sectional area with the velocity magnitude field and velocity vectors with indications at 

four different arbitrary locations normal to the xz plane.   
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Figure 5.11. Velocity components profiles and velocity magnitude profile at x=-70.00 mm. 
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This means that as the fluid progresses to the exit the recirculation effects are becoming 

less intense, something which can be seen at Figures 5.13 and 5.14. At Figure 5.13 the 

profiles of ux and Umag. match, thus the dominant flow occurs in the x–direction and since 

the velocity profile is parabolic with positive values, there is not any recirculatory 

patterns at that location. The velocity components at the other directions are 

approximately zero. For the exit boundary, at xf =6.72 mm the velocity profile exhibits 

small variations but it can be considered as flat as it can be seen at Figure 5.14. This is 

the result of the velocity applied boundary condition at the exit, by which the velocity 

gradient normal to the boundary is zero and as in the previous location ux and Umag. 

curves match. The matching of the curves implies that at the nip region as well as after 

the nip the flow can be considered as one dimensional as the dominant velocity 

component lies in the x–direction. The present results, validate the behavior of the 

velocity presented by previous studies, namely in Middleman [1], Gaskell [5] and 

Mckelvey [6]. 
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Figure 5.12. Velocity components profiles and velocity magnitude profile at x=-30.00 mm. 
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Figure 5.13. Velocity components profiles and velocity magnitude profile at x=0 (nip region). 
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Figure 5.14. Velocity components profiles and velocity magnitude at x=6.72 mm (exit boundary). 
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5.2 Generalized Newtonian Fluid Model 

5.2.1 Flow Domain Geometry and Boundary Conditions 

At the present chapter the pressure distribution along the centerline for a non–

Newtonian fluid is investigated neglecting any thermal phenomena that physically take 

place in the process. Thus the energy equation is not solved in the present study. The 

validation of the simulations is done based on the work of Vlachopoulos and Hrymak 

[14]. For that reason, and again assuming that there is an infinite reservoir far behind the 

nip region, we set the point of xi,res.=-100.00 mm which will be the location of the inlet 

boundary for the computational flow domain. In the previous Newtonian study the 

equations of the Lubrication Approximation Theory are solved analytically and the value 

of the detachment point is calculated exactly. However, for the power–law fluid the 

Lubrication Approximation is applied through numerous approximations and the value of 

the detachment point is more difficult to be calculated analytically as with the power–law 

viscosity model an extra parameter is inserted in the equations (that is power–law index 

n). A recent publication of Mitsoulis [36] concludes that the exact location of detachment 

(and attachment point) in calendering still remains an unresolved issue. The detachment 

point according to the Lubrication Approximation is obtained analytically to be at xf 

=4.37 mm with the assumption that the feeding is done from an infinite reservoir far 

upstream. In the present study, we accept xf =4.37 mm as a sufficient initial guess of the 

detachment point. The feeding of the material is approximated to be through an infinite 

reservoir that comes off an extruder or any other continuous polymer processing 

machinery. Concerning the viscosity model, the power–law viscosity is utilized (Eq. 

2.23) with m=46120 Pa·s and n=0.34 as shown at Table 5.2 below. Although there is an 

exponential or Arrhenius type dependence of viscosity with the temperature, in the 

present study we assume that the viscosity is no affected by temperature. Moreover, as in 

the simulations for the Newtonian fluid, the surfaces of the calenders are assumed to be 

cylindrical (Lubrication Approximation Theory assumes parabolic calenders surfaces) 

and the polymer cannot slip. Since we examine the pressure distribution only in the x–

direction, it seemed rational to utilize the boundary conditions of the previous study with 

the Newtonian fluid. 
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5.2.2 Results and Discussion 

 The first simulation performed was to test the geometry given in Table 5.2 with a 

Newtonian fluid and the detachment point was known a priori from the Lubrication 

Theory to be xf =4.37 mm. The maximum pressure calculated by the Lubrication 

Approximation was pmax =130.15 MPa while the simulation gave a maximum pressure of 

pmax.=129.5 MPa in excellent overall agreement. Again here, the boundary conditions of 

the flow domain are the same with the Newtonian case described in a previous chapter. 

The second simulation employed the same geometry as above but the viscosity was 

described with the power–law model. The pressure distribution with the simulation is 

shown at Figure 5.15. From a very first glance it can be seen that OpenFOAM over–

predicts the maximum pressure of pmax.=8.51 MPa, with respect to the analytical solution 

derived by Vlachopoulos et al [14] in which pmax.=7.1 MPa.  

 

Table 5.2  

 

Calendering geometry from [6]  

R = 125 mm Ho = 0.3 mm W = 450 mm xf = 4.37 mm 

Hf = 0.74 mm Vroller1 = 0.07383 m/s Vroller2 = 0.07366 cm/s Q =100 kg/hr 

Viscosity parameters from [6], for power law viscosity model 

m = 46120 Pa·s  n = 0.340  ρmelt = 1300 kg/m
3
 

 

Since this might have been due to the poor domain discretisation, simulations 

were performed in which the number of cells was increased to 360000 and 760000 and 

the results are shown at Figure 5.16. Mesh refinement did not affect the behavior of the 

predicted pressure distribution as it still over–predicts the maximum pressure obtained 

from the analytical solution from the Lubrication Approximation. Such a behavior of the 

pressure distribution might occur due to the power–law viscosity model used, which is a 

two parameter model and subject to limitations when used in a 2D or 3D geometry, as 

explained earlier. Contrary to the predictions of the power–law model, polymer melts and 

liquids, at sufficiently low shear rates, exhibit a plateau viscosity which is significantly 

lower than the viscosity predicted by the power–law model. 
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Figure 5.15. Pressure distribution along the x – direction for the computational flow domain filled with 

130000 cells and analytical solution with Lubrication Approximation. 
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Figure 5.16. Pressure distribution for different number of cells filling the computational flow domain. 

 

This means that at low shear rates they behave as Newtonian fluids. As the shear rate 

increases, in most polymeric fluids, the viscosity drops (this behavior is often called 

shear thinning), and on double–logarithmic coordinates one often observes nearly 

straight line behavior at high shear rates. Such a behavior is shown as an example in 

Figure 5.17 for HDPE. At the same figure it can be concluded that at very low shear rates 

(i.e. 
11  s  ) the power–law model severely overestimates the viscosity (when 0
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the viscosity tends to infinity (  )). For that reason, the Power – Law model may 

give erroneous results if used in a flow domain where regions of very low shear rate 

exist. If someone is to use the power–law model he needs to truncate the viscosity at the 

very low shear rates region to capture the Newtonian behavior of the material. Obviously, 

there is no advantage in choosing the simple power–law model whenever finite elements, 

finite volumes or finite differences are involved and for that reason it should be avoided. 

 

 
Figure 5.17. Viscosity versus shear rate for High Density PolyEthylene (HDPE) at different temperatures. 

The points are measured values, the solid lines represent the fit with the Carreau model and the dashed ones 

with the Power – Law model [2]. 
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Figure 5.18. Pressure distribution along the centerline with the Carreau viscosity model. Results obtained 

with OpenFOAM, Lubrication Approximation with no – slip, Lubrication Approximation with slip [14] and 

experimental measured values [14]. 
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To predict correctly the pressure distribution between the calenders the Carreau viscosity 

model is employed which is a four parameter model and can predict the viscosity at low 

shear rates as it can be seen from Figure 5.17. Vlachopoulos and Hrymak [14] in their 

work do not report any measured viscosity versus shear rate plots nor where the viscosity 

truncation for the power–law model was carried–out. In the present study it is 

approximated that the truncation of the viscosity was at 46120 Pa·s, which means that 

below 1 s
-1

 of shear rate, the fluid behaves as Newtonian. Thus, in order to employ the 

Carreau model we approximate that η0=mpower-law=46120 Pa·s, for the power–law index 

n=0.34 and λ=1.25 s. With such an approximation the Carreau model can fit very well the 

power–law at the high shear rate region near the nip region. The pressure distribution in 

the machine direction (centerline) with the Carreau viscosity model is shown at Figure 

5.17. The maximum pressure reported by the Lubrication Approximation is 7.1 MPa and 

the maximum pressure OpenFOAM calculates is 7.4 MPa which is in general in good 

agreement. The maximum pressure reported by the experiment is 4.02 MPa. However, 

the value of 4.02 MPa is measured by a pressure transducer which was located 80 mm 

from the center of the calenders as Vlachopoulos et al report and this is a reason why 

such a deviation exists. Moreover, there was no report in their work for the experimental 

pressure distribution for the central region along the centerline. The other reason is that 

the present study has not taken into account any slip phenomena which may take place at 

the surface of the calenders. The slip velocity at the surfaces of the calenders can be 

measured. If slip at the calenders is inserted in the Lubrication Approximation then the 

maximum pressure drops to the value of 5.60 MPa as Vlachopoulos et al [14] report in 

their work. However, in the present study slip phenomena where not taken into account. 

 

 The numerical experiments carried out for the Newtonian fluid showed excellent 

agreement with the analytical solution from which the detachment point was calculated 

and accepted as a sufficient initial guess. However, on an effort to validate the numerical 

and the experimental work by Vlachopoulos et al. [14], our results exhibited a small 

deviation from the predicted and the experimental values. This was probably because 

Vlachopoulos et al. [14] do not report where the viscosity truncation was done or any 

measured viscosity versus shear rate curves. Since, the power–law viscosity model 
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exhibits a peculiarity at very low shear rates, the Carreau viscosity model was the next 

rational choice, but not the only as someone could use the Cross viscosity model. 

Provided that we had available viscosity versus shear rate data, the results could be 

refined and correctly predict the pressure distribution.  
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Chapter 6 

3D Effects in Calendering 

Introduction 

 

 The problem of rolling of sheets, such as metals and ceramic pastes is an 

important problem and has been studied extensively using elastic–plastic simulation 

methods to study two- and three- dimensional flows [37–45]. An interesting approach to 

study spreading phenomena has been carried out by Matsumiya and Flemmings [46], 

using the Lubrication Approximation Theory for the production of a metal alloy strip 

from its molten state. These authors described the rheological behavior of the alloy as a 

power–law fluid and assumed that the pressure did not vary in the machine direction and 

the only present velocity is the one along the cross–machine direction for the region 

between the rollers. Thus the pressure varies only in the cross–machine direction giving a 

quasi–parabolic pressure profile. Their results are shown at Figure 6.1. Moreover, Sezek 

et al. [47] in their work studied cold and hot metal plate rolling based on a three–

dimensional mathematical model considering lateral spread of the plate. They showed 

that by increasing the thickness reduction of the plate the rolling force increases but 

decreases with the process temperature. Three dimensional effects in the calendering of 

thermoplastics have been studied by Unkrüer for the first time in his doctoral thesis [13]. 

He carried out experiments using a calender having two rolls of  80 mm diameter and 

1600 mm length calendering PVC and PS. His conclusions were that (i) the calendered 

sheet spreads and (ii) vortices are formed in and near the melt bank as shown  
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Figure 6.1. Pressure distribution in the cross–machine direction as calculated by Matsumiya and 

Flemmings [46]. 

 

schematically in Figure 6.2. Also, it was observed that in the melt bank the material 

conveys to the sides through a spiral motion as also shown at Figure 6.2. He also 

observed, as shown in Figure 6.3, that the pressure drops to zero in the cross–machine 

direction with the distance from the middle section (centerline) thus resulting in a quasi–

parabolic pressure profile as shown at Figure 6.4. 

 

 
Figure 6.2. Schematic diagram of the vortices in the calendering process as observed by Unkrüer [13]. Vw1 

and Vw2 are the velocities of the bottom and top roller respectively, A is the point of detachment and hA is 

the final sheet thickness. 
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Figure 6.3. Spiral transport of the material, in the melt bank, from the middle region to the sides as 

observed by Unkrüer [13].  

 

 
Figure 6.4. Pressure distribution at various cylinder axial positions and in the cross – machine direction 

near the nip region for rigid PVC as observed by Unkrüer [13]. The roll spread is 50 mm/s for both rolls, 

roll temperature 185
o
C, minimum gap of 0.6 mm, roll diameter 300 mm and width 500 mm. 

 

This is how Tadmor and Gogos describe Unkrüer’s observations: “The melt accumulates 

in the center zone of the nip area and simultaneously undergoes flow into the nip and 

sideways. The drag–induced flow leads to pressure buildup, which inevitably produces 

pressure gradients in the machine and cross–machine directions”. The only known 

attempt of a 3D simulation of the calendering process was carried out by Luther and 

Mewes [21]. These authors however did not report any simulation of spreading or the 

existence of a third vortex (two vortices are predicted by the 2D analysis as explained 

earlier) or the existence of a quasi–parabolic pressure profile in the direction of the 

calenders axes (cross–machine direction). Thus, their main result is the spiral motion in 
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the cross – machine direction as shown at Figure 6.5 which was observed experimentally 

before by Unkrüer [13]. 

 

 

Figure 6.5. Three dimensional simulation results for the calendering of a power – law fluid. In the figure it 

is  shown the computational flow domain along with the spiral motion occurring in the melt bank in the z – 

direction [21].  

 

Moreover, Levine et al. [48] took into account the flow in the cross–machine 

direction to predict the spreading of a power–law fluid utilizing the simplifications of the 

Lubrication Approximation. They proposed a two dimensional model to describe the flow 

field which seems to be similar to the Hele–Shaw approximation model for laterally 

spreading flows. In the results pressure contours were calculated in the cross machine 

direction, with the pressure being maximum in the central region of the sheet, but no 

quasi parabolic pressure profiles were presented. It was also predicted that the sheet 

spreads more when the nip region between the calenders decreases. However, in his 

study, there is no reference of the work by Matsumiya and Flemmings [46]. 

 

In the present work a different approach is followed using fully 3D Navier–Stokes 

equations. The spreading of liquids can be found in some publications by Scriven et al. 

[49,50] and by Li et al. [51]. From a general point of view, surface tension, is an 

important property of fluids and in simple words, is the force that keeps the fluid’s 

molecules together. Also, the viscosity of polymer melts is roughly a million times bigger 
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than the viscosity of a fluid like water (μpolymers=10
3
–10

5
 Pa·s for polymer melts at usual 

processing conditions, μwater=10
-3

 Pa·s). However, the surface tension of polymers is 

about 1/3 of the surface tension of water (e.g. γHMWPE =29.4 mJ/m
-2

, γPMMA =31.7 mJ/m
-2

, 

γwater=72.75 mJ/m
-2

) and for that reason, in polymer melts, surface tension effects are 

rather small as compared to the viscous effects. In the real process of calendering, as the 

viscous polymer melt passes through the calenders, it is squeezed. Simultaneously, and 

very close to the nip region, it spreads in the cross–machine direction to a finite width.  

Therefore, from a physical point of view, the macromolecular chains in polymer melts 

are hold together (i.e. the material does not spread infinitely) due to a property that 

primarily describes solid materials, which is called elasticity. Polymers exhibit a dual 

behavior, partly as liquids (viscous) and partly as solids (elastic) as described by Ferry 

[52]. In the case of calendering, the partially elastic nature of the molten polymer does 

not allow it to spread infinitely. The Navier–Stokes equations do not employ any terms to 

account for the elastic nature of the material since they describe the flow of liquids. For 

that reason, the solution of these equations cannot predict how much the polymer will 

spread in the cross–machine direction. However, if it assumed that the polymer melt fully 

behaves as a fluid with a very high viscosity and neglect its elastic nature, the 

applicability of the Navier–Stokes equations is valid. Then, the spreading of the molten 

material is not calculated from the equations themselves but it is guessed before the 

solution.    

 

In the following section we describe the flow between the rollers with a purely 

viscous model (Newtonian and GNF model) so that to investigate the behavior of the 

flow at the machine and the cross–machine direction. The spreading is determined 

approximately based on an initial educated guess as it will be explained further on the 

present study. This assumption is done for the construction of the computational flow 

domain. A few simulations, as it will be explained, can improve the initial guess of the 

geometry for the flow domain. The choice of the boundary conditions for pressure and 

velocity as well as approximate flow domain geometries will be discussed in the 

following section with a number of simulations for a Newtonian fluid and further on for a 

Generalized Newtonian Fluid employing the Carreau viscosity model.  
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6.1 Numerical Results for a Newtonian Fluid 

6.1.1 Geometry of Computational Flow Domain and Boundary Conditions 

As a first simulation it was chosen, for the geometry of the grid, the experimental 

dimensions measured by Vlachopoulos and Hrymak [14]. The grid is shown at Figure 6.6 

and at Figure 6.7 from another perspective. It was approximated that, for the present case, 

the geometry variation (width of sheet) from the entrance to the exit is approximated to 

increase linearly from the entrance to the exit, simulating the spreading of the sheet 

which occurs during calendering. As described in a previous chapter the roll radius is 

R=125.00 mm, the half gap at the nip region (x=0) is Ho=0.30 mm, the final sheet 

thickness is 2Hf =0.74 mm, the point of detachment which was derived from the 

Lubrication Approximation is xf =4.37 mm, the width of the sheet at the entry is 

Wen.=225.00 mm, the width of the sheet at the very exit is Wex.=370.00 mm, the velocity 

of the top roller is Vtop = 0.07366 m/s and for the bottom roller Vbottom = 0.07383 m/s. For 

the point of attachment it was approximated, based also on the experimental data of 

Vlachopoulos and Hrymak, that it is nine times larger than the point of detachment so it 

was placed at xi = -37.31 mm (the half–thickness of the sheet at xi is Hi = 6.00 mm).  

 

Figure 6.6. Top view of the computational domain for the spreading of the sheet. 
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Figure 6.7. Inclined–top view of the computational domain for the spreading of the sheet. 

 

It is also assumed that the feeding of the material, is done from a single screw extruder 

which is located far behind the calenders. Between the extruder and the calenders it is 

assumed that a rectangular channel (i.e. a flat die) exists, which is attached directly to the 

calenders. The width of the channel is Wen. and the gap is 2Hi. By this, it is assumed that 

the material is confined before it enters to the region between the calenders. A rough 

sketch of the above is shown at Figure 6.8. A similar calendering process is carried out by 

Michelis [53] for the production of polymeric strips a few centimeters wide. In the 

present case the simulation is performed for a Newtonian fluid with a relatively low 

viscosity, that is μ=1000 Pa·s and with ρ=1000 kg/m
3
.  

 

One of the most important steps for the simulation, after the construction of the 

computational flow domain, is to decide the nature of the boundary conditions from a 

physical point of view. The notation of each boundary can be found in Figure 6.9. In 

reality, the side boundaries of the domain, where the spreading of the sheet occurs, are 

free surfaces. A rational approximation that can be done is to accept that these boundaries 

are in contact with the atmosphere, thus, the pressure can be set equal to zero. A similar 

boundary condition for side boundaries for the pressure is followed by Luther et al [21] 

and by Levine et al. [47].   
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Figure 6.8. Schematic representation of the process employed. The molten material is directly fed from the 

extruder to the calenders through the rectangular channel. R is the radii of the calenders and U the velocity. 

 

Moreover, it is also assumed that along the side boundaries, the fluid can slip. For that 

reason the sides are approximated as surfaces with perfect slip. As stated by Weller [28, 

29] the slip boundary condition for the velocity implies that the normal component has a 

fixed value and equal to zero (no cross flow takes place) and that the tangential 

components have zero gradients. Mathematically this is formulated as 

 

0nU  and     0




n

U t                                       (6.1) 

 

Concerning the entrance, as in the two dimensional Newtonian case, the boundary 

condition for the velocity is the fixed value of the flow rate. For the pressure boundary 

condition it was decided to set the pressure gradient equal to zero. Mathematically, this 

can expressed as 

     0




n

p
                                                           (6.2) 
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Figure 6.9. Notation of the boundaries on the computation flow domain. 

 

Below, the reader can find summarized the above boundary conditions along with the 

ones for the rest of the boundaries of Figure 6.9. 

 

 

 Top and bottom calenders 

- Pressure: Normal gradient of pressure is zero, 0




n

p
 

- Velocity: tangential velocity Vrolt .,U , normal velocity 0., rolnU  

 

 Sides 

- Pressure: Fixed value, p = 0 

- Velocity: 0nU  and  0




n

U t  (Un is the normal component and Ut the 

tangential component) 

 

 Outlet 

- Pressure: Fixed value, p = 0 

- Velocity: Normal gradient of velocity is zero, 0




n

U
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 Inlet 

- Pressure: Normal gradient of pressure is zero, 0




n

p
 

- Velocity: Known flow rate  ienrolt HWQ 2..,U  

 

where 2Hi is the distance between the rollers at the inlet. 

6.1.2 Results and Discussion 

The pressure field of the simulation as obtained with OpenFOAM is shown at 

Figure 6.10. From a very first glance it can be seen that, at both side boundaries and near 

the exit, the pressure exhibits negative values. This may be a result of the imposed 

boundary conditions, combined with the geometry of the computational flow domain. 

These regions, although they exhibit extremely negative values of pressure, with respect 

to the maximum positive pressure developed, they are contained only in a small volume 

of the computational flow domain something which is obvious from Figure 6.10. These 

regions appear to occur near the exit boundary and adjacent to the two side boundaries. 

The regions appear to be symmetric with respect to the centerline.  

 

In the real calendering process, the sheet does not spread linearly from the 

entrance to the exit. Such a claim holds valid, as in Unkrüer’s work [13] it is reported that 

in the narrow region of the nip (minimum distance between the calenders), drag flow 

caused by the movement of the calenders is predominant as compared to the flow in the 

cross – machine direction, thus, it can be concluded most of the sheet spreading occurs 

before the material reaches the nip region.  

 

The pressure profiles at different locations are shown at Figure 6.11 and at Figure 

6.12 plotted in a three–dimensional form. The pressure profile in the machine direction 

appears to have the usual bell–shape behavior with the maximum pressure to be 

approximately 3.17 MPa. It can also be seen that near the entrance the pressure exhibits a 

build–up (short pressure plateau) of approximately 0.76 MPa as shown at Figure 6.11. 
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Figure 6.10. Calculated pressure profile for the linear geometry variation (width of sheet). 

 

This is the result of the applied boundary condition of the pressure at the specific 

boundary. Such a behavior is rational since it was assumed that the material is fed from a 

rectangular die fitting directly to the calenders. The presence of the calenders and the 

rectangular die, at the entrance, creates a resistance at the flow thus creating a pressure 

build–up and this is exhibited by the plateau of the pressure curve, along the centerline 

and near the entrance. After the built–up the pressure increases to a maximum value due 

to the rotational movement of the calenders, and then drops to zero at the exit, as dictated 

by the boundary condition on that boundary.  Moreover, at Figure 6.11 the maximum 

pressure is located at x=-xf =-4.37 mm, thus, validating once again the strength of the 

Lubrication Approximation (as discussed in Chapter 2). 
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Figure 6.11. Pressure distribution along the centerline located at the middle section of the computational 

flow domain. 
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At Figure 6.12 the pressure distribution in the cross machine direction at different 

locations is shown. The locations at which the pressure distribution was calculated in the 

cross–machine direction were at x=0, x=-xf, x=-2xf and x=-3xf. The shape of the curve is 

quasi–parabolic with a maximum at the middle section of the calenders (Wen./2=112.50 

mm). As we move at the two sides, the pressure  starts  to  level–off,  becomes zero,  then  

takes  negative  values  and  finally increases to obtain again zero value. Pressure 

distribution in the cross–machine direction for the position of x=0 (minimum distance 

between the rollers), appears to have a more flatten profile than at other locations. This 

effect is due to the rotational movement of the calenders, implying that the pressure 

gradient does not change much for a large portion of the calenders, thus the predominant 

flow is the one in the machine direction induced by the rotational movement. This 

validates the claim presented previously that most of the material spreading occurs before 

it reaches the nip region. However, there are many values of negative pressure at the 

sides close to the nip region till the exit. On the other hand, pressure profiles which are 

near the entrance exhibit a more quasi – parabolic profile and the values of the pressure 

are all positive or negative but very close to zero.  
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Figure 6.12. Pressure distribution along the x and z direction at different distances for the case of linear 

width variation. 
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The pressure distribution in the cross–machine direction, at the nip region (x=0), 

exhibits a quasi–parabolic profile which is in qualitative agreement with the results of the 

pressure distribution along the axis of the calenders measured by Unkrüer as shown at 

Figure 6.13 (The interest lies in the curve that belongs to ho = 0.25 mm since that half–

gap is very close to the one of the present study (i.e. ho = 0.30 mm)). The shape of the 

curves in Unkrüer’s study is affected by the distance between the calenders and the 

presence of the melt bank whose shape also alters in a certain amount the curves. 

However, in the study presented it was assumed that near the entrance there is no melt 

bank, the presence of which occurs in the experiment [11-13], which might affect the 

results. Even though it was adopted that no melt bank was developed near the entrance 

the results showed a remarkable qualitative agreement with Unkrüer’s experimental 

work.  

 

 
Figure 6.13. Pressure distribution in the cross – machine direction for different minimum gaps (ho) 

between the calenders as measured by Unkrüer [13]. hk is the height of the melt bank and Vw1, Vw2 are the 

velocity of the calenders. 

 

 From the same results, and since the objective of the thesis is to obtain the 

pressure profile in the cross–machine direction, the imposed boundary conditions seemed 

to be efficient to describe numerically the calendering process and produce some very 

interesting and novel findings for the first time, using the fully three–dimensional 
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Navier–Stokes equations. However, on the effort to predict also a possible shape for the 

sheet spreading from the entrance to the exit of the flow domain, we need to take into 

account the presence of the negative pressure regions. If we set as a point of reference 

those regions and how to eliminate or to minimize them, it can be concluded that, 

although the boundary conditions describe sufficiently the process, the linear spreading 

seems to be only good as a starting guess. For those reasons, the next step is to construct 

a flow domain at which the sheet spreads linear to a finite width from the entrance to 

some point behind the nip region. From that point till the exit it is assumed that the 

spreading is terminated and the width of the sheet remains the same until the exit. 

 

Closer examination of the results of Figures 6.10 and 6.12, reveals that in the 

machine direction, the negative pressure regions exist approximately between -2xf  and xf. 

An educated guess to eliminate those regions would be to construct the flow domain in 

way that the width of the sheet geometry varies linearly from xi to -2xf  and from -2xf  

until the exit there is no any geometrical variation of the sheet’s width. The new flow 

domain is shown at Figure 6.14. 

 

 
Figure 6.14. Computational flow domain with the spreading of the sheet terminated before the exit. 

  

For the computational flow domain constructed above the calculate pressure field 

as obtained by the simulation is shown at Figure 6.15. The boundary conditions were 

assumed to be the same as in the previous simulation. It is clear from the figure, that the 
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negative pressure regions which appeared in the previous simulation are minimized if 

compared to Figure 6.10. These regions appear to be near the two side boundaries and at 

the exit. The approximated shape of the sheet caused a decrease in the negative pressures 

(absolute value) which means that the assumption of linear width variation to a specific 

position before the nip region seems reasonable to be assumed. Of course this is only an 

approximation that we assume and this is why regions with negative pressure still exist. 

At the side boundaries, where the width of the sheet remains constant, no negative 

pressure regions were observed. The negative values lie near the exit boundary and the 

two sides where the width varies linearly.  

 

 
Figure 6.15. Calculated pressure field for the case where the spreading terminates near the nip region. 

 

The pressure distribution along different directions and positions is shown at 

Figure 6.16. It can be seen that the plotted curves exhibit almost the same behavior as in 

the previous analysis if compared to Figure 6.12 (the pressure distribution curves are 

plotted at exactly the same positions as in the previous simulation concerning the linear 

spreading from the entrance to the exit of the computational flow domain). Although the 

shape of the flow domain was approximated with a different manner than the previous 

numerical experiment, the pressure curves preserve their quasi – parabolic behavior (the 

maximum pressure seems to be unchanged with regard to the previous simulation), 

implying that the assumed boundary conditions describe satisfactory the problem. Even 
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closer comparison of Figure 6.12 and Figure 6.16, it can be seen at the latter figure, that 

the pressure distribution in the cross–machine direction exhibits a “more” quasi–

parabolic shape, which means that the pressure gradients exhibit a larger change as we 

move from the central region to the sides. Near the exit boundary, the pressure 

distribution in the cross–machine direction appears to have a more flatten profile as it was 

reported in the previous three–dimensional numerical experiment. Moreover, near the 

sides the pressure values for the positions of -xf =-4.37 mm and x=0 are all positive. For 

the position of -2xf =-8.74 mm, some of the calculated pressure values hold negative 

numbers, the absolute values of which are smaller if compared to the maximum pressure 

developed by the simulation.  
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Figure 6.16. Pressure distribution along the x and z direction at different distances for the case of linear 

width variation from the entrance to -2xf. 

 

 The streamlines as calculated by the simulation are showed at Figure 6.17.  The 

behavior of the streamlines shows the spiral transport of the material from the entrance to 

the two sides and to the exit of the computational flow domain. The material conveys 

from the entrance of the domain to the two side boundaries and simultaneously 

progresses to the exit of the domain. This spiraling motion is in qualitative agreement 

with the numerical results by Luther and Mewes [21] and with the experimental results 
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observed by Unkrüer [13]. The only difference is that in the present analysis there is not 

any melt bank. In a sense, it can be assumed that the spiraling motion in the present 

simulation belongs to a hypothetical melt bank. Moreover, the spiraling is caused due to 

the imposed boundary conditions for pressure and velocity at the side boundaries which 

force the material to flow, except the machine direction, also in the cross–machine 

direction implying the existence of velocity component uz. The velocity field for uz is 

presented at Figure 6.18 for different cross–sectional areas normal to the z–axis and at 

Figure 6.19 for a cross–section normal to the y–axis. It can be seen that uz is greater in 

two regions, which appear to be symmetrical, located between the entrance and the two 

sides. The negative values are due to the minus z–axis. In the middle region, uz is 

approximately zero which means that the sheet does not spread close to that region and 

this is why at Figure 6.17 the spiraling effect of the streamlines is less intense. 

 

 

Figure 6.17. Calculated streamlines for the case where the spreading terminates at -2xf. The legend refers to 

the magnitude of the velocity.  
 

Another result of the imposed boundary conditions is that some of the streamlines 

in Figure 6.17, terminate at the side boundaries while some others start from the entrance, 

they progress tangentially to the side boundaries and they finally terminate at the exit 

boundary of the domain. This implies that from the two sides there is outflow. The 

outflow seems to be greater from the wider area of the side boundaries. From the 

narrower area of the same boundary, the outflow is much less. This seems to be rational 

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 04:45:25 EEST - 18.219.73.110



 

 

70 

 

since in the nip region the flow in the x–direction is predominant and the flow in the z–

direction is less intense. Of course, the assumptions done previously are only an initial 

reasonable approximation to describe the flow between the calenders. The negativity of 

the pressure seems to be more prone to the shape of the computational domain rather than 

the imposed boundary conditions. However, these approximations can be refined, 

especially for the geometry of the side boundaries and a parabolic or a quasi–parabolic 

shape could probably eliminate or minimize the negative pressure regions. The present 

study gave only a sufficient insight on how to construct an appropriate computational 

flow domain to describe the hydrodynamics of the flow as well as the prediction of 

pressure distribution in the cross–machine direction. 

 
Figure 6.18. Top view of the velocity field for the velocity component uz for a cross – sectional area which 

is normal to the y–axis. 
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Figure 6.19. Inclined view of the velocity field for the velocity component uz for different cross – sectional 

areas normal to the z–axis.  

 

In the present simulation, as well as in the previous one, the shape of the 

computational domain was determined based on a set of boundary conditions and a pre–

determined spreading which was improved after a single simulation. The spreading of the 

sheet is the result of the imposed boundary conditions combined with the shape of the 

computational flow domain. The observed velocity in the cross–machine direction, uz, is 

the result of the pre–determined geometry. Thus, the fluid must spread so that to fill the 

expanding geometry.  

6.2Numerical Results with Carreau Viscosity Model 

6.2.1 Geometry, Spreading of the Sheet and Boundary Conditions 

 In the previous simulations, the Newtonian viscosity model gave very satisfactory 

results, most of which are in qualitative agreement with past theoretical and experimental 

studies [13,21,44]. In the present section the Carreau viscosity model is employed for the 

simulations. The geometry for the computational domain is obtained from the study by 

Vlachopoulos and Hrymak [14] and the spreading is considered to be the one presented in 

the final three dimensional simulation above, for the Newtonian fluid where the 
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spreading terminates at -2xf. Thus, the computational domain is the one shown at Figure 

6.14. The parameters for the Carreau viscosity model are the ones presented in the two–

dimensional study in Chapter 5. For the boundary conditions, it seemed rational to 

impose the ones used in the three–dimensional Newtonian analysis of the previous 

section. The way the material is fed in the inlet is the one described in the previous 

analysis, illustrated at Figure 6.8. The aim of the present simulation is not to validate the 

work done by Vlachopoulos et al. [14]. From their work we only obtained geometrical 

and rheological parameters. Our formulation is in the scope of presenting qualitative 

results for the pressure distribution in the cross – machine direction, spiraling movement 

of the material near the entrance (with no presence of melt bank) and approximate 

spreading of the sheet. Results by Unkrüer [13] and Luther et al. [21] provide the 

necessary information for such a qualitative comparison. 

6.2.2 Results and Discussion 

 The pressure distribution for the computational domain is presented at Figure 

6.20. The computed field appears to have similar pressure behavior with the previous 

three–dimensional simulations for the Newtonian fluid with the pressure now being 

higher. It can be seen, in the same figure, the presence of negative regions as in the 

previous simulations. Such a result was anticipated due to the approximations of the 

boundary conditions and the shape of the computational flow domain, as it was discussed 

in the previous section. For that reason, we can conclude that the viscosity model used 

each time does not affect the presence of negative regions in the flow domain. 

 

The pressure distribution in the machine and cross – machine direction at different 

positions is presented in Figure 6.21. The maximum pressure is reported to be 

approximately pmax=9.1 MPa. The pressure distribution along the centerline has the well 

known bell–shape shape. Near the entrance there is a relatively large pressure built–up 

which is caused by the obstruction of the flow, as it was assumed that exactly before the 

calenders there is attached a rectangular die from where the polymer melt is fed. In the 

nip region (x=0) the pressure profile in the cross – machine direction is more flatten if 

compared to the rest of the curves of Figure 6.21, implying that the dominant flow is 
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Figure 6.20. Calculated pressure field with the Carreau viscosity model. 

 

due to the rotational movement of the calenders, thus the spreading of the sheet is small 

as the pressure gradient does not change much in the z–direction. At x=-xf and for x<-xf  

the pressure profiles exhibit a “more” quasi – parabolic profile, and the rapid change of 

the pressure gradients imply the rapid spreading of the sheet. However, as we move near   
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Figure 6.21. Pressure distribution in the machine and cross – machine direction at different positions with 

the Carreau viscosity model. 
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the entrance, there are some negative pressure values near the two side boundaries. For 

the present simulation it was accepted that the obtained absolute value of the negative 

pressure is the maximum that can be numerically obtained with the present set of 

boundary conditions and the computational domain geometry. The total elimination of 

the negative regions would require a more thorough examination of the shape of the 

computational domain, especially for the two side boundaries, and also decide where the 

spreading of the sheet terminates. Of course, the lack of melt bank near the entrance of 

the computational domain affects somehow the results but since the present analysis is on 

the scope of a qualitative study, if someone compares Unkrüer’s results shown at Figure 

6.13 a lot of qualitative similarities can be found with the present work. So far, there are 

not any reports in the open literature for quasi – parabolic pressure profile in the cross–

machine direction using the fully 3D Navier – Stokes equations along with a Generalized 

Newtonian Fluid model. Thus, we are the first to obtain qualitative results by the use of 

the above approximations. A more elegant approach, could employ the determination of 

the shape of the side boundaries on the basis that the width of the sheet does not vary 

linearly, but in a parabolic or quasi – parabolic manner. The exact shape for the spreading 

can be determined through several iterations concerning the shape of the side boundaries 

in a way that the streamlines near the boundary do not cross it but lie tangentially to it. 

 

 
Figure 6.22. Calculated streamlines for a polymer melt obeying the Carreau viscosity model. 
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Furthermore, at Figure 6.22, the calculated streamlines of the flow domain is 

presented. In the central region the spiraling effect is less intense and it becomes greater 

as the material progresses to the two side boundaries. Some of the streamlines end 

directly to the side boundaries and some others end at the exit boundary. For those 

streamlines that terminate at the side boundaries, the material can outflow from the 

greater area of the sides, whereas from the smaller area the outflow, if any, is small due to 

the fact that the rotational movement of the calenders create a dominant drag flow in the 

nip region that forces the material to flow in the machine direction rather than spread.  

 

For those reasons, the side boundaries are not treated, strictly speaking, as free 

surfaces. The partly elastic nature polymer melts hold, prevents them to spread infinitely 

on such a process. Thus, the present boundary conditions seemed rational to be assumed. 

In a matter of speaking it is approximated that the liquid–elastic material is treated, with a 

purely viscous model like most fluids. To account for the finite spreading we assumed a 

set of boundary conditions that seemed to be rational from a physical point of view, and 

imposed them on the spirit of preventing the material to spread infinitely. Of course, 

outflow from the side boundaries is not a desirable parameter. However, the results 

showed qualitative agreement with theoretical and experimental past studies but there is 

always room for improvement.  

 

 As a final result of the present numerical experiment, we show the velocity 

profiles of Umag., ux and uz at different locations of the computational domain, along the 

y–direction. The different locations are represented schematically at Figure 6.23.  

 

 
Figure 6.23. Schematic representation of the locations for the velocity profiles along the y–axis. 
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Figure 6.24. Velocity profiles for location (A).  

 

 

At Figure 6.24, ux is higher near the calenders and decreases in the mid–plane (the 

plane normal to y–axis) taking negative values. The negative values are due to the 

recirculation patterns predicted by the numerical experiment and imply backflow in the 

machine direction. This is also why Umag. profile has the shape shown at the figure which 

means that the material’s velocity increases to a certain value near the centerline but it 

moves backwards. Simultaneously, at that location (A), uz holds zero (or very small) 

velocity values which means that the material does not flow in the cross machine 

direction, thus does not spread. If we move from that location a few centimeters, either to 

the one side or the other, uz holds higher values which means the sheet is assumed to 

spread thus resulting in the spiral motion discussed above and showed at Figure 6.22 

which appears to be weak close to location (A) and intense as the material progresses to 

the sides. 

 

In Figure 6.25, at position (B), the velocity component uz, appears to have a 

quasi–parabolic pressure profile similar to the well known parabolic velocity profile for a 

pressure driven flow between two flat plates. The velocity magnitude Umag. profile in the 

same figure, seems to have higher values than in location (A) and this is due to the 

contribution of the velocity in the z–direction as the fluid is conveyed downstream and in 
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the machine direction. This velocity, as discussed extensively in previous sections, is the 

result of the applied boundary conditions at the side boundaries of the flow domain and 
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Figure 6.25. Velocity profiles for location (B). 
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Figure 6.26. Velocity profiles for location (C). 

 

the shape of the geometry. Similar behaviors seems to have the velocity profiles at 

location (C) as shown in Figure 6.26. The velocity component uz, appears to have a 

quasi–parabolic profile which means that the material is conveyed in the z–direction. 

From the ux velocity profile, it can be seen that there are no negative values which means 

that there is not any back flow, thus the circulatory patterns do not occur at that location. 
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Figure 6.27. Velocity profiles for location (D). 

 

The velocity magnitude Umag. profile shown at the same figure, reveals that the velocity is 

maximum near the calenders and drops to an approximately constant value near the mid–

plane x–z. Near that plane, the velocity is almost the same to the maximum velocity in 

the z–direction, thus the dominant flow occurs in that direction.   

 

The final plotted velocity profiles are near the exit, at location (D), and are 

presented at Figure 6.27 with the velocity profile downstream being almost constant 

(Umag.=ux=0.0783 m/s) and the velocity in the cross – machine direction very low or zero 

values. This implies, that the sheet at the exit has very close velocity with the velocity of 

the calenders. 
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Closure and Future Work 

 

 The proposed objectives of the present thesis were to predict the pressure 

distribution in the cross–machine direction as well as a sufficient geometry with varying 

width of the calendered sheet by the help of OpenFOAM. The study was initiated by 

validating a previous work on calendering using the Newtonian and the Generalized 

Newtonian Fluid models. For the Newtonian Fluids the numerical experiments exhibited 

excellent agreement with the Lubrication Approximation Theory. However, the 

peculiarity of the power–law model, combined with the lack of measured rheological 

data, gave erroneous results and for that reason the Carreau viscosity model was utilized 

giving results with good overall agreement. The study for the three–dimensional flow 

between the calenders for Generalized Newtonian Fluids, with the assumption that no 

melt bank occurs, gave results which were in qualitative agreement with past numerical 

and experimental studies. The results gave some very interesting insight into the quasi–

parabolic pressure distribution in the cross–machine direction and the shape of the 

calendered sheet as it spreads. Thus, the present work is so far the only one that can 

predict the above, employing the Navier – Stokes equations by means of a Generalized 

Newtonian Fluid model and making several reasonable approximations throughout the 

study. Of course, there is always room for improvement. 

 

 The inability of the Navier–Stokes equations to predict the partly elastic behavior 

of the material is a limiting parameter for such a study. However, by making special 

assumptions the material can be treated as a purely viscous fluid. In future work, special 

care needs to be taken for the side boundaries. The linear width variation proposed here, 

is only the one side of the coin. The other side would require an effort to express those 
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sides with a parabolic or quasi–parabolic shape. This can be performed by a certain 

number of simulations in the scope of the calculated streamlines do not cross the side 

boundaries, thus no outflow from these sides should occur. Moreover, another 

assumption that needs to be taken into account is the presence of melt bank and on what 

extend its shape affects the results. Finally, another important aspect that someone should 

embody in the study is the non–isothermal study of the process. This can be done by 

inserting and solving simultaneously with the Navier–Stokes, the energy equation and 

also introducing temperature dependence of the viscosity models.              
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