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Abstract

The last few years we are witnessing an unprecedented growth in user demand for high
speed communication and ubiquitous network access. Moreover, novel communication
paradigms and applications create an ever increasing volume of data traffic that must be
transported in a timely and cost efficient fashion. This impressive transformation of com-
munication networks poses new challenges for their design and management that cannot be
addressed with traditional methods of resource over-provisioning and technology upgrad-
ing. At the same time, nowadays, it is clear that critical and valuable network resources,
such as spectrum and in-network storage, are either underutilized or not adequately ex-
ploited. These observations indicate that there is still much space for improvement and
call for innovative approaches in network design and network resource management. In
this thesis, we propose market-based mechanisms and optimization methods in order to in-
crease utilization of critical network resources and improve the performance of networks in
terms of data transfer capability. These mechanisms are of paramount importance for con-
temporary networks which are often plagued by the lack of coordination and the egotistic
behavior of their constituent nodes.

First we focus on spectrum management, a resource that is scarce and at the same time
remains underutilized in large extent. A prominent proposed solution for this problem is
the reform of spectrum allocation policy and the deployment of dynamic spectrum (DS)
markets. In these markets, spectrum will be freely traded as a commodity and very often
hierarchical structures among the interacting entities will emerge. We study these multi-
layer markets and propose a mechanism that increases the allocative efficiency of spectrum.
We consider the representative scenario that arises when a governmental agency sells spec-
trum channels to Primary Operators (POs) who subsequently resell them to Secondary
Operators (SOs) through auctions in monopolistic markets. We show that this hierarchi-
cal scheme does not ensure a socially efficient spectrum allocation which is aimed by the
agency, due to lack of coordination among the entities in different layers and the selfish
revenue-maximizing strategy of POs. In order to reconcile these opposing objectives, we
propose a pricing-based incentive mechanism, which aligns the actions of the POs with
the objective of the agency, and thus leads to system performance improvement in terms
of social welfare. The suggested mechanism constitutes a method for regulation which is
proved to be of crucial importance for the emergins hierarchical spectrum markets.

Next, we relax the assumption of monopolistic markets and analyze the competition of
wireless services providers over a common pool of users. We show that lack of information
about the actual network capacity and egotistic strategies of operators may induce revenue
reduction for the latter or efficiency loss for the market. We assume that users have a
reservation utility or, equivalently, an alternative option to satisfy their communication
needs. The operators must satisfy these minimum requirements in order to attract clients.
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We model the interaction of users as an evolutionary game and the competition among
the operators as a non cooperative pricing game. We prove that the equilibriums of both
games depend on the reservation utility and the amount of spectrum the operators have at
their disposal. Accordingly, we consider the scenario where a regulating agency is able to
intervene in the market by tuning these parameters. Different regulators may have different
objectives and criteria. We adopt a mechanism design perspective, analyze the various
possible regulation methods and discuss their requirements, implications and impact on
the welfare of the market and the revenue of the operators.

Apart from the hierarchical spectrum allocation through monopolistic or oligopolistic
markets, another crucial aspect of these dynamic spectrum management schemes is that
they aim to facilitate spectrum exchange among different entities in the same layer. For
example, each secondary operator may lease or even exchange its channels to other opera-
tors. Similarly, users will be able to exchange bandwidth in order to satisfy their dynamic
needs. In this setting, each entity is both a resource provider and a resource consumer.
Moreover, these two roles are intertwined since they both presume the consumption of the
entity’s scarce spectrum resource. We model this problem and propose a dynamic pricing
scheme that clears the market and ensures the maximization of social welfare. Through
the adoption of proper pricing and allocation rules, selfish behavior is deterred and the
actual needs of the market entities are revealed and satisfied.

Market-based network management methods provide incentives to network entities for
increasing network resource utilization. Equally important for improving network perfor-
mance is the exploitation of resources which until now have not been incorporated in the
network design. A prominent example is in-network storage, a resource that nowadays
is very cheap, compared to bandwidth, and available at large scale. We advocate that
storage can be used to improve the data transfer capability of dynamic networks, i.e. net-
works with time varying link capacities, and we identify the conditions under which this
improvement is realizable. The basic idea is to temporarily store data at nodes when net-
work conditions (e.g. link capacities) are not favorable for data transmission. We use the
technique of time-expanded graphs in order to map the dynamic networks to equivalent
static networks. First, we introduce a method that increases the min-cut of the network by
adding storage to certain nodes. Next, we propose the conjunction of storage control with
routing. We define the max-flow problem in the time-expanded graph and solve it by using
a distributed algorithm. The solution constitutes the optimal joint storage control and
routing (JSR) policy. Finally, we discuss the importance of available information about
current and future network state on performance of the proposed algorithms.

vii

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



Related Publications and Unpublished Reports

Some of the ideas presented in this thesis appear in the following publications and
technical reports:

1. I. Koutsopoulos, and G. Iosifidis, Distributed Resource Allocation Algorithms for
Peer-to-peer Networks, ACM Valuetools, Athens, 2008.

2. G. Iosifidis and I. Koutsopoulos, Double Auction Mechanisms for Resource Alloca-
tion in Autonomous Networks, IEEE Journal on Selected Areas in Communications,
Recent Advances on Autonomic Networks, vol.28, no.1, pp.95-102, Jan. 2010.

3. I. Koutsopoulos, and G. Iosifidis, A Framework for Distributed Bandwidth Allocation
in Peer-to-peer Networks, Elsevier Performance Evaluation Journal, vol.67, no.4,
pp.285-298, April 2010.

4. I. Koutsopoulos, and G. Iosifidis, Auction Mechanisms for Network Resource Alloca-
tion, Proceedings of WiOpt/RAWNET, France, 2010.

5. G. Iosifidis, I. Koutsopoulos and G. Smaragdakis, The Impact of Storage Capacity on
End-to-end Delay in Dynamic Networks, Proceedings of IEEE INFOCOM, Shanghai,
2011.

6. G. Iosifidis, and I. Koutsopoulos, Challenges in Auction Theory Driven Spectrum
Management, IEEE Communications Magazine, Vol. 49, No. 8 Aug. 2011.

7. O. Korcak, T. Alpcan, and G. Iosifidis, Collusion of Operators in Wireless Spectrum
Markets, Proceedings of WiOpt, Germany, 2012.

8. G. Iosifidis, A. K. Chorppath, T. Alpcan and I. Koutsopoulos, Incentive Mechanisms
for Hierarchical Spectrum Markets, Technical Report. Available online: http://

arxiv.org/abs/1111.4350

9. O. Korcak, G. Iosifidis, T. Alpcan and I. Koutsopoulos, Competition and Regulation
in Wireless Services Markets, Technical Report. Available online: http://arxiv.

org/abs/1112.2437

10. G. Iosifidis, and I. Koutsopoulos, Auction Theory Driven Market Mechanisms for
Dynamic Spectrum Management, book chapter in Mechanisms and Games for Dy-
namic Spectrum Allocation, Cambridge University Press, 2013, Editors: T. Alpcan,
H. Boche, M. Honig, H. V. Poor, under preparation.

viii

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



Contents

Abstract v

List of Tables xii

List of Figures xiii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview of Auction Mechanisms for Network Resource Allocation 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Single-item Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Auction design objectives . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Revenue and efficiency for some basic single-item auctions . . . . . . 12
2.2.3 Some auction classifications . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Multiple-item Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Homogeneous sealed-bid Multi-unit auctions . . . . . . . . . . . . . 16
2.3.2 Auctions for a divisible resource . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Optimal Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Double Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Sponsored Search Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Incentive Mechanisms for Hierarchical Spectrum Markets 25
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Related Work and Contribution . . . . . . . . . . . . . . . . . . . . . 27

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Unregulated Hierarchical Spectrum Allocation . . . . . . . . . . . . . . . . . 32

3.3.1 Second Stage: SOs - PO Interaction . . . . . . . . . . . . . . . . . . 32
3.3.2 First Stage: POs - CO Interaction . . . . . . . . . . . . . . . . . . . 34
3.3.3 Inefficiency of the Unregulated Hierarchical Allocation . . . . . . . . 35

3.4 Regulated Hierarchical Spectrum Allocation . . . . . . . . . . . . . . . . . . 36
3.4.1 Incentive Mechanism MR . . . . . . . . . . . . . . . . . . . . . . . . 36

ix

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



3.4.2 The β-Optimal Auction Mechanism . . . . . . . . . . . . . . . . . . 37
3.4.3 Efficacy and Requirements of MechanismMR . . . . . . . . . . . . . 41

3.5 Regulation in Dynamic Spectrum Markets . . . . . . . . . . . . . . . . . . . 45
3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Competition and Regulation in Wireless Services Markets 49
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Related Work and Contribution . . . . . . . . . . . . . . . . . . . . . 51
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 User Strategy and Market Dynamics . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Evolutionary Game GU among Users . . . . . . . . . . . . . . . . . . 55
4.3.2 User Strategy Update . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 Market Stationary Points . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Price Competition Among Operators . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Price Competition Game GP . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Best Response Strategy of Operators . . . . . . . . . . . . . . . . . . 61
4.4.3 Equilibrium Analysis of GP . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Market Outcome and Regulation . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.1 Market Outcome and Regulation Criteria . . . . . . . . . . . . . . . 65
4.5.2 Regulation of the Wireless Service Market . . . . . . . . . . . . . . . 67

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.A Analysis of the Evolutionary Game GU . . . . . . . . . . . . . . . . . . . . . 72

4.A.1 Derivation of Evolutionary Dynamics . . . . . . . . . . . . . . . . . . 72
4.A.2 Analysis of Stationary Points . . . . . . . . . . . . . . . . . . . . . . 73

4.B Analysis of the Pricing Game GP . . . . . . . . . . . . . . . . . . . . . . . . 76
4.B.1 Properties of the Revenue Function . . . . . . . . . . . . . . . . . . . 76
4.B.2 Best Response Pricing in GP . . . . . . . . . . . . . . . . . . . . . . 77
4.B.3 Existence and Convergence Analysis of Nash Equilibriums . . . . . . 79
4.B.4 Detailed Analysis of Nash Equilibriums . . . . . . . . . . . . . . . . 80

5 Dynamic Pricing Mechanisms for Spectrum Markets 85
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 The Dynamic Pricing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Decentralized Realization . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Pricing Without a Charging Infrastructure . . . . . . . . . . . . . . 95

5.5 Dynamic Pricing for a Generic Network Objective . . . . . . . . . . . . . . 97
5.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

x

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



6 Storage Capacity Control Policies for Time-Varying Networks 103
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Impact of Storage Capacity in Linear Networks . . . . . . . . . . . . . . . . 107
6.4 Storage Capacity Allocation for General Networks . . . . . . . . . . . . . . 110
6.5 Joint Storage Control and Routing Optimization . . . . . . . . . . . . . . . 113

6.5.1 Joint Storage Control and Routing Problem Formulation . . . . . . 115
6.5.2 Distributed Algorithm for the JSR Problem . . . . . . . . . . . . . . 116

6.6 Instances of Limited Knowledge About Link State . . . . . . . . . . . . . . 118
6.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusions and Future work 125
7.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References 131

xi

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



List of Tables

4.1 Wireless Service Market Stationary Points . . . . . . . . . . . . . . . . . . . 59
4.2 Pricing Game Equilibriums . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Impact of Storage Capacity - Numerical Example . . . . . . . . . . . . . . . 109

xii

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



List of Figures

1·1 Ericsson Prediction for Mobile Data Traffic for 2016 . . . . . . . . . . . . . 2
1·2 Cisco Prediction for Mobile Data Traffic for 2016 . . . . . . . . . . . . . . . 3
1·3 Evolution of Storage Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1·4 Architectures of in-network storage. . . . . . . . . . . . . . . . . . . . . . . 6
1·5 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2·1 Basic Auction Machinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2·2 Comparison of basic single-item auctions . . . . . . . . . . . . . . . . . . . . 13
2·3 Single and Double Sided Auctions . . . . . . . . . . . . . . . . . . . . . . . 21

3·1 Hierarchical Spectrum Allocation . . . . . . . . . . . . . . . . . . . . . . . . 26
3·2 Motivating Example - Hierarchical Auctions . . . . . . . . . . . . . . . . . . 28
3·3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3·4 Graphical representation of β-optimal auction . . . . . . . . . . . . . . . . . 40
3·5 Machinery of incentive mechanismMR . . . . . . . . . . . . . . . . . . . . 42
3·6 Assigned Channels to SOs by MechanismMR . . . . . . . . . . . . . . . . . 47
3·7 Efficiency Improvement by MechanismMR . . . . . . . . . . . . . . . . . . 48

4·1 An Example of Wireless Services Market . . . . . . . . . . . . . . . . . . . . 50
4·2 Oligopolistic Wireless Services Market - System Model . . . . . . . . . . . . 51
4·3 Regulation and Interdependency of Operators and Users Games . . . . . . 67
4·4 Operators Revenue for different values of α . . . . . . . . . . . . . . . . . . 69
4·5 Operators Revenue for different initial prices . . . . . . . . . . . . . . . . . 69
4·6 Evolution of Operators Price Competition . . . . . . . . . . . . . . . . . . . 70
4·7 Market Revenue and Aggregate Welfare for various α . . . . . . . . . . . . . 70

5·1 Dynamic Pricing Scheme for spectrum and services exchange . . . . . . . . 86
5·2 Dynamic pricing mechanism for SOs interconnection . . . . . . . . . . . . . 90
5·3 Dynamic pricing mechanism for users exchanging bandwidth . . . . . . . . 91
5·4 Dynamic pricing mechanism for spectrum exchange among operators . . . . 92
5·5 System utility in the presence of one selfish node . . . . . . . . . . . . . . . 98
5·6 DP-NCP Algorithm performance . . . . . . . . . . . . . . . . . . . . . . . . 99
5·7 Selfish nodes performance degradation . . . . . . . . . . . . . . . . . . . . . 100
5·8 Performance benefits due to dynamic adjustment of selling/buying activities 101

6·1 Architectures of in-network storage in wired and wireless networks. . . . . . 104
6·2 An example of 3-node linear network . . . . . . . . . . . . . . . . . . . . . . 105
6·3 Examples of dissimilarity index L . . . . . . . . . . . . . . . . . . . . . . . . 110
6·4 Example of min-cut expansion in dynamic networks . . . . . . . . . . . . . 112

xiii

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



6·5 Instance of ε-relaxation distributed execution . . . . . . . . . . . . . . . . . 117
6·6 Hop-by-hop flow control by using storage . . . . . . . . . . . . . . . . . . . 119
6·7 Delay-storage curves for a 3-node network . . . . . . . . . . . . . . . . . . . 120
6·8 Delay-storage curves for a 5-node linear network . . . . . . . . . . . . . . . 121
6·9 Delay-storage curves for different amounts of transferred data . . . . . . . . 122
6·10 Maximum data transfer for different in-network storage . . . . . . . . . . . 122

xiv

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



List of Abbreviations
AP . . . . . . . . . . . . . . Access Point
CDA . . . . . . . . . . . . . . Continuous Double Auctions
CO . . . . . . . . . . . . . . Controller
DS Markets . . . . . . . . . . . . . . Dynamic Spectrum Markets
DTN . . . . . . . . . . . . . . Delay Tolerant Networks
ESS . . . . . . . . . . . . . . Evolutionary Stable Strategies
FCC . . . . . . . . . . . . . . Federal Communications Commission (USA)
FIP . . . . . . . . . . . . . . Finite Improvement Path
IP . . . . . . . . . . . . . . Internet Protocol
ISP . . . . . . . . . . . . . . Internet Service Provider
MF . . . . . . . . . . . . . . Maximum Flow
MNO . . . . . . . . . . . . . . Mobile Network Operator
MVNO . . . . . . . . . . . . . . Mobile Virtual Network Operator
NE . . . . . . . . . . . . . . Nash Equilibrium
ODE . . . . . . . . . . . . . . Ordinary Differential Equations
OfCom . . . . . . . . . . . . . . The Office of Communications (UK)
PO . . . . . . . . . . . . . . Primary Operator
PU . . . . . . . . . . . . . . Primary User
P2P . . . . . . . . . . . . . . Peer-to-Peer
SSA . . . . . . . . . . . . . . Sponsored Search Auctions
SO . . . . . . . . . . . . . . Secondary Operator
SU . . . . . . . . . . . . . . Secondary User
WiFi . . . . . . . . . . . . . . Wireless Fidelity
WSP . . . . . . . . . . . . . . Wireless Service Provider
VCG . . . . . . . . . . . . . . Vickrey-Clarke-Groves
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Chapter 1

Introduction

1.1 Motivation

The last few years we are witnessing an unprecedented growth in user demand for high
speed communication and ubiquitous network access. The population of users increases
continuously and novel applications create an ever growing volume of data traffic that must
be transported in a timely and cost efficient fashion through wireless networks. This im-
pressive transformation of networks is manifested and highlighted in white papers released
recently by major players of the communications market. Specifically, a report published
by Ericsson in November of 2011, [89], predicts that mobile data traffic will grow 10-fold
between 2011 and 2016, driven mainly by video, Figure 1·1. Additionally, mobile broad-
band subscriptions which grew by 60% the last year, are expected to grow from 900 million
in 2011 to almost 5 billion in 2016. Interestingly, the report predicts that by 2016, 60% of
this traffic will be generated in metro and urban populated areas. This means that data
traffic will increase both in volume and in density in certain geographical areas. In a more
impressive report released also in 2011, [83], Cisco predicted that global mobile data traffic
will increase 26 times until 2016, Figure 1·2. There is clearly a worldwide and aggressively
growing public demand for mobile communication and associated services.

These developments pose new challenges for communication networks that cannot be
addressed solely by the traditional network resource over-provisioning and technology up-
grading methods. Namely, wireless operators in order to cope with this increased demand,
must obtain additional spectrum licences, upgrade from 3G to 4G technology and at the
same time enhance their network backhaul capacity. This presumes costly investments both
in equipment and in network resources. Nevertheless, overcoming the economic obstacles
is not enough. Electromagnetic spectrum, which is the cornerstone of wireless networks,
is a scarce and difficult to acquire resource, especially in populated geographic areas and
spectrum bands of high demand. Even worse, in many cases the additional capacity of
upgrading will most probably be outpaced by the ever growing data traffic. For example,
according to the predictions of Cisco and Ericsson, 4G capacity will be totally absorbed in
less than 4 years. Clearly, there is a need for a fundamental rethinking of network design
and for innovative network management methods.

The Need for Spectrum Policy Reform: Dynamic Spectrum Markets

The first step towards this new communication era is rethinking current spectrum
management policies. Today, spectrum is managed by governmental agencies such as
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the Federal Communications Committee (FCC) in US, and the Office of Communications
(Ofcom) in UK which allocate large scale - long term spectrum licences through auctions.
However, many recent studies [88], [27], [26], revealed that geographical variations in the
utilization of assigned spectrum ranges from 15% to 85%. Despite the increased demand
for spectrum, significant amount of it remains idle and unexploited by legitimate owners.
Clearly, the coarse and static spectrum management policy hampers the proliferation of
wireless networks and services. A proposed solution for this problem is the reform of
the spectrum allocation policy and the deployment of dynamic spectrum (DS) markets.
It is believed that economic incentives will improve spectrum utilization and enable the
satisfaction of users increasing demand.

Figure 1·1: Ericsson Predicts that Mobile Data Traffic will increase 10
times by 2016 reaching almost 5 billion of broadband subscriptions.

The advent of spectrum brokers (e.g. Spectrum Bridge [97]), and the emergence of
new business models where - for example - Mobile Virtual Network operators (MVNO)
can sell wireless services without investing in costly spectrum licences, constitute the first
steps towards this direction. Nevertheless, there is still much to be done and currently
there is an ongoing discussion regarding the spectrum management policy of emerging
dynamic spectrum markets, [85], [86]. According to the prevalent proposals, in these
markets spectrum will be granted in different time scales and for various spatial ranges to
operators or directly to users. Channel allocation and spectrum access will be either for
exclusive long-term use (primary access) or for low cost secondary access. Regulators will
organize auctions for selling spectrum licences to the so called primary operators (PO).
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Apart from serving their clients, named primary users (PUs), the POs will additionally
lease unused bandwidth to secondary operators (SOs). The latter will be able to serve
secondary users (SUs) without the need to invest huge amounts of capital for licences, and
also to exchange spectrum bands with each other in order to satisfy their dynamic needs.
SUs will be able to form clusters and exchange communication services such as routing
each others traffic. Certainly, in these markets there will be many different scenarios
for spectrum and bandwidth allocation. The common denominator is the freedom of the
various entities to trade and exchange spectrum at their own will.

Figure 1·2: Cisco Predicts that Mobile Data Traffic will exhibit a com-
pound annual growth rate (CAGR) of 78%, growing 26 times by 2016 and
reaching 10.8 exabytes per month. Laptops and smartphones will lead traf-
fic growth.

However, market-based spectrum management is not a panacea and should be carefully
designed. For example, the liberalization of the spectrum market will give rise to hierar-
chical spectrum markets where spectrum will be allocated successively from governmental
agencies to the POs and from the latter to the SOs. These schemes are very likely to
result in inefficient spectrum allocation due to lack of coordination among the entities in
the various layers and the conflict of their interests. Selfish revenue maximizing strategies
and monopoly conditions will often bias and degrade the performance of these markets.
Clearly, there is need for mechanisms that will alleviate theses problems and ensure the
socially efficient allocation of spectrum.

Traditionally, sellers’ competition has been employed as a method for leveraging the
efficacy of a market. However, in communication markets, like mobile communication
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services market, this method may not yield the desirable results. Specifically, it is probable
to have a fierce competition among operators that will yield decreased revenue for them,
or market distortion phenomena such as collusion and price fixing that are detrimental for
the users - clients. Again, a proper design of the market is necessitated so as to eliminate
such problems. Finally, the particular characteristics of these communication markets such
as the dual role of operators as spectrum consumers and spectrum sellers and the need for
protocols that will enable real-time decentralized transactions among the various network
entities (operators or users), require the development of novel market mechanisms.

In-Network Storage: Cheaper than Bandwidth

Despite the recent renewed interest for node storage, [42], it is still a network resource
that has not been adequately exploited in network design. Nowadays storage is cheap
compared to bandwidth, [37], with a decreasing cost as depicted in Figure 1·3, and least
space and power requirements. It can be used both in small portable devices and in large
amounts located at central communication nodes of backbone networks. Therefore, it is
of paramount importance to identify possible methods for enhancing the performance of
a network in terms of data transfer capability by exploiting the storage capacity of its
nodes. Specifically, we ask the following questions: (i) in which ways we can improve the
performance of a network by using storage? (ii) under what conditions is such an improve-
ment realizable? In this thesis, we analyze when and how the data transfer capability of a
network is improved by adding storage at its nodes.

Consider, for example, an Access Point (AP) which transmits data to a mobile (or, sim-
ply, wireless) node, Figure 1·4. The storage capacity of the AP can be used to temporarily
store data when the link conditions are not favorable for transmission. This way, data is
stored closely to the intended receiver and delivered only when proper conditions are met.
Failed transmissions and the respective energy consumption is avoided. Obviously, a policy
like this improves the performance of the network since data is delivered faster than if it
had been stored in the source node. Similarly, in-network storage can be used to improve
the data transfer capability of backbone networks. In these networks, link available capac-
ity often varies with time according to a predetermined pattern. A network designer can
exploit this information and design proper data store and forward policies that increase
the amount of data that can be conveyed within a certain time interval.

Clearly, compared to costly investments in link bandwidth, storage addition is an eco-
nomical and hence attractive alternative option. Network operators (WSP or ISP) can
use storage in order to upgrade their network in various ways. However, storage usage
is beneficial only under certain conditions. Namely, exploitation of in-network storage is
possible only in dynamic networks where the capacity of links varies with time. For these
settings, we devise proper storage control strategies that increase the maximum amount of
data the network is able to convey within a certain time interval. In order to realize this
performance benefit, storage control must be considered in conjunction with routing. The
resulting joint storage management and routing policies increase the performance of the
network in a cost-efficient method. The proposed methodology constitutes a valuable tool
for network operators and network designers.
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Figure 1·3: Evolution of hard drive cost over the last 30 years. A gigabyte
cost 10.000 dollars in 1990, 10 dollars in 2000 and 0.1 dollars in 2010.

1.2 Synopsis

In this thesis, we propose market-based mechanisms and optimization methods in order
to increase utilization of spectrum and exploit the potential of in-network storage. Our
goal is to improve the performance of networks in terms of data transfer capability so as
to meet the increasing user needs in a cost-affordable fashion. These mechanisms are of
paramount importance for contemporary networks which are often plagued by the lack
of coordination and the egotistic behavior of their constituent nodes. An overview of the
thesis is presented in Figure 1·5.

We begin in Chapter 2, with a brief, yet self-contained, introduction in auction theory.
Auction-based mechanisms are expected to play a key role in the design of economic-
inspired spectrum allocation mechanisms. We identify the fundamental characteristics of
auctions, such as the efficiency of the induced allocation of the auctioned items and the
produced revenue for the auctioneer. We also highlight the different properties of the
various auction algorithms and explain the criteria one should use to select the proper
auction for each problem. This chapter introduces the basic auction concepts that are
used in this thesis.

In Chapter 3, we focus on spectrum management and we study spectrum allocation
mechanisms in hierarchical multi-layer markets. These markets are expected to proliferate
in the near future according to the evolving spectrum policy reform proposals. We consider
the scenario that arises when a governmental agency sells spectrum channels to Primary
Operators (POs) who subsequently resell them to Secondary Operators (SOs) through
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(a) Wireless network with storage in access
points

(b) Backbone network with storage enhanced
routers

Figure 1·4: Architectures of in-network storage.

auctions in monopolistic markets. We show that these markets do not ensure a socially
efficient spectrum allocation which is aimed by the agency, due to lack of coordination
among the entities in different layers and the inherently selfish revenue-maximizing strategy
of POs. In order to reconcile these opposing objectives, we propose a pricing-based incentive
mechanism, which aligns the strategy and the actions of the POs with the objective of the
agency, and thus leads to improvement in terms of social welfare. A basic component of
the proposed mechanism is a novel auction scheme which enables POs to allocate their
spectrum by balancing their derived revenue and the welfare of the SOs. The suggested
scheme constitutes a method for hierarchical market regulation which is proved to be of
crucial importance especially for monopolistic spectrum markets.

Next, in Chapter 4, we relax the assumption of monopolistic markets and analyze the
competition among a group of wireless services providers over a common pool of users-
clients. A typical scenario is the competition of Primary Operators for attracting clients
(primary users). We show that the lack of information about the actual network capac-
ity and the egotistic strategy of operators may induce revenue reduction for the latter or
efficiency loss for the market. We assume that users have a reservation utility or, equiv-
alently, an alternative option to satisfy their communication needs. The operators must
satisfy these minimum requirements in order to attract clients. This aspect is of particular
interest today that users have many options to satisfy their communication needs.

We model the user interaction as an evolutionary game and the competition among
the operators as a non cooperative pricing game. The outcomes of both games depend on
the reservation utility and the amount of spectrum the operators have at their disposal.
We express the market welfare and the revenue of the operators as functions of these two
parameters. Accordingly, we consider the scenario where a regulating agency is able to
intervene and change the outcome of the market by tuning these parameters. Different
regulators may have different objectives and criteria according to which they intervene.
We analyze the possible regulation methods and discuss their requirements, implications
and impact on the market.

Apart from the hierarchical spectrum allocation through monopolistic or oligopolistic
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markets, another crucial aspect of these dynamic spectrum management schemes is that
they aim to facilitate spectrum exchange among different entities in the same layer. For
example, each secondary operator may lease or even exchange its channels to other oper-
ators. Similarly, users may exchange their leased spectrum or even create a cluster and
route each other traffic in order to satisfy their communication needs in an ad hoc fashion.
In these cases each entity is both a resource provider (seller) and a resource consumer
(client). Moreover, these two roles are intertwined since they both presume the consump-
tion of the entity’s spectrum. In Chapter 5, we analyze this setting, and we propose
a dynamic pricing scheme that clears the market and ensures the maximization of social
welfare. Through the adoption of proper pricing and allocation rules, selfish behavior is
deterred and the actual needs of the network entities (operators or users) are revealed and
satisfied. The proposed algorithms can be implemented in a decentralized fashion which is
a highly desirable property for contemporary networks.

Market-based network management schemes provide the necessary incentives to net-
work entities for increasing network resource utilization. Equally important for improving
network performance is the exploitation of resources which until now have not been ad-
equately incorporated in network design methods. A prominent example is in-network
storage, a resource that nowadays is cheap, compared to bandwidth, and with least space
and power requirements. In Chapter 6 we advocate that storage can be used to improve
the data transfer capability of dynamic networks and we identify the conditions under
which this improvement is realizable. We show that storage can reduce the need for link
capacity and hence decrease the cost of network deployment. We use the methodology
of time-expanded graphs and introduce a technique that iteratively increases the min-cut
of the network by adding in-network storage capacity to certain nodes. This method dic-
tates how much storage we must add in each node so as to achieve the maximum possible
performance improvement. Additionally, we propose the conjunction of storage with link
capacity and derive the joint storage control and routing (JSR) policy that maximizes net-
work flow in the time-expanded graph. This policy ensures that the dynamic network will
deliver the maximum possible amount of data within the specific time interval.

Finally, in Chapter 7 we conclude our study and summarize the main findings of our
work. We believe that the concepts and mechanisms proposed in this thesis can contribute
to the better utilization of critical network resources such as spectrum and to the exploita-
tion of in-network storage capacity. Additionally, we discuss possible future directions.
The presented ideas can be also applied to similar network resource allocation problems,
other than the discussed in this thesis.
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Figure 1·5: Spectrum allocation and network entities interaction in emerg-
ing dynamic spectrum markets: A state agency allocates spectrum channels
to Primary Operators (POs) who compete to attract Primary Users. They
also lease their idle spectrum to Secondary Operators. SOs serve their own
clients, the Secondary Users, or exchange spectrum with each other. Fi-
nally, users are able to exchange bandwidth (BW) by routing each others
traffic. Primary and secondary operators exploit in-network storage to in-
crease their data transfer capability.
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Chapter 2

Overview of Auction Mechanisms for Network

Resource Allocation

2.1 Introduction

Nowadays, auctions are one of the most popular methods used both by private agen-
cies and governmental institutions for selling a variety of items, ranging from antiques to
wireless spectrum. The common characteristic in all these cases is that the seller does not
know the valuation of the items to potential buyers. In these settings, traditional market
mechanisms such as static pricing fail due to lack of this information. For example, if the
seller sets very high prices for the items then these will probably remain unsold while low
prices will yield low revenue. On the other hand, auctions lead to allocation of items to
the buyers with the highest valuations and at the same time to substantial increase of the
revenue of the seller. Moreover, auctions require minimum interaction among the sellers
and the buyers since the latter simply have to declare their preferences about auctioned
items.

While initially auctions were designed empirically, the last few decades game theory
has been employed for their study. In 1961, Vickrey introduced the analysis of auctions as
games of incomplete information [105]. In these games the players are the buyers who must
select the appropriate bidding strategy in order to maximize their perceived utility, i.e. the
value of the acquired items minus the payment to the seller. Each buyer is not aware of
the valuation of the item for other buyers, and in some cases he cannot even observe their
actions (bids). From this perspective, the auction design is a mechanism design problem
where the seller-buyers interaction rules must be selected so as to ensure the desirable
equilibrium. In most cases, the objective is to allocate the item to the buyer with the
highest valuation. Nevertheless, the selection of the proper auction remains an intricate
task. Therefore, more often than not, specialized entities, i.e. companies or organizations,
undertake the task of designing and running the auctions on behalf of sellers, which are
the actual owners of the auctioned goodies.

The last years the interest of communication and network engineers for auctions has sub-
stantially been increased. Today is apparent that auctions constitute a suitable mechanism
for network resource allocation and network protocol design. Auctions require minimum
signaling and information circulation and most importantly they are oblivious to the bid-
ders utilities. Additionally, certain auction schemes can be implemented almost in real-time
and decentralized fashion. At the same time, contemporary and emerging networks exhibit
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certain properties that render them a suitable field of auction theory application. First,
future networks comprise diverse interacting rational entities with the natural propensity
to solicit their own benefit and to strive to obtain maximum benefit from the network,
while abstaining from any form of contribution to it. Entities are inclined towards mis-
reporting local parameters that determine a socially optimal, global resource allocation
regime. For example, they declare higher needs that real ones, in an effort to extract larger
utility from apportioned resources. Such rational behaviors need to be understood through
game theoretic models and tamed through mechanisms that deter selfishness and promote
good-will cooperation and truthfulness.

Second, the need for dynamic and decentralized resource allocation is deemed more
important than ever. Very often the management of the resources is to be realized au-
tonomously without central brokers, and in response to rapid spatio-temporal variations
in nodes requests. Third and more importantly, control decisions have to be taken with
partial or no knowledge of parameters of the associated optimization problem. Perfect
global network state information may be too costly, impractical or simply impossible or
meaningless to obtain. Rapid traffic load changes, interference, and topology or channel
quality variations (the latter when it comes to wireless networks) render it difficult for
individual nodes to obtain full view even of their own derived utility for different resource
allocation regimes. Privacy concerns may also discourage a node from reporting its utility.
Careful deliberation is needed to design mechanisms capable of handling such situations as
well.

2.2 Single-item Auctions

In the simplest form of auctions, there exist a set of buyers who bid to obtain one item
and an auctioneer who collects these bids and decides which buyer will get the item and
how much he will pay. The components of a typical auction are the allocation rule, the
payment rule and the bidding rule, Figure 2·1. The first one determines the allocation of
the auctioned item to buyers. Usually, the higher bidding buyer is the one that is awarded
the item. The payment rule determines how much each bidder will pay. For example a
winning bidder is charged with an amount equal to his bid or to the second highest bid.
The basic difference of auctions compared to other similar mechanisms such as pricing
schemes is that the allocation and the payment for each buyer depends not only on his bid,
but also on bids of other buyers. The bidding rules define the machinery of the auction,
i.e. what bids are allowed, whether the bids are sealed or revealed to all participants in the
auction, or whether the bidders are able to update their offers in next rounds. Different
combinations of these rules result in different auction schemes

Usually, each bidder knows only his own valuation of the item and not those of others.
Knowledge of other bidders’ valuations during the auction does not change the value of
the item for a bidder. This model is one of private values. One of the most popular
auction schemes is the open ascending price or English auction. The auctioneer starts
by announcing a low price and keeps increasing it in small steps as long as there are at
least two interested bidders. The auction stops if there is only one bidder. In another
variant, bidders progressively increase bid offers. The auction ends when only one bidder
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Auctioneer

Bids: b1, b2, …, bN

Buyers

{ j, pj }

Auction Machinery The auctioneer collects the bids b=(b1,b2, …, bN) and 
applies the allocation rule h(.) and the payment rule f(.) in 
order to determine the winner and the respective payment.

Allocation Rule h(.): j=h(b1,b2, …, bN). The winner 
selection depends on the bids vector. Usually, the highest 
bidder is awarded the auctioned item.

Payment Rule f(.): pj=f(b1,b2, …, bN). The payment 
depends on the bids vector. Usually, only the winning 
bidder pays.

Revenue for the auctioneer: The price pj paid by the 
winner j . 

Efficiency of the auction: The valuation xj of winner j .  

valuations x1 x2 xN

Figure 2·1: Auction machinery. The winner determination and the re-
spective payment depend on the entire vector of bids. The revenue of the
auctioneer is the payment of the winner. The efficiency of the auction is
the total valuation of the allocated items for the winner(s).

remains. That bidder wins the item, and he pays an amount equal to the price at which the
second-last bidder dropped out. On the other hand, in the Dutch auction, the auctioneer
starts by announcing a very high price at which none of the buyers is interested. He then
progressively lowers the price until some bidder declares he is interested. That bidder wins
the item at that price. English and Dutch auctions are both open-bid auction schemes.

Consider now sealed-bid auctions in which a bidder does not see bids of others. In the
sealed-bid first price auction, bidders submit bids in sealed envelopes. The buyer with the
highest bid wins the item and pays the amount he bid. The sealed-bid second price (or
Vickrey [105]) auction is similar, except that the highest bidder pays the second-highest
bid. Under private values, the open Dutch auction is equivalent to the sealed-bid first price
auction: bidding an amount in a first-price sealed-bid auction is the same as offering to
buy at that amount in a Dutch auction provided the item is still available. An equivalence
relationship holds also between the open English auction and the second-price sealed-bid
auction [58].

The Vickrey auction has the desirable property that each bidder has no incentive not
to bid its true valuation for the item. In other words, each bidder gains by truthfully
declaring its true valuation for the item. To understand why this is true, consider bidder
i with item valuation ui. Let b denote the highest competing bid of others. Suppose first
that b < ui. If bidder i bids bi = ui, he wins with net payoff ui − b > 0. He does not want
to bid bi > ui, as then he wins but with negative net payoff. On the other hand, if his bid
bi < ui he reduces the chances of winning the auction and does not affect his net payoff if
he wins (which is again ui − b). So on average he reduces expected payoff. Now suppose
b > ui. If i’s bid is bi < ui he does not win (payoff zero), while if bi > ui bidder i may win
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the auction, but with net payoff ui − b < 0. Thus again it is better to bid bi = ui to lose
the auction and have net payoff zero. Finally, if b = ui, bidding bi = ui does not make a
difference from bi > ui or bi < ui (in all cases, net payoff is zero). Taking all into account,
it is always to i’s benefit to bid bi = ui regardless of the competing strategies.

2.2.1 Auction design objectives

A first meaningful criterion for performance assessment of auctions is allocative effi-
ciency. For one item, this is equivalent to allocating it to the buyer who values it most.
This instance arises when a governmental institution auctions a public good, and it is
sought to allocate it to the most appropriate bidder. For multiple indivisible goods or
one divisible good, efficiency is equivalent to maximizing social welfare incurred by the
allocation. Apparently, efficient auctions presume the truthful bidding of buyers.

Another basic criterion is the incurred auctioneer revenue. The auction should be
designed so as to increase competition, inducing bidders to participate and submit high
bids and increasing expected price at which the item is sold. A well-known method to
increase revenue is the adoption of a reserve price, namely a minimum (publicly announced)
price at which the item is sold. One must counterbalance the risk of not selling the item
with the higher payment if the item is sold, in order to compute the optimal reserve price
that maximizes expected revenue [58, Ch.2.5]. However, one should keep in mind that
any effort to maximize revenue may have undesired effect on allocation efficiency. In other
words, maximizing auctioneer revenue and achieving high efficiency of the allocation may
be conflicting objectives [72].

For many indivisible goods or one divisible good, fairness is another objective, which is
related to certain properties of the vector of allocated quantities or the vector of obtained
utilities. Other auction design objectives are promotion of truthful reporting of bidder
valuations, bidder attraction, discouragement of collusion and simplicity of mechanism [57,
Ch.3]. In the sequel we present some basic auction schemes and discuss their efficiency and
produced revenue for the auctioneer.

2.2.2 Revenue and efficiency for some basic single-item auctions

In Figure 2·2 we present the machinery and the basic properties of three prevalent single-
item auctions. We are interested in understanding what is the revenue and the efficiency
ensured by each one of them. Assume that each bidder i = 1, . . . , N has valuationXi for the
item, where Xi is a random variable with cumulative distribution function (c.d.f) F (·) and
probability density function (p.d.f) f(·), which are common knowledge to all, together with
number N . Valuations are independent random variables. Functions F (x) = Pr(Xi < x)
and f(x) = F ′(x) are the same for all i = 1, . . . , N and defined at some interval [0, w].
This model is called one of symmetric bidders. Notice though that in general c.d.f and
p.d.f may vary for different bidders. Let xi denote the realization of each Xi and let bi
be the bid of i. Assume that bidders are risk-neutral (see section 2.2.C for a definition
of risk-neutrality). Each bidder aims at optimizing its net payoff by adopting a bidding
strategy bi(xi), with xi ∈ [0, w].
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Figure 2·2: Comparison of first, second and optimal auction schemes.

Second-price Auctions

The net payoff Ui(·) of bidder i who participates in the auction with bid bi is:

Ui(xi, bi) =

{
xi −maxj �=i bj, if bi > maxj �=i bj

0, else .

Second price auctions are always truthful, i.e. for each bidder bidding its actual valuation,
i.e. bi(xi) = xi [58] is a dominant strategy. Therefore, these auctions always ensure the
efficient allocation of auctioned items. Let us compute the expected payment by a bidder.
Fix a winner, say i. Call X = Xi its random valuation, and let Y = maxj �=iXj be the
second highest valuation (therefore, bid) that will be paid by i. Denote by G(·) and g(·)
the c.d.f and p.d.f of Y . Suppose x is the winner valuation. We wish to compute the
conditional p.d.f. of Y given that i wins, g(y |Y < X,X = x). The conditional c.d.f.

G(y |x) = Pr (Y ≤ y |Y < X,X = x) is Pr (Y≤y)
Pr (Y <x) if 0 < y < x, and it is 1, if 0 < x < y.

Then,

g(y |Y < X,X = x) =
g(y)

G(x)
, 0 < y < x . (2.1)
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The conditional expected payment given that i wins is:

E[Y |Y < X,X = x] =
1

G(x)

x∫
0

yg(y) dy .

The expected payment for valuation X = x is therefore,

E[Y |X = x] = Pr (Y < x)E[Y |Y < x] =

x∫
0

yg(y) dy (2.2)

with g(y) = G′(y), G(y) = FN−1(y). One may also average over randomness of valuations
to obtain the total average payment, E[Y ] =

∫ w
0 E[Y |X = x]f(x) dx. Further, the total

expected revenue of the seller is NE[Y ].

First-price Auctions

The net payoff of a bidder is:

Ui(xi, bi) =

{
xi − bi, if bi > maxj �=i bj

0, else .

In [58, Proposition 2.2] it is shown that the optimal symmetric bidding strategy is b(x) =
E[Y |Y < X,X = x], where Y = maxj �=iXj as before. The expected payment to the seller
for given winner valuation X = x, is Pr (Y < x)E[Y |Y < X,X = x]. This is equal to the
expected payment for the second-price auction in (2.2). The same holds for the expected
revenue to the seller.

It can be shown that the total expected revenue is equal to the expectation of the
second highest valuation for both the first- and the second-price auction. This is known as
the Revenue Equivalence principle and holds only for risk-neutral bidders and seller, and
independent private valuations. In general though, when these assumptions are relaxed
the first price auction ensures higher revenue and with less risk for achieving it. However,
the auction scheme that yields the maximum possible revenue for the seller is the optimal
auction.

Optimal Auction Mechanisms

Reserve prices increase the revenue of the auctioneer. Myerson, was the first one that
systematically studied how they should be selected, [72]. He applied concepts from mech-
anism design and proposed the so-called optimal auctions which ensure the maximum
expected revenue for selling one single item. For each bidder i who submits a bid bi, the
auctioneer calculates the optimal reservation price by using Fi(·) and fi(·). This price is
subtracted from the actual submitted bid in order to calculate the virtual valuation (virtual
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bid) Φi(bi):

Φi(bi) = bi −
1− Fi(bi)

fi(bi)
, i = 1, 2, . . . , N (2.3)

Given the virtual valuations of the bidders, an optimal auction simply allocates the item
to the bidder with the maximum non-negative virtual bid. The winner pays the minimum
bid that it is required to deem his virtual bid winning. Therefore, the net payoff for each
bidder is:

Ui(xi, bi) =

{
xi − b̂i, if Φi(b̂i) > maxj �=i{Φj(bj), 0}
0, else .

where:
b̂i = argmin{Φi(b̂i) > Φj(bj) : ∀j �= i} (2.4)

Although optimal auctions ensure truthful bidding, they may yield inefficient allocation
for two reasons. First, if all virtual bids are negative the item remains unsold despite the
existence of positive actual valuations. Moreover, in the case of asymmetric bidders, i.e.
Fi(·) �= Fj(·) for i �= j, it is probable that the highest virtual bid will not represent the
highest actual valuation [58]. Obviously, there exist a tradeoff among allocative efficiency
and revenue maximization in auctions.

2.2.3 Some auction classifications

Private versus interdependent values

In an auction with private values, each bidder knows its own valuation of the item,
but he does not know those of other bidders. If a statistical model for valuations is used
in an auction with private values, a bidder knows the probability distribution of his own
valuation and of valuations of others. In any case, knowledge to a bidder about other
bidders’ valuations does not affect his own. In auctions of interdependent values, each
bidder may have full or partial information about its own valuation of the item, however
this valuation can be affected by information available to other bidders. A special case is
the common value model, where the unknown valuation is common for all bidders.

Risk-averse versus risk-neutral seller and/or bidders

A seller (or bidder) is risk-averse if its utility function U(·) is concave. Assume that
a seller runs the auction K times. Say at the i-th time, the item is sold at price (bidder
payment) pi and the utility to the seller is U(pi). Risk averseness in its simplest form
means that:

1

K

K∑
i=1

U(pi) ≤ U
( 1

K

K∑
i=1

pi
)
. (2.5)

That is, the average utility from repeating the auction N times (and possibly with different
payments) is less than the total utility derived with the average payment at all auctions.
Namely, payment variability around the mean payment reduces derived utility. A risk-
averse seller prefers an auction with more balanced payments, even if this leads to smaller
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average payments. Similarly, a bidder is risk-averse if its average utility of the difference
between valuation and the bid is less than the utility of the difference between the valuation
and average bid. If v is the item valuation (assumed to be fixed), bi are his bids at different
auctions times i, and U(·) is the utility function, risk-averseness means,

1

K

K∑
i=1

U(v − bi) ≤ U
(
v − 1

N

K∑
i=1

bi
)
. (2.6)

A risk-averse bidder prefers to have small average net gains (and thus to bid high on
average), rather than having variable net gains (and thus bids). He prefers to win more
frequently by bidding high even if his average net gain is smaller. On the other hand,
a seller (or bidder) is risk-neutral if its utility function is linear. Then (2.5) and (2.6)
hold with equality, and variability around the mean does not reduce utility. A first-price
auction among risk-averse bidders leads to higher expected revenue for the seller than a
second-price auction. First-price auctions are more preferable for risk-averse sellers as well
[58, Ch.4.1].

2.3 Multiple-item Auctions

In multiple object auctions, multiple items are to be sold. These auctions are classified
as homogeneous (or multi-unit) and heterogeneous, depending on whether items are units
of the same good, or they are different goods. Homogeneous auctions may be uniform-
price or discriminatory-price ones, depending on whether identical items are sold at the
same price or not for different bidders. If items are auctioned one at a time as single-item
auctions, the auction is called sequential. If all items are sold simultaneously, the auction
is called simultaneous. Finally, auctions are individual if bidders can bid only at one item,
and combinatorial if bids are allowed to combinations of items [21, Ch.14.2]. Here, we
focus on homogeneous auctions.

2.3.1 Homogeneous sealed-bid Multi-unit auctions

Consider a simultaneous auction of K identical items to N bidders. Bidders submit bids
for acquiring one or more items. Each bidder i submits a bid vector bi = (bi1, b

i
2, . . . , b

i
K),

such that bi1 ≥ bi2 ≥ . . . ≥ biK , where bi1 is the amount i is willing to pay for receiving
one item, bi2 is the additional amount he is willing to pay for obtaining two units, and so
on. Hence, the total amount that bidder i is willing to pay for obtaining M ≤ K items is∑M

j=1 b
i
j.

Discriminatory-price auction

In discriminatory-price auctions, the allocation is as follows. Bids bi, i = 1, . . . , N are
ordered in decreasing order. TheK highest bids (Ki of which refer to bidder i) are selected,
and the K items are allocated so that bidder i obtains Ki of them. Each bidder i pays an
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amount equal to the sum of his bids that are deemed to be winning,
∑Ki

j=1 b
i
j . Each item

is sold at different price.

Uniform-price auction

In uniform-price auctions, all K items are sold at a single price (the market clearing
price) so that the total demand is equal to total supply. First, the number of items K̃i

that bidder i wins is computed as follows. For each bidder i with bid vector bi (bids in
decreasing order), let c−i be the K-vector of competing bids for i. This is the vector of
the highest K bids out of the bids of bidders other than i, arranged in decreasing order.
Bidder i gets K̃i items if its highest bid exceeds the lowest of the competing ones, the
second highest bid exceeds the second lowest of competing ones, and so on until the K̃i-th
highest bid, but this does not hold for the (K̃i + 1)-th highest bid. The market clearing
price turns out to be the highest losing bid over all bidders, p = maxi b

i
K̃i+1

. Note that for

K = 1, the uniform-price auction reduces to the second-price sealed-bid auction.

Vickrey auction

In the Vickrey sealed-bid multi-unit auction, the method to determine the number of
items K̃i each bidder will obtain is the one above for uniform-price auction. A bidder
who wins K̃i units pays the sum of the K̃i highest losing bids in c−i. These are found by
removing winning bids of other bidders from c−i and selecting the K̃i remaining ones. It
can be seen that the amount that bidder i pays is equal to the externality it causes to other
bidders. The externality in this case is the additional amount that other bidders would
pay in the allocation, had bidder i been absent.

2.3.2 Auctions for a divisible resource

Multi-unit auction models also capture auctions of a single divisible good. Each bidder
i submits a continuous bid function bi(x) that indicates the amount he is willing to pay for
resource amount x. Such a scenario is encountered in network resource sharing, where the
good may be link bandwidth, power, energy or another type of resource.

An amount C of divisible resource is to be allocated among N users. Each user i is
characterized by a strictly concave, increasing, continuous differentiable utility function
Ui(·) which is only privately known to him but unknown to the allocation controller. Let
xi be the amount of good allocated to user i and x = (x1, . . . , xN ) be an allocation vector.
The social welfare maximization (SWM) problem is:

max
x≥0

N∑
i=1

Ui(xi) (2.7)

subject to:
N∑
i=1

xi ≤ C . (2.8)
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If utility functions were known to the controller, the KKT conditions would give the neces-
sary and sufficient conditions for the optimal allocation, U ′

i(x
∗
i ) = λ∗ and λ∗(

∑
i x

∗
i−C) = 0,

where λ∗ is the optimal Lagrange multiplier for (2.8).

Proportional Allocation Mechanism

Assume that the controller does not know utility functions Ui(·) but aims at socially
optimal allocation. Consider the class of allocation mechanisms where each user submits a
bid bi ≥ 0 for the amount he is willing to pay and is charged according to function c(·). The
amount of allocated good, xi(bi) is a function of their bid. Specifically, let xi(bi) = bi/λ̃,
where λ̃ is a price per unit of resource. We assume users are price takers, namely they
do not consider the impact of their bid on the charge function c(·). It is reasonable to
assume that each user is rational and casts his bid so as to maximize his net benefit,
Ui(xi(bi))− c(bi), namely his bid should satisfy:

U ′
i(x

∗
i )
1

λ̃
− c′(b̃i) = 0 . (2.9)

Suppose the controller obtains bids b̃i and makes the allocation according to the solution
of the following problem (P):

max
x≥0

N∑
i=1

b̃i log xi , (2.10)

subject to
∑N

i=1 xi ≤ C, and xi ≥ 0, i = 1, . . . , N . The KKT conditions for this problem
give:

b̃i
x̃i

= λ̃, (2.11)

where λ̃, x̃, is the optimal Lagrange multiplier and the optimal solution respectively of (P).
The goal is to equalize the solutions of optimization problems (SWM) and (P). It turns
out that if each user is charged according to c(bi) = bi, then from (2.9), (2.11) it is λ∗ = λ̃
and x∗i = x̃i, which gives b̃i = x∗iU

′(x∗i ).
Since the optimal solution to (P) should satisfy

∑N
i=1 x̃i = C, by using (2.11) we get

λ̃ = λ∗ = 1
C

∑N
i=1 b̃i. This is the market clearing price, set by the controller. Furthermore,

x̃i =
b̃i∑N
i=1 b̃i

C, (2.12)

namely the allocated amount to each user is proportional to its bid [54]. Therefore, socially
optimal resource allocation can be achieved by bidding (where each user’s bid is a single
number), and an appropriate charging scheme.

Kelly et.al. proposed this mechanism and showed that the problem above can be solved
in a decentralized fashion [55]. The market clearing price λ(n) is iteratively computed at
each step n by the auctioneer according to a standard dual algorithm. Essentially, it is
increased or decreased, depending on whether the instantaneous allocation exceeds C or
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not. Then, each user adjusts its bid according to U ′
i

(
bi

λ(n)

)
= λ(n). The dual price update

together with the user response converges to the optimal solution of the network utility
maximization problem. This algorithm is a distributed implementation of the bidding
mechanism. The moral of the story is that for price-taking users, one-dimensional bids and
appropriate charging lead to efficient allocation.

Vickrey-Clark-Groves (VCG) mechanism

Consider now achieving an efficient allocation if users are price-anticipating, namely
they strategically adapt their bid by taking into account its impact on the price so that
they maximize net profit. In that case, a game interaction emerges with certain efficiency
loss. The setup is the same as the one above, and each user chooses his bid to maximize
the quantity:

Ui

( bi∑N
j=1 bi

C
)
− bi . (2.13)

Notice that now user i explicitly understands that the price, 1
C

∑N
i=1 bi depends also on

its own bid bi. A mechanism that guarantees an efficient allocation for selfish, price-
anticipating users is the Vickrey-Clarke-Groves (VCG) mechanism [20],[38]. This is a
generalization of the Vickrey mechanism for single item auctions. Here, the compromise is
that the auctioneer requests each user to reveal its utility function. In the VCG mechanism,
the amount charged to each user i is the externality it causes to others. This is the total
utility reduction caused by i to all other users, and it is computed as follows. Let x∗ be
the optimal solution to (SWM) problem, and let x̄ be the optimal solution to the (SWM)
problem without considering the effect of user i, namely to problem maxx

∑N
j �=i Uj(xj),

such that
∑N

j �=i xj ≤ C. The charge to user i is:

pi =

N∑
j �=i

Uj(x̄j)−
N∑
j �=i

Uj(x
∗
j) . (2.14)

In the VCG mechanism, declaration of the true utility function Ui(·) is the best strategy
for each user [94, Ch.6]. Namely, a user i cannot do better by misreporting its utility
function. To see this, observe that the net profit for a user i that declares its true utility
function is,

Ui(x
∗
i )− pi =

N∑
i=1

Ui(x
∗
i )−

∑
j �=i

Uj(x̄j) . (2.15)

Suppose now that user i misreported its utility function and declared it as Ũi(·) in an effort
to get more profit. In that case, there would be a different solution (call it x̃) to the (SWM)
problem, and the profit of user i would be

Ui(x̃i)− p̃i =

N∑
i=1

Ui(x̃i)−
∑
j �=i

Uj(x̄j) . (2.16)
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If truthful reporting of utility were not optimal, (2.16) should exceed (2.15), which would
mean

∑N
i=1 Ui(x̃i) >

∑N
i=1 Ui(x

∗
i ). This contradicts the fact that x

∗ is the optimal solution
of the (SWM) problem. Thus, truthful reporting is optimal under VCG. The VCG mech-
anism leads to efficient allocation. Its clear drawback is that each user needs to submit
to the auctioneer its entire utility function, namely an infinitely dimensional vector, which
renders the mechanism quite complex and burdensome in terms of information exchange.
Additionally, finding the optimal allocation and the VCG prices is a computationally diffi-
cult task. Especially if the auctioned items are discrete, non-homogeneous, the respective
optimization problems become NP-hard.

2.3.3 Optimal Auctions

The single-item optimal auction introduced by Myerson, was later extended for one
perfectly divisible item by Maskin, [69], and for the case of multiple homogeneous items by
Branco, [12]. We will focus on the latter mechanism. In this scheme, the auctioneer needs
again some initial information about the demand of bidders. Namely, the auctioneer needs
to know the family of the bidders’ utility functions U(αi) and the distribution function F (·)
of their types, αi, i = 1, 2, . . . , N . The buyers submit a single bid bi to declare their types.
The auctioneer combines this bid with the prior information and calculates the additional
expected revenue he will receive by assigning a certain item, e.g. the kth item out of K, to
a certain buyer, e.g. the ith buyer. This amount is known as the contribution of the bidder
for buying the kth item, and is defined as:

πk(bi) = Uk(bi)−
dUk(α)

dα
α=bi

1− F (bi)

f(bi)
(2.17)

where F (·) and f(·) are the cdf and pdf of the buyers. If these contributions are mono-
tonically strictly increasing in the types of the buyers and decreasing in the number of the
auctioned items, then they satisfy the so-called regularity conditions, [12], and the auction
is called regular. In this case the item allocation that maximizes the expected revenue of
the seller can be easily derived using the following deterministic allocation and payment
rules.

Optimal Auction Allocation Rule

The auctioneer calculates the contributions πk(bi) of each buyer i ∈ N for all the
auctioned items, k = 1, 2, . . . ,K and selects the K highest of them. In the sequel, he
constructs the contribution vector XK which has K elements in decreasing order:

XK = (x(l) : x(l) > x(l+1), l = 1, . . . ,K) (2.18)

Then, the auctioneer simply assigns each item k = 1, . . . ,K to the respective ith bidder if
x(l) = πk(bi)
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Figure 2·3: Single and double sided auctions. In single-sided auctions the
auctioneer sells or asks for an item (procurement auctions). In double-sided
auctions there exist many buyers and many sellers interacting concurrently.
A centralized entity collects the offer and the ask-bids and runs the auc-
tion algorithm to determine the allocation of the items and the respective
payments.

Optimal Auction Payment Rule

The price that each bidder i pays for receiving the kth item depends on the bids sub-
mitted by all the other bidders, b−i. Let us denote with zk(b−i) the minimum bid that the
ith buyer has to submit in order to acquire the kth item, [12]:

zk(b−i) = inf{α̂i : πk(α̂i) ≥ max{0, x(K+1)}} (2.19)

This means that in order to get the kth item the ith bidder has simply to submit a bid high
enough to draft his contribution within the first K elements of XK . The actual charged
price for each item is equal to his valuation had he a type equal to this minimum bid.
Hence the aggregate payment for all the items the ith bidder receives is:

h(bi, b−i) =
∑
k

Uk(zk(b−i)) (2.20)
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2.3.4 Double Auctions

In case there exist more than one sellers and there is lack of information both about
demand and supply, it is required to employ double auction mechanisms. The sellers
compete with each other in order to attract the buyers, while the latter are able to place
bids to several sellers. These markets are usually cleared by an independent institution,
that undertakes the role of the auctioneer. We depict the basic machinery of auctions in
Figure 2·3. The buyers submit ask bids, revealing the amount of money they are willing to
pay. Similarly, the sellers submit offer bids indicating the minimum offer they are willing
to accept. The task of the auctioneer is to collect all the bids, determine winning sellers,
allocate the items from sellers to buyers and compute the prices each seller must be paid
and each buyer must be charged.

Designing a double auction is an intricate task and the related literature is quite re-
stricted. One of the most prevalent double auction schemes is the McAfee double auction
model, [70] that ensures efficient allocation of items in dominant bidders strategies. How-
ever, it is not always possible for the auctioneer to mach requests and offers and at the
same time ensure the desirable property of truthful bidding. Double auctions can be asyn-
chronous, also called Continuous Double Auctions (CDA), [21], or synchronous. In the
former case, the ask and offer bids can be submitted or retracted anytime and unilaterally.
On the contrary, in synchronized auctions, the submitted bids are binding and active until
the market is cleared by the auctioneer. Double auctions are used extensively in stock and
other commodities markets.

2.4 Sponsored Search Auctions

A particularly interesting class of auctions are the sponsored search auctions (SSA),
or keyword auctions, which are used by web search engines for Internet advertising. In
these auctions, bidders are the advertisers who wish to have the advertisement of their
company appearing on a user’s search results screen after the user types a related keyword.
When they register their ad with the search engine, they provide keywords related to their
ad. Following a keyword search by an Internet user, the system finds a set of ads with
keywords that match the user query. Advertisements appear in the search results as a
ranked list. The user clicks on an advertisement and it is taken to the advertiser’s website.
The advertiser then pays the search engine company for guiding the user to its web page.
Advertisement positions (ranked slots) on search results are clearly of high importance to
advertisements; the higher the ad is displayed on the list, the more probable it is that it
will be clicked by the user, and the more likely it becomes that the advertiser will get some
profit if the user buys the product or service. In SSAs, ranked advertisement positions are
auctioned to advertisers. An advertisement is considered successful if a user clicks on the
respective ad link. Advertisers pay an amount each time a user clicks on their ad.

The underlying feature of previously presented auctions is that there exist two parties,
the auctioneer and the bidders, who determine the rules of the auction. Bidders cast their
bids, and the auctioneer determines the allocation of items and the payment. Clearly, ad
auctions are different in that the auctioneer revenue and bidder payoff depend on a third
entity, the Internet user. This idea is similar to the well known score auctions where
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the bids are weighted with various parameters which are characterize the quality of the
bidders. However, this is the first time that such schemes are applied so extensively. Google,
Yahoo! and other search engines auction advertising positions using this class of auction
mechanisms. Google [35] was the first to consider the dependency of position allocation
and payment on user preferences. We are inspired by these auctions and use a similar
mechanism in chapter 3.

Let us now give a brief overview of the SSAs machinery. Consider N advertisers who
bid for K < N ad slots for a specific keyword. Let ui be the value of the ad for advertiser
i, i = 1, . . . , N . Let bi be the bid of advertiser i and pi be the payment per click he will
be charged. The auctioneer collects submitted bids and needs to decide which bidders
will have their ads shown, in which order and the respective payments. Let cij denote
the probability that the ad of advertiser i will be clicked by the user when in position j,
j = 1, . . . ,K. This is also called click-through rate (CTR) and can be calculated by the
search engine based on history statistics with various methods [73, Ch.3]. CTR depends
on the ad of advertiser i and the position j and can be assumed to be cij = αiβj , where αi

an ad-dependent parameter, the per-ad CTR (the ratio of number of clicks received by the
ad over the number of times the ad was displayed). It is αi =

∑K
j=1 cijyij, where yij is the

probability that ad i is displayed in position j. Also, βj is a position-dependent parameter,
the per-position CTR. Higher ranked positions are more visible to users and attract more
attention, so that β1 > . . . > βK .

The auction goes as follows. Each advertiser i chooses a bid bi. Ads of advertisers
appear in ad slots in decreasing order of their weighted bid, biαi. The advertiser in the
k-th position, say with weighted bid b(k)α(k) pays a total amount equal to the weighted bid
of the advertiser in the next position k + 1, that is, total amount b(k+1)α(k+1). Hence, the
amount paid per click is p(k) = b(k+1)α(k+1)/α(k). The last ranked advertiser either pays a
reserve price if N < K or the amount of bid of the first omitted advertiser if N > K. This
payment rule is a generalization of the one in Vickrey auction for one item, generalized
to the setting where a set of ranked items are sold. Thus, the auction is often referred as
Generalized Second Price (GSP) auction [25], [104]. The position allocation rule naturally
ranks bidders in a decreasing order of expected revenues.

The probability that a user will click on an ad is a key factor to consider. Otherwise,
less attractive ads will be displayed, and small revenue for the auctioneer will be incurred.
Assume that bidders are risk-neutral. The net payoff for advertiser i when his ad is
displayed in position j is cij(ui−pi), where pi is the payment per click. From the perspective
of the auctioneer, the problem is to find the position allocation that maximizes expected
revenue [73]:

max
X

N∑
i=1

K∑
j=1

picijxij (2.21)

subject to
∑K

j=1 xij ≤ 1, for i = 1, . . . , N , and
∑N

i=1 xij = 1 for j = 1, . . . ,K, where X is
the N ×K assignment matrix with xij = 1 if the i-th advertiser is allotted position j, and
xij = 0 otherwise. If the auctioneer wants to maximize efficiency, he solves the assignment
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problem:

max
X

N∑
i=1

K∑
j=1

uicijxij (2.22)

subject to the allocation constraints above. The auctioneer does not know valuations ui
and uses submitted bids, which may differ from valuations. For both revenue maximization
and allocation efficiency, it is crucial to consider CTRs. The allocation of a slot does not
generate utility for the advertiser and revenue for the auctioneer unless the ad link is
clicked.
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Chapter 3

Incentive Mechanisms for Hierarchical Spectrum

Markets

3.1 Background

In the emerging dynamic spectrum markets, spectrum will be allocated from govern-
mental agencies in a finer spatio-temporal scale to the interested buyers, the so-called
primary operators (POs), [85], and more importantly, the POs will be able to lease their
idle channels to secondary operators (SOs), [86], who serve fewer users in smaller areas,
Figure 3·1. This 2-layer hierarchical spectrum allocation is expected to increase spectrum
utilization and already several related business models exist in the market. For example,
Spectrum Bridge, a company founded in 2007 offers a market place where spectrum licence
holders are able to lease or resell their idle channels, [97]. Also, Mobile Virtual Network
Operators (MVNO), which first appeared in UK in 1999, lease spectrum (or/and network
infrastructure) from Mobile Network operators (MNO) and use it to provide communi-
cation services to their clients (users). Nevertheless, the market-based solution for the
spectrum scarcity problem is not a panacea and should be carefully employed.

In these hierarchical markets, the objective of the agency, which we call hereafter con-
troller (CO), is to allocate the spectrum efficiently, i.e. to maximize the aggregate social
welfare from its use. However, this objective cannot be achieved because of the following
reasons: (i) the coordination problem, and the (ii) objective misalignment problem.
The first problem emerges when the CO assigns the spectrum to the POs without taking
into account or even knowing the needs of the SOs (secondary demand). The second prob-
lem arises due to the inherently selfish behavior of POs who resell their spectrum in order
to maximize their revenue. Clearly, this strategy contradicts the goal of the controller.

In this chapter we study the spectrum allocation in these hierarchical markets and pro-
pose an incentive mechanism that enhances their performance by addressing the above two
issues. The mechanism is deployed by the controller who acts as regulator and incentivizes
the POs to redistribute their spectrum in a socially aware fashion. We consider a basic
setting depicted in Figure 3·1, where each PO is a monopolist and has a certain clientele of
SOs. Monopolies are expected to arise often in these markets because the POs obtain the
exclusive spectrum use rights for certain areas or because they collude and act effectively as
one single seller. First, we analyze the performance of the unregulated hierarchical market,
i.e. when there is no incentive mechanism, and we show that it results in an undesirable
equilibrium. The spectrum allocation from the CO to the POs and from the POs to the
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Figure 3·1: The system consists of one Controller which has at his disposal
K identical channels. There exist M primary operators which ask for spec-
trum. Each PO j acquires Kcj channels and uses Kj0 of them to satisfy
the needs of his own users and resells Kji channels to each SO i in the
underneath secondary market. There are N SOs in the monopoly market
under each PO which provide feedback to the CO for the decisions of the
POs.

SOs is accomplished through auction-based mechanisms since there is lack of information
about the spectrum demand. Namely, the CO uses an efficient auction such as the VCG
auction, [58], while the POs employ an optimal auction, [72], which maximizes the expected
revenue of the seller but induces efficiency loss, [1], [69].

Accordingly, we propose an incentive mechanism based on which the CO charges each
PO in proportion to the inefficiency that is caused by his spectrum redistribution decisions.
This way, the POs are induced to allocate their spectrum using a new auction scheme which
produces less revenue for them but more welfare for the SOs. This is a novel multi-item
auction mechanism where the objective of the auctioneer is a linear combination of his
revenue and the valuations of the bidders. The balance between the objective of the POs
and the SOs is tuned by a scalar parameter which is determined by the CO and captures his
regulation policy. Finally, we apply our mechanism to dynamic spectrum markets where
the CO-PO and the PO-SO interactions are realized in different time scale. Although
in this case the coordination problem is inherently unsolvable, the proposed scheme still
improves the performance of the market by aligning the decisions of the POs with the

26

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



objective of the CO.

3.1.1 Motivating Example

We start with a simple example in order to motivate our study and present the intuition
behind our mechanism. Consider the 2-layer spectrum market depicted in Figure 3·2. The
Controller has 3 channels at his disposal which are initially allocated to the POs. We
assume that each operator, PO or SO, is interested only in one channel. The POs and SOs
valuations for acquiring one channel are: {V1, V2, U1, U2, U3, U4} = {8, 9, 3, 5, 2, 8}. Each
PO allocates the channels he acquires through a Vickrey auction. The maximum revenue
the PO1 can accrue is equal to 3 units from reselling one channel to SO2. Similarly, the
maximum revenue of PO2 for reselling one channel to SO4 is 2 units. Therefore, the bids
of PO1 and PO2 for the first 2 channels are b1 = {8, 3} and b2 = {9, 2} respectively.

The CO organizes a truthful auction and allocates each channel to the PO with the
highest respective bid. PO1 receives 2 channels, one of which is resold to SO2, and PO2

1 channel which is used for his own needs. The final channel allocation is depicted in
Figure 3·2 marked with red-coloured squares (each square represents one channel) and
yields a social welfare of SW = V1 + V2 + U2 = 8 + 5 + 9 = 24 units. Clearly, this is
not an efficient allocation since SO4, who does not receive a channel, has a higher channel
valuation (U4 = 8 units) from SO2 (U2 = 5 units). This efficiency loss is induced by
the strategy of the POs who bid in accordance with their anticipated revenue and not
with respect to the actual spectrum needs of their secondary markets. This results in an
inefficient allocation of the channels in the first stage: PO1 gets more channels than PO2

although the latter has higher secondary demand. It is important to emphasize that, even
if the channels are assigned efficiently in the first stage, still the selfish, revenue-maximizing
allocation strategy of the POs, induces efficiency loss as we will explain in the next sections.

Let us now give the intuition behind the proposed mechanism. Assume that the con-
troller is willing to increase the efficiency of the secondary market. Specifically, the CO
decides to reimburse the POs in proportion to the welfare of the secondary market that is
produced by their channel re-allocation decisions. This way, the CO expects to motivate
the POs to reassign the channels efficiently. In this case, each PO receives for each channel
that he resells the price paid by the SO and, additionally, the reimbursement from the
CO. That is, the CO transfers to each PO, βUi monetary units, with β > 0, for every
channel he allocates to each SOi. This pricing scheme affects the bidding strategy of the
POs and the outcome of the hierarchical allocation. Specifically, for the example of Figure
3·2 with β = 0.4, if PO1 allocates a channel to SO2 he will receive a payment of 3 units
from SO2 and a reimbursement of 5 × 0.4 = 2 units from CO. Hence, the updated bid of
PO1 is b1 = {8, 5}. Similarly, the updated bid of PO2 is b2 = {9, 5.2}. Therefore, the CO
allocates 2 channels to PO2 and 1 channel to PO1 which is the efficient channel allocation.

3.1.2 Related Work and Contribution

Primary operators are considered revenue maximizing entities and hence they are ex-
pected to use an optimal auction mechanism since this yields the maximum expected
revenue. Optimal auctions were introduced by Myerson [72] for single item allocation and
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Figure 3·2: A 2-layer spectrum market where the CO has K = 3 chan-
nels. Each operator, PO or SO, has a single-unit demand with valuation:
{V1, V2, U1, U2, U3, U4} = {8, 9, 3, 7, 2, 8}. First, the POs organize a second-
price auction where the SOs reveal their actual valuations. Then the CO
runs a second price auction where POs bid w.r.t their valuation for the chan-
nel and the expected revenue from their secondary market. This scheme
yields an inefficient spectrum allocation that is marked with the red col-
ored squares (each one represents a spectrum unit). The allocation that
maximizes the social welfare is marked with the blue-coloured squares.

extended later for multiple items, [12], or divisible resource, [69]. They ensure the highest
expected revenue for the auctioneer, compared to any other type of auction, but they in-
duce efficiency loss, [1], [58]: it is not guaranteed that the auctioned items will be allocated
to the bidders with the highest valuations. On the other hand, VCG auctions constitute
the best option for achieving an efficient allocation under a variety of settings and as-
sumptions. However, they often exhibit a high computational complexity that makes their
implementation an extremely difficult -if not impossible- task. Additionally, they are not
always budget balanced: the sum of the payments does not sum up to zero. This means
that the auctioneer will need to inject additional money into the market. One should take
this issues into consideration before deciding to employ a VCG-based mechanism, [67].
Nevertheless, VCG auctions have the following desirable properties:(i) they are as budget
balanced as any efficient mechanism can be, (ii) they are weakly budget balanced, i.e. the
sum of payments is positive, if the no-single agent effect condition is satisfied, (iii) they
produce the highest revenue among all other efficient auctions, [58], (iv) their complexity
can be reduced significantly under certain assumptions, e.g. if the auctioned items are
homogeneous.

The interaction of primary and secondary operators is usually modeled as a monopoly
market. For example, in [47] the authors consider a setting where each primary license
holder sells his idle spectrum channels to a set of secondary users and show that the optimal
auction yields higher profit but results in inefficient allocation. A similar monopolistic
setting is considered in [32] and [36]. In [19], a multiple-item optimal auction is used by
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a primary service provider to allocate his channels to a set of secondary service providers
while satisfying at the same time his own needs. It can be argued that even in oligopoly
spectrum markets is highly probable that the PO - SO interaction will result in spectrum
allocation that is not efficient from the perspective of the controller, [21]. All these works
analyze exclusively the primary - secondary operators interactions without taking into
account the hierarchical structure of the spectrum markets.

This hierarchical aspect is studied in [78] where the authors consider a multi-layer spec-
trum market and present a mechanism to match the demand and the spectrum supply of
the interrelated spectrum markets in the different layers. Similar models have been con-
sidered in [24] and [53] where the buyer demand is considered known. However, in these
studies there is no misalignment among the objectives of the various entities (operators,
users, etc) since they all maximize the revenue or the efficiency of the allocation. Hierar-
chical auctions have been also studied for general network resource allocation problems,
[100], [101]. It is explained that due to the different objectives among the 1st-layer auc-
tioneer (initial owner of the auctioned items) and the intermediaries, the overall resource
allocation is either inefficient or untruthful. In [9], the authors study a 2-layer market
for bandwidth allocation in wired networks and draw similar conclusions. Moreover, they
propose a solution that is based on ascending auctions. A prerequisite for the efficient al-
location of bandwidth is that either the payment rule of the lower-level auction is selected
by the social planner (1st layer auctioneer) or that the lower level market is an oligopoly,
i.e. buyers are allowed to submit bids to all auctioneers.

For the problem under consideration, the entities in the different layers have conflicting
interests and there is lack of information about the actual demand in each layer. The
intermediaries (2nd layer auctioneers) have (self-) valuations for the spectrum, and are
allowed to select the auction scheme that yields for them the maximum possible revenue.
The controller (social planner) does not issue strict regulatory rules, e.g. does not impose
the payment scheme of the lower level market. Instead, he employs a proper pricing strategy
which, with a minimum feedback from the lower level bidders, ensures that the objectives
of the primary operators will be aligned with his goal for efficient channel allocation. The
proposed mechanism can be implemented in a single round. Our work is inspired by the
sponsored search (keyword) auction mechanisms, [75], which assign the search engines
advertising slots by taking into account the feedback from the clickers. Similar concepts
can be used for the allocation of spectrum as we suggested in [43]. Here, we take a further
step towards this direction by giving a detailed methodology.

In summary, the contributions of this work are the following: (i) we analyze the unreg-
ulated hierarchical spectrum allocation and show that it is inefficient, (ii) we present an
incentive mechanism that motivates the POs to increase the efficiency of their spectrum
redistribution, (iii) we introduce the β-optimal auction which achieves a balance between
the revenue of the seller (optimality) and the welfare of the buyers (efficiency). This is a
new mechanism that can be used also for the allocation of similar communication resources
(bandwidth, transmission power, etc), (iv) we discuss how this incentive mechanism can be
applied to dynamic markets, where the CO-POs and the PO-SOs interactions are realized
in different time scale, and we show that it improves their efficiency.

The rest of the chapter is organized as follows. In Section 3.2 we introduce the system
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model and in Section 3.3 we analyze the hierarchical spectrum allocation without the
intervention of the controller. This analysis helps us to describe the incentive mechanism
and assess its efficacy in Section 3.4. Finally in Section 3.5 we apply our mechanism to more
dynamic spectrum markets. We present our numerical study in section 3.6 and conclude
in Section 3.7.

3.2 System Model

We consider a three-layer hierarchical spectrum market with one controller (CO) on top
of the hierarchy, a setM = {1, 2, . . . ,M} of primary operators (POs) in the second layer
and a set N = {1, 2, . . . , N} of secondary operators (SOs) that lie in the third layer under
each PO, as it is shown in Figure 3·3. There exists a set K = {1, 2, . . . ,K} of identical
spectrum channels which the CO allocates to the M primary operators. Accordingly, each
PO redistributes the channels he acquired among himself and the N SOs that lie in his
secondary market. The objective of the POs is to incur maximum revenue from reselling
the spectrum while satisfying their own needs.

The perceived utility of each operator (PO or SO) for acquiring a channel is represented
by a scalar value. Following the law of diminishing marginal returns we consider that
each additional channel has smaller value for the operator. Different operators may have
different spectrum needs and hence different channel valuations. For example, an operator
with many clients will have very high channel valuations. Also, the POs have in general
higher valuations than the SOs since they serve more users. We summarize these different
characteristics of the operators with a real-valued parameter which we call the type of
the operator, [58], [19]. Notice that, our system model is general and satisfies the basic
assumptions and requirements of many different settings, [32], [78], [24], [9].

Figure 3·3: System Model. The CO has K channels which allocates to M
POs. Each PO leases his idle channels to N SOs. Vk(pj) is the valuation of
PO j for the kth channel and Uk(αji) the respective valuation of the SO i
under PO j.
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Secondary Operators: In detail, consider a SO i ∈ N , in the secondary market of PO
j ∈ M, with k − 1 channels at his disposal. His valuation for acquiring one more channel,
i.e. the kth channel, is Uk(αji) ∈ R+ which is assumed to be positive, monotonically
increasing and differentiable function of parameter αji. This is the type of the SO and
represents his spectrum needs. The SOs types are independent random variables (i.r.v.),
αji ∈ A = (0, Amax), Amax ∈ R+, drawn from the same distribution function F (·) with
finite density f(·) on A. We denote αj = (αj1, αj2, . . . , αjN ) the vector of SOs types for
the secondary market under PO j ∈M. We use this notation so as to distinguish the SOs
in the different secondary markets. Notice that the type of each SO does not depend on
the respective PO j. We assume that it is: U1(αji) ≥ U2(αji) ≥ . . . ≥ UK(αji) ≥ 0, for
each αji ∈ A, i ∈ N , j ∈ M. The SO i pays for the channels an amount of money that is
determined by the respective PO j.

Primary Operators: Each PO j ∈ M receives Kcj channels from the CO at a cost of
Q(Kcj) monetary units and decides how many he will reserve for his own needs, Kj0, and
how many he will allocate to each one of the N SOs at his secondary market, Kj = (Kji :
i ∈ N ). We assume that the valuation of the PO for using the kth additional channel is
Vk(pj) ∈ R+ which belongs to a known family of functions Vk(·) and is parameterized
by the private i.r. variable pj ∈ P = (0, Pmax), Pmax ∈ R+ that is drawn from the same
distribution function G(·). In analogy with αji, pj is the type of the PO and models his
spectrum needs. The valuation functions are considered positive, monotonically increasing
and continuously differentiable w.r.t. the type pj : V1(pj) ≥ . . . ≥ VK(pj) ≥ 0. The benefit
of the PO from reselling his spectrum to the respective secondary market is given by the
revenue component H(Kj , αj) which depends on the number of leased channels and the
charged prices. Notice that different POs may accrue different revenue either because they
sell different number of channels or because they have different demand (types of SOs) in
the respective secondary market. We define the combined valuation - revenue objective of
each PO j ∈ M as follows:

J(pj , αj ,Kj0,Kj) =

Kj0∑
k=1

Vk(pj) +H(Kj , αj) (3.1)

Controller: The goal of the controller is to increase the spectrum utilization and the
efficiency of the hierarchical spectrum market. Therefore he acts as regulator and deploys
an incentive mechanism to induce a channel allocation that maximizes a balanced sum of
the POs’ combined objectives and the valuations of the SOs:

C(β) =

M∑
j=1

[J(pj , αj ,Kj0,Kj) + β

N∑
i=1

Kji∑
k=1

Uk(αji)] (3.2)

where β ∈ R+ is defined by the CO and determines this balance. Obviously, as β increases,
the allocation of spectrum will favor the SOs. Notice that the objective of the CO incor-
porates both the channel valuation of the POs and their revenue components, since the
latter are the their motivation for reallocating the spectrum.
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3.3 Unregulated Hierarchical Spectrum Allocation

We begin our study with the unregulated hierarchical spectrum allocation and show that
it yields inefficient channel allocation. That is, the channels are not assigned to operators,
primary or secondary, with the highest channel valuations. First, notice that the timing of
the channel allocation in the different layers affects the outcome. The hierarchical channel
allocation will definitely yield an inefficient result if the CO is not aware of (or does not
take into account) the secondary demand when he allocates the channels to the POs. In
other words, the POs should first learn the demand in their respective market and then ask
for spectrum. Second, even if there is full information about the POs and SOs demand,
the efficient allocation is not ensured since the POs will redistribute their channels so as to
maximize their revenue and not the efficiency of the secondary market. In the sequel, we
analyze these issues and prove that the unregulated spectrum allocation induces efficiency
loss. The presented model and analysis is used in the next section in order to introduce
our mechanism and assess its efficacy.

3.3.1 Second Stage: SOs - PO Interaction

The POs must first elicit the hidden information about the spectrum demand in their
secondary market. Therefore, they organize a proper auction. In this auction, each PO
j ∈ M aims to find the optimal allocation, (K∗

j ,K
∗
j0), of his Kcj channels that maximizes

his combined objective given by eq. (3.1). This allocation is derived from the solution of
the PO Spectrum Allocation Problem, (Ppo):

max
Kj ,Kj0

J(pj , αj ,Kj0,Kj) (3.3)

s.t.

Kj0 +
N∑
i=1

Kji ≤ Kcj, Kji, Kj0 ∈ {0, 1, 2, . . . ,Kcj} (3.4)

Notice that, initially the POs do not know how many channels they will receive from
the CO. Therefore, they determine the channel allocation as if they had all the channels,
i.e. they solve problem Ppo for Kcj = K. This way, the POs learn the entire secondary
demand, i.e. how much each SO values each additional channel and hence how much he is
willing to pay for it.

We assume that every PO has only partial information about the underneath secondary
market. He knows the family of the valuation functions of the SOs, Uk(α), k ∈ K, and
their types distribution function F (·) but not their actual types. To elicit this missing
information the PO runs an optimal auction where each one of the N SOs submits a bid,
bi ∈ A in order to declare his type αji. The PO collects the bids, b = (bi : i ∈ N ), and
determines the allocated spectrum and the respective payment for each bidder. Here, the
seller (PO) is also interested in the auctioned items and hence he compares his expected
revenue from selling a channel with the valuation for using it, Vk(·), before he decides if he
will allocate it to a SO or reserve it, [72],[19].

The maximization of the expected revenue, (Ppo), can be transformed to a deterministic
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channel allocation problem. Let us first define the additional expected revenue the PO
incurs for assigning the kth channel to SO i ∈ N . In auction theory, [12], this is known as
the contribution of the bidder (here the SOs) and is defined as:

πk(bi) = Uk(bi)−
dUk(α)

dα
α=bi

1− F (bi)

f(bi)
(3.5)

where F (·) and f(·) are the cdf and pdf of the SOs. If these contributions are monotonically
strictly increasing in the types of the SOs and decreasing in the number of channels, then
they satisfy the so-called regularity conditions, [12], and the auction problem Ppo is called
regular. In this case the channel allocation that maximizes the combined objective of the
PO j can be easily derived using the following deterministic allocation and payment rules.

PO Optimal Auction Allocation Rule

The auctioneer (PO j) calculates the contributions πk(bi) of each SO i ∈ N for all the
auctioned channels, k = 1, . . . ,Kcj , and selects the Kcj highest of them. In the sequel, he
compares these Kcj contributions with his own valuations for the channels and constructs
the contribution-valuation vector Xj which has Kcj elements in decreasing order:

Xj = (x(l) : x(l) > x(l+1), l = 1, . . . ,Kcj) (3.6)

Then, the PO simply assigns each channel l = 1, . . . ,Kcj to the respective ith SO if x(l) =
πk(bi) or he reserves it for himself if x(l) = Vk(pj). For example, for a PO with 4 channels
and two SOs bidders, a possible instance of Xj is Xj = (V1(pj), π1(b1), π1(b2), V2(pj)) which
means that the PO will reserve 2 channels for himself and assign one to each SO.

PO Optimal Auction Payment Rule

The price that each SO i pays for receiving the kth spectrum channel depends on the
bids submitted by all the other SOs, b−i = (bn : n ∈ N \ {i}). Namely, let us denote with
zk(b−i) the minimum bid that the ith SO has to submit in order to acquire the kth channel,
[12]:

zk(b−i) = inf{α̂ji ∈ A : πk(α̂ji) ≥ max{0, x(Kcj+1)}} (3.7)

This means that in order to get the kth item the ith SO has simply to submit a bid high
enough to draft his contribution within the first Kcj elements of Xj. The actual charged
price for each channel is equal to his valuation had he a type equal to this minimum bid.
Hence the aggregate payment for the SO is:

h(bi,b−i) =

Kji(bi,b−i)∑
k=1

Uk(zk(b−i)) (3.8)

This payment rule is an extension of the original rule introduced in [72] and [12] and
has been used also for the case that the seller has valuation for the auctioned items in [19].
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Hence, each SO i ∈ N bids according to the SO Bidding Problem, (Pso):

b∗i = argmax
bi
{
Kji(bi,b−i)∑

k=1

Uk(αji)− h(bi,b−i)} (3.9)

Due to the payment and the respective monotonic allocation rule, the auction mechanism
is incentive compatible and individual rational, [47], [75], hence b∗i = αji, ∀i ∈ N .

3.3.2 First Stage: POs - CO Interaction

After learning the demand in their secondary spectrum markets, the POs ask the CO
for spectrum. The controller determines the channel distribution, Kc = ({Kj ,Kj0} : j =
1, 2, . . . ,M) and the payment Q(Kcj) by each PO, where Kcj are the total channels the

PO j receives, i.e. Kcj = Kj0 +
∑N

i=1 Kji. We assume that the CO knows the family
of the valuation functions of POs, Vk(·), k ∈ K and of SOs, Uk(·), k ∈ K, but not their
exact types (pj and αji respectively), [58], [75]. Therefore the CO, in order to elicit this
information, runs a Vickrey-Clarke-Groove (VCG) auction which is known to be efficient
under a variety of assumptions, [58]. Every PO j ∈ M submits a vector bid rj ∈ R(N+1),
in order to declare his own type and the types of the SOs in his market. We assume that
the first component of this vector rj(1) represents the type of the PO, and the next N
components the types of the SOs in the respective secondary market. The CO collects
these bids, r = (rj : j = 1, 2, . . . ,M), and finds the channel allocation that maximizes the
aggregate combined objective of all the POs by solving the CO Spectrum Allocation
Problem, (Pco):

max
Kc

M∑
j=1

J(rj ,Kj0,Kj) (3.10)

s.t.
M∑
j=1

Kcj ≤ K, Kcj ∈ {0, 1, 2, . . . ,K} (3.11)

Kcj = Kj0 +

N∑
j=1

Kji, j = 1, 2, . . . ,M (3.12)

One simple method to find the solution K∗
c of problem Pco, is to sort in decreasing

order the valuations Vk(rj(1)) of all POs, j = 1, 2, . . . ,M , and the contributions πk(rj(i))
i = 1, 2, . . . N of their SO clients, for each channel k = 1, 2, . . . K. Then the CO allocates
each channel to the operator with the highest valuation (for POs) or contribution (for SOs).
Each PO gets the channels for himself and the underneath secondary market. Clearly, the
number of channels the PO j receives depends both on his own bid rj and the bids of the
other POs, r−j = (rm : m ∈ M \ {j}), i.e. Kcj(rj , r−j).

The payment imposed to each PO, according to the VCG payment rule [58], is equal
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to the externality he creates to the other POs:

Q(rj, r−j) =

M∑
m�=j

J(rm, K̃∗
m0, K̃

∗
m)−

M∑
m�=j

J(rm,K∗
m0,K

∗
m) (3.13)

where (K∗
m0,K

∗
m) are the channels allocated to each PO m ∈ M\{j} and the respective SO

market according to the solution of problem (Pco), and (K̃∗
m0, K̃

∗
m) the allocated channels

when PO j does not participate in the auction, i.e. when rj = 0.
In this auction, the POs determine their bid by solving the following PO Bidding

Problem, (Pb
po) :

r∗j = argmax
rj
{J(pj , αj ,K

∗
j0(rj , r−j),K

∗
j (rj , r−j))−Q(rj , r−j)} (3.14)

Since VCG auctions are incentive compatible, [58], each PO j ∈ M will reveal his actual
type, r∗j(1) = pj, and the true types of his SOs r∗j(i + 1) = αji, i = 1, 2, . . . , N which he
learned in the first stage of this hierarchical spectrum allocation.

3.3.3 Inefficiency of the Unregulated Hierarchical Allocation

From the previous analysis it is evident that the main reason that renders inefficient
this hierarchical spectrum allocation is the objectives misalignment problem. The POs act
so as to maximize their valuation and expected revenue while the CO would like to increase
the allocative efficiency of the channels. The efficiency loss induced by each PO j ∈ M can
be easily calculated numerically for a given secondary demand αj = (αj1, αj2, . . . , αjN ) and
number of channels Kcj , if we simply compare the contributions πk(αji) of the SOs with
their valuations Uk(αji). Clearly, POs allocate their channels to the SOs that pay higher
and not to those with the highest valuations. Moreover, a PO may reserve a channel for
himself, although there is a SO with a higher valuation for it, if selling it does not yield
high enough revenue.

Additionally, due to this misalignment of the objectives, the CO fails to allocate the
channels efficiently in the first stage. That is, the CO may allocate too many channels to
a PO who has low secondary demand and less channels to a PO with higher secondary
demand. Although that the controller, through the VCG auction he runs, learns the actual
demand of each secondary market, he cannot allocate the channels efficiently. Notice that if
the CO decides to maximize another function, e.g. the sum of POs and SOs valuations, and
not the combined objectives of the POs, then the auction would not be incentive compatible
anymore. The POs are free to select their objective function (revenue maximization) and
the CO has to comply with this and run an auction with the same objective. In conclusion,
in order to increase the efficiency of the hierarchical spectrum allocation, the controller
must induce the POs to change their objective and at the same time to retrieve the hidden
information about POs and SOs demand. This can be accomplished through a scheme
that combines a pricing and an auction mechanism.
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3.4 Regulated Hierarchical Spectrum Allocation

In this section we build upon the previous analysis and introduce our incentive mech-
anism. First, we explain the basic idea of the mechanism and the difficulties that the
controller encounters in applying it. Next we introduce the β-optimal auction which is
required in order to enable the POs to balance their revenue and the efficiency of their
spectrum redistribution. Finally, we discuss the efficacy of the mechanism and its require-
ments.

3.4.1 Incentive Mechanism MR

The goal of the controller is to induce the channel allocation Kβ
c = {{K∗

j0,K
∗
j} : j =

1, 2, . . . ,M} for each PO j ∈ M and the respective secondary market that maximizes his
objective C(β), given by eq. (3.2). This allocation stems from the solution of the CO
Balanced Spectrum Allocation Problem, (Pbal

co ):

max
Kc

M∑
j=1

⎡
⎣J(pj , αj ,Kj0,Kj) + β

N∑
i=1

Kji∑
k=1

Uk(αji)

⎤
⎦ (3.15)

s.t.
M∑
j=1

(Kj0 +

N∑
i=1

Kji) ≤ Kc, Kj0,Kji ∈ {0, 1, 2, . . . ,Kc} (3.16)

parameter β ∈ R+ is determined by the CO and defines implicitly the revenue of the POs
and the welfare of the SOs.

The difficulties the controller encounters to achieve his goal are: (i) the CO is not aware
of the types of the POs, pj, j ∈ M, (ii) he does not know the types of the SOs in each
secondary market, aji, i ∈ N , j ∈ M and (iii) he cannot directly dictate the POs how to
redistribute the channels they acquired nor he can observe how they did allocated them. In
economic terms, conditions (i) and (ii) capture the hidden information asymmetry, [21], of
the spectrum market which means that the controller is not aware of the actual needs of the
operators. Similarly, condition (iii) describes the hidden action asymmetry, which exists
in the market because the CO is not aware of the actions of the POs. The introduced
incentive mechanism, which we call Mechanism MR, eliminates these asymmetries and
achieves the desirable spectrum allocation.

The proposed scheme is based on pricing and the underlying idea is that the controller
creates a coupling between the spectrum allocation decisions of the POs and their cost for
acquiring the spectrum in order to bias their revenue maximizing strategy. Namely, we
suggest that the CO should reimburse the PO j ∈ M with the following price:

Lj(αj ,Kj , β) = β
N∑
i=1

Kji∑
k=1

Uk(αji) (3.17)
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This modifies the objective function of the PO as follows:

JR(pj , αj ,Kj0,Kj, β) = J(pj, αj ,Kj0,Kj) + β

N∑
i=1

Kji∑
k=1

Uk(αji) (3.18)

JR(·) is the regulated new combined objective of each PO which depends on parameter β
and is aligned with the balanced objective of the CO, eq. (3.2).

3.4.2 The β-Optimal Auction Mechanism

Each PO maximizes JR(·) by solving a new allocation problem Pβ
po which differs from

the respective Ppo problem in the objective function that is given now by eq. (3.18). Since
the types of the SOs are unknown, the primary operator runs again an auction to elicit
this hidden information. However, this is neither an efficient nor an optimal auction and
hence he cannot employ any of the known auction schemes. To address this problem, we
introduce a new multi-item auction mechanism, the β-optimal auction, which ensures the
maximization of the balanced objective defined in eq. (3.18). This mechanism is similar
to the optimal auction discussed in section 3.3.1 with the difference that the allocation
rule is biased by parameter β. This modification affects the allocation of the channels and
results in reduced payments from the bidders to the auctioneer and improved efficiency
in channels allocation. The combination of optimal and efficient auctions has been also
suggested in [65] for single item allocation where the authors proposed an efficient auction
with a lower bound on the seller’s revenue.

Let us now explain the rationale and machinery of the β-optimal auction. First we
define the β-contribution for each SO i ∈ N under a certain PO j ∈ M, as follows:

πβ
k (bi) = (1 + β)Uk(bi)−

dUk(α)

dα
α=bi

1− F (bi)

f(bi)
(3.19)

Since β ≥ 0 it is πβ
k (αji) ≥ πk(αji) for all the SOs and all the channels. Moreover,

notice that if the initial contributions satisfy the regularity conditions, [12], then the β-

contributions will also satisfy them, and hence problem Pβ
po will be regular. Therefore, we

are able again to derive deterministic channel allocation and payment rules.
β-Optimal Auction Allocation Rule: Similarly to the allocation rule of the optimal

auction, the jth PO calculates the πβ
k (bi) for all SOs i ∈ N and all channels k = 1, . . . ,Kcj

and compares them with his own valuations in order to construct the contribution-valuation
vector Xβ

j :

Xβ
j = (xβ(l) : x

β
(l) > xβ(l+1), l = 1, . . . ,Kβ

cj) (3.20)

Using Xβ
j , the PO allocates his channels to the respective Kcj highest contributions and

valuations. The resulting channel allocation (Kβ
j0,K

β
j ) solves problem Pβ

po and maximizes

the new objective JR(pj, αj ,K
β
j0,K

β
j , β). Again, this allocation rule is monotone increasing

in the types of the SOs.
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β-Optimal Auction Payment Rule: The payment rule changes in order to comply
with the new allocation rule. Namely, the minimum bid that the ith SO needs to submit
in order to acquire the kth channel is:

zβk (b−i) = inf{α̂ji ∈ A : πβ
k (α̂ji) ≥ max{0, xβ

(Kβ
cj+1)

}} (3.21)

and, similarly to the previous mechanism, the total payment for this SO is :

hβ(bi, b−i) =

Kβ
ji(bi,b−i)∑
k=1

Uk(z
β
k (b−i)) (3.22)

Under this new auction mechanism, each SO i ∈ N selects his bid so as to maximize his
new payoff, (SO β-Bidding Problem, Pβ

so):

b∗i = argmax
bi
{
Kβ

ji(bi,b−i)∑
k=1

Uk(αji)− hβ(bi, b−i)} (3.23)

This new auction mechanism improves the efficiency of the POs - SOs interaction and
at the same time retains the required properties of the optimal auctions as we explain with
the following proposition.

Proposition 1. The β-optimal auction mechanism preserves the incentive compatibility

and the individual rationality properties of optimal multi-unit auction introduced in [12].

Proof:
We focus on PO j ∈ M with Kcj channels. We denote sik the probability of SO i for

receiving the kth channel which depends on the types of all the SOs. Additionally, ci(αji)
is the payment of each SO i for all the channels he acquired. Definition 2 and Lemma 1 in
[12] give the necessary conditions for the structure of the bidders (SOs) valuation functions
in order to ensure the (IC) and (IR) properties. These conditions hold independently of
the objective of the auctioneer (PO) and hence they are not affected by the incorporation
of the linear term of the SOs valuation.

The objective of the PO w.r.t. the expected types of the SOs is:

EA[JR(·)] =
N∑
i=1

EA[ci(αji)] + β

N∑
i=1

EA[
Kcj∑
k=1

Uk(αji)sik]+

+ EA[
Kcj∑
k=1

Vk(pj)(1−
N∑
i=1

sik)]

The first term is the payment by the SOs, the second is the pricing and the third the
valuation for the channels that are not sold. After some algebraic manipulations and
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following the proof of Proposition 1 in [12], we get:

EA[JR(·)] =
N∑
i=1

EA
[ Kcj∑
k=1

[(1 + β)Uk(αji)− Vk(pj)−
dUk(αji)

dα

1− F (αji)

f(αji)
]sik

]
−

N∑
i=1

[

Kcj∑
k=1

Uk(0)− ci(0)] + EA[
Kcj∑
k=1

Vk(pj)]

Using the necessary (IC) and (IR) conditions from Lemma 1 in [12], it stems that the
β-optimal payment rule is given again by equation (10) of [12]:

c∗i (αji) = EA
[ Kcj∑
k=1

Uk(αji)sik −
αji∫
0

dUk(α)

dα
sikdα

]
(3.24)

where the probabilities of allocation are selected so as to maximize the new objective of the
auctioneer (instead of revenue only maximization as in [12]). The optimal payment rule is
the one that yields zero payment and zero channel allocation for SOs with zero type.

If the problem is regular then the payment is as we described in section 3.4 and the first
term in the PO’s objective is maximized by using the β-optimal allocation rule. This can
be easily derived following the proof of the respective Proposition 2 in [12]. Notice that if
the original respective problem in [12] is regular then also this modified problem is regular.
Apparently, the inclusion of the SOs buyers valuations does not affect the monotonicity
of the allocation rule nor the critical value property of the payment rule, [75]. Hence, the
modified auction is still truthful.

This new type of auction yields a more efficient allocation than the typical optimal
auction of Myerson, [72] as the following proposition states.

Proposition 2. The β-optimal auction is more efficient than the optimal auction.

Proof: In β-optimal auction, the allocation of items is accomplished with regard to
the modified contributions πβ

k (·) which are larger than the respective contributions of the

optimal auction πk(·). Notice that it holds Uk(·) ≥ πβ
k (·) ≥ πk(·), for all k = 1, 2, . . . ,K.

This means that the β-optimal auction induces a channel allocation that is more close to
the efficient allocation that is produced if the auctioneer considers the actual valuations
Uk(·) of the bidders and not their contributions πk(·).

An Alternative Interpretation of β-Optimal Auction

Before we proceed, we will present here an alternative interpretation of the β-optimal
auction which will justify its improved efficiency through a simple graph. The authors of
[14] employ monopoly pricing theory to analyze the optimal auction mechanism of Myerson,
[72]. We will adopt this methodology here in order to explain why and how the proposed
regulation method increases the efficiency of the β-optimal auction. For simplicity, we will
consider the single-item case.
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Figure 3·4: The pricing changes the MR and the MC curves and increases
the efficiency of the β-optimal auction allocation.

We consider a simple setting where one item is sold to one buyer. The buyer has a
valuation of ui units for the item which follows a cumulative distribution function F (ui).
Therefore, the probability q that the buyer’s valuation is greater than a certain value u
is q = P (ui ≥ u) = 1 − F (ui). The buyer is willing to buy the item if it is offered at a
price equal or lower than u. Equivalently, in a different scenario where the sold item is
perfectly divisible, we can interpret P (ui ≥ u) as the (normalized) quantity the buyer is
willing to buy, when its per-unit price is u. Now we can plot the inverse demand curve
which provides the probability (or the quantity) that the item will be sold if its price is u
units. For each price we have a different probability (quantity, respectively). In Figure 3·4
we depict the demand curve for the buyer. In the same figure we plot and superimpose the
marginal revenue curve. The latter stems from the first order derivative of the revenue of
the seller:

MR(u) =
d(qu)

dq
= u− 1− F (u)

f(u)
(3.25)

and models the seller’s profit for each additional sold unit of the item. Finally, we superim-
pose also the marginal cost MC(u) curve which represents the cost of the seller for selling
the item (in various prices) or, equivalently, the value the item has for the seller.

According to the monopoly pricing theory, the optimal price to sell the item is the
one that yields MC(u∗) = MR(u∗). We denote the optimal price uo and the respective
quantity (or probability) with qo in Figure 3·4. Assume now that the auctioneer would like
to allocate the item efficiently. In this case, the price the seller would select corresponds
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Algorithm 1 (MechanismMR)

1st Stage: Channel Allocation (β is announced by the CO).

(1.1:) Each SO i bids to the respective PO, according to problem Pβ
so, eq. (3.23).

(1.2:) Each PO collects the bids from the SOs, and bids to the CO by solving P
bβ
po,

eq. (3.27). This bid reveals his own type and the types of the SOs in the underneath
secondary market.
(1.3:) The CO solves problem Pbal

co , eq. (3.15)-(3.16), and allocates Kβ
cj = Kβ

j0 +∑N
i=1K

β
ji channels to each PO j ∈M.

(1.4:) Each PO j ∈ M redistributes his channels according to the β-Optimal Allocation

Rule, Xβ
j .

2nd Stage: Payments.
(2.1:) Each SO i pays the respective PO an amount of hβ(bi, b−i) monetary units,
according to eq. (3.22).
(2.2:) Each SO i reveals to the CO the allocation decisions of the respective PO (feedback

for Kβ
ji).

(2.3:) The CO collects the feedback and for every PO j ∈ M calculates the reimburse-
ment Lj(αj ,Kj , β), eq. (3.17), and the total price Λj the PO has to pay:

Λj = QR(rj , r−j)− Lj(αj ,Kj(rj , r−j), β)

to the intersection of the MC-curve with the demand curve. We denote with uE and qE
the efficient price and quantity respectively. Now, one can directly identify the efficiency
loss due to the revenue maximizing strategy of the seller. This loss is the area below the
demand curve and above the MC-curve that corresponds to the x-axis interval of [qo, qE].

The incentive mechanism MR modifies the MR curve of the seller and hence changes
the optimal selling price. Let us denote with MRβ the modified marginal revenue curve.
It is:

MRβ = u− 1− F (u)

f(u)
+ βu = (1 + β)u− 1− F (u)

f(u)
(3.26)

with β > 0. This means that the MRβ curve lies above the respective MR curve and
hence yields lower prices for each given quantity. In other words, the incentive mechanism
decreases the reservation price for the sold item. Therefore, the new optimal price uβ that
is obtained by solving MRβ = MC, incurs efficiency loss which corresponds to the area
below the demand curve (and above the MC curve) for the interval [qβ, qE], which is less
than the efficiency loss of the optimal auction. Finally, it is apparent that if the value of
β is very large, then the β-optimal auction may yield a price that is even lower than the
price of the efficient auction, uβ < uE .

3.4.3 Efficacy and Requirements of Mechanism MR

The pricing that is imposed by the CO, eq. (3.17), not only bias the channel distribution
strategy of the POs, but also changes their bidding strategy. Namely, each PO j ∈ M after

41

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



PO, p1 

Controller:
announces β 

SOs 
α1i,: i=1,…,N

(KC1 +K1)
Λ1

hβ, K1i

PO, p2 PO, pM 

SOs 
α2i,: i=1,…,N

SOs 
αMi,: i=1,…,N

α11,α12,…α1N αM1,αM2,...αMN

r1={p1, 
α11,α2,...α1N}

rM={pM, 
αM1,αM2,...αMN}

KM1, KM2,...KMN

r2={p2, 
α21,α22,...α2N}

Figure 3·5: The machinery of incentive mechanism MR. The circulated
information, bids and channel allocation among the SOs, POs and the Con-
troller is depicted. The feedback can be provided from the SOs to the CO
directly, or be inferred using other means.

receiving the bids of his SOs, determines his optimal bid by solving the PO β-Bidding

Problem, (P
bβ
po):

r∗j = argmax{JR(pj , αj ,K
β
j0(rj, r−j),K

β
j (rj , r−j))−QR(rj , r−j)} (3.27)

where QR(·) is the new price charged by the controller when he employs mechanismMR.
Specifically, the CO determines the channel allocation by solving problem Pbal

co , eq. (3.15)
- (3.16), and calculates the new VCG prices as follows:

QR =
M∑

m�=j

JR(rm, K̃β
m0, K̃

β
m)−

M∑
m�=j

JR(rm,Kβ
m0,K

β
m) (3.28)

Again, the number of channels allocated to each PO m, (Kβ
m0,K

β
m), depends on bids sub-

mitted by all the POs. Also, (K̃β
m0, K̃

β
m) is the channel allocation when rj = 0. Therefore,

the POs are induced to bid truthfully, rj(1)
∗ = pj , rj(i+ 1) = αji, for j = 1, 2, . . . M, i =

1, 2, . . . , N . The improvement in the allocative efficiency under the β-optimal auction can
be also realized by considering the inequality Uk(αji) ≥ πβ

k (bi) ≥ πk(bi) which holds for all
the POs and SOs. This means that each SO has to pay less in order to draft his contribu-
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tion within the winning bids. We summarize mechanism MR in Algorithm 1 and Figure
3·5.

In order to calculate the prices Lj(·), the CO needs to know the actual types of the SOs
in the respective secondary market and the amount of spectrum that is allocated to them
by the PO. The SOs types are truthfully revealed by the POs due to the VCG auction.
However, the CO needs to verify that indeed the POs allocate the channels according
to this scheme. There are many different methods and scenarios about how the CO can
acquire this information. First, the SOs may directly provide it through a feedback loop,
Figure 3·5. Equivalently, the CO may be able to observe the interaction of the SOs with
the respective PO. Finally, the CO may be able to observe how many channels the POs
reserve for them and this way infer how many they reallocate to their clients (secondary
operators).

Since the controller is on top of this hierarchy and manages the spectrum, we can easily
consider many similar methods that will allow him to receive direct or indirect feedback
about the SO - PO interaction. Clearly, this assumption is necessary in order to increase
the efficiency of the market. As it was made clear from the previous analysis, if the CO
cannot impose the transaction rules of the lower level market and at the same time cannot
observe the channel allocation decisions of POs, then there does not exist a realizable
method for increasing the allocative efficiency. Another basic assumption is that POs do
not collude with their SO clients in order to strategize and deceive the controller. Finally,
we assume that the SOs bid to the POs before the latter ask for spectrum. If we relax
this assumption, the coordination problem is by default unsolvable. However, even in this
case our mechanism still improves the hierarchical spectrum allocation by addressing the
objectives misalignment problem. This issue is discussed in the next section, in the context
of the dynamic spectrum markets where it is more prevalent.

Complexity and Budget Balance of MR

We now discuss the requirements of the proposed mechanism and specifically the com-
putational and communication cost, as well as the budget balance property. Mechanism
MR is based on a VCG auction. The last years VCG auctions have been extensively
proposed for the design of network protocols. These mechanisms ensure incentive compati-
bility and individual rationality for the players under a variety of settings and assumptions.
Nevertheless, as the authors of [67] explain, VCG-based mechanisms have certain draw-
backs. First, they entail an extremely high communication cost because the bidders must
communicate their entire utility (valuation) functions. Second, the allocation decisions
of the auctioneer and the determination of the prices presume the solution of problems
which are of high computational complexity and very often are NP-hard. Finally, VCG
mechanisms may not be budget balanced. This means that the sum of payments and re-
imbursements may not sum up to zero and hence an entity (usually the auctioneer) must
inject additional money to the market. Fortunately, in our setting, none of these problems
arises.

In the problem under consideration, the class of the valuation functions is common
knowledge and the bidders are single-minded, i.e. scalar-parameterized. Therefore, the
only information that must be circulated is the scalar bids of the buyers in each layer.
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Namely, the SOs communicate a scalar parameter to the POs and each PO a vector with
N +1 scalar parameters representing his own type and the types of his SO clients. Hence,
the communication burden is low. Also, the auctioned channels are identical (homogeneous)
and therefore the aggregate utility of each operator depends only on the total number of the
channels he receives. This assumption facilitates the computation of the optimal channel
allocation which is determined simply by ordering the channel valuations of the POs and
the contributions of the SOs and selecting the K highest of them. The channel allocation
and the price determination optimization problems are not NP-hard.

The VCG auction organized by the CO satisfies the no single-agent effect and hence
it is weak budget balanced, i.e. the payments to the auctioneer are equal to or greater
than zero. Specifically, the no single-agent effect condition states that any one player can
be removed from an optimal system-wide solution (allocation of items) without having
a negative effect on the best choice available to the remaining players (bidders). This
condition holds in auctions with only buyers, as long as all buyers have free disposal such
that they have at least as much value for more items than less items. Obviously, in the
problem we study, this condition holds because POs and SOs ask for as many channels as
possible. Therefore the VCG payments from the POs to the controller are positive.

Finally, we make the following remarks for the efficacy of mechanismMR:

• The hierarchical channel allocation is more efficient under mechanismMR. Namely,
the channel allocation Kβ

c that stems from the solution of problem Pbal
CO is more

efficient than the initial, unregulated, channel allocation K∗
c . Notice however that for

large values of the regulation parameter β, the allocation can be inefficient favoring,
this time, the SOs.

• The total net payoff of the SOs, i.e. the aggregate valuation of channels assigned to
SOs minus the total payment to POs, increases because:

1. The SOs in every secondary market pay less than or equal money to the respec-
tive PO:

N∑
i=1

Kβ
ji∑

k=1

Uk(z
β
k (b−i)) ≤

N∑
i=1

K∗
ji∑

k=1

Uk(zk(b−i)), j = 1, 2, . . . ,M (3.29)

To make this clear, notice that the reimbursement by the CO does not change
the relative order of the contributions of the SOs. If for two SOs n,m ∈ N it
holds πk(αjn) < πk(αjm), then it will also be πβ

k (αjn) < πβ
k (αjm). However,

since πβ
k (·) > πk(·), SOs have to pay less money in order to outbid the channel

valuation of the respective PO.

2. The SOs receive in total at least as many channels as they receive withoutMR:∑M
j=1

∑N
i=1 K

β
ji ≥

∑M
j=1

∑N
i=1 K

∗
ji. Therefore, the social welfare in all secondary

markets increases underMR.

• Auctions in both layers are incentive compatible and weak budget balanced. However,
the revenue of the CO (who is considered a social planner and not a strategic player)
decreases due to the reimbursement

∑M
j=1 Lj(·).
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• The sum of the combined benefit of the POs increases underMR:

M∑
j=1

JR(pj , αj ,K
β
j0,K

β
j , β) ≥

M∑
j=1

J(pj , αj ,K
∗
j0,K

∗
j) (3.30)

Additionally since the upper layer auction organized by the CO is incentive com-
patible and individual rational, the net payoff of each PO, JR(·) −QR(·), is greater
(or equal) than zero. However, we cannot directly compare this amount with the
respective net payoff, J(·) −Q(·), before employing mechanismMR.

3.5 Regulation in Dynamic Spectrum Markets

Until now, we ignored the dynamic aspect of the problem in order to facilitate the
analysis and we focused on the novel balanced auction scheme. That is, we implicitly
assumed that the interaction of the CO with the POs, and the interactions of the latter
with the SOs are performed in the same time scale. This is a realistic assumption since the
current suggestions about the spectrum policy reform advocate a more fine grained spatio-
temporal management by the regulators, [85]. Nevertheless, the proposed mechanismMR

can be extended for the case where the CO-POs and POs-SOs interactions are realized in
different time scales.

Assume that the time is slotted and divided in time periods, I = 1, 2, . . ., where each
period is further divided in T time slots, t = 1, 2, . . . , T . The CO determines his Kc

channels allocation in the beginning of each period while the POs redistribute them in
every slot. The CO Pbal

co problem for this setting is related to the spectrum allocation for
all the T slots within each period:

max
{Kt

j0,K
t
j}

T∑
t=1

M∑
j=1

⎡
⎣J(pj , α

t,Kt
j0,K

t
j) + β

N∑
i=1

Kt
ji∑

k=1

Uk(α
t
i)

⎤
⎦ (3.31)

s.t.
M∑
j=1

[Kt
j0 +

N∑
i=1

Kt
ji] ≤ Kc, t = 1, . . . , T (3.32)

where we have marked with the superscript t the variables that change in each slot. Obvi-
ously the CO cannot allocate the spectrum optimally to the POs for the entire period since
he is not aware of the future demands of the SOs. Additionally, even if the CO had this
information, he could not determine the allocated channels to the POs, Kcj, once in each
period since these should be adapted to the dynamic secondary demand, Kt

ji. Apparently,
the coordination problem cannot be solved optimally in this setting.

Nevertheless, the CO is still able to solve the objectives misalignment problem
and induce the POs to allocate their spectrum more efficiently. Assume that the CO-POs
interaction is accomplished either without taking into account the secondary demand as
in Section 3.3 or by considering the average demand of the SOs, ᾱi. This will result in a
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certain suboptimal channel allocation K̄c = {K̄cj : j ∈ M}. Then, in each slot as the SOs
demand will be realized, they will bid to the POs and at the same time the CO will receive
feedback (directly or indirectly) about their needs. This way, the controller will be able to
determine the prices Lj(·) for each PO j ∈M at the end of the entire time period:

LT
j (α,K

T
j , β) =

T∑
t=1

β
N∑
i=1

Kt
ji∑

k=1

Uk(α
t
i) (3.33)

where KT
j = {Kt

j : t = 1, . . . , T} is the M × T matrix of allocated channels. Obviously,
this subsequent pricing at the end of each time period will induce the POs to allocate their
spectrum by solving problem Pβ

po and maximizing eq. (3.18), instead of problem Ppo, eq.
(3.3)-(3.4), in each time slot. Therefore, the efficiency loss will be reduced.

3.6 Numerical Results

In order to obtain insights about the proposed mechanismMR, we simulate a represen-
tative three-layer hierarchical market with one CO,M = 2 POs andN = 10 SOs under each
PO. We assume that the POs valuation functions for the kth channel are Vk(pj) = pj/k,
where the types pj are uniformly distributed in the interval [5, 6]. Similarly, the SOs valu-
ations are Uk(αji) = 0.1αji/k, and their types follow a uniform distribution F (x) = x/4 on
the interval (0, 4]. The SOs contributions are πk(αji) = (0.2αji− 0.4)/k and the respective

β-contributions are πβ
k (αji) = [(0.2 + β)αji − 0.4]/k. For each random realization of the

SOs and POs types, the results are averaged over 40 runs in order to capture the variance
on the spectrum demand.

For our study we use as a benchmark the efficient channel allocation to the SOs. This
allocation corresponds to the hypothetical scenario where the CO would be able to assign
directly the channels to both the POs and the SOs and maximize the aggregate spectrum
valuations. In the upper plot of Figure 3·6 we show that in hierarchical unregulated market
the number of total channels assigned to the SOs is less than the channels in the efficient
allocation. Mechanism MR with β = 0.1 reduces this difference and increases the SOs
channels. Notice that the number of SOs channels is stil less than in the efficient allocation
scenario, since the goal of the CO is the combined revenue-efficiency balanced allocation.

In the same Figure we show that the number of channels assigned to SOs vary with the
value of β. Namely, when β = 0 the allocation is identical with the unregulated case while
for β ≈ 0.35 it reaches the efficient allocation. Notice that for larger values of β > 0.37
the SOs receive even more channels. This means that the CO favors the SOs too much
and render the channel allocation inefficient. The impact of β is depicted also in the lower
plot of Figure, 3·7 where we see that for large values the improvement in the aggregate
valuation of the POs and SOs becomes negative. For this plot, the number of SOs is
N = 20 and the system welfare is maximized for β = 0.1. If β is further increased, the
welfare improvement decreases and eventually becomes negative. Finally, in the sequel we
present a simple numerical example revealing the inefficiency of the unregulated spectrum
allocation and the improvement by our mechanism.
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Figure 3·6: Upper Plot : For β = 0.1 the regulation mechanism MR in-
creases the number of channels assigned to the SOs. Lower Plot : The SOs
receive more channels for larger values of β (Kc = 80).

3.6.1 Numerical Example

Finally, we provide a simple numerical example to further explain the proposed mecha-
nism. Consider a market where the CO has 12 channels, there are 2 POs and 2 SOs under
each PO. The SOs types are drawn from a uniform cdf F (x) = x/2 in the interval (0, 2]
and their valuation for the kth channel is Uk(α) =

α
k . The respective valuations of the POs

are Vk(p) =
3∗p
k . We assume that p1 = 1 with α1 = 1.2 and α2 = 1.5 and p2 = 1.2 with

α3 = 1.3 and α4 = 1.4. The contributions of the SOs are πk(α) = 2α−2
k . If the channel

allocation is accomplished with the unregulated hierarchical method then in the first stage
the CO allocates the channels to the highest valuations of the POs and these redistribute
them comparing their own valuations with the contributions of the SOs in their market.
This results in Chpo = 10 channels allocated to the POs and Chso = 2 assigned channels
to the SOs.

If however, the POs were socially aware and considered the valuations of the SOs (in-
stead of their contributions) then the channel allocation would be [Chpo, Chso] = [8, 4].
Finally, even this allocation is not the most efficient because in the first stage the sec-
ondary demand has not be considered. If for example the CO was able to allocate di-
rectly the channels w.r.t. the POs and SOs valuations, then the allocation would result
in [Chpo, Chso] = [7, 5]. Now, assume that we use the the proposed mechanismMR, with
β = 0.2. In this case, the number of assigned channels will be Chpo = 9 and Chso = 3, i.e.
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Figure 3·7: Upper Plot : The aggregate network efficiency (POs and SOs
valuations) increases with the MR, β = 0.1, N = 20, Kc = 1 : 60. Lower
Plot : For large values of β the network efficiency decreases since the SOs
are favored more than the POs.

increased by 1 for the SOs. Apparently for large values of β the allocation will favor the
SOs and the revenue of the POs will decrease.

3.7 Conclusions

We analytically proved that the emerging hierarchical spectrum markets will fail to
allocate channels efficiently. Namely, primary operators who act as intermediaries, are
expected to reallocate the channels with the objective to maximize their revenue and not
the efficiency of the secondary markets. In order to solve this problem, we proposed an
incentive mechanism that can be used by the controller so as to regulate the interaction
between the primary and secondary operators and to induce a new market equilibrium.
This equilibrium depends on a scalar parameter which is defined by the controller and
determines the efficiency of the secondary markets by adjusting the number of channels
allocated to the SOs. The mechanism is based on a novel auction scheme which has a
revenue-welfare balanced objective.
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Chapter 4

Competition and Regulation in Wireless Services

Markets

4.1 Background

Consider a city where 3 commercial operators (companies) and one municipal operator
offer WiFi Internet access to the citizens (users). The companies charge for their services
and offer better rates than the municipal WiFi service which however is given gratis. Users
with high needs will select one of the companies. However, if they are charged with high
prices, or served with low rates, a portion of them will eventually migrate to the municipal
network. In other words, the municipal service constitutes an alternative choice for the
users and therefore sets the minimum requirements which the commercial providers should
satisfy. Apparently, the existence of the municipal network affects both the user decisions
and the operators pricing policy. In different settings, the minimum requirement can be
an inherent characteristic of the users as for example a lower bound on transmission rate
for a particular application, an upper bound on the price they are willing to pay or certain
combinations of both of these parameters. Again, the operators can attract the users only
if they offer more appealing services and prices.

In this chapter, we consider a general wireless communication services market where a
set of operators, compete to sell their services to a common large pool of users. We assume
that users have minimum requirements or alternative options to satisfy their needs which
we model by introducing the reservation utility U0, [2]. Users select an operator only if
the offered service and the charged price ensure utility higher than U0. We analyze the
users strategy for selecting operator and the price competition among the operators under
this constraint. We find that the market outcome depends on U0 and on the amount of
spectrum each operator has at his disposal W . Accordingly, we consider the existence of a
regulating agency who is interested in affecting the market and enforcing a more desirable
outcome, by tuning either W or U0. For example, consider the municipal WiFi provider
who is actually able to set U0 and bias the competition among the commercial providers.
This is of crucial importance since in many cases the competition of operators may yield
inefficient allocation of the network resources, [2] or even reduced revenue for them, [41].
We introduce a rigorous framework that allows us to analyze the various methods through
which the regulator can intervene and affect the market outcome according to his objective.

Our model captures many different settings such as a WiFi market in a city, a mobile/cell-
phone market in a country or even a secondary spectrum market where primary users lease
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Figure 4·1: The market consists of a set of operators competing over a
common pool of users. Each user selects one of the market operators or opts
to abstain from the market and be associated with the neutral operator.
The latter models the alternative out-of-the-market users option or their
minimum service-price requirements.

their spectrum to secondary users. In order to make our study more realistic, we adopt a
macroscopic perspective and analyze the interaction of the operators and users in a large
time scale, for large population of users, and under limited information. The operators are
not aware of the users specific needs and the latter cannot predict in advance the exact
level of service they will receive. Each operator has a total resource at his disposal (e.g.
the aggregate service rate) which is on average equally allocated to his subscribers, [2],
[74]. This is due to the various network management and load balancing techniques that
the operators employ, or because of the specific protocol that is used, [31]. Each user
selects the operator that will provide the optimal combination of service quality and price.
Apparently, the decision of each user affects the utility of the other users. We model this
interdependency as an evolutionary game, [91] the stationary point of which represents the
users distribution among the operators and depends on the charged prices. This gives rise
to a non cooperative price competition game among the operators who strive to maximize
their profits.

Central to our analysis is the concept or the neutral operator P0 which provides to the
users a constant and given utility of U0 units. The P0 can be a special kind of operator,
like the municipal WiFi provider in the example above, or it can simply model the user
choice to abstain from the market. This way, we can directly calculate how many users are
served by the market and how many abstain from it and select P0. Moreover, P0 allows
us to introduce the role of a regulating agency who can intervene and bias the market
outcome through the service U0. We show that P0 can be used to increase the revenue of
the operators or the efficiency of the market. In some cases, both of these metrics can be
simultaneously improved at a cost which is incurred by the regulator. Alternatively, the
outcome of the market can be regulated by changing the amount of spectrum each operator
has at his disposal. Different regulating methods give different results and entail different
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Figure 4·2: The oligopoly market consists of I operators and N users (S).
Each user is associated with one operator at each specific time slot. Every
operator i = 1, 2, . . . , I can serve more than one users at a certain time slot.
The users that fail to satisfy their minimum requirements, Ui ≤ U0, ∀i ∈ I,
abstain from the market and select the neutral operator P0.

cost for the regulator.

4.1.1 Related Work and Contribution

The competition of sellers for attracting buyers has been studied extensively in the con-
text of network economics, [21], [93], both for the Internet and more recently for wireless
systems. In many cases, the competition results in undesirable outcome. For example,
in [2] the authors consider an oligopoly communication market and show that it yields
inefficient resource allocation for the users. From a different perspective it is explained in
[41], that selfish pricing strategies may also decrease the revenue of the sellers-providers.
In these cases, the strategy of each node (buyer) affects the performance of the other
nodes by increasing the delay of the services they receive, [2] (effective cost) or, equiva-
lently, decreasing the resource the provider allocates to them, [74] (delivered price). This
equal-resource sharing assumption represents many different access schemes and protocols
(TDMA, CSMA/CA, etc), [31].

More recently, the competition of operators in wireless services markets has been studied
in [74], [106], [79], [77], [68]. The users can be charged either with a usage-based pricing
scheme, [106], or on a per-subscription basis, [79], [68]. We adopt the latter approach since
it is more representative of the current wireless communication systems. We assume that
users may migrate (churn) from one operator to the other, [68], and we use evolutionary
game theory (EVGT) to model this process, [76]. This allows us to capture many realistic
aspects and to analyze the interaction of very large population of users under limited
information. The motivation for using EVGT in such systems is very nicely discussed in
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[77]. Due to the existence of the neutral operator, the user strategy is updated through
a hybrid scheme based on imitation and direct selection of P0. We define a new revision
protocol to capture this aspect and we derive the respective system dynamic equations.

Although the regulation has been discussed in context of networks, [21], it remains
largely unexplored. Some recent work [64], [84] study how a regulator or an intervention
device may affect a non-cooperative game among a set of players (e.g. operators). How-
ever, these works do not consider hierarchical systems, with large populations and limited
information. Our contribution can be summarized as follows: (i) we model the wireless
service market using an evolutionary game where the users employ a new hybrid revision
protocol, based both on imitation and direct selection of a specific choice, namely the P0.
We derive the differential equations that describe the evolution of this system and find the
stationary points, (ii) we define the price competition game for I operators and the partic-
ular case that users have minimum requirements, or equivalently, alternative choices/offers,
(iii) we prove that this is a Potential game and we analytically find the Nash equilibria,
(iv) we introduce the concept of the neutral operator who represents the system/state
regulator or the minimum users requirement, and (v) we discuss different regulation meth-
ods and analyze their efficacy, implications and the resources that are required for their
implementation.

The rest of this chapter is organized as follows. In Section 4.2 we introduce the system
model and in Section 4.3 we analyze the dynamics of the users interaction and find the
stationary point of the market. In Section 4.4 we define and solve the price competition
game among the operators and in Section 4.5 we discuss the relation between the revenue
of the operators and the efficiency of the market and their dependency on the system
parameters. Accordingly, we analyze various regulation methods for different regulation
objectives and give related numerical examples. We conclude in Section 4.6.

4.2 System Model

We consider a wireless service market (hereafter referred to as a market) with a very
large set of users N = (1, 2, . . . , N) and a set of operators I = (1, 2, . . . , I), which is
depicted in Figure 4·2. We assume a time slotted operation. Each user cannot be served
by more than one operator simultaneously. However, users can switch in each slot t between
operators or even they can opt to refrain and not purchase services from anyone of the I
operators. The net utility perceived by each user who is served by operator i in time slot
t is:

Ui(Wi, ni(t), λi) = Vi(Wi, ni(t))− λi (4.1)

where ni(t) are the users served by this specific operator in slot t, Wi the total spectrum
at his disposal, and λi the charged price. In order to describe the market operation we
introduce the users vector x(t) = (x1(t), x2(t), . . . , xI(t), x0(t)), where the ith component
xi(t) = ni(t)/N represents the portion of users that have selected operator i ∈ I. Addi-
tionally, with x0(t) = n0(t)/N we denote the portion of users that have selected neither
of the I operators. We assume that the number of users N is very large, N >> 1 and
therefore the variable xi(t) = ni(t)/N is considered continuous. In other words, we assume
that there exist a continuum of users partitioned among the different operators.
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Valuation function

The function Vi(·) represents the value of the offered service for each user associated
with operator i ∈ I. Users are considered homogeneous: all the users served by a certain
operator are charged the same price and perceive the same utility. We consider the following
particular valuation function:

Vi(Wi, xi(t)) = log
Wi

Nxi(t)
, xi(t) > 0 (4.2)

Since N is given, we use xi(t) instead of ni(t). This function has the following desirable
properties: (i) the valuation for each user decreases with the total number of served users
by the specific operator due to congestion, (ii) increases with the amount of available
spectrum Wi, and (iii) it is a concave function and therefore captures the saturation of
the user satisfaction as the allocated resource increases, i.e. it satisfies the principle of
diminishing marginal returns, [21].

A basic assumption in our model is that users served by the same operator are allocated
an equal amount of resource. We want to stress that this assumption captures many
different settings in wireline, [2], or wireless networks, [74], [31], [79], [77], [17]. Some
examples where the equal resource sharing assumption holds are the following:

• FDMA - TDMA: If the operator uses a multiple access scheme like Frequency
Division Multiple Access (FDMA) or Time Division Multiple Access (TDMA), then
the equal resource sharing assumption holds by default, [31]. The users served by a
certain operator receive an equal share of his total available spectrum or an equal
time share of the operator’s channel.

• CSMA/CA: A similar result holds for the Carrier Sense Multiple Access scheme
with Collision Avoidance, [8], that is used in IEEE 802.11 protocols. Users trying to
access the channel receive an equal share of it and achieve - on average - the same
transmission rate. Additionally, as it was shown in [15], even if the radio transmitters
are controlled by selfish users, they can achieve this fair resource sharing.

• Random access of multiple channels: Even in more complicated access schemes
as in the case, for example, where many different users iteratively select the least
congested channel among a set of available channels, it is proved that each user
receives asymptotically an equal share of the channel bandwidth, [17].

Additionally, the macroscopic perspective and the large time scale that we consider in this
problem , ensure that spatiotemporal variations in the quality of the offered services will
be smoothed out due to load balancing and other similar network management techniques
that the operators employ. Therefore, users of each operator are treated in equal terms.

Neutral Operator

Variable x0(t) represents the portion of users that do not select anyone of the I opera-
tors. Namely, a user in each time slot t is willing to pay operator i ∈ I only if the offered
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utility Ui(Wi, xi(t), λi) is greater than a threshold U0 ≥ 0. If all operators fail to satisfy
this minimum requirement then the user abstains from the market and is associated with
the Neutral Operator P0, Figure 4·2. In other words, P0 represents the choice of selecting
neither of the I operators and receiving utility of U0 units. Technically, as it will be shown
in the sequel, the inclusion of P0 affects both the user decision process for selecting operator
and the competition among the operators.

From a modeling perspective, the neutral operator may be used to represent different
realistic aspects of the wireless service market. First, P0 can be an actual operator owned
by the state, as the public/municipal WiFi provider we considered in the introductory
example. In this case, through the gratis U0 service, the state intervenes and regulates the
market as we will explain in Section 4.5. Additionally, U0 can be indirectly imposed by the
state (the regulator) through certain rules such as the minimum amount of spectrum/rate
per user. Finally, it can represent the users reluctancy to pay very high prices for poor
QoS, similarly to the individual rationality constraint in mechanism design. We take these
realistic aspects into account and moreover, by using x0(t), we find precisely how many
users are not satisfied by the market of the I operators.

Unlike the valuation Vi(·) of the service offered by each operator i ∈ I, U0 is consid-
ered constant. When U0 represents users minimum requirements or respective restrictions
imposed by regulatory rules, this assumption follows directly and actually is imperative.
In case U0 models the service offered by the neutral operator (e.g. the municipal WiFi
network), the constant value of U0 means that it is independent of the number of users and
hence non-congestible. We follow this assumption for the following two reasons:(i) U0 is a
free of charge service which in general is low and hence can be ensured for a large number
of users. (ii) The state agency (i.e. the regulator) who provides U0, is able to increase his
resource in order to ensure a constant value for U0. As we will explain in next sections,
this latter aspect captures the cost of regulation, i.e. the cost of serving users through the
neutral operator. Finally, notice that our model can be easily extended for the case that
U0 is a congestible service.

Revenue

Each operator i ∈ I determines the price λi ∈ R+ that he will charge to his clients.
The decisions of the operators are realized in a different time scale than the decisions of the
users. Namely, each operator i determines his price in the beginning of each time epoch
T which consists of T slots, while users update their operator association decision in each
slot. Let us define the price vector λ = (λi : i = 1, 2, . . . , I) and the vector of the I − 1
prices of operators other than i as λ−i = (λj : j ∈ I \i). We assume that T is large enough
so that for each price vector λ set at the beginning of an epoch, the market of the users
reaches a stationary point - if such a point is attainable - during this epoch. The objective
of each operator i ∈ I is to maximize his revenue during each epoch T :

Ri(xi(t), λi) = λixi(t)N (4.3)

In these markets there are no service level agreements (SLAs) or any other type of QoS
guarantees and hence the operators are willing to admit and serve as many users as it is
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required to achieve their goal.

4.3 User Strategy and Market Dynamics

4.3.1 Evolutionary Game GU among Users

In order to select the optimal operator that maximizes eq. (4.1), each user must be
aware of all system parameters, i.e. the spectrum Wi, the number of served users ni and
the charged price λi for each i ∈ I. However, in realistic settings this information will not
be available in advance. Given these restrictions and the large number of users, we model
their interaction and the operator selection process by defining an evolutionary game, GU ,
as follows:

• Players: the set of the N users, N = (1, 2, . . . , N).

• Strategies: each user selects a certain operator i ∈ I or the neutral operator P0.

• Population State: the users distribution over the I operators and the neutral operator,
x(t) = (x1(t), x2(t), . . . , xI(t), x0(t)).

• Payoff: the user’s net utility Ui(Wi, xi(t), λi) when he selects operator i ∈ I, or U0

when he selects P0.

To facilitate our analysis we make the following assumptions:

• Assumption 1: The number of users N is very large, N >> 1 and therefore the
variable xi(t) = ni(t)/N is considered continuous.

• Assumption 2: The initial distribution of users over the I operators is non zero:
xi(0) > 0, ∀i ∈ I. It directly follows that x0(0) < 1.

In the sequel we explain how each user selects his strategy under this limited information
and what is the outcome of this game.

4.3.2 User Strategy Update

A basic component of every evolutionary game is the revision protocol, [91]. It captures
the dynamics of the interaction among the users and describes in detail the process accord-
ing to which a player iteratively updates his strategy. There exist many different options
for the revision protocol, depending on the modeling assumptions of the specific problem.
These assumptions are mainly related to how sophisticated, informed and rational are the
players. On the one extreme, fully rational and informed players update their choices ac-
cording to a best response strategy like in the typical (non-evolutionary) strategic games.
This means that players make a direct selection of the best available strategy. On the other
extreme, players follow an imitation strategy. In this case a player (A) selects randomly
another player (B) and if the utility of the latter is higher, (A) imitates his strategy with
a probability that is proportional to the anticipated utility improvement. This modeling
option is suitable for imperfectly informed players, or players with bounded rationality
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who update their strategy based on a better (instead of best) response strategy. Between
these two extremes, there are many different options. For example, a player may update
his strategy with a hybrid protocol based partially on imitation and on direct selection,
[91].

In this work, we assume that each user updates his strategy by a special type of hy-
brid revision protocol which is a combination of imitation of other users associated with
operators from the set I (market operators) and direct selection of the neutral operator
P0. The imitation component captures the lack of information users have at their disposal
about the market. On the other hand, each user is aware of the exact value of U0 and
hence this choice is always available through direct selection. Notice that the considered
revision protocol is not a typical hybrid protocol since the direct selection is related only
to the selection of P0 and not to the other operators.

In detail, the proposed revision protocol can be described by the following actions that
each user may take in each slot t:

1. A user associated with an operator i ∈ I, selects randomly another user who is
associated with an operator j ∈ I, j �= i, and if Uj > Ui imitates his strategy with a
probability that is proportional to the difference (Uj − Ui).

2. A user associated with the neutral operator P0, selects randomly another user asso-
ciated with operator j ∈ I and if Uj > U0, imitates his strategy with a probability
that is proportional to the difference (Uj − U0).

3. A user associated with operator i ∈ I selects the neutral operator P0 with probability
that is proportional to the difference (U0 − Ui).

Options 1 and 2, stem from the replicator dynamics introduced by Taylor and Jonker
in [103] and are based on imitation of users with better strategies. On the other hand,
option 3 is based on direct selection of better strategies, known also as pairwise dynamics,
introduced by Smith in [96].

After defining the revision protocol, we can calculate the rate at which users switch
from one strategy (operator) to another strategy (operator). In particular, the switch rate
of users migrating from operator i to operator j ∈ I \ i in time slot t, is:

ρij(t) = xj(t)[Uj(t)− Ui(t)]+ (4.4)

where xj(t) is the portion of users already associated with operator j. For simplicity, we
express the user utilities as a function with a single argument, the time t. Additionally,
the users switch rate from operator i to neutral operator P0, is:

ρi0(t) = γ[U0 − Ui(t)]+ (4.5)

Notice the difference between imitation and direct selection [91]. Instead of multiplying the
utilities difference with the population x0(t), we use a constant multiplier γ ∈ R. This is due
to the model assumption that switching to the neutral operator is not accomplished through
imitation and hence does not depend on the portion of users already been associated with
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P0. The probabilistic aspect captures the bounded rationality, the inertia of the users and
other similar realistic aspects of these markets. Finally, the switch rate of users leaving P0

and returning to the market (option 2) is:

ρ0i(t) = xi(t)[Ui(t)− U0]+ (4.6)

Variables ρij, ρi0 and ρ0i represent the rates at which users migrate from one operator to
another, including the neutral operator P0. It is interesting to notice that if these rates are
normalized properly, they can be interpreted as the probabilities with which users update
their operator selection strategy. This approach is discussed in [91]. In the sequel we use
these rates to derive the ordinary differential equations (ODE) that describe the evolution
of the population of users.

4.3.3 Market Stationary Points

The new type of hybrid revision protocol introduced above, results in user market
dynamics that cannot be expressed with the known differential equations of replicator
dynamics or other similar scheme, [91]. In Section 4.A.1 of the Appendix we prove that
the mean dynamics of the system are:

dxi(t)

dt
= xi(t)[Ui(t)− Uavg(t)− x0(t)(Ui(t)− U0) (4.7)

− γ(U0 − Ui(t))+ + x0(t)(Ui(t)− U0)+], ∀i ∈ I

where Uavg(t) =
∑

i∈I xi(t)Ui(t) is the average utility of the market in each slot t. The
user population associated with P0 is:

dx0(t)

dt
= x0

∑
i∈I+

xi(U0 − Ui) + γ
∑
j∈I−

xj(U0 − Uj) (4.8)

where I+ is the subset of operators offering utility Ui(t) > U0, and I− is the subset of
operators offering utility Ui(t) < U0, at slot t.

The important thing is that despite its different evolution, as we prove in Section 4.A.2,
this system has the same stationary points as the systems that are described by the classical
replicator dynamic equations:

ẋi(t) = 0⇒ xi(t)[Ui(t)− Uavg(t)] = 0, ∀i ∈ I (4.9)

and
ẋ0(t) = 0⇒ x0(t)[U0 − Uavg(t)] = 0 (4.10)

The user state vector x∗ and the respective user utility U∗
i , i ∈ I, that satisfy these

stationary conditions can be summarized in the following 3 cases:

• Case A: x∗i , x
∗
0 > 0 and U∗

i = U0, i ∈ I.
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• Case B: x∗i , x
∗
j > 0, x∗0 = 0 and U∗

i = U∗
j , with U∗

i , U
∗
j > U0,∀ i, j ∈ I.

• Case C: x∗i , x
∗
j > 0, x∗0 = 0 and U∗

i = U∗
j = U0, ∀ i, j ∈ I.

Case A corresponds to the scenario where all operators offer to their clients net utility
which is equal to the value of the service offered by the neutral operator. On the other
hand, in case B the market operators offer higher utility than the neutral operator and
hence all users are served by the market. Finally, in case C, the I operators offer marginal
services, i.e. equal to U0, but they have attracted all the users.

It is interesting to compare the above results with the Wardrop model and the Wardrop
equilibrium, [107]. The market stationary points for Case A and Case C satisfy the
Wardrop first principle and yield an equilibrium where the available strategy options (”op-
erators” in our problem) result in equal utility for the players (”users”). However, this does
not hold for Case B where operators other than P0 offer higher utility. This emerges due
to the fact that the alternative option (or reservation utility) is non-congestible, i.e. inde-
pendent of x0. The evolutionary game allows us to provide a richer model than the typical
Wardrop model and more importantly to capture the users interaction and dynamics.

Before calculating the stationary point x∗ for each case, and in order to facilitate our
analysis, we define the scalar parameter αi = Wi/(NeU0) for each operator i ∈ I and the
respective vector α = (αi : i = 1, 2, . . . , I). As it will be explained in the sequel, these
parameters determine the operators and users interaction and will help us to explain the
role of the regulator. We can find the stationary points for Case A by using equation
Ui(Wi, x

∗
i , λi) = U0 and imposing the constraint x∗0 > 0. Apparently, the state vector

x∗ depends on the price vector λ. Therefore, we define the set of all possible Case A
stationary points, XA, as follows (see Section 4.A.2 for details):

XA =

{
x∗i = αie

−λi ,∀i ∈ I, x∗0 = 1−
I∑

i=1

αie
−λi : λ ∈ ΛA

}
(4.11)

where ΛA is the set of prices for which a stationary point in XA is attainable, i.e. for which
it holds x∗0 > 0:

ΛA =

{
(λ1, λ2, . . . , λI) :

I∑
i=1

αie
−λi < 1

}
(4.12)

Recall that due to the very large number of users, we consider xi a continuous variable.
Similarly, for Case B, we calculate the stationary points by using the set of equations

Ui(Wi, x
∗
i , λi) = Uj(Wj , x

∗
j , λj), ∀ i, j ∈ I:

XB =

{
x∗i =

αi

eλi
∑I

j=1 αje−λj
,∀i ∈ I, x∗0 = 0 : λ ∈ ΛB

}
(4.13)
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Table 4.1: Wireless Service Market Stationary Points.

XA XB XC

x∗i αie
−λi αi

eλi
∑I

j=1 αje
−λj

αie
−λi

x∗0 1−
∑I

i=1 αie
−λi 0 0

Cond. λ ∈ ΛA λ ∈ ΛB λ ∈ ΛC

where ΛB is the set of prices for which a stationary point in XB is feasible, i.e. U∗
i > U0:

ΛB =

{
(λ1, λ2, . . . , λI) :

I∑
i=1

αie
−λi > 1

}
(4.14)

Finally, the stationary points for theCase C solution must satisfy the constraint
∑I

i=1 αie
−λi =

1 which yields:

XC =
{
x∗i = αie

−λi ,∀ i ∈ I, x∗0 = 0 : λ ∈ ΛC

}
(4.15)

with

ΛC =

{
(λ1, λ2, . . . , λI) :

I∑
i=1

αie
−λi = 1

}
(4.16)

Notice that the stationary point sets XA, XB and XC and the respective price sets, ΛA,
ΛB , and ΛC depend on the vector α. These results are summarized in Table 4.1. For
each operators price profile λ, the evolutionary game admits a unique stationary point
x∗ = (x∗1, x∗2, . . . , x∗I , x

∗
0) which belongs in the respective set XA, XB , or XC . The utility of

the users is equal to U0 for the Case A and Case C, while for Case B it depends on λ.

Stability of Stationary Points

Now that we found the stationary points of the hybrid revision protocol, it is important
to characterize their stability. We prove in the sequel that these points are Evolutionary
Stable Strategies (ESS) and hence they are locally asymptotically stable, i.e. stable within
a limited region. ESS and replicator dynamics are the two concepts used for studying
evolutionary games. Unlike the replicator dynamics, ESS is a static concept which requires
that the strategy of players in the equilibrium is stable when it is invaded by a small
population of players playing a different strategy, [30]. When the players population is
homogeneous, as we assumed in our model, an ESS is stable in the replicator dynamic, but
not every stable steady state is an ESS. Additionally, every ESS is Nash, and hence ESS
is a refinement of the Nash equilibrium.

Let us first give a simple definition of the ESS, tailored to our system model. Assume
that the users market has reached the stationary state described by vector x∗. Suppose
now that a small portion ε > 0 of the users population deviates from their decision in
the stationary state (i.e. selects another operator) and selects another operator j ∈ I or
the neutral operator. This yields a new distribution of users which we denote by xε =
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(xε1, x
ε
2, . . . , x

ε
I , x

ε
0). We say that x∗ is an ESS if (i) users that deviate from x∗ receive lower

utility in the new system state xε or, (ii) the utility of the deviating users in xε is the same
as in the previous state x∗, but the utility of the legitimate users (those insisting in their
initial decisions) is higher in xε than in x∗. In both cases, the deviating users worsen their
obtained utility. The stationary points derived above satisfy these conditions and hence
they are ESS.

In detail, assume that the system has a stationary point x∗ = (x∗1, x∗2, . . . , x∗I , x
∗
0) ∈ XB ,

with x∗0 = 0. Suppose that a user who is associated with operator i ∈ I deviates and
selects another operator j ∈ I. In this case, the population of users in operator i decreases,
xεi < x∗i and the population of users in operator j increases, xεj > x∗j . Initially, these two
operators offered identical utility, Ui(Wi, x

∗
i , λi) = Uj(Wj , x

∗
j , λj) but after the decision of

the deviating user it becomes Ui(Wi, x
ε
i , λi) > Uj(Wj , x

ε
j , λj). Clearly, the deviating user

obtains less utility and hence there is no incentive to deviate. Similarly, if a user deviates
and selects the neutral operator, he will receive reduced utility since when x∗ ∈ XB , it is
U∗
i > U0, ∀i ∈ I.
Assume now that the system attains a stationary point x∗ ∈ XA. Similarly to the

previous analysis, it is straightforward that a user who deviates from x∗ and moves from an
operator i ∈ I to another operator j ∈ I will decrease his utility. If the user migrates to the
neutral operator, his utility will not be reduced because U0 is constant (non-congestible).
However, in this case, the users that will insist in their initial choice of operator i will
now receive higher utility due to the move of the deviator. Due to the ESS definition and
specifically according to Smith’s second condition, [95], this is not a preferable choice for
the deviator and hence x∗ ∈ XB is an ESS.

Finally, when x∗ ∈ XC , user deviation from a market operator i ∈ I to another market
operator j ∈ I or to P0 is not beneficial for the deviator, either because it decreases his
utility or because it increases the utility of other users. In conclusion, the stationary points
of the proposed revision protocol are ESS equilibriums and hence locally stable.

4.4 Price Competition Among Operators

In the previous section we analyzed the stationary points of users interaction and showed
that they depend on the prices selected by the operators. Each operator anticipates the
users strategy and chooses accordingly for each epoch T the price that maximizes his rev-
enue. This gives rise to a non-cooperative price competition game GP among the operators
that is played in the beginning of each time epoch T . We assume that operators are aware
of the parameters of the users market and also know the values of parameters αi, i ∈ I
and U0. Specifically, we model the operators competition as a static simultaneous move
normal form game of complete information, following the Bertrand competition model [21].
We are interested not only in finding the Nash equilibriums (NE) of this game but also to
understand if and how the game converges to them.

We prove that GP is a potential game and hence if it is played in many rounds and
operators choose their prices based on the previous prices of the other operators, the game
converges to a NE. In other words, we analyze the dynamics induced by the repeated play
of the same game assuming that operators follow simple myopic rules. We show that the
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equilibrium of the competition game depends on vector α and the value of U0. For certain
combinations of these parameters, the game admits a unique equilibrium while for other
combinations, it reaches one of the infinitely many equilibriums depending on the initial
prices.

4.4.1 Price Competition Game GP
Before analyzing this game, it is important to emphasize that the revenue function

depends on the price vector λ. In particular, using equation (4.3), we can calculate the
revenue of operator i when λ ∈ ΛA, when λ ∈ ΛB , and when λ ∈ ΛC , denoted as RA

i (·),
RB

i (·) and RC
i (·) respectively:

RA
i (λi) = αiλiNe−λi , RB

i (λi, λ−i) =
αiλiN

eλi
∑I

i=1 αie−λi
, RC

i (λi) = αiλiNe−λi (4.17)

RA
i (·) and RC

i (·) depend only on the price selected by operator i, while RB
i (·) depends on

the entire price vector λ. However, in all cases, the price set (ΛA, ΛB or ΛC) to which the
price vector λ = (λi, λ−i) belongs, is determined jointly by all the I operators.

Let us now define the non-cooperative Pricing Game among the I operators, GP =
(I, {λi}, {Ri}):

• The set of Players is the set of the I operators I = (1, 2, . . . , I).

• The strategy space of each player i is its price λi ∈ [0, λmax], λmax ∈ R+, and the
strategy profile is the price vector λ = (λ1, λ2, . . . , λI) of the operators.

• The payoff function of each player is his revenue Ri : (λi, λ−i)→ R, where Ri � RA
i

or RB
i or RC

i .

The particular characteristic of this game is that each operator has 2 different payoff
functions depending on the price profile. Despite this characteristic, the payoff function is
continuous and quasi-concave as we prove in the Appendix, Section 4.B.1. In the sequel,
we analyze the best response of each operator which constitutes a reaction curve to the
prices set by the other operators. The equilibrium of the game GP is the intersection of
the reaction curves of the operators.

4.4.2 Best Response Strategy of Operators

The best response of each operator i, λ∗
i , to the prices selected by the other I − 1

operators, λ−i, depends on the users market stationary point. Notice that for certain λ−i,
operator i may be able to select a price such that (λi, λ−i) belongs to any price set (ΛA,
ΛB or ΛC) while for some λ−i the operator choice will be restricted in two or even a single
price set.

Best Response when λ ∈ ΛA: If the I − 1 operators j ∈ I \ i select such prices,
λ−i, that the market stationary point is x∗ ∈ XA, then operator i finds the price λ∗

i that
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maximizes his revenue RA
i (·) by solving the following constrained optimization problem

(PA
i ):

max
λi≥0

αiλiNe−λi (4.18)

s.t.
I∑

j=1

αje
−λj < 1 (4.19)

The objective function of this problem is quasi-concave, [11]. However, the constraint
defines an open set and hence uniqueness of optimal solution is not ensured. To overcome
this obstacle we substitute constraint eq. (4.19) with the closed set:

λi ≥ log
αi

1−
∑

j �=i αje−λj
+ ε (4.20)

where ε > 0 is an arbitrary small constant number. This inequality stems from eq. (4.19)
by solving for λi and adding ε. It does not affect the problem definition and formulation
nor the obtained results since, as we will prove in the sequel, operators do not select a
price in the lower bound of the constraint set. After this transformation the problem has
a unique optimal solution which is equal to the solution of the respective unconstrained
problem, λ∗

i = 1, if (1, λ−i) ∈ ΛA.
Best Response when λ ∈ ΛB: Similarly, when λ−i is such that operator i can select

a price λ∗
i with (λ∗

i , λ−i) ∈ ΛB , then his revenue is given by the function RB
i (·) and is

maximized by the solution of problem (PB
i ):

max
λi≥0

λiαiN

eλi
∑

j∈I αje−λj
(4.21)

s.t.
I∑

j=1

αje
−λj > 1 (4.22)

This is also a concave problem which would have a unique solution if the constraint set
was closed and compact. Again, we substitute the constraint with the (almost) equivalent
inequality:

λi ≤ log
αi

1−
∑

j �=i αje−λj
− ε (4.23)

Now, the problem has a unique solution which coincides with the solution of the respective
unconstrained problem, denoted μ∗

i , if (μ
∗
i , λ−i) ∈ ΛB as we explain in detail in Section

4.B.2.
Best Response when λ ∈ ΛC : In this special case, the price of each operator i is

directly determined by the prices that the other operators have selected. Namely, given
the vector λ−i, each operator i has only one feasible solution (otherwise λ does not belong
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to ΛC):

λ∗
i = log

αi

1−
∑

j �=i αje−λj
(4.24)

Whether each operator i will agree and adopt this price or not, depends on the respective
accrued revenue RC

i (λ
∗
i , λ−i).

We can summarize the best response price strategy of each operator i ∈ I, by defining
his revenue function as follows:

Ri(λi, λ−i, α) =

⎧⎨
⎩

αiλiN∑I
j=1 αje

λi−λj
if λi < l0,

αiλiNe−λi if λi ≥ l0.
(4.25)

where l0 = log(αi/(1 −
∑

j �=i αje
−λj )). Clearly, the optimal price λ∗

i depends both on the
prices of the other operators λ−i and on parameters αi, i = 1, 2, . . . , I:

λ∗
i = argmax

λi

Ri(λi, λ−i, α) (4.26)

where α = (α1, α2, . . . , αI). Clearly, each operator needs to know the vector α and to be
able to observe the other operators prices in order to calculate his best response.

For each possible price vector λ−i of the I \ i operators, operator i will solve all the
above optimization problems and find the solution that yields the highest revenue. In
Section 4.B.2 we prove that this results in the following best response strategy:

λ∗
i (λ−i, α) =

⎧⎪⎨
⎪⎩
1 if (1, λ−i) ∈ ΛA,

μ∗
i if (μ∗

i , λ−i) ∈ ΛB ,

l0 otherwise.

(4.27)

These options are mutually exclusive. Moreover, if
∑

j �=i αj/e
λj ≥ 1, the only feasible

response is λ∗
i = μ∗

i . The dependence of λ
∗
i on parameters αi = Wi/(NeU0), i = 1, 2, . . . , I,

has interesting implications and brings into the fore the role of the regulator. Finally,
observe that the transformation of the constraint set of problems PA

i and PB
i did not

affect the best response strategy of operator i since he only selects the solution of the
respective unconstrained problems.

4.4.3 Equilibrium Analysis of GP
The price competition game GP is a finite ordinal potential game and therefore not

only has pure Nash equilibria but also the players can reach them under any best response
strategy. That is, if we consider that GP is played repeatedly by the operators who update
their strategy with a myopic best response method, we can show that the convergence to
the equilibriums is ensured under any finite improvement path (FIP), [71]. The potential
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function is:

P(λ) =
{∑I

j=1[log λj − λj], if
∑I

j=1 αje
−λj ≤ 1,∑I

j=1[log λj − λj]− log (
∑I

j=1 αje
−λj ), else.

(4.28)

The detailed proof is given in Section 4.B.3. In order to find the NE we solve the system
of equations (4.27), i = 1, 2, . . . , I and specifically we use the iterated dominance method
(Section 4.B.4).

The outcome of the game GU affects the strategy of operators and therefore the outcome
of the game GP . A price vector (λ∗

i , λ
∗
−i) is an equilibrium of the game GP , parameterized

by the vector α = (α1, α2, . . . , αI), if it satisfies:

Ri(λ
∗
i , λ

∗
−i, α) ≥ Ri(λi, λ

∗
−i, α),∀ i ∈ I, ∀λi ≥ 0, ∀x∗ ∈ XA ∪XB ∪XC (4.29)

In order to simplify our study and focus on the results and implications of our analysis,
we assume that all operators have the same amount of available spectrum Wi = W and
therefore it is also αi = α, ∀i ∈ I.

The equilibrium of the price competition game and subsequently the market stationary
point x∗, depend on the value of α. These results are summarized in Table 4.2 and stem
from the following Theorem:

Theorem 4.4.1. The non-cooperative game GP where operators select their strategy in

order to maximize their revenue, converges to one of the following pure Nash equilibria:

• If α ∈ A1 = (0, e/I), there is a unique Nash Equilibrium λ∗ ∈ ΛA, with λ∗ = (λ∗
i =

1 : i = 1, 2, . . . , I) and the respective unique market stationary point is x∗ ∈ XA.

• If α ∈ A3 = (e
I

I−1/I,∞), there is a unique Nash Equilibrium λ∗ ∈ ΛB, with λ∗ =

(λ∗
i = I

I−1 : i = 1, 2, . . . , I), which induces a unique respective market stationary

point x∗ ∈ XB.

• If α ∈ A2 = [e/I, e
I

I−1 /I], there exist infinitely many equilibria, λ∗ ∈ ΛC , and each

one of them yields a respective market stationary point x∗ ∈ XC .

Proof: In Section 4.B.3 of the Appendix we provide the detailed proof according to which
GP is a potential game and in Section 4.B.4 we use iterated strict dominance to find the
Nash equilibrium λ∗ which depends on parameter α.

In conclusion, GP is a non-cooperative game of complete information that attains cer-
tain pure Nash equilibriums (NE) which depend on parameters αi, i = 1, 2, . . . , I. It is
proved to be a potential game and hence the equilibriums can be reached if GP is played
repeatedly and operators update their strategy by simple best response or other similar
utility improvement methods. If αi parameters are equal, i.e. αi = α, ∀i ∈ I, then the NE
is unique for α ∈ A1 or α ∈ A3. For the case α ∈ A2, the reached equilibrium depends on
the initial price vector.
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Table 4.2: Equilibriums of I operators competition for different values of
α.

Prices/Rev. α ∈ A1 α ∈ A2 α ∈ A3

λ∗
i 1 λi �= λj

I
I−1

or λi = λj = log Iα

R∗
i

αN
e Ri �= Rj

N
I−1

or Ri = Rj =
N
I log Iα

x∗ XA XC XB

4.5 Market Outcome and Regulation

The outcome of the users and operators interaction can be characterized by the following
two fundamental criteria: the efficiency of the users market and the total revenue the
operators accrue. We show that both of them depend on parameter α and we further
explore the impact of W and U0 on them. Accordingly, we analyze the problem from a
mechanism design perspective and explain how a regulator, as the municipal WiFi provider
in the introductory example, can bias the market operation (outcome) by adjusting the
value of α. We consider different regulation methods and discuss their implications.

4.5.1 Market Outcome and Regulation Criteria

Market Efficiency

A market is efficient if the users enjoy high utilities in the stationary point. However,
in certain scenarios, the services provided by the P0 may impose an additional cost to the
system (e.g. the cost of the municipal WiFi provider is borne by the citizens) and hence it
would be preferable to have all the users served by the I operators. Therefore, we use the
following two metrics to characterize the efficiency of the market: (i) the aggregate utility
(Uagg) of users in the stationary point x∗, and (ii) the cost J0 = x0NU0 incurred by the
neutral operator P0 for serving the portion x0 of the users. Both of these metrics depend
on parameter α and hence on system parameters W and U0.

In detail:

• When α ∈ A1 = (0, e/I), it is x∗ ∈ XA, which means that a portion of users x∗0 >
selects P0. The latter incurs cost of J0 = x∗0NU0 units. All users receive utility of U0

units and hence the aggregate utility is Uagg = NU0.

• On the other hand, when α ∈ A2 = [e/I, eI/(I−1)/I], it is x∗ ∈ XC . In this case,
all users are served by the I operators with marginal utility, i,e. U∗

i = U0 for i =
1, 2, . . . , I. There is no cost for P0, i.e. J0 = 0. Again, it is Uagg = NU0 but unlike
the previous case, there is no cost for P0.

• Finally, if α ∈ A3 = (eI/(I−1)/I,∞) it is x∗ ∈ XB . All users are served by the I
operators, i.e. x∗0 = 0 and J0 = 0, and receive high utilities U∗

i > U0, i = 1, 2, . . . , I.
The welfare is higher in this case, i.e. Uagg > NU0.
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In summary, the aggregate utility of the users changes with α as follows:

Uagg =

{
NU0, if α ∈ A1 ∪A2,

N(log(WI
N )− I

I−1), if α ∈ A3.
(4.30)

It can be easily verified that Uagg is a continuous function.
We have expressed Uagg in terms of W and U0 in order to investigate the impact of

the system parameters in the market. When α ∈ A1 ∪ A2, Uagg increases with U0 and is
independent of the spectrum W . On the contrary, when α ∈ A3, Uagg increases with W
and is independent of U0. Notice that when the value of α changes from A1 to interval A2,
Uagg remains the same but the other metric of efficiency, the cost of neutral operator J0,
is improved:

J0 =

{
αINU0

e , if α ∈ A1,

0, if α ∈ A2 ∪A3.
(4.31)

Revenue of Operators

When α lies in the interval A1, the optimal prices are λ∗
i = 1, ∀i ∈ I and all the

operators accrue the same revenue R∗
i = αNe−1 = We−(U0+1), which is proportional to

α, increases with the available spectrum W , decreases with U0 and is independent of the
number N of users. In Figure 4·4 we depict the revenue of each operator for different values
of α, in a duopoly market. Notice that the revenue increases linearly with α ∈ (0, e/2).

When α ∈ A2, the competition of the operators may attain different equilibria, λ∗ ∈ ΛC ,
depending on the initial prices and on the sequence the operators update their prices. In
Figure 4·5 we present the revenue of two operators (duopoly) at the equilibrium, for various
initial prices and for α = e ∈ A2. Here we assume that the 1st operator is able to set his
price λ1(0) before the 2

nd operator. Also, in Figure 4·4 we illustrate the dependence of the
revenue of the operators on the value of α when it lies in A2, given that λ1(0) = 1.1. For
certain prices, e.g. when λ1(0) = log 2α, both operators accrue the same revenue at the
equilibrium, R∗

1 = R∗
2 = N log 2α

2 .

If α ∈ A3 = (eI/(I−1),∞) all operators set their prices to λ∗
i = I/(I − 1) and get R∗

i =
N/(I−1) units, as shown in Table 4.2. Figure 4·6 depicts the competition of two operators
and the convergence to the respective Nash equilibria for α = e3 ∈ A3. We assume
that both operators have selected prices λ1(0) = λ2(0) = log 2α ≈ 3.7. However, this
price vector does not constitute a NE and hence an operator (e.g. the 1st) can temporarily
increase his revenue by decreasing his price to λ1 = 3. Accordingly, the other operator (2nd)
will react by reducing his price to λ2 = 2.5. Gradually, the competition of the operators
will converge to the NE where both of them will set λ∗

1 = λ∗
2 = 2/(2 − 1) = 2 and will

have revenue R∗
1 = R∗

2 = 1. Interestingly, the revenue of both operators in the equilibrium
is lower than their initial revenue when they did not compete. Finally, notice that, unlike
the aggregate utility Uagg, the revenue of the operators depends only on α = W/(NeU0)
and not the specific values of W and U0.

Before we proceed, let us summarize the above results:

• If α ∈ A1 = (0, e/I), it is R∗
i = αNe−1 = We−(U0+1), i = 1, 2, . . . , I. Operators
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Figure 4·3: The regulator selects parameter α, the operators compete and
select the respective optimal prices λ∗

i , and then, the users are divided
among the operators.

receive equal revenue which is (i) proportional to W , (ii) inversely proportional to
U0 and (iii) independent of the number of users N .

• If α ∈ A2 = [e/I, e
I/(I−1)

I ), R∗
i depends on the initial prices operators select. In the

particular case that a single operator i sets first his price λi so as to be λi(0) = log Iα,
then all operators obtain finally equal revenue R∗

i = N log Iα
I .

• If α ∈ A3 = [ e
I/(I−1)

I ,∞), it is R∗
i = N

I−1 . Operators receive equal revenue which is
(i) proportional to N , (ii) independent of U0 and W .

4.5.2 Regulation of the Wireless Service Market

Since both the market efficiency and the operator revenue depend on α and system
parameters W and U0, a regulating agency can act as a mechanism designer and steer the
outcome of the market in a more desirable equilibrium according to his objective. This
can be achieved by determining directly or indirectly (e.g. through pricing) the amount of
spectrum W each operator has at his disposal, or by intervening in the market and setting
the value U0 as the example with the municipal WiFi Internet provider. This process is
depicted in Figure 4·3.
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Regulating to Increase Market Efficiency

First, we highlight the impact of parameters W and U0 on the efficiency metrics. This
is of crucial importance because tuning W or U0 has different implications for the regulator
and the market. For example, as it is explained below, the regulator can achieve the same
level of market efficiency either by selling more spectrum to operators, e.g. by decreasing
the spectrum price, or by allocating more spectrum to the neutral operator:

• Assume that U0 is fixed. As the allocated spectrum W to each operator increases,

aggregate utility Uagg remains constant until parameter α increases up to α ≥ eI/(I−1)

I .
When α ∈ A3, Uagg is log-proportional to W . Also, the cost J0 increases with W , as
long as α ∈ A1, and becomes zero for larger values of α.

• Assume that W is fixed. Uagg increases with U0 as long as α ∈ A1 ∪ A2. For larger
values of α, Uagg does not depend directly on U0. Additionally, the cost J0 increases
with U0 as long as α ∈ A1 while for larger values of α it becomes zero.

Let us now give a specific scenario for regulation. Assume that initially α ∈ A1 =
(0, e/I). Hence, a portion of users is not served by anyone of the I operators, x∗0 > 1 and
all the users receive utility equal to U0. The regulator can improve the market efficiency,
i.e. increase Uagg and decrease J0, by increasing the value of α. This can be achieved
either by increasing W or decreasing U0. Let us assume that the regulator selects the first
method. For example, he can change the price of W and allow the operators to acquire more
spectrum. If W is increased until α = e/I, then the market stationary point x∗ switches
to XB . In this case, all users are served by the market, x∗0 = 0, but they still receive
only marginal utility, Uagg = NU0. If the regulator provides even more spectrum W to
operators so as α > eI/(I−1)/I, then x∗0 = 0 and moreover the users perceive higher utility
because Uagg increases proportional to logW , eq. (4.30). Obviously, the improvement
in market efficiency comes at the cost (opportunity cost) of the additional spectrum the
regulator must provide to operators.

On the other hand, the regulator may prefer to directly intervene in the market through
P0 and tune U0. If U0 decreases, the value of x∗0 decreases and users return to the market
(to the I operators). The portion of users x∗0 becomes zero when α = e/I. This way, the
cost of the regulator J0 decreases (since P0 serves less users) but at the same time the
aggregate utility, Uagg = NU0, is also reduced. Namely, Uagg decreases linearly with U0

until α = eI/(I−1)/I and remains constant for larger values of U0, eq. (4.30). Again, the
decision of the regulator depends on his cost and on the efficiency he wants to achieve. In
conclusion, depending on they system parameters (N, W, I) the efficiency of the market
may be improved either by increasing the resources of operators (sell more spectrum) or
by rendering highly competitive the services provided by the neutral operator P0.

Regulating for Revenue

As illustrated in Table 4.2, the revenue of the operators increases proportionally to α
for α ∈ A1, and proportionally to logα for α ∈ A2, while it remains constant when α ∈ A3.
Notice that the revenue, unlike the market efficiency, depends on the value of α and not
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on the specific combination of W and U0. These results are presented in Figure 4·7 for a
market with I = 3 operators and N = 1000 users. In the upper plot, it is U0 = 0.1 and
the regulator increases the value of α by increasing W . The aggregate utility is constant
and equal to Uagg = NU0 = 100 for α < e3/(3−1)/3 ≈ 1.5 while it increases proportionally
to logW for α > 1.5. Obviously, increasing the spectrum of operators improves both their
revenue and the efficiency of the market.

In the lower plot, the spectrum at the disposal of each operator is constant, W = 5000,
and the regulator increases the value of α by decreasing U0. In this case, the total revenue
increases but at the expense of market efficiency. When α ∈ A1 ∪ A2 = (0, e1.5/3], the
aggregate utility Uagg is reduced as U0 decreases but for α > e1.5/3 it remains constant.
Notice that for very small values of α, Uagg is large. However, this desirable result comes
at a cost for the regulator. Namely, in this case only a small portion of users are served
by the market, while the rest of them select P0. Therefore, the incurred cost J0 for the
regulator is high.

Another interesting point in Figure 4·7 is the following. In the upper subplot, for
U0 = 0.1, the total operators revenue is Rtot = 1500 units and the aggregate utility is
Uagg = 100, achieved by increasing the spectrum W until W = 1657.8 units, which yields
α = 1.5. In the lower plot, the same total revenue is reached for W = 5000, and decreasing
U0 until U0 = 1.204 units. In this case, the aggregate utility is Uagg = 1204 units. If, for
example, the regulator is interesting only in maximizing the revenue of operators, then he
would prefer the first method since it requires less spectrum and lower value for U0.

4.6 Conclusions

In this chapter, we studied the operators price competition in a wireless services market
where users have a certain reservation utility U0. We modeled the users interaction as
an evolutionary game and the competition of the operators as a non cooperative game
of complete information. We proved that the latter is a potential game and hence has
pure Nash equilibriums. The two games are realized in different time scale but they are
interrelated. Additionally, both of them depend on the reservation utility U0 and the
amount of spectrum W each operator has at his disposal. Accordingly, we considered a
regulating agency and discussed how he can intervene and change the outcome of the market
by tuning either U0 or W . Various regulation methods yield different market outcomes and
induce a different cost for the regulator.
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Appendix of Chapter 4

4.A Analysis of the Evolutionary Game GU

4.A.1 Derivation of Evolutionary Dynamics

Here, we derive the new differential equations that describe the evolution of the market
of the users under the new introduced revision protocol. Recall that, the latter is described
by the following equations:

ρij(t) = xj(t)[Uj(t)− Ui(t)]+,∀i, j ∈ I (4.32)

ρi0(t) = γ[U0 − Ui(t)]+,∀i ∈ I (4.33)

ρ0i(t) = xi(t)[Ui(t)− U0]+,∀i ∈ I (4.34)

where ρij(t) is the rate at which users associated with operator i switch to operator j in
time slot t, ρi0(t) is the switch rate from operator i to neutral operator P0 and ρ0i(t) the
rate at which users return from P0 to an operator i ∈ I in the market. The constant value
γ ∈ R+ represents the frequency of the direct selection.

For imitation-based revision protocols, the dynamics of the system can be described
with the well-known replicator dynamics [91]. The hybrid revision protocol defined in
equations (4.32), (4.33) and (4.34) is in part imitation-based (ρij(t) and ρ0i(t)) and in
part a probabilistic direct selection of the neutral operator (ρi0(t)). Therefore, the respec-
tive evolutionary dynamics of the system cannot be described by the replicator dynamic
equations which correspond to the pure imitation mechanism. We have to stress that the
hybrid protocol that we introduce, differs from the hybrid protocol in [91] in that users
select directly only the neutral operator and not the other I operators.

The portion of users xi who are associated with operator i changes from time t to the
time t+ δt, according to the following equation:

xi(t+ δt) = xi(t)− xi(t)δt
∑
j �=0

xj(t)(Uj(t)− Ui(t))+ − xi(t)δtγ(U0(t)− Ui(t))+(4.35)

+
I∑

j=0

δtxj(t)xi(t)(Ui(t)− Uj(t))+

for δt→ 0 we obtain the derivative:

dxi(t)

dt
= xi(t)[

∑
j �=0

xj(t)Ui(t)−
∑
j �=0

xj(t)Uj(t)− γ(U0 − Ui)+ + x0(t)(Ui − U0)+]

or, if we omit the time index and rewrite the equation:

dxi(t)

dt
= xi[Ui − Uavg − x0(Ui − U0)− γ(U0 − Ui)+ + x0(Ui − U0)+] (4.36)
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which can be analyzed in:

dxi(t)

dt
= xi(Ui − Uavg), ∀i ∈ I+ (4.37)

dxj(t)

dt
= xj [Uj − Uavg − (γ − x0)(U0 − Uj)], ∀j ∈ I− (4.38)

where I+ is the set of operators offering utility Ui(t) ≥ U0, and I− is the set of operators
offering utility Uj(t) < U0.

The dynamics of the population x0 can be derived in a similar way:

x0(t+ δt) = x0(t)− x0(t)δt
∑
i�=0

xi(t)(Ui − U0)+ +
∑
i�=0

xi(t)δtγ(U0 − Ui)+ (4.39)

which can be written as:

dx0(t)

dt
= (x0

∑
i∈I+

xi(U0 − Ui) + γ
∑
j∈I−

xj(U0 − Uj)) (4.40)

Equations (4.37), (4.38) and (4.40) describe the evolutionary dynamics of game GU .

4.A.2 Analysis of Stationary Points

Despite the different dynamics, the system reaches the same stationary points as if
users where employing the typical imitation revision protocol. In detail, the market state
vector at a fixed point, x∗ = (x∗i , x

∗
j , x

∗
0: ∀ i ∈ I+, ∀ j ∈ I−), can be found by the following

set of equations:
dxi(t)

dt
=

dxj(t)

dt
=

dx0(t)

dt
= 0 ∀i ∈ I+, j ∈ I− (4.41)

Lemma 4.A.1. The stationary points of the evolutionary dynamics defined in equations

(4.37), (4.38) and (4.40) are identical to the stationary points of the ordinary replicator

dynamics [91] given by:

ẋi(t) = 0⇒ xi(t)[Ui(t)− Uavg(t)] = 0, ∀ i ∈ I (4.42)

and

ẋ0(t) = 0⇒ x0(t)[U0 − Uavg(t)] = 0 (4.43)

Proof: First we prove that, in any stationary point, x∗j , j ∈ I− should be equal to zero.
We prove this claim by contradiction. Assume that x∗j > 0. Since Uavg ≥ U0 > Uj , this
implies that there should be at least one operator i with Ui > Uavg and x∗i > 0. Therefore
(Ui−Uavg) cannot be equal to zero ∀i ∈ I+, and ẋi will be nonzero for at least one operator.
Therefore (4.41) cannot be satisfied, if x∗j �= 0.
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When xj = 0, the evolutionary dynamics given by eq. (4.37), (4.38) and (4.40) reduce
to ordinary replicator dynamics:

ẋi(t) = xi(t)[Ui(t)− Uavg(t)] ∀i ∈ I, ẋ0(t) = x0(t)[U0 − Uavg(t)] (4.44)

Stationary points are identical to the stationary points of the typical replicator dynamics,
[91].
Due to this lemma, the stationary points for the users population associated with each
operator i ∈ I should satisfy one of the following conditions: (i) x∗i = 0, or (ii) x∗i > 0 and
U∗
i = Uavg. Similarly, for the neutral operator P0, eq. (4.43), it must hold: (i) x∗0 = 0 and

U0 < Uavg, (ii) x∗0 > 0 and U0 = Uavg or (iii) x∗0 = 0 and U0 = Uavg. The case x∗i = 0
implies zero revenue for the ith operator and hence case (i) does not constitute a valid
choice. Therefore, there exist in total 3 possible combinations (cases) that will satisfy the
stationarity properties given by eq. (4.42) and (4.43):

• Case A: x∗i , x
∗
0 > 0 and U∗

i = U0, i ∈ I.

• Case B: x∗i , x
∗
j > 0, x∗0 = 0 and U∗

i = U∗
j , with U∗

i , U
∗
j > U0,∀ i, j ∈ I.

• Case C: x∗i , x
∗
j > 0, x∗0 = 0 and U∗

i = U∗
j = U0, ∀ i, j ∈ I.

We find now the exact value of the market state vector at the equilibrium (stationary
point) x∗ for each case. First, we define for every operator i ∈ I the scalar parameter
αi = Wi/(NeU0) and the respective vector α = (αi : i ∈ I).

We can find the stationary points for Case A by using the equation Ui(Wi, x
∗
i , λi) = U0

and imposing the constraint x∗0 > 0:

Ui(Wi, x
∗
i , λi) = log

Wi

Nx∗i
− λi = U0 ⇒ x∗i =

Wi

Neλi+U0
= αie

−λi (4.45)

and

x∗0 > 0⇒ 1−
I∑

i=1

αie
−λi > 0⇒

I∑
i=1

αie
−λi < 1 (4.46)

Apparently, the state vector x∗ depends on the operators’ price vector λ. Therefore, we
define the set of all possible Case A stationary points, XA, as follows:

XA =

{
x∗i = αie

−λi ,∀i ∈ I, x∗0 = 1−
I∑

i=1

αie
−λi : λ ∈ ΛA

}
(4.47)

where ΛA is the set of prices for which a stationary point in XA is reachable, i.e. x∗0 > 0:

ΛA =

{
(λ1, λ2, . . . , λI) :

I∑
i=1

αie
−λi < 1

}
(4.48)
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Similarly, for Case B, we calculate the stationary points by using the set of equations
Ui(Wi, x

∗
i , λi) = Uj(Wj , x

∗
j , λj), ∀ i, j ∈ I, which yields:

log
W1

Nx∗1
− λ1 = log

W2

Nx∗2
− λ2 = . . . = log

Wi

Nx∗i
− λi (4.49)

or, equivalently:

x∗j = x∗i
eλiαj

eλjαi
∀i, j ∈ I (4.50)

Moreover since x∗0 = 0 for Case B, the following holds:

∑
i∈I

x∗i = 1 (4.51)

Using (4.50) and (4.51),

x∗i =
αi

eλi
∑

j∈I αje−λj
(4.52)

Additionally, Ui > U0 implies that:

log
Wi

Nx∗i
− λi > U0 ⇒ x∗i < αie

−λi (4.53)

Using (4.51) and (4.53),

I∑
i=1

x∗i <
I∑

i=1

αie
−λi ⇒

I∑
i=1

αie
−λi > 1 (4.54)

Therefore, according to (4.52) and (4.54), we define the set of all possibleCase B stationary
points, XB , as follows:

XB =

{
x∗i =

αi

eλi
∑I

j=1 αje−λj
,∀i ∈ I, x∗0 = 0 : λ ∈ ΛB

}
(4.55)

where ΛB is the set of prices for which a stationary point in XB is feasible, U∗
i > U0:

ΛB =

{
(λ1, λ2, . . . , λI) :

I∑
i=1

αie
−λi > 1

}
(4.56)

Finally, the stationary points for the Case C solution must satisfy the following:

Ui = U0, x∗0 = 0 (4.57)
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which yields:

x∗i = αie
−λi ,

I∑
i=1

αie
−λi = 1 (4.58)

Therefore, we define the set of all possible Case C stationary points, XC , as follows:

XC =

{
x∗i = αie

−λi ,∀ i ∈ I, x∗0 = 0 : λ ∈ ΛC

}
(4.59)

with

ΛC =

{
(λ1, λ2, . . . , λI) :

I∑
i=1

αie
−λi = 1

}
(4.60)

4.B Analysis of the Pricing Game GP

First, we show that the revenue of each operator i ∈ I is a continuous and a quasi-
concave function. Secondly, we analyze best response pricing in game GP . Then, we derive
the Nash equilibriums (NEs) of the game using iterated strict dominance. Finally, we prove
convergence to these equilibriums by showing that GP is a potential game.

4.B.1 Properties of the Revenue Function

The revenue function of each operator i is given by the following equation:

Ri(λi, λ−i) =

⎧⎪⎨
⎪⎩

αiλiN

eλi
∑I

j=1 αje−λj
if λi < l0,

αiλiNe−λi if λi ≥ l0.

(4.61)

where l0 = log(αi/(1−
∑

j �=i αje
−λj )).

Each component (for each case) is a positive function which is also log-concave. This
means that it is a quasiconcave function and hence uniqueness of optimal solution is ensured
for a proper constraint set. Namely, it is:

fA(λi) = log αiλiNe−λi = log αiλiN − λi (4.62)

and

fA(λi)
(1) =

1

λi
− 1⇒ fA(λi)

(2) =
−1
λ2
i

< 0 (4.63)

Hence, fA(·) which is the log-function of RA
i (·), is concave which means that the later is

log-concave and since it is RA
i (λi) > 0, it is also quasi-concave. Similarly, for the other

component of the revenue function:

fB(λi, λ−i) = log
αiλiN

αi + βeλi
= logαiλiN − log αi + βeλi (4.64)
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where β =
∑

j �=i αje
−λi . The second derivative is:

fB(λi, λ−i)
(2) =

−1
λ2
i

− αiβe
λi

(αi + βeλi)2
< 0 (4.65)

Hence, RB
i (·) is also quasiconcave. Finally, it is easy to see that the function is continuous:

RA
i (l0, λ−i) = RB

i (l0, λ−i) = N(1− β) log
αi

1− β
(4.66)

4.B.2 Best Response Pricing in GP
Each operator i finds his best response price λ∗

i for each price profile of the other I − 1
operators by solving the following optimization problems. For the case the price vector
belongs to the set ΛA, λ ∈ ΛA, (P

A
i ):

max
λi≥0

αiλiNe−λi (4.67)

s.t.
I∑

j=1

αje
−λj < 1 (4.68)

In order to ensure the uniqueness of the problem solution, we transform the constraint set
to a closed and compact set as follows:

λi ≥ log
αi

1−
∑

j �=i αje−λj
+ ε (4.69)

where ε > 0 is an arbitrary small positive constant number. As we will show immediately
this transformation of the constraint set does not affect the solution of the game. The
problem now is quasi-concave with a closed and compact constraint set and hence it has a
unique optimal solution, [11] which we denote λA

i and it is:

λA
i = 1, orλA

i = log
αi

1−
∑

j �=i αje−λj
+ ε (4.70)

The value λA
i = 1 is the optimal solution of the respective unconstrained problem, which

yields optimal revenue RA
i = αN/e, and it is feasible if λ = (1, λ−i) ∈ ΛA. Otherwise, since

RA
i (·) is a decreasing function of λi, operator i can only select the minimum price λA

i such
that (λA

i , λ−i) ∈ ΛA.
Similarly, when the price vector belongs to the set ΛB , i.e. λ ∈ ΛB , the revenue

maximization problem for each operator i ∈ I (PB
i ) is:

max
λi≥0

λiαiN

eλi
∑

j∈I αje−λj
(4.71)
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s.t. ∑
j∈I

αje
−λj > 1 (4.72)

Similarly to the previous analysis, we transform the constraint set to a closed and compact
set by using the following inequality:

λi ≤ log
αi

1−
∑

j �=i αje−λj
− ε (4.73)

This is also a concave problem which has unique solution and can be either the optimal
solution of the respective unconstrained problem, λ∗

i if (λ∗
i , λ−i) ∈ ΛB , or the maximum

price for which the price vector belongs to ΛB (RB
i (·) increases with λi:

λB
i = μ∗

i , orλ
B
i = log

αi

1−
∑

j �=i αje−λj
− ε (4.74)

Finally, for the special case that λ ∈ ΛC , the price of each operator i is directly deter-
mined by the prices that the other operators have selected. Namely:

λC
i = log

αi

1−
∑

j �=i αje−λj
(4.75)

Whether each operator i will agree and adopt this price or not, depends on the respective
accrued revenue, RC

i (λ
C
i , λ−i).

In the sequel, we examine and analyze jointly the solutions of the above optimization
problems and derive the exact best response of the ith operator for each vector λ−i of the
I − 1 prices.

Lemma 4.B.1. For each operator i ∈ I, if (1, λ−i) /∈ ΛA, then there is no best response

price λ∗
i , such that (λ∗

i , λ−i) ∈ ΛA. That is, operator i will not select ΛA.

Proof: Given that the price vector λ ∈ ΛA, best response price is:

λA
i =

{
1 if (1, λ−i) ∈ ΛA,

l0 + ε if (1, λ−i) /∈ ΛA.
(4.76)

where l0 = λC
i is the price operator i selects when λ ∈ ΛC.

If (1, λ−i) /∈ ΛA, then l0 + ε > 1. Otherwise price vector (l0 + ε, λ−i) will not belong
to ΛA. Therefore, RA

i (·) is a decreasing function at the point λi = λ0 + ε due to quasi-
concavity property. Therefore, if (1, λ−i) /∈ ΛA, then RC

i (l0) = RA
i (l0) > RA

i (l0 + ε) which
means that λC

i always gives better response than λA
i .

Lemma 4.B.2. Let us denote with μ∗
i the optimal solution of the unconstraint problem

PB
i . For each operator i ∈ I, if (μ∗

i , λ−i) /∈ ΛB, then there is no best response price λ∗
i ,

such that (λ∗
i , λ−i) ∈ ΛB.
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Proof: Given that the price vector λ ∈ ΛB, best response price is:

λB
i =

{
μ∗
i if (μ∗

i , λ−i) ∈ ΛB ,

l0 − ε if (μ∗
i , λ−i) /∈ ΛB .

(4.77)

and recall that λC
i = l0. If (μ∗

i , λ−i) /∈ ΛB , then l0 − ε < μ∗
i . Otherwise, the price

vector (l0 − ε, λ−i) cannot be in ΛB . Therefore, RB
i (·) is an increasing function at the

point λi = λ0 − ε due to quasi-concavity property. Therefore, if (μ∗
i , λ−i) /∈ ΛB, then

RC
i (l0) = RB

i (l0) > RB
i (l0− ε) which means that λC

i always gives better response than λB
i .

In other words, the previous two Lemmas state that the only eligible best response for each
operator i ∈ I in the price sets ΛA and ΛB are prices λ∗

i = 1 and and λ∗
i = μ∗

i respectively.

Theorem 4.B.3. The best response price of an operator i is:

λ∗
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if (1, λ−i) ∈ ΛA,

μ∗
i , if (μ∗

i , λ−i) ∈ ΛB ,

λC
i = l0, otherwise.

(4.78)

Proof: First we prove that (1, λ−i) ∈ ΛA and (μ∗
i , λ−i) ∈ ΛB cannot be true at the same

time. Since μ∗
i is the optimal solution of unconstraint RB

i :

dRB
i (λi)

dλi
= 0⇒ eμ

∗
i (μ∗

i − 1) =
αi∑

j �=i αje−λj
(4.79)

It is obvious that equation (4.79) can only hold when μ∗
i > 1. Note that if (μ∗

i , λ−i) ∈ ΛB ,
the vector λ = (l, λ−i) ∈ ΛB for any price l < μ∗

i . Hence, it should also hold that
λ = (1, λ−i) ∈ ΛB. With a similar reasoning, when (1, λ−i) ∈ ΛA, (l, λ−i) ∈ ΛA holds for
any price l > 1 and therefore (μ∗

i , λ−i) ∈ ΛA. Also, if (1, λ−i) ∈ ΛA, λ
C
i cannot be a best

response, because RA
i (1) > RA

i (λ
C
i ) = RC

i (λ
C
i ). Similarly, if (μ∗

i , λ−i) ∈ ΛB, λ
C
i is not a

best response.
Finally, from Lemma 4.B.1 and Lemma 4.B.2, we can say that λC

i dominates all other
prices if (1, λ−i) /∈ ΛA and (μ∗

i , λ−i) /∈ ΛB which concludes the proof.

4.B.3 Existence and Convergence Analysis of Nash Equilibriums

In the previous section, we derived the best response strategy for each player of the
game GP . The next important steps are (i) to explore the existence of Nash Equilibriums
(NE) for GP , and (ii) to study if the convergence to them is guaranteed. In [71], it is proven
that if the game can be modeled as a potential game, not only the existence of pure NEs are
ensured, but also convergence to them is guaranteed under any finite improvement path.
In other words, a potential game always converges to pure NE when the players adjust
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their strategies based on accumulated observations as game unfolds. In this section, we
provide the necessary definitions for ordinal potential games, and we prove that game GP
belongs in this class of games.

Definition 4.B.4. A game (I, λ, {Ri}) is an ordinal potential game, if there is a

potential function P : [0, λmax]→ R such that the following condition holds:

sgn(P(λi, λ−i)− P(λ′
i, λ−i)) = sgn(Ri(λi, λ−i)−Ri(λ

′
i, λ−i))∀i ∈ I, λi, λ

′
i ∈ [0, λmax]

(4.80)

where sgn(·) is the sign function.

Lemma 4.B.5. The game GP is an ordinal potential game.

Proof: We define the potential function as:

P(λ) =
{∑I

j=1 (log λj − λj) if
∑I

j=1 αje
−λj ≤ 1,∑I

j=1 (log λj − λj)− log (
∑I

j=1 αje
−λj ) if

∑I
j=1 αie

−λj > 1.
(4.81)

Therefore,

P(λi, λ−i)−P(λ
′
i, λ−i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log λie
λ
′
i

λ
′
ie

λi
ifλi, λ

′
i ≥ l0

log
λie

λ
′
i(αie

−λ
′
i +

∑
j �=i αje

−λj )

λ
′
ie

λi(αie−λi +
∑

j �=i αje−λj )
ifλi, λ

′
i < l0

log
λie

λ
′
i

λ
′
ie

λi(αie−λi +
∑

j �=i αje−λj )
ifλi < l0, λ

′
i ≥ l0

log
λie

λ
′
i(αie

−λ
′
i +

∑
j �=i αje

−λj )

eλiλ
′
i

ifλi ≥ l0, λ
′
i < l0

(4.82)

where l0 = log(αi/(1−
∑

j �=i(αje
−λj ))). Moreover, using (4.61),

logRi(λi, λ−i) =

⎧⎪⎨
⎪⎩
log λi

eλi
+ logαiN if λi ≥ l0,

log
λi

eλi( αi

eλi
+

∑
j �=i

αj

eλj
)
+ logαiN if λi < l0.

(4.83)

Now, it is straightforward to show that P(λi, λ−i) − P(λ′
i, λ−i) = logRi(λi, λ−i) −

logRi(λ
′
i, λ−i) for any operator i ∈ I and for any λi, λ

′
i ∈ [0, λmax]. Since logRi(λi, λ−i)−

logRi(λ
′
i, λ−i) has always same sign as Ri(λi, λ−i)− Ri(λ

′
i, λ−i), condition given in (4.80)

is satisfied, and game GP is an ordinal potential game.

4.B.4 Detailed Analysis of Nash Equilibriums

In the previous section, we proved the existence of pure NE and convergence to them.
In this section, we extend our analysis further in order to find these NEs. For the sake
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of simplicity, we consider the case where all the operators have same amount of available
spectrum Wi = W and hence αi = α, ∀i ∈ I.

Before starting our analysis, we rewrite constraint of set ΛA given in eq. (4.48) as
follows:

α ≤ 1∑
j∈I e−λj

=
H({eλj |j ∈ I})

I
(4.84)

where H(·) is the harmonic mean function of the variables (eλ1 , eλ2 , . . . , eλI ) = ({eλj |j ∈
I}):

H({eλj |j ∈ I}) = I

e−λ1 + e−λ2 + . . . + e−λI
(4.85)

Therefore, if λ ∈ ΛA, it is:
H({eλj |j ∈ I}) ≥ αI (4.86)

Similarly, according to (4.56), if λ ∈ ΛB then:

H({eλj |j ∈ I}) ≤ αI (4.87)

and finally, if λ ∈ ΛC :
H({eλj |j ∈ I}) = αI (4.88)

Next, we define a new variable, h as the natural logarithm of the harmonic mean:

h = logH({eλj |j ∈ I}) (4.89)

Note that, since eh is the harmonic mean of {eλj |j ∈ I}, we can say that one of the
following should hold:

1. Every operator i ∈ I adopts the same price λi = h.

2. If one operator j ∈ I selects a price λj < h, then there must be at least one other
operator k ∈ I who will adopt a price λk > h.

Additionally, we define the variable h−i which is similar to h except that price of the ith

operator is excluded. That is:

h−i = log(H({eλj |j ∈ I \ i})) (4.90)

It is obvious that if λi > h, then h−i < h, if λi < h, then h−i > h, and if λi = h, then
h−i = h.

Lemma 4.B.6. If α ∈ A1 = (0, e/I), there is a unique NE λ∗ ∈ ΛA, with λ∗ = (λ∗
i = 1 :

i ∈ I)

Proof: First, we prove that the NE cannot be in ΛB or ΛC (λ∗ /∈ ΛB ∪ ΛC) if α ∈
A1 = (0, e/I). Notice that, when the price vector is not in ΛA, h ≤ log(αI) < 1 for given α
values. Therefore there exists at least one operator with price less than one. Since RB

i is an
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increasing function between λi ∈ (0, 1), operators with λi < 1 would gain more revenue by
unilaterally increasing their prices. Therefore λ∗ can only be in ΛA. According to Theorem
4.B.3, given that the price vector is in ΛA, optimal price for any operator i can only be
λA
i = 1 if (1, λ−i) ∈ ΛA. Since λ∗ = (λ∗

i = 1 : i ∈ I) ∈ ΛA when α ∈ A1, it is a feasible
and unique solution.

Lemma 4.B.7. μ∗
i is always between I

I−1 and h−i

Proof: We can rewrite equation (4.79) as follows:

eμ
∗
i (μ∗

i − 1) =
eh−i

I − 1
(4.91)

where h−i is defined in equation (4.90). Now, if h−i <
I

I−1 , or equivalently if h−i−1 < 1
I−1 ,

then λ∗
i should be greater than h−i in order to satisfy (4.91). Moreover, if λ∗

i > h−i, then
λ∗
i − 1 should be less than 1

I−1 in order to satisfy (4.91). Therefore, h−i < λ∗
i < I

I−1 .

Similarly, if h−i ≥ I
I−1 , then

I
I−1 ≤ λ∗

i ≤ h−i, which proves the lemma.

Lemma 4.B.8. If α ∈ A3 = (eI/(I−1),∞), there is a unique NE λ∗ ∈ ΛB, with λ∗ = (λ∗
i =

I/(I − 1) : i ∈ I)

Proof: First we prove that there is no NE in ΛA if α ≥ e/I (i.e. if α ∈ A2∪A3). According
to Theorem 4.B.3, optimal price for any operator i can only be λA

i = 1 if (1, λ−i) ∈ ΛA.
Otherwise λC

i dominates λA
i . Since λ∗ = (λ∗

i = 1 : i ∈ I) /∈ ΛA when α ∈ A2 ∪A3, there is
no NE in ΛA.

Secondly, we prove that there is no NE in ΛC if α ∈ A3 = (eI/(I−1),∞). Recall that,
when the price vector is in ΛC , h = log(αI) > I/(I − 1), which means that there exists
at least one operator with price λC

i > I/(I − 1) and λC
i ≥ h. Remember that if λi ≥ h,

then h−i ≤ h, so λi ≥ h−i. Therefore, for an operator i, λC
i is greater than both h−i

and I/(I − 1). According to Theorem 4.B.3 and Lemma 4.B.7, when (μ∗
i , λ−i) ∈ ΛB , best

response price of operator i is μ∗
i which is between h−i and I/(I − 1). This means that

for at least one operator, λC
i is greater than μ∗

i , which implies that (μ∗
i , λ−i) ∈ ΛB . This

operator can increase his revenue by reducing his price to μ∗
i . Therefore, there is no NE in

λC for the given α values, and we proved that the NE can only be in ΛB .
Finally, we prove that the only NE is λ∗ = (λ∗

i = I/(I − 1) : i ∈ I), if α ∈ A3.
According to Lemma 4.B.7, μ∗

i is between h−i and I/(I − 1) for all operators. h can be
greater than or less than I/(I − 1). If h ≥ I/(I − 1), unless all of the operators set their
prices to I/(I − 1), there exists at least one operator i with price λi greater than both h−i

and I/(I − 1). Hence, λi is also greater than μ∗
i and this operator can increase his revenue

by reducing his price to μ∗
i . Similarly, if h < I/(I − 1), there exists at least one operator

with price λi less than both h−i and I/(I − 1). This operator can increase his revenue by
increasing his price. If all the operators set their prices to λi = I/(I − 1), the price vector
is in ΛB and none of the operators can increase his revenue by unilaterally changing his
price. Therefore, the only NE is λ∗ = (λ∗

i = I/(I − 1) : i ∈ I).
Hence the lemma is proved.
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Lemma 4.B.9. If α ∈ A2 = [e/I, eI/(I−1)], a NE can only be in ΛC .

Proof: In the proof of the Lemma 4.B.8, we showed that there is no NE in ΛA, if
α ∈ A2. We can also prove that there is no NE in ΛB for the given range of α values.

If the price vector is in ΛB and α < eI/(I−1)

I , then h < I/(I − 1). Therefore, there is at
least one operator with price λi ≤ h−i and λi < I/(I − 1), who can increase his revenue by
increasing his price. So we conclude that, if α ∈ A2 = [e/I, eI/(I−1)], there is no NE in ΛA

or ΛB .

Lemma 4.B.10. If α ∈ A2 = [e/I, eI/(I−1)], λ∗ ∈ ΛC with λ∗ = (λ∗
i = log(Iα) : i ∈ I) is

a NE.

Proof: When all the operators set the same price λ∗
i = log(Iα) and α ∈ A2 =

[e/I, eI/(I−1)], log(Iα) is between 1 and μ∗
i for all operators (this can be verified through

equation (4.79)). Therefore, for any operator i, (1, λ−i) /∈ ΛA and (μ∗
i , λ−i) /∈ ΛB . Then,

according to Theorem 4.B.3, best response price is λC
i which is equal to log(Iα). Hence,

no operator can gain more revenue by unilaterally changing his price, and λ∗ = (λ∗
i =

log(Iα) : i ∈ I) is a NE.

Finally we analyze the NE for boundary values of A2, i.e. for α = e/I and α =
eI/(I−1)/I. In the previous lemma, it is proven that λ∗ = (λ∗

i = log(Iα) : i ∈ I) is a
NE if α ∈ A2. We can also prove that it is the only NE for these boundary values. In
Lemma 4.B.9, it is proven that any NE is in ΛC for these α values. So, when α = e/I,
h = log(Iα) = 1, which means that unless all of the users set their prices to one, there exists
some operators with λi < 1. These operators would gain more revenue by setting their
prices to one. Hence, the only NE is λ∗

i = log(Iα) = 1. Similarly, when α = eI/(I−1)/I,
h = log(Iα) = I/(I − 1). This means that unless all of the users set their prices to
I/(I − 1), there exists some operators with λi greater than both h−i and M/(M − 1).
These operators would gain more revenue by reducing their prices. Hence, the only NE is
λ∗
i = log(Iα) = I/(I − 1).
We also show that when α ∈ (e/I, eI/(I−1)), there can be infinitely many NEs, all in

ΛC , via numerical simulations. For different initial price settings, the game converges to
different NE.

Theorem 4.B.11. The game GP attains a pure NE which depends on the value of param-

eter α as follows:

• If α ∈ A1 = (0, e/I), there is a unique NE λ∗ ∈ ΛA, with λ∗ = (λ∗
i = 1 : i ∈ I) and

respective market equilibrium x∗ ∈ XA.

• If α ∈ A3 = (e
I

I−1 /I,∞), there is a unique NE λ∗ ∈ ΛB, with λ∗ = (λ∗
i = I

I−1 : i ∈
I), which induces a respective market equilibrium x∗ ∈ XB.

• If α ∈ A2 = [e/I, e
I

I−1/I], there exist infinitely many NEs, λ∗ ∈ ΛC , and each one of

them yields a respective market stationary point x∗ ∈ XC .
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Proof: Lemma 4.B.5 proves that the game GP is a finite ordinal potential game. There-
fore, it always attains a pure NE. Lemma 4.B.6 proves the case for α ∈ A1 = (0, e/I).

Lemma 4.B.8 proves the case for α ∈ A3 = (e
I

I−1 /I,∞). The case for α ∈ A2 =

[e/I, e
I

I−1/I] is proven in Lemma 4.B.9 and Lemma 4.B.10.
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Chapter 5

Dynamic Pricing Mechanisms for Spectrum

Markets

5.1 Background

A particular characteristic of the emerging dynamic spectrum markets is that they aim
to facilitate spectrum exchange among peer network entities as it is depicted in Figure 5·1.
Namely, in these markets, secondary operators will be able to directly interact and redis-
tribute the spectrum they acquired from the primary operators, in a fine spatio-temporal
scale, in order to satisfy their dynamic needs. Also, they will provide inter-connection ser-
vices to each other and exchange traffic. Similarly, users will be able to route each others
traffic so as to satisfy their communication needs in an ad hoc fashion. In detail, in this
chapter we will consider the following three scenarios:

• Secondary operators provide interconnection services. Each SO delivers the traffic
that originates from a user of another SO and is destined to a user within his own
service range.

• Users exchange bandwidth. The users form an ad hoc network and each one of them,
along with his own traffic, routes also the traffic of other users.

• Secondary operators exchange their spectrum. SOs exchange for certain time periods
their leased spectrum in order to satisfy the highly dynamic communication needs of
their users.

These networking examples have certain common properties that call for novel network
management schemes and protocols. Specifically:

• There exist many resource (spectrum or bandwidth) buyers and sellers.

• Each entity is at the same time a buyer and seller, i.e. both consuming and providing
resources.

• Moreover, these two roles are intertwined. For example, a secondary operator con-
sumes his spectrum either for satisfying his own communication needs (acting as
client) or for delivering the traffic of other SOs (acting as a server). That is, both
roles presume the consumption of the same resource. The same holds for the users
who utilize their bandwidth either for forwarding their own traffic (client role) or for
routing the traffic of other users (server role).
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• The interests of the different entities are very often conflicting. An operator would
like to lease spectrum from another operator at the minimum possible price and sell
his own spectrum at the highest price. Also, a user prefers other users to forward his
traffic while he is not willing to spend his probably scarce capacity for serving them.

• The interactions and transactions among these entities should be realized in an almost
real-time fashion.

• The entities most often interact and coordinate in a decentralized fashion, i.e. without
the coordination of a central authority such as a network controller. Therefore all the
required protocols and market clearing algorithms must be amenable to distributed
execution.

• In some cases it is impossible to have a billing and charging infrastructure. For
example, in an ad hoc network it is not very likely that users will be able to pay each
other for the bandwidth they exchange.

Figure 5·1: Operators and users exchange spectrum (or bandwidth) to
satisfy their dynamic needs.

In this chapter, we introduce a dynamic pricing scheme to address the challenges above
and ensure the successful operation of secondary spectrum markets. We model node inter-
action through market transactions. Each node (either user or SO) announces one separate
bid for buying resource from any potential seller, and one bid for selling resource to any
potential buyer. The bids represent the nodes willingness for acquiring or selling the re-
source. Sellers receive bids from buyers and need to decide how to allocate their resource
and how much to charge for that. On the other hand, buyers receive resource offers and
need to select the sellers to which they submit bids for resource request. The distinguishing
characteristic of our model is that each node in the system is simultaneously a seller and
buyer. These two roles are intertwined, and in fact, each one places limitations on the
other. Each node must decide how much portion of the resource it will dedicate to serving
others and to receiving service itself, so as to maximize its benefit. The latter is usually
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captured by a utility function which can include charging and reimbursement for resource
exchanges.

Loosely speaking, this setup can be considered as a Double Auction Market due to the
concurrent interaction of multiple buyers and sellers and the bidding process. However, we
assume in this work that nodes, sellers or buyers, are price-takers. That is, nodes do not
anticipate the impact of their bidding strategy to the announced prices. This assumption
simplifies the analysis and allows us to derive a social welfare maximizing mechanism
with low computational and communication requirements. Price-taking behavior is highly
probable to appear in settings where the number of nodes is large, [90],[48], or when each
node is not aware of the strategy space and the actions of other nodes. An interesting
explanation about the intuition and the implications of assuming that nodes of a network
are price-takers is given in [98]. Additionally, in the context of large-scale wired networks,
such as the Internet, there exists a large volume of works, originating from the seminal
paper by Kelly [54], that study mechanisms for bandwidth allocation among competing
but price-taking nodes.

The proposed mechanism uses one-dimensional bidding and simple charging rules, in
line with [55]. Our contributions are as follows: (i) we develop a dynamic pricing scheme for
these markets that captures the double role of a node as resource contributor and consumer,
(ii) we prove that there exist bidding and charging strategies that maximize social welfare
and we explicitly compute them. Nodes are induced to follow these strategies, otherwise
they get isolated by the network, (iii) we design a decentralized realization of the protocol
that relies only on lightweight feedback from the network, through which nodes coordinate
in a distributed fashion, (iv) we generalize our framework to optimization of a generic
network objective, other than social welfare, (v) we also introduce a pricing method which
does not need a charging infrastructure.

The chapter is organized as follows. In section 5.2 we present a literature overview
and in section 5.3 we give the model and problem formulation. In section 5.4 we define
the pricing mechanism for a conventional setting with a central controller, and then we
describe the decentralized realization of it. In section 5.5 we generalize our method to
achieve the optimization of a generic network objective. Section 5.6 contains numerical
results and section 5.7 concludes our study.

5.2 Related Work

In single-sided markets, a central controller needs to allocate a divisible good among
a set of buyers. Buyers submit bid signals to the controller in order to declare their
willingness for acquiring the good. Accordingly, the controller computes an allocation and
a payment for each buyer. The buyers can be either price takers or price anticipators,
depending on whether they cast their bid without or with consideration of its impact on
the subsequent price. The objective is to come up with an efficient allocation, namely
one that maximizes the sum of user utilities, without explicit knowledge of their utility
functions. For rational, price taking users, Kelly et.al. [55] showed that the problem above
can be solved in a decentralized way, and [66] introduced an auction mechanism that entails
an efficient allocation of capacity to network flows. Users submit bids, they receive resource
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amount that is proportional to their bid and they pay amount equal to their bid.
On the other hand, price anticipating users strategically adapt their bid by taking into

account its impact on the price, and thus a game interaction emerges with certain efficiency
loss [49]. A mechanism that guarantees an efficient allocation for selfish, price-anticipating
nodes is the Vickrey-Clarke-Groves (VCG) mechanism [105]-[38]. In the VCG auction, a
node is charged according to its externality, namely the induced reduction to the maximum
total utility it causes to all other nodes. The allocation is performed according to the
solution of the total utility maximization problem. However, VCG-based mechanisms have
significant drawbacks, [67]. First, they exhibit high computational complexity since very
often they are NP-hard. Second, they entail an intolerable communication cost because
the bidders have to communicate their entire utility functions (demand functions). Finally,
VCG mechanisms are not budget balanced, i.e. the sum of subsidies (paid to the sellers)
exceeds the sum of charges (paid by the buyers) and hence there is need to inject money
in the market.

Recent studies address the problem of the communication burden of VCG mechanisms
by proposing a combination of VCG and proportional allocation methods [109], [50]. In
these works, nodes submit one-dimensional bids and are charged according to the rules of
the VCG scheme. Other single-sided auction methods where many buyers submit bids for
the resource provided by one seller are [23], [92], where a two-dimensional bid (a per-unit
price and the maximum amount of resource the user is willing to buy) is submitted. This
bid corresponds to a specific class of utility functions. The charging is performed as in
VCG auctions, and the allocation is according to the total utility maximization problem.
The survey [94] provides an overview of the cases and objectives encountered in single-
sided auctions. The case of many sellers bidding to meet the demand of a buyer is dual
and admits similar results. Here, a basic distinction about sellers is whether they select
charging prices to maximize their profit or satisfy a socially optimal objective [82].

Most of the works in single-sided auctions assume a single divisible resource that is to
be allocated among candidate buyers. Some works generalize this mechanism to multiple
divisible goods, where each user needs bandwidth on a set of links that constitutes its
path [63], [10]. These works however do not consider the existence of many buyers and
sellers at the same time. The framework of double-sided auction markets, where many
buyers interact with many sellers addresses this scenario. The works [23] and [45] study
double auction methods for link capacity allocation in networks. In [23], each link sells
its bandwidth and each node bids for the allocation of bandwidth in a bundle of links. A
central agent collects these bids and determines bandwidth allocations and payments by
solving the social welfare maximization problem. These schemes are not directly applicable
to decentralized settings such as networks since they require a central auctioneer. In
[108], the authors present a double auction mechanism for routing protocols in mobile ad-
hoc networks. Multiple source-destination pairs interact with a set of intermediate relay
nodes in order to allocate their traffic in a cost-efficient way. The authors prove that this
mechanism ensures node cooperation through proper payments.

The main innovation of our approach compared to these works is that it addresses
the simultaneous double role of each node as resource seller and buyer, the fact that one
role affects the other, and the objective of each node to bid for buying and offer for selling
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resource with any other node in a distributed fashion. Additionally, by assuming that nodes
are price-takers, we manage to derive a mechanism with low computational complexity and
reduced communication burden.

5.3 System Model

We consider a group of N nodes that may represent a set of secondary wireless operators
or a group of users that form a wireless ad hoc network. Hereafter, we use the term node
for both SOs and users. Each node strives to maximize his own perceived satisfaction. We
adhere to the scenario where a node may interact potentially with any other node in a full
mesh topology. Depending on the specific network instance, a node may interact with a
subset of the group. For example, in the ad hoc network scenario, each user interacts and
cooperates only with his neighbors.

Node interactions entail service exchanges which are directly translated into consump-
tion of respective amounts of resources. Node i possesses a finite amount of resource of Ci

units that is available for provisioning to others or for satisfying its own needs, potentially
from other nodes. Henceforth we use terms “resource” and “service” to refer to this ex-
change. For any pair of interacting nodes i, j denote by xij the amount of resource that
node i spends for satisfying its own needs through node j. Denote by yij the amount of
resource granted from i to j, namely the amount that node i uses to satisfy j’s needs.
Clearly, node i can satisfy its needs through node j only if j grants the corresponding
amount of resource, namely it is yji = xij .

For the example of SOs interconnection, xij is the amount of bandwidth that operator
i consumes for routing traffic that is destined to a user within the service area of operator
j. On the other hand, yij is the bandwidth that i dedicates to serve traffic originating
from SO j. This interaction of SOs is depicted in Figure 5·2. In wireless ad-hoc networks,
xij is the amount of bandwidth that node i spends to forward its own traffic to node j
(which will then spent equal capacity yji to forward it further), and yij is the bandwidth
i dedicates to forwarding traffic of j. This process is shown in Figure 5·3. Finally, for the
scenario of spectrum exchange among the SOs, xij is the amount of spectrum operator i
asks from operator j and yij the spectrum that i sells to j in response to the request xji of
the latter. This scenario is depicted in Figure 5·4. Define vectors xi = (xij : j = 1, . . . , N),
and yi = (yij : j = 1, . . . , N). Thus, network operation is represented by the N × N
resource request and allocation matrices X = (xi : i = 1, ..., N) and Y = (yi : i = 1, ..., N).
The amounts of resource that node i uses for its own needs and for serving others’ needs
satisfy

N∑
j=1

xij +

N∑
j=1

yij ≤ Ci . (5.1)

Each node i is characterized by a utility function Ji(·). We assume that Ji(·) is sepa-
rable, in the sense that Ji(xi,yi) =

∑
j �=i Jij(xij , yij), where Jij(·) is the perceived utility

of node i due to its interaction with node j. This models the general case where node i
obtains different utility from different nodes j due to the different importance or timeliness
of service, or other properties such as the quality of the spectrum band, etc. Moreover,
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Figure 5·2: Two operators serve their own clients and exchange traffic:
operator (1) consumes x12 amount of his bandwidthC1, to serve user 1 (Tr1)
who sends data to his pair-receiver node (Rc1) who lies within the range of
operator (2). The latter must also spend an equal amount of resource, y21 =
x12 for this connection. For each operator, the aggregate bandwidth used
for the uplink and the aggregate bandwidth used for the downlink should
not exceed his capacity: x12+x11+y12+y11 ≤ C1, x21+x22+y21+y22 ≤ C2.
Operators are connected with links of high capacity (backbone network).

we assume that the utility function is further decomposed into two components: (i) one
component for the client (buyer) side. Let Uij(xij) be the utility of node i from satisfying
its own needs by using amount xij through node j. Function Uij(·) is differentiable, strictly
concave, positive and increasing; (ii) one component for the server (seller) operation of the
node. Let Wij(yij) be the cost incurred if node i provides resource amount yij to node j.
This is also a differentiable and strictly concave function. However, this function is nega-
tive and decreasing, since service provisioning results in consumption of the node resources.
Additionally, for the case of SOs spectrum exchange, Wij(·) captures the opportunity cost
of operator i for leasing his spectrum to operator j. Therefore, the utility function of node
i can be written as:

Ji(xi,yi) =
N∑
j=1

[Uij(xij) +Wij(yij)] . (5.2)

The most common and straightforward criterion that quantifies efficient operation of a
group of nodes is the maximization of the sum of node utility functions, known as social
welfare. The socially optimal operating point of the group is the solution to the social
welfare problem (SWP):
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Figure 5·3: User (1) reserves x12 portion of his capacity C1 for sending
data that will be further forwarded by user (2). Also, he uses the rest of
his capacity for forwarding the data of user (2). Apparently, it must hold
x12 + y12 ≤ C1, and x21 + y21 ≤ C2.

max
X,Y

N∑
i=1

N∑
j=1

[Uij(xij) +Wij(yij)] (5.3)

subject to:
N∑
j=1

xij +

N∑
j=1

yij ≤ Ci, i = 1, . . . , N, (5.4)

xij = yji, ∀ i, j, with i �= j. (5.5)

The SWP problem has a unique solution since the objective function is strictly concave
and the constraint set is convex. We relax constraints and define the Lagrangian:

L =

N∑
i=1

N∑
j=1

[Uij(xij) +Wij(yij)]−
N∑
i=1

λi(

N∑
j=1

xij +

+

N∑
j=1

yij − Ci) +

N∑
i=1

N∑
j=1

rij(yji − xij) (5.6)

where λ = (λi ≥ 0, i = 1, . . . , N) is the vector of Lagrange multipliers (dual variables)
corresponding to capacity constraints. Also R = (rij : i, j = 1, . . . , N) is the N×N matrix
of the Lagrange multipliers rij corresponding to the equality constraints. The optimal
primal variables X∗,Y∗ and dual variables λ∗,R∗ satisfy the Karush-Kuhn-Tucker (KKT)
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Figure 5·4: Operator (1) reserves y11 units of his spectrum C1 for serving
his own needs and leases the residual spectrum of y12 units, to operator
(2), in response to the request x21 of the latter. The aggregate spectrum
constraint is y11 + y12 ≤ C1.

optimality conditions:

(A1) : U
′
ij(x

∗
ij) = λ∗

i + r∗ij, ∀ i, j, with i �= j,

(A2) : W
′
ij(y

∗
ij) = λ∗

i − r∗ji, ∀ i, j, with i �= j,

(A3) : λ∗
i (

N∑
j=1

x∗ij +
N∑
j=1

y∗ij − Ci) = 0, i = 1, . . . , N,

(A4) :

N∑
j=1

x∗ij +
N∑
j=1

y∗ij ≤ Ci, i = 1, . . . , N,

(A5) : x∗ij = y∗ji ∀ i, j, with i �= j,

(A6) : x∗ij , y
∗
ij, λ

∗
i ≥ 0, ∀ i, j, with i �= j.

The optimal solution of SWP, namely the operation point at which the efficiency of
node interaction is maximized satisfies equations (A1)-(A6). However, the group consists of
rational and selfish nodes whose interests are not aligned with the social objective. Selfish
nodes act towards maximizing their own utility function, a strategy which clearly results
in the degradation of the group operation. In the sequel, we present a dynamic pricing
method to achieve the optimal operating point of the group in a distributed fashion in the
presence of price-taking selfish nodes.
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5.4 The Dynamic Pricing Mechanism

5.4.1 Rationale

We derive first a central agent aided algorithm to find an efficient resource allocation.
Recall that we impose the requirement that node utility functions are private to each node.
SWP cannot be solved by a single central agent due to lack of knowledge on node utilities.
To overcome this difficulty, we propose a dynamic pricing mechanism which is inspired from
the algorithm in [55]. Given that nodes are rational utility maximizers, this mechanism
will incur an allocation that maximizes social welfare, i.e. it is the solution of SWP.

Each node i submits buy (ask) bids pij for receiving the available resource of node
j = 1, . . . , N , and sell (offer) bids aij for granting its entire resource to each node j.
These bids are collected by the central controller which subsequently determines (i) the
resource allocation regimes (X,Y), (ii) the charging and reimbursement amounts, h(pij)
and l(aij) respectively, for each pair of interacting nodes i and j. By h(·) and l(·) we
denote the charges and reimbursements as continuous functions of submitted buy and sell
bids respectively. The controller resource allocation is derived from the solution of a certain
optimization problem. The charging and reimbursement amounts are calculated through
functions h(·) and l(·). The key challenge is to come up with the structure of optimization
problem and functions h(·) and l(·) such that the resource allocation coincides with the
optimal solution of SWP, defined by equations (A1)-(A6).

The controller anticipates rational behavior by nodes in the process of selecting their
bids. Each bidder in turn knows the resource allocation problem and charging and reim-
bursement functions and attempts to find buy and sell bidding strategies that optimize its
net benefit. That is, each node i solves the following 2(N−1) problems (NODE problems):

max
pij
{Uij(xij(pij))− h(pij)}, j = 1, . . . , N, (5.7)

max
aij
{Wij(yij(aij)) + l(aij)}, j = 1, . . . , N. (5.8)

Notice that xij and yij depend on respective bids, pij and aij.
For the problem at hand, we propose that the controller should determine the optimal

allocation from the solution of the following optimization problem (Network Controller
Problem, NCP):

max
X,Y

N∑
i=1

N∑
j=1,j �=i

(pij log xij −
aij
2
y2ij) (5.9)

subject to
∑N

j=1 xij +
∑N

j=1 yij ≤ Ci, for i = 1, . . . , N and xij = yji for all i, j �= i. Note
that the objective function is selected such that it is strictly concave. The NCP problem
has unique solution which satisfies KKT conditions:

(B1) : x∗ij =
pij

λ∗
i + r∗ij

, (B2) : y∗ij =
−λ∗

i + r∗ji
aij

∀ i, j, i �= j, and four additional conditions, call them (B3)-(B6) which are identical to
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(A3)-(A6). These are the optimal amounts of resource that each node i should receive
and provide according to the controller problem. They depend on node i bids and on dual
variables (and through them, on other nodes’ bids). Note that the amount of resource xij
which is granted to i is proportional to its bid pij . On the other hand, the resource yij
granted by node i to j is inversely proportional to the charging bid aij. Comparing the
solutions of SWP and NCP, one can see that if nodes submit their bids as follows:

(G1) : p∗ij = x∗ijU
′
ij(x

∗
ij), (G2) : a∗ij =

−W ′
ij(y

∗
ij)

y∗ij
,

then equations (B1)-(B6) are identical to equations (A1)-(A6). The bid expressions above
hold if the charging and reimbursement functions are chosen as follows:

h(pij) = pij , l(aij) =
(λi − rji)

2

aij
, ∀ i, j, with i. �= j. (5.10)

Then, the proposed mechanism achieves the socially optimal solution. These charging
and reimbursement rules are quite intuitive: each node as client (resource consumer) is
charged exactly the amount he bid, namely the amount it declared it is willing to pay. On
the other hand, its reimbursement is inversely proportional to the submitted sell bid. That
is, nodes that submit high offers to sell the good finally receive less money. Implicit here
is the assumption that nodes are price takers.

The mechanism is executed in successive rounds, each round t with the following steps:

• Each node i solves the NODE problems and calculates p
(t)
ij and a

(t)
ij , separately for

each node j it interacts with.

• The central controller collects all bids and solves NCP. It then allocates the current
optimal amounts of resource x

(t)
ij and y

(t)
ij and determines the charges h(p

(t)
ij ) and

reimbursements l(t)(aij). Finally, it communicates the new Lagrange multipliers.

The bids calculated in each iteration round are not the final ones in (G1) and (G2). After
each iteration, the solution of the NODE problem changes due to the updated Lagrange
multipliers. Indeed, the NODE problem is solved by substituting variables xij and yij from
the previous round and optimizing with respect to new bids pij and aij. Calculation of
derivatives at each step leads to equations U ′

ij(xij) = pij/xij and W ′
ij(yij) = −aijyij, for

the client and server operation of the node. These are fed to the controller, which then
computes the new allocations.

The iterative procedure converges and the final bids equal to the social optimal bids
p∗ij and a∗ij . Therefore, nodes finally bid according to (G1) and (G2). This shows that
the solution of NCP, together with node rationality (which induces nodes to optimize their
strategy in a prescribed way), achieves the socially optimal point, at which nodes receive
and provide resources according to the solution of SWP.

5.4.2 Decentralized Realization
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We now provide a variant of the dynamic pricing mechanism that is realizable for clear-
ing markets and resource exchange without presuming the presence of a central coordinator
or a controller. For example, this scheme is very important for the management of ad hoc
networks that are formed by the users. Controller tasks such as resource allocation, charg-
ing and reimbursement decisions are undertaken by nodes in a distributed way. These
tasks are accomplished by solving the NCP problem in a decentralized fashion using dual
decomposition for any given set of bids. We relax constraints and define the Lagrangian,

L(Y,X,R,λ) =
N∑
i=1

N∑
j=1,j �=i

(pij log xij −
aij
2
y2ij)

−
N∑
i=1

[λi(

N∑
j=1

xij +

N∑
j=1

yij −Ci) +

N∑
j=1

rij(yji − xij)] , (5.17)

where R, λ are the Lagrange multipliers defined previously. By exploiting the separability
properties of L(·), we can derive a distributed algorithm for the solution of this problem
[11]. For NCP, this leads to the DP-NCP Algorithm 2.

Some implicit assumptions here are in order. First, communication of required infor-
mation is synchronous. Secondly, nodes update and communicate multipliers as described
above and do not strategize or manipulate them before their broadcast. Convergence of
this class of algorithms is guaranteed if the objective function is differentiable and strictly
concave, and the step size st is properly selected [11]. Moreover, convergence can be veri-
fied through Lyapunov stability theory. Following the rationale of the proof in [82], for the
Lyapunov function

V (R,λ) =
1

2

N∑
i=1

(λi − λ∗
i )

2 +
1

2

N∑
i=1

N∑
j=1

(rij − r∗ij)
2 (5.18)

it can be shown that dV/dt ≤ 0 by using complementary slackness, (B1) and (B2) and
some algebra. Hence the proposed two-step mechanisms for the solution of SWP attain
the optimal operation point (Y∗,X∗).

5.4.3 Pricing Without a Charging Infrastructure

The pricing mechanism above is realizable contingent on the assumption that nodes are
able to charge and reimburse nodes for consuming and providing resources respectively.
Otherwise, the NODE problem cannot include functions h(·) and l(·) and thus, nodes
cannot submit the socially optimal bids. In some cases, such as ad hoc networks, an
accounting infrastructure is rather difficult to be created, and thus we need to devise an
alternative charging method. We propose the “absorption” of charging and reimbursement
into resource allocation, in line with the rationale of [40]. That is, instead of computing
charging and reimbursement functions as means for facilitating the social optimal solution,
we apply a method based on equivalent reduction of provisioned services. Consider the net
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utility components of i and j due to their interaction:

NUij(yij , yji) = Uij(yji +Wij(yij) + l(aij)− h(pij) (5.19)

NUji(yji, yij) = Uji(yij) +Wji(yji) + l(aji)− h(pji)

At the end of node interaction, we have the following equalities due to the buy-sell trans-
actions:

l(aij) = h(pji), l(aji) = h(pij), xij = yji, xji = yij . (5.20)

In order to avoid computing charges and reimbursements, each node should allocate
amounts of resource different than what is dictated by the SWP to nodes it interacts with.
In other words, it should provide resource amount to each node such that it covers the
potential incurred charges and reimbursements. Namely, j should allocate to i resource zji
such that:

Uij(zji) = Uij(yji)− h(pij) + l(aij) . (5.21)

This means that the amount of allocated resource from node j to i in the case of no
charging infrastructure will be less than the corresponding amount in the case of charging
infrastructure if i is charged more by j than its reimbursement for serving j, and it is
increased otherwise. Consequently, nodes do not have to pay fees or get reimbursed. Thus,
the net utility of node i for interacting with j becomes:

NUij(zij , zji) = Uij(zji) +Wij(zij) . (5.22)

A basic issue is to consider the efficiency loss, if any, for the outcome of node interaction
in the absence of a charging infrastructure. The difference between total system utility in
the original setup with charging infrastructure and total utility in the operation point
Z = (zij : i, j = 1, . . . , N) in the case of absence of a charging infrastructure, is:

ΔU =

N∑
i=1

N∑
j=1,j �=i

[Uij(yji) +Wij(yij)− Uij(zji)−Wij(zij)] .

If we substitute Uij(zji) from (5.21), we get

ΔU =

N∑
i=1

N∑
j=1,j �=i

[Wij(yij)− l(aij) + h(pij)−Wij(zij)]

where the quantity zij is estimated based on the equation:

Uji(zij) = Uji(yij)− h(pji) + l(aji) . (5.23)

Hence efficiency loss ΔU depends explicitly on the relation between functions Uji(·)
and Wij(·). For example, in a symmetric case where these are the same in absolute value,
the method does not entail efficiency loss. Nevertheless, in the general case the degrada-
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tion will depend on the specific function components of nodes. Moreover, an additional
requirement is that each node i should know the utility functions of others in order to find
new allocations zij . These limitations call for further study of the method. However, the
method constitutes a significant first step towards eliminating the need for accounting and
charging infrastructure. Furthermore, it can be directly implemented as the final stage of
the DP-NCP algorithm. DP-NCP could be modified by adding a step at which each node
i computes quantities zij , j = 1, . . . , N , and updates its initial resource allocation decisions
accordingly.

5.5 Dynamic Pricing for a Generic Network Objective

Now we consider the case when the network objective is the optimization of a generic
function, other than social welfare. For example, consider a group of nodes that agree to
achieve load balancing or ensure some kind of fairness among them. This is different from
the social welfare maximization problem. The key question is the following: given that
nodes will bid myopically based on the maximization of their net benefits, according to the
NODE problems, how can we engineer the dynamic pricing scheme such that this different
objective is achieved? Namely, we would like to derive the appropriate resource allocation
and charging and reimbursement strategies that guarantee optimal operation for the case
of this new objective function.

Suppose the desirable objective is represented by the following maximization problem
(Generic Network Problem, GNP):

max
X,Y

F (X,Y) (5.24)

subject to
∑N

j=1 xij+
∑N

j=1 yij ≤ Ci for i = 1, . . . , N and xij = yji for all i, j �= i, where the
objective function F (·) is the new network objective. We assume that F (·) is differentiable,
strictly concave and separable, so that

F (X,Y) =

N∑
i=1

N∑
j=1,j �=i

[dij(xij) + gij(yij)] , (5.25)

where dij(·) �= Uij(·) denotes the pairwise obtained utility between nodes i and j corre-
sponding to the new objective function F (·), and gij(·) �= Wij(·) captures the cost corre-
sponding to F (·). The solution of this problem is unique and similar to that of SWP except
that, instead of (A1) and (A2), we have

(H1) : d′ij(x
∗
ij) = λ∗

i + r∗ij, ∀ i, j, with i �= j

(H2) : g′ij(y
∗
ij) = λ∗

i − r∗ji, ∀ i, j, with i �= j .

Consider again the two-step distributed mechanism where nodes submit bids, and then
a controller solves the NCP problem. The optimal allocations are then described by (B1)-
(B6). The solution of NCP coincides with the solution of the new problem, GNP, if nodes
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submit bids as

p∗ij = x∗ijd
′
ij(x

∗
ij), a∗ij =

−g′ij(y∗ij)
y∗ij

, i, j, with i �= j , (5.26)

and provided that nodes are charged and reimbursed as

h(pij) =
Uij(xij)

dij(xij)
pij, l(aij) =

(λi − rji)
2 Wij(yij)

aijgij(yij)
.
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Figure 5·5: Evolution of system utility in the presence of one selfish node
that takes effect at t = 80.

The intuition behind these rules is evident again. Node charges are raised if they act
only towards maximization of their utility components Uij(·) instead of dij(·). In addition,
reimbursements are decreased if nodes attempt to minimize their cost components Wij(·)
without considering the desirable cost gij(·). For this setting, the NODE problem, eq.
(5.7) and (5.8), solved by each node i for its interaction with each other node j, results in
equations (H1) and (H2) and yields the GNP optimal solution. A distributed algorithm
similar in flavor to DP-NCP can be applied to circumvent the use of a central controller
here as well.

98

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



0 20 40 60 80 100 120 140 160
2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

# of iterations

N
et

 U
til

ity

Evolution of Node Net Utility in a System with one Selfish Node

 

 

Selfish Node
Legit. Nodes
Selfish Node, altr. pricing
Legit. Nodes, altr. pricing

Figure 5·6: Utility of a legitimate and a selfish node for DP-NCP, and
DP-NCP with alternative pricing.

5.6 Numerical Results

In order to validate our approach and the convergence of respective algorithms, we
simulate the interactions of a small group of N = 10 nodes. Consider for example 10 SOs
that exchange spectrum or bandwidth, i.e. routing services, or 10 users that create a group
and route each other traffic. We focus on SWP and distributed algorithm DP-NCP. The
simulation setup and conclusions apply for GNP as well. The basic attributes of each node
i are the available amount of resource, Ci and its utility function Ji(·). For this setup, we
choose Ji(xi,yi) =

∑N
j=1[αij log(xij +1)−βijy

2
ij] which satisfies our assumptions for Ji(·).

Parameters αij and βij are used to capture different node profiles. Algorithm execution is
assumed to be time slotted, and node interaction is synchronous.

In Figure 5·5 we depict the evolution of aggregate utility for a system which consists
of 9 legitimate (i.e. cooperating) and one selfish node. All nodes have Ci = C = 100, and
identical utility functions. The selfish node initially cooperates, but after t = 80, it decides
to provide zero service to others. This results in a degradation of system performance,
though this remains stable after initial reduction in overall utility. The evolution of utility
of this selfish node is depicted in Figure 5·6. We depict results both for the DP-NCP algo-
rithm under the assumption of a charging infrastructure and for the proposed alternative
pricing method. In both cases, the response of legitimate nodes is immediate and leads to
punishment of egotistic behavior by providing the selfish node with degraded service. This
proves the desirable property of cooperation enforcement of our mechanism. In Figure 5·7,
we depict the protocol tolerance for different numbers of selfish nodes. At time t = 80,
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Figure 5·7: Node utility in a system with many selfish nodes taking effect
at different times. Selfish nodes eventually get punished.

two nodes cease serving others, and at t = 100, one more does the same. We observe that
selfish nodes are eventually punished by the system.

Finally, we demonstrate the benefit of our method in terms of dynamic adjustment
of the server / client (seller / buyer) role of each node. In Figure 5·8 we compare the
proposed dynamic scheme to an instance in which each node has statically allocated 30%
of its resource to serving others and 70% to receiving service itself. The static allocation
results in degraded utility for nodes (case 1). Furthermore, this degradation increases when
the network setting is more complex and dynamic, as for example in the case of selfish nodes
that stop serving others after t = 80 (case 2). These results hold independently of the static
allocation to each role.

5.7 Conclusions

We introduced a framework for spectrum and bandwidth exchange in emerging wireless
markets based on a novel dynamic pricing mechanism. The interacting entities (nodes) can
be secondary operators who exchange spectrum or provide interconnection services to each
other. They can also be users who route each others traffic in an ad hoc fashion. The novel
attribute of the proposed mechanism is that it optimally captures the tradeoff of resource
sharing between the resource provider and consumer roles of each node. We designed a
decentralized realization that does not rely on existence of a central controller. We showed
that, through proper dynamic remuneration and charging, rational price-taking nodes are
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Figure 5·8: Improvement in performance due to dynamic resource alloca-
tion to the seller and buyer role, as opposed to static one.

induced to behave towards maximizing optimal social welfare. Furthermore, we extended
the framework to one that does not rely on an accounting and charging infrastructure
through design of an alternative scheme based on service reciprocation.
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Algorithm 2 (DP-NCP Algorithm)

1st Step: Initialization.
(1.1:) Set t = 0.

(1.2:) Set initial values λ
(0)
i ≥ 0 and R(0) = αI, with I the unit matrix, α ∈ R.

(1.3:) Each node starts with arbitrary bids p
(0)
ij , a

(0)
ij , j = 1, . . . , N .

2nd Step: Resource Allocation.
(2.1:) At each stage t > 0, each node i maximizes the Lagrangian L(·) w.r.t. its primal
variables xij and yij, for every j. This yields:

x
(t)
ij =

p
(t−1)
ij

λ
(t−1)
i + r

(t−1)
ij

, y
(t)
ij =

r
(t−1)
ji − λ

(t−1)
i

a
(t−1)
ij

. (5.11)

.
3rd Step: Charging and Reimbursement.
(3.1:) Each node i charges and reimburses others according to the scheme:

h(p
(t−1)
ij ) = p

(t−1)
ij = x

(t)
ij [λ

(t−1)
i + r

(t−1)
ij ], (5.12)

l(a
(t−1)
ij ) =

[λ
(t−1)
i − r

(t−1)
ji ]2

a
(t−1)
ij

= y
(t)
ij [r

(t−1)
ji − λ

(t−1)
i ]. (5.13)

.
4th Step: Lagrange Multiplier Update.
(4.1:) Each node i minimizes L(·) w.r.t. λi and {rij}, j = 1, . . . , N using gradient
update:

r
(t)
ij = r

(t−1)
ij − st(y

(t)
ji − x

(t)
ij ), ∀j, i �= j, (5.14)

λ
(t)
i = [λ

(t−1)
i + st(

N∑
j=1

x
(t)
ij +

N∑
j=1

y
(t)
ij − Ci)]

+ (5.15)

with x+ = x if x > 0, otherwise x = 0.
(4.2:) The new multipliers are communicated to the group.
5th Step: Bid Update.
(5.1:) Each node i updates its buy and sell bids according to:

p
(t)
ij = x

(t)
ij U

′
ij(x

(t)
ij ), a

(t)
ij =

−W ′
ij(y

(t)
ij )

y
(t)
ij

. (5.16)

.
6th Step: Chek termination condition.
(6.1:) Set t← t+ 1.
(6.2:)If there exist one or more primal or dual updated variables that do not coincide
with their respective instances in the previous time slot, go to Step 1. Otherwise exit.
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Chapter 6

Storage Capacity Control Policies for

Time-Varying Networks

6.1 Background

In order to cope with the increasing user demand for ubiquitous and high speed net-
work access, wireless operators are gradually upgrading their networks to 4G and acquire
more spectrum licences. However, according to predictions of key players of the commu-
nications industry like Ericsson and Cisco, [89] and [83], these advances are expected to
be compensated by the ever growing user traffic. Clearly, apart from these traditional
methods of resource over-provisioning and technology upgrading, there is a need for novel
network design and network management methods. Specifically, it is imperative operators
to explore the possible benefits from using in-network storage.

Nowadays storage is cheap compared to bandwidth, [4], and with least space and power
requirements. Hence, it can be used both in small portable devices and in large amounts lo-
cated at central communication nodes of backbone networks. In light of these observations,
it is challenging to study the performance benefits of storage in terms of the amount of
data that can be conveyed to the destination and characterize the conditions under which
these benefits are enlarged. Two examples of in-network storage assisted networking are
depicted in Figure 6·1. Storage can be used in Access Points (APs) of wireless networks
for temporarily storing data and transmitting it when the wireless link state is favorable.
Also, large-scale storage can be used in backbone networks in order to exploit the time-
diversity of link capacity variation and increase the end-to-end data transfer capability of
the network.

6.1.1 Motivating Example

Let us first present a simple example to motivate the benefit of using in-network storage
in networks with time-varying link capacity, i.e. dynamic networks. Consider the linear
network of Figure 6·2 and assume time slotted operation with slot duration T0. The link
capacity, measured in packets/sec, change every other slot t according to a periodic pattern,
i.e. CAB(t) = D, CBC(t) = 1 and CAB(t + 2) = 1, CBC(t + 2) = D, D > 1. In between
the 2 slots the link capacities remain constant. Transmission delay over each link is equal
to the slot duration T0. In this setting, we ask the question: How much time is required
to convey an amount of D packets of data from node A to node C if (i) the intermediate
node B has no storage capacity, (ii) node B has storage capacity of SB > D packets? The
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(a) Wireless network with storage in access
points

(b) Backbone network with storage enhanced
routers

Figure 6·1: Architectures of in-network storage in wired and wireless net-
works.

answer is straightforward, yet illuminating. In the first case, node A can push in each
time slot t only as much data as node B is able to forward in the immediately next time
slot (t + 1), i.e. CBC(t + 1)T0. Hence, for the link capacity variation above the required
time for data transfer is (D + 1) slots. However, when SB > D, node A pushes up to
CAB(t)T0 data and the excess amount that cannot be immediately routed to destination
C, i.e. (CAB(t)− CBC(t+ 1))T0 is stored at node B. In the subsequent slot (t+ 2), when
CBC is high, stored data along with the new arrived data from A is delivered to the sink.
Therefore, in this case the required time for the delivery of D units of data is only 2 time
slots.

Clearly, the use of storage reduces significantly the incurred end-to-end delay for the
data transfer. From a different perspective, storage increases the maximum amount of data
that the network can deliver within a certain time interval. Notice that, in order to achieve
the same performance without storage use, we would have to increase the capacity of either
one of the two links up to (D − 1) units. In other words, in this example node storage is
actually used as a special type of link capacity and augments the end-to-end data transfer
capability of the network.

However, it can be inferred from the previous observations that the benefit from storage
utilization depends on relative link capacity values. Namely, link capacities should vary
with time and, moreover, capacity variation patterns of different links should differ. Link
capacity variations are common in contemporary information networks. For example, the
capacity of wireless links often varies due to channel impairments. Additionally, in back-
bone networks, the available link capacity for an operator varies due to variations in the
traffic of flows that correspond to other operators that traverse the same link. Such traffic
variations are beyond the control of the operator.
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A B C

SB

CAB CBC

Figure 6·2: A tandem (linear) network of 3 nodes. Node A is the source,
node C the sink and SB is the available storage capacity at node B.

6.1.2 Contribution

We consider dynamic networks and analyze the impact of in-network storage on the
maximum amount of data that can be transferred from source to destination within a
certain time interval. We use the technique of time-expanded graphs, [29] which map the
time evolution of dynamic networks to ordinary graphs. In these graphs, storage is modeled
by defining a special type of link connecting different time instances of the same node. We
focus on the minimum cut (min-cut) of the expanded graphs. This represents the upper
bound of the data amount that can be transferred in the dynamic network for the given
time period. Under certain conditions, this bound can be increased by utilizing storage
links. We are interested in identifying these conditions and devise the optimal storage
control policy which determines the amount of data that must be stored at each node in
every time slot, and the amount of data to be forwarded to the next nodes.

We continue with formulating the max flow problem on the time-expanded graph and
derive the optimal policies in terms of routing and storage capacity control. Like in common
graphs, max flow problem can be solved in polynomial time using the ε-relaxation method
which is amenable to distributed implementation. This last feature leads to distributed
joint storage control and routing (JSR) max-flow policies. In summary, our contributions
are as follows: (i) we identify the benefits of storage capacity and the conditions under
which this benefit is realizable, (ii) we extend our study in general networks and provide
a formulation based on expanded graphs for finding the storage enhanced min-cut and
the optimal storage allocation policy, (iii) we propose the conjunction of storage control
with routing and define the joint storage control and routing max-flow problem for a single
commodity, and (iv) we provide a distributed method for its solution.

The rest of the chapter is organized as follows. In Section 6.2 we discuss related works, in
Section 6.3 we analyze the performance of linear networks with storage capable nodes and in
Section 6.4 we introduce the optimal storage control policy for general networks. In Section
6.5 we study joint storage control and routing policies that achieve flow maximization
in dynamic networks and present an algorithm for their distributed implementation. In
Section 6.6 we discuss the impact of the available information about current and future
network state on performance of the introduced algorithms. Finally, in 6.7 we present
numerical results that verify our analysis and in section 6.8 we conclude our study.
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6.2 Related Work

Storage has been considered in wireless networks in the context of Delay Tolerant Net-
works (DTN) [46], in order to alleviate intermittent connectivity problems between the
source and the destination. In these networks often there exists no permanent end-to-end
path and therefore traditional routing algorithms fail. Hence, various Store and Forward
(SnF) policies are employed to circumvent the challenge above. Data is stored at interme-
diate nodes and is transmitted whenever required links are available. Apparently, available
information about current and future state of the network determines the performance of
these SnF strategies, [51]. A particularly interesting work is [33] where the authors study
flow optimization in DTNs. The problem is formulated as a utility maximization problem
and is solved through Lagrange dual decomposition. However, in this class of problems
the objective is to guarantee delivery of packets and storage is used as a strategy whenever
routing is not possible. On the contrary, we utilize in-network storage in order to reduce
data transfer delay.

In a similar context, the transfer of delay tolerant bulk data was introduced in [62] and
[59]. The authors consider tandem (linear) wired networks where intermediate nodes have
storage capability. The objective is to achieve the transmission of large amounts of data
with minimum monetary cost under certain pricing schemes. The method is extended in
[18] for general network graphs with time varying but a priori known capacity variation
pattern. Node storage varies with time in terms of capacity and cost. It is explained
that through the combination of time-expanded graphs and flow optimization techniques,
a centralized solution provides the optimal (minimum-cost) transfer of data. In [61] this
methodology is employed for the design of NetStitcher, a centralized system that exploits
unutilized bandwidth of backbone networks in order to achieve low cost transfer of large
data files among different sites of datacenters.

In more abstract modeling terms, the problem of minimum delay routing in networks
with node storage is considered in [80] and [81]. The work [80] studies a single commodity
network with time-varying capacities and presents a centralized algorithm that yields the
earliest arrival flow for a time period of T slots. This flow maximizes the amount of data
that reaches the sink for every τ , τ ∈ (0, T ) and hence can be viewed as a minimum delay
flow. It is assumed that the capacity variation patterns of the network links are a priori
known. This information is used to construct the time-expanded graph. The requirement
for future knowledge is relaxed in [81] where the data transfer delay for each link of the net-
work is a random variable. The network is described by a set of stochastic processes, one for
each link, with known state space and empirically calculated state transition probabilities.
The objective is to find the shortest path for the delivery of a packet to the destination. It
is an online problem which, in general, the authors prove that is intractable.

Recently, in-network storage utilization has gained renewed interest. In [34], a novel
wireless network architecture of distributed caching is used to satisfy delay-sensitive user
requests while consuming low backhaul bandwidth. Additionally, storage is proved to
play a central role in the novel paradigm of Content Centric Networking (CCN), [44]. In
CCN, data caching is of paramount importance and therefore in-network storage affects the
content availability and the network performance in terms of content retrieval delay, [16].
Finally, other recent network architectures like the publish/subscribe system for Internet-
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scale content distribution [22] make use of in-network storage. All these different classes
of application scenarios reveal the important role of node storage and further motivate the
analytical study of storage-assisted networking.

Finally, other works have also studied flow algorithms in dynamic networks with storage-
capable nodes, [3] and references therein. Among them [28] presents an interesting negative
result according to which node storage does not improve minimum cost flows over time.
However, this result refers to networks with constant link capacities over time. The above
works do not explicitly study the impact of node storage, i.e. in-network storage, on the
network performance. On the contrary, in this chapter we identify the conditions that
render storage use beneficial, in terms of delay reduction, and at the same time propose
methods for achieving this improvement. We focus on flow-level storage control policies
where storage capacity is orders of magnitute larger than caches or buffers. Until now,
storage has been considered mainly in networks where delay was not the main performance
criterion, i.e. delay tolerant networks. Instead, here we analyze how storage can reduce
incurred end-to-end delay. The main idea is to store data when network conditions are
not favorable and transmit it latter. This way, we exploit the diversity in the link capacity
variation patterns of a network and increase its data transfer capability. Storage is con-
sidered an additional resource that should be managed efficiently in conjunction with link
capacity.

6.3 Impact of Storage Capacity in Linear Networks

We start from linear networks where routing is fixed, from a node to its next one
towards the destination. In this case, storage benefit in terms of delay improvement can
be directly calculated for arbitrary link capacity variation patterns. For example, consider
again the three-node network of Figure 6·2, where link capacity changes every two time
slots. We pose the following questions: (i) what is the incurred delay to deliver an amount
of D data units (packets) to the destination? and (ii) how much data can we deliver from
node A to node C in time period of T time slots, if node B has storage capacity?

When node B has zero storage capacity, the network end-to-end capacity, i.e. the
rate at which data can be transferred end-to-end at every time slot t, due to the flow
conservation constraint is:

CAC(t) = min{CAB(t), CBC(t+ 1)} (6.1)

We denote with CAB = (CAB(t) : t = 1, 2, . . . , T ) and CBC = (CBC(t) : t = 1, 2, . . . , T )
the capacity variation vectors of links (A,B) and (B,C) respectively. Hence, the required
time for the transfer of D units of data from node A to node C is MT0 seconds, where M
is the minimum integer for which holds:

M∑
t=1

CAC(t)T0 ≥ D (6.2)
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Also, the amount of data transferred in T time slots is:

D =

T−2∑
t=1

CAC(t)T0 (6.3)

Notice that, since we assumed that transfer delay is equal to the slot duration T0, it takes
two slots for each packet to reach node C. Hence, data should be send from the source
node A before slot (T − 2) in order to reach the destination within the T slots.

When node B has storage capacity of SB data packets, the network end-to-end ca-
pacity, denoted CSB

AC , changes and can be significantly increased under certain conditions.

Specifically, CSB
AC(t) is the minimum of the data XB(t+ 1) that is available on node B at

t, and the capacity of the last hop link CBC(t+ 1):

CSB
AC(t) = min{XB(t+ 1), CBC (t+ 1)} (6.4)

Let us explain the intuition behind this expression. On the one hand, the maximum
possible amount of data that can be delivered at node C at slot (t+ 2) is upper bounded
by the capacity of link (B,C) at (t + 1). On the other hand, if CBC(t + 1) is very large,
the data that can be delivered is upper bounded by the data that is available at node B
at the previous slot (t+1). The latter consists of the data that has been transmitted from
node A in the exactly previous slot, i.e. the instantaneous capacity CAB(t), and the data
that has been accumulated until slot t in node B, YB(t):

XB(t+ 1) = CAB(t) +
YB(t+ 1)

T0
(6.5)

where YB(t) is always nonnegative and upper bounded by node B maximum storage SB >
0:

YB(t+ 1) = min{SB ,max{YB(t) + [CAB(t)− CBC(t+ 1)]T0, 0}} (6.6)

is and it is assumed that YB(0) = 0. Therefore in this case the end-to-end capacity of the
three-nodes network is CSB

AC(t) ≥ CAC(t) for every time slot t.
This means that the use of storage at intermediate node B significantly improves both

the delay and the end-to-end data transfer rate. The exact improvement that comes with
storage at node B depends on the relative variation pattern of link capacities CAB and
CBC . The more diverse the capacity value sequences are, the larger is the benefit from the
storage usage. For instance, the benefit from SB is enlarged when the capacity variation
patterns of the two successive links is such that a high capacity at one slot at link (A,B) is
followed by a high capacity at link (B,C) at the next slot. Obviously, there exist various
scenarios for which in-network storage use is beneficial and all of them are related to the
link capacity variation patterns. In order to quantify the variability in capacity patterns
of links (A,B) and (B,C) for time period T we define a metric that we name Dissimilarity
Index L(CAB,CBC). This metric, which is a function of the capacity variation patterns,
measures the aggregate amount of data that can be temporarily stored in node B and
delivered subsequently in node C within the time period T , assuming that there is no
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Table 6.1: Example for 3-node Network, T0 = 1, L = 16, SB = 30

Slot CAB CBC CAC D YB CS
AC DS

t (p/sec) (p/sec) (p/sec) (p) (p) (p/s) (p)

1 10 6 2 0 0 2 0
2 12 2 0 2 8 0 2
3 14 0 10 2 20 10 2
4 2 10 2 12 24 12 12
5 2 12 2 14 14 8 24
6 4 10 4 16 6 4 32
7 6 14 - 20 0 6 36

storage space constraint.
We first define the amount of data u(t) that is delivered from node A to node B, in

each time slot t, but cannot be immediately forwarded to node C due to the low capacity
of link (B,C):

u(t) = max{[CAB(t)− CBC(t+ 1)]T0, 0}

Similarly, we denote with h(t) the additional amount of data that can be forwarded to
node C, along with the data that arrive in B in the current slot:

h(t) = max{[CBC (t+ 1)− CAB(t)]T0, 0}

This is actually the amount of data that, if it was previously stored in node B, in the
current slot t can be restored and forwarded to the destination node. We can now define
the dissimilarity index:

L(CAB,CBC) =

T∑
t=1

min

{
h(t),max{

t−1∑
n=1

[u(n)− h(n + 1)], 0}
}

(6.7)

This parameter actually leads to conditions under which storage is beneficial. When
L = 0, storage does not increase the end-to-end data transfer rate. The dissimilarity index
has zero value when the capacities of the 2 links have equal values in successive slots,
CAB(t) = CBC(t + 1) or if link (A,B) has always lower capacity than link (B,C), i.e.
CAB(t) < CBC(t + 1), ∀t. In this case there is no need to utilize intermediate storage at
node B since all data that is transmitted from node A can be immediately, i.e. after 2
slots, delivered to the destination node C. Moreover, even if the link capacity variation
patterns are such that data is accumulated in node B, it may be impossible to push it
further if link (B,C) is always the network bottleneck, i.e. CBC(t + 1) < CAB(t), ∀t. In
Table I we present an example for this network and demonstrate the benefit of storage at
node B. Capacities are measured in packets/sec (p/s) while data and storage in packets
(p). Packets are assumed to be of equal length. Similar results hold for linear networks
with more than three nodes.

From the analysis above, we infer that it is possible to exploit the diverse evolution of
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Figure 6·3: Dissimilarity Index, L, for two different capacity variation pat-
terns. The bottom plot shows the case where links are as diverse as possible
in terms of their time variation, reaching upper and lower bounds in an an-
tisymmetric fashion. Parameter d is the transmission delay, i.e. the time a
data packet needs to traverse a link connecting two successive nodes.

link capacities and use intermediate node storage to augment the amount of data trans-
ferred in a certain time horizon. Notice that in linear networks storage policy is straight-
forward. Each node accepts all incoming traffic and stores the excess data that it cannot
forward in the current time slot so as to exploit possible capacity increase in the subsequent
slots. The more the storage capacity is at intermediate nodes, the more we benefit from
its use. However, determining the storage control policy in general graphs is a non-trivial
task and requires the knowledge of the capacity evolution for all network links. In next
section we consider general networks with known capacity variation patterns and provide
a method for deriving the optimal storage control policy.

6.4 Storage Capacity Allocation for General Networks

In certain cases it is possible to know in advance or predict with good precision the
future values of link capacities. For example, small networks with predictable capacity
evolution such as networks of satellites [80] fall within this class. Another scenario is
networks with constant link capacities but periodic time varying traffic patterns where
we attempt to exploit residual capacity [62], [61]. We provide a method for devising the
optimal storage allocation policy, i.e. the policy that leads to maximum possible network
performance improvement from storage. Recall that the performance of a network, in terms
of data transfer capability, is upper bounded by the capacity C(Qmin) of the minimum cut
Qmin of its graph, [29]. This represents the maximum flow that can be delivered from the
source to the destination node. Hence, for a time period of T units, the maximum amount
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of delivered data is D = C(Qmin)T . Obviously, by increasing the capacity of the minimum
cut, we increase the maximum amount of data that can be transferred to the destination.

Consider a directed network graph G = (V,E) with a set V of N = |V | nodes and
a set E of links. The network is dynamic, i.e. every link capacity Ckl(t), (k, l) ∈ E,
changes with time according to a predefined pattern. We assume a time slotted operation,
t = 1, 2, . . . , T , with slot duration T0. Link capacities remain constant within each time
slot. First, we assume no storage capacity at all nodes. We assume that the traversal
time is identical for all links and equal to the slot duration. In order to study network G
we employ the technique of time-expanded graphs, [29]. Time-expanded graphs are used
to map a dynamic network G for a given time period of T slots, to an equivalent static
network GT . The transformation is accomplished as follows. For every node k ∈ V of the
original network G we create T nodes in the GT , k

(t), t = 1, . . . , T . Moreover, for every arc
(k, l) ∈ E of G, we add a set of corresponding arcs (k(t), l(t+1)), t = 1, . . . , T − 1. Network
GT = (VT , ET ) contains NT = |VT | nodes. Finally, we substitute the time instances of the
source and the destination nodes with 2 supernodes for ease of presentation. Now, we are
able to study the properties and the performance of G for T slots, by applying to GT the
well known methods and theorems that have been derived for static networks.

The graph GT incorporates the notion of time and is used in order to analyze the
properties of G for the time period T . Namely, the amount of data that can be transferred
in network G within horizon T , is upper bounded by the minimum cut of GT . This is
stated in the following lemma:

Lemma 6.4.1. The maximum amount of data transferred from source to destination of a

network G within a time horizon T is equal to the max-flow at an appropriately expanded

graph GT .

Proof: The proof follows directly from the definition of the time-expanded graph.
Here, we propose the increase of the min-cut capacity of GT by the addition of specific

links, the storage links. The rationale of the method is visualized in Figure 6·4. Assume
that QT = [WT , VT \WT ] is the initial min-cut of GT with capacity C(QT ), where WT is
the set of nodes in which the source node belongs and (VT \WT ) is the set containing the
sink node. The critical observation is the following. If there exists a node k ∈ G such that
k(t) ∈WT and k(t+1) ∈ (VT \WT ) then we can increase the network capacity by connecting
k(t) and k(t+1) with a virtual link of capacity Sk(t). This link represents the capability of
node k for storing data during time slot t up to an amount of Sk(t) packets. With the
addition of this virtual link the capacity of the network is increased up to (C(QT )+Sk(t))
units. Adding enough storage to node k at time t, renders QT a non-minimum cut. If the
new min-cut Q

′
T contains a node for which the above condition also holds, then we add

again storage so as to make Q
′
T a non minimum cut.

Specifically, Algorithm 2, describes the proposed methodology for Storage capacity
allocation, (SCA), which is applied to graph GT and creates a new, storage-enhanced
graph Gs

T . In each step, the min-cut can be found either through a flow-based technique,
i.e. based on max-flow algorithms [7], or by using non-flow techniques [99],[52]. Step 5 is
required in order to ensure that there is no excessive storage usage. The maximum number
of added storage links is bounded by the number of nodes. Additionally, the amount of
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(b) The Storage enhanced time-expanded graph.

Figure 6·4: A graph with time varying links and initial min-cut (max
flow) of C(QT ) = 34 packets (p). Link capacities for T = 7 slots:
AB(18, 16, 18, 20, 16, 18), BC(4, 10, 10, 4, 6, 4), BD(6, 16, 16, 4, 4, 6),
CD(6, 10, 12, 2, 12, 8), CE(6, 8, 2, 10, 12, 8), DE(4, 6, 2, 12, 12, 8),
EF (10, 12, 14, 10, 20, 22). In step (1) we add the storage link SC(3) = 8, in
step (2) we add link SC(4) = 4 and in step (3) the link SD(4) = 6. The
final capacity is C(Qf ) = 42 data packets.
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Algorithm 3 (Storage Capacity Allocation -SCA)

Input: The time expanded graph GT = (VT , ET ) where initially nodes do not have
storage capacity.
Output: The storage-enhanced time expanded graph Gs

T = (VT , E
s
T ) where the set of

links Es
T ⊇ ET contains the initial links of ET and the added virtual storage links.

Step 0: Find the current min-cut QT = [WT , VT \WT ] and calculate its capacity C(QT ).
Go to Step 1
Step 1: If there exists a node k of G for which k(t) ∈ WT and k(t+1) ∈ (VT \WT ),
then add a link of minimum capacity Sk(t) = S0 > 0 (storage link) connecting these two
nodes and go to Step 2. If there exist more than one nodes satisfying this condition,
select one of them randomly. If there is not such node, go to Step 4.
Step 2: Increase the new storage link capacity Sk(t) as much as required so as to render
QT a non minimum cut. Go to Step 3.
Step 3: Find the new min-cut Q

′
T = [W

′
T , VT \W

′
T ]. Set QT = Q

′
T and go to Step 1.

Step 4: Set Qf = QT . This is the final min-cut of the storage enhanced network Gs
T .

Go to Step 5.
Step 5: Find all storage links that do not belong to the final min-cut Qf and decrease
their capacity as long as Qf remains unchanged. The algorithm terminates.

storage is confined by the capacity of links. Storage addition will eventually result in a
minimum cut consisting only of communication links. After this point, using more storage
cannot further improve the min-cut of the network.

The SCA algorithm guarantees the maximum possible benefit from node storage use,
in terms of the amount of end-to-end transferred data. The capacity of the new cut
C(Qf ) is larger than the capacity of the initial cut C(QT ) which means that the storage-
enhanced network Gs

T can transfer larger amount of data within time period T . However,
SCA algorithm does not provide a method for achieving this bound. The main reason for
introducing this algorithm is to give the intuition behind the idea of adding in-network
storage. Also, through SCA it can be explained why and when storage capacity addition
does not increase the amount of transferred end-to-end data after a certain point. In order
to exploit the potential of storage we need to consider it in conjunction with routing. In
the next section we provide a method for deriving the joint storage control and routing
policy for a single data commodity that needs to be transferred from source to destination.

6.5 Joint Storage Control and Routing Optimization

Consider again the network G = (V,E). The storage allocation policy that maximizes
the amount of data that can be transferred from source to destination within the time
interval T , can be derived by the methodology presented above (SCA algorithm). This
algorithm takes as input the initial time-expanded graphGT and gives the storage-enhanced
expanded graph, Gs

T . In this section we define and solve the joint storage capacity control
and routing (JSR) optimization problem as a maximum flow problem on the time-expanded
graph Gs

T = (VT , E
s
T ). The solution of this problem yields the store and routing decisions
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that maximize the amount of data transferred within time T , by exploiting in-network
storage.

We need to emphasize here that the solution of this problem does not presume the
execution of Algorithm 1 so as to find Gs

T . Instead, we can construct and use a network
graph that stems from GT by adding at each node i ∈ VT storage capacity that is bounded
by an upper limit Smax

i . The amount of node storage that is actually required in order to
maximize the amount of end-to-end transferred data will be found by the solution of the
max-flow problem that we present in the sequel. In other words, there exist two cases for
which we can define and solve the JSR problem: (i) when the storage capacity of nodes
is given and we want to derive the max-flow joint storage and routing control policy, and
(ii) when initially the nodes do not have storage capacity and we want to find the optimal
storage allocation and the joint max-flow storage and routing control policy. In both cases,
we denote with Gs

T the graph that we use to define and solve the JSR problem.
In detail, we define for each node k ∈ G the storage control vector Sk = (Sk(t) : t =

1, 2, . . . , T ), where Sk(t) is the amount of data that is stored at node k at time t. Also, we
define for every link (k, l) ∈ E, the routing control vector as Rkl = (Rkl(t) : t = 1, 2, . . . , T )
where Rkl(t) is the amount of data that is sent over link (k, l) at time t. Finally, we define
the network storage control policy S = (Sk : k ∈ V ) and the network routing control policy
as R = (Rkl : (k, l) ∈ E). Our goal is to find the optimal joint storage and routing control
(JSR) policies, R∗, S∗, that maximize the data transferred within time T . Specifically, we
define the following problem:

Definition 1. Joint Storage Control and Routing Max-Flow Problem: Given a

dynamic network G = (V,E) with a single source and a single destination, and with nodes

with certain storage capacity, find how much data should be stored in each node (S∗) and

how much data should be routed over each link (R∗), in every time slot, in order to maximize

the amount of transferred data within a certain time period of T slots.

Similar approaches have been also proposed in [80], and recently in [18]. However, in
this chapter we focus on a solution method that is highly suitable for distrituted imple-
mentation.

The JSR problem is a constrained optimization problem and can be solved by dual
ascend methods. These methods solve the respective dual problem by iteratively updating
the dual variables so as to improve the dual objective function. There are two classes of
such algorithms: the primal-dual method and the relaxation method. These methods use
different ascent directions but admit fairly similar implementation. The primal-dual ascent
method tries at each iteration to use the steepest ascent direction and can be implemented
by means of a shortest path computation. The relaxation method is usually faster in
practice. It tries to use directions that are not necessarily steepest, but can be computed
more quickly than the steepest ascend direction. It is also called a coordinate ascent
method, since in each iteration only one price is updated.

Notice now that the objective of the JSR problem is a linear function and hence the
respective dual problem has a non-differentiable objective function. This means that typi-
cal relaxation methods (or similar primal-dual methods) may not converge to the optimal
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Variables and Notation

k, l Nodes of the original network graph G = (V,E), k, l ∈ V

i, j Nodes of GT = (VT , ET ), i, j ∈ VT

(i, j) Link of GT = (VT , ET ), (i, j) ∈ ET , with i � k(t), j � l(t+1), (k, l) ∈ E

xij Bytes sent over link (i, j) ∈ ET

yin Bytes stored at node k ∈ V in slot t, where i � k(t), n � k(t+1)

xds Data transferred from source to destination node over the time horizon T

Fi Forward communication (child) nodes of node i ∈ VT

Bi Backward communication (parent) nodes of node i ∈ VT

D Amount of data to be transferred end-to-end

problem solution. Therefore, we use the ε-relaxation method which has improved conver-
gence properties and is amenable to distributed implementation [6], [7]. The underlying
idea of this method is that dual variables updates are allowed even if these worsen the dual
cost function. The produced pairs of primal-dual variables satisfy the ε-Complementary
slackness (CS) which is a perturbed version of the traditional CS conditions.

6.5.1 Joint Storage Control and Routing Problem Formulation

First we add to Gs
T an artificial link (d, s) connecting the sink d with the source s.

Each node i ∈ VT that represents a node k of graph G for a certain time slot t, i � k(t), is
connected with a node m ∈ VT that represents the previous instance of the same node, i.e.
m � k(t−1). Similarly, each node i ∈ VT is connected with a node n ∈ VT that represents the
subsequent instance of the same node, i.e. n � k(t+1). The capacity of these links models
the available storage at node i which is bounded. For each node i ∈ VT we define the set of
forward (child) communication nodes Fi = {j : (i, j) ∈ ET }\{n}, and the set of backward
communication nodes Bi = {j : (j, i) ∈ ET } \ {m}. Therefore, there exist two classes
of links in the expanded graph: (i) the communication links that connect two different
nodes i and j at a specific time slot t with capacity C = {Cij : i ∈ VT , j ∈ Fi}, and (ii)
the storage links that connect different time instances of the same node with (maximum)
storage capacity Smax = {Smax

i : i ∈ VT , i � k(t), k ∈ V }. Notice that the notion of time
is incorporated in the time-expanded graph. Hence, the capacity of communication and
storage links is measured in data packets and not in data packets per slot.

Let us define the vector x = {xij : i ∈ VT , j ∈ Fi} where xij denotes the amount of data
that is sent over link (i, j) with i � k(t) and j � l(t+1), (k, l) ∈ E. Similarly, we define the
vector of storage variables y = {yin : i ∈ VT , i � k(t), n � k(t+1)} where yin denotes the
amount of data that is stored at node k ∈ V , in time slot t. The optimal storage-routing
policy (x∗,y∗) for the time period T is derived from the solution of the max flow problem
defined over the corresponding time-expanded graph, JSR Max-Flow Problem:

min(−xds) (6.8)
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subject to ∑
j∈Fi

xij + yin =
∑
j∈Bi

xji + ymi, i ∈ VT \ {s, d} (6.9)

0 ≤ xij ≤ Cij , i ∈ VT , j ∈ Fi (6.10)

0 ≤ yin ≤ Smax
i , i, n ∈ VT (6.11)

Where it is yin, xij ≥ 0. Equation (6.9) is the data conservation constrain, in analogy
with the flow conservation constraint, and xds is the amount of data that is transferred
from source to destination node. The solution of the JSR problem determines the optimal
routing x∗, and storage decisions y∗ that maximize the amount of transferred data during
the time interval T .

Notice that x∗ = {x∗ij : i ∈ VT , j ∈ Fi} and y∗ = {y∗in : i ∈ VT , i � k(t), n � k(t+1)} are
defined for the time-expanded network GT . Obviously, these variables can be easily mapped
to the respective routing and storage variables R∗

kl(t) and S∗
k(t) of the dynamic network

G and yield the respective optimal control policy R∗ and S∗. Finally, it is interesting to
notice that this formulation can be used to find the incurred delay for the transfer of a
certain amount of data D. Actually this is the minimum time T ∗ for which the solution of
the respective JSR problem satisfies x∗ds ≥ D. We can find T ∗ by using a binary or another
search method.

6.5.2 Distributed Algorithm for the JSR Problem

We are interested to solve the JSR problem in a distributed fashion. First, we define
the Lagrangian by relaxing the constraint (6.9) and introduce the vector of dual variables
p = {pi : i ∈ VT }:

L(x,y,p) = −xds +
∑
i∈VT

∑
j∈Fi

(pj − pi)xij +
∑
i∈VT

(pn − pi)yin (6.12)

The dual problem is
max
p

q(p) (6.13)

where
q(p) = min

[xij≤Cij ,yin≤Sin]
L(x,y,p) (6.14)

The objective function of the primal problem is linear and therefore the dual function is
non-differentiable. The ε-relaxation method ensures convergence to the optimal solution if
ε < 1

NT , in polynomial time O(N3T 3). We omit the detailed description of the algorithm
and refer the reader to [6, Chap.5.3].

We cast the ε-relaxation algorithm presented in [6] to fit our problem. In a distributed
setting the variables are circulated among nodes and therefore they need to be time-
stamped. Notice that these time stamps refer to the algorithm execution time and they
should not be confused with actual time t that represents the slots, and which we denote
below by tG. The basic idea as in standard dual ascents methods is to exploit the separa-
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Figure 6·5: Distributed execution of the ε-relaxation algorithm. Each node
i receives coordination messages from its neighbors, {xji(j, t), pj(t)} and
{xki(k, t), pk(t)}; and updates its storage decisions by considering its for-
ward n and backward m instances.

bility property of the dual problem and group the decision variables per node. Specifically,
every node i ∈ VT maintains the following variables:

• pi(t): dual variable of node i at time t

• pj(i, t): dual variable of node j, which is a neighbor of node i, i.e. j ∈ Fi∪Bi∪{n}∪
{m}, communicated to node i at time t. This is the local copy of the dual variable
of node j, stored in node i.

• xij(i, t): amount of data that node i forwards to node j, j ∈ Fi at time t.

• xji(i, t): amount of data that node i decides to admit from node j ∈ Bi at time t.

• yin(i, t), ymi(i, t) : amount of data that node i stores during the time slots (tG − 1)
and tG, where i � ktG , m � k(tG−1) and n � k(tG+1).

• gi(t): data and storage surplus at node i, i.e. gi(t) =
∑

j∈Bi
xji(i, t)−

∑
j∈Fi

xij(i, t)+
ymi(i, t) + yin(i, t)

The nodes circulate messages with their variables in order to achieve coordination and
collectively solve the JSR Max Flow problem. Notice that adjacent nodes (neighbors)
calculate the same variables and therefore it is required to reach consensus. For example,
the final value of the data that node i pushes to node j should be equal to the data that
node j decides to admits, i.e. x∗ij = x∗ji. In detail, the distributed algorithm for the solution
of the JSR Max Flow problem is presented in Algorithm 4.

This algorithm solves the JSR problem even when there does not exist a central network
controller with global knowledge. Instead it is only required every node to be aware of its
own link capacity variation patterns. This scenario is very important since it models a
large set of networking examples. However, future knowledge about the network state is
still a prerequisite. In the following section we explain why it is important to know the
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patterns of the link capacities and we discuss some cases where it is possible to derive
suboptimal solutions even when there is lack of information.

6.6 Instances of Limited Knowledge About Link State

When there is no information about the future state of the network, a subset of the
constraint set of the JSR problem is not known nor can it be determined through message
passing. In this case, the joint storage control and routing policy becomes an online problem
where nodes must decide using only the currently available information. In general, these
problems are solved through dynamic programming techniques and optimal solutions are
difficult to characterize and derive, [56]. Letting storage aside, distributed dynamic routing
has been studied both for wireless [102], and wire-line networks, [5]. The underlying idea
is the same in both algorithms. Namely, each node independently takes routing decisions
so as to balance network load by forwarding its data packets to its neighbors with the less
backlog, i.e. the smaller queues. If all of its neighbors are congested, the node refrains from
sending its packets and the detected congestion is gradually signaled back to the source
which temporary pauses data transmission. This scheme constitutes a proactive end-to-end
flow control mechanism which may degrade the data delivery capability of the network.
Therefore, these algorithms are not delay-aware and there is much ongoing research aiming
at their improvement [110], [13].

In this context, we can consider storage utilization as a method for modifying the above
congestion detection mechanism in order to reduce data transfer delay. To make this clear,
consider a congested node which is aware that its outgoing link capacity will significantly
increase in the near future. In this case, this node would be able to decide not to signal
back to its parent nodes the congestion so as to keep receiving data from them. The excess
data would be stored in the storage area of the node and returned to the queues when
the backlog is reduced as described in Figure 6·6. This way, the node would prevent time
consuming temporary pausing of flow and hence eventually enable faster data delivery to
the sink. In other words, node storage could be used to transform the end-to-end flow
control to a hop-by-hop operation. The challenge in this setting is to detect the conditions
that render storage utilization beneficial for the network performance. Without information
about the future state of the network links the described congestion-biasing technique may
deteriorate the network performance. Clearly, when a node decides to store some data it
must know that this cannot be routed at that time from alternative shorter non-congested
paths.

The fundamental difficulties encountered in the online version of the JSR problem
motivate the exploration of specific network operation scenarios where suboptimal solutions
are possible. For example, consider a network where the administrator (or the nodes) can
predict the future values of link capacities and node available storage with bounded error.
In this case, we can solve a variation of the JSR problem, name it EJSR, which stems
from the original problem if we substitute the actual with the estimated parameters at
the constraint set. Namely, instead of Cij , and Sij, we can use the worst-case predictions
Ĉij = (Cij − ecij) and Ŝij = (Sij − esij). The quantities ecij and esij represent the maximum
prediction error in the link capacities and node storage respectively. Obviously, the optimal
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Figure 6·6: Storage and queue control for enabling hop-by-hop flow con-
trol. When queue backlog increases, excess data is moved to storage area to
avoid congestion signaling. Then, when backlog is reduced, data is restored
in respective queues.

solution of the EJSR problem is feasible for the respective JSR while its optimality depends
on the accuracy of predictions.

Another interesting scenario is when the nodes are aware of their links and storage
capacities only for the near future. In this case we can find the short-term storage policy
using a similar algorithm with the one presented in section 6.4. Namely, we can use
distributed algorithms such as those in [87], for finding the current min-cutQ(t) and also the
min-cut of the next few slots, Q(t+1), . . . , Q(t+M). This is accomplished through message
passing among nodes with information about their current and future state. Now assume
that a certain node i belongs both to the set W (t) of the Q(t) and to the set V \W (t+1)

of the Q(t+1) cut. In this case, node i can infer that it must use its storage capacity and
admit the excess data that is routed to it. This policy enables the network performance
improvement through the use of storage, although this is not the maximum possible, as
was the case with the SCA algorithm.

6.7 Numerical Results

In order to verify the validity of our approach we simulated the operation of 3 net-
works with storage-capable nodes. Two of them are linear networks with 3 and 5 nodes
respectively, while the third one is the original graph of Figure 6·4. The objective was to
demonstrate the impact of intermediate storage to the performance of the network for var-
ious capacity evolution scenarios. These scenarios are modeled through the link capacities
dissimilarity index L. Recall that higher values of L imply more diverse capacity patterns.
The performance metric is either the amount of data that can be transmitted within a
given time period or equivalently, the incurred delay for the transfer of a certain amount of
data from source to sink. The later is visualized through Delay - Storage curves where we
depict the delay versus the aggregate storage of nodes for the transfer of various amounts
of data. Clearly, the benefit of using storage varies for different networks and different
values of L from zero to substantial improvement on performance.
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We begin with the 3-nodes linear network of Figure 6·2 where node B has storage
capability of SB units. We consider a time slotted operation for T = 40 slots and assume
that link capacities CAB and CBC vary with time. The network operation is described
by equations (6.1) - (6.5). In Figure 6·7 we depict the delay for the transfer of D = 450
units of data from node A to node C for different values of L. We see that as storage SB

increases, the incurred delay reduces down to a minimum value. Further usage of storage
does not improve the performance of the network. Similarly, in Figure 6·8 we depict the
delay for the transfer of D = 450 units of data in a linear network of 5 nodes. We see again
that the benefit from storage use to the network performance is almost proportional to the
dissimilarity index L. Namely, notice that the distance of the maximum to the minimum
delay value for every plot increases with L.

In Figure 6·9 we fix the value of L and plot the delay for different amounts of transferred
data for the 3-nodes network. Notice that the lower bounds of incurred delay are different
for different amounts of data. Finally, in Figure 6·10 we depict the maximum amount of
transferred dataD, for a time period of T = 20 time slots from source to sink in the network
of Figure 6·4. We see that this amount increases as a function of aggregate available storage
at intermediate nodes B,C,D, and E up to a maximum value. Further increase in storage
capacity does not improve the performance of the network. This upper limit depends both
on the network graph and on the dissimilarity index L of the links for the time period T .
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Figure 6·7: Delay - Storage curves for a 3-node network with intermediate
storage, for the transfer of D = 450 units of data and various values of L.
From the lower to the upper curve, it is L = 867, L = 884, L = 909, and
L = 934.
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Figure 6·8: Delay - Storage curves for a 5-node linear network with in-
termediate storage, for the transfer of D = 450 units of data and various
values of L. From the lower to the upper curve it is L = 1120, L = 1204,
L = 1306, and L = 1421. Storage is equally distributed to nodes.

6.8 Conclusions

In this chapter we showed that storage under certain conditions can improve the network
performance of dynamic networks. This improvement is realized either as increase of the
amount of data that can be transported from the source to the destination within a finite
time horizon or, equivalently, as reduction of the incurred delay for the delivery of certain
amounts of data. The optimal storage control policy is the one that guarantees maximum
benefit from storage use and can be derived for every network using the presented SCA
algorithm. In order to realize this benefit, storage must be considered in conjunction
with routing. The joint storage control - routing (JSR) policy can be derived through the
solution of a max flow problem defined over a time-expanded graph. This policy determines
how much data should be routed over each link and how much data should be stored in
each node, in each time slot.
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Figure 6·9: Delay - Storage curves for different amounts of transferred
data in a 3-node linear network with fixed intermediate storage SB, and
dissimilarity index L = 909. From the lower to the upper curve it is D =
200, D = 300, D = 400, and D = 500.

0 200 400 600 800 1000
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Aggregate Storage at Intermediate Nodes (packets)

M
ax

im
um

 A
m

ou
nt

 o
f T

ra
ns

fe
rr

ed
 D

at
a 

in
 T

=2
0 

S
lo

ts
 (p

ac
ke

ts
) Maximum Data Transfer Vs Aggregate Network Storage
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for the network of Figure 3(a), as a function of the total available storage
at the intermediate nodes.

122

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 23:07:17 EEST - 3.144.92.113



Algorithm 4 (Joint Storage Routing - JSR - Max Flow)

Variables: Each node i ∈ GT maintains the variables: pi(t), pj(i, t), xij(i, t), xji(i, t),
yin(i, t), ymi(i, t), gi(t), ∀j ∈ Fi ∪Bi, n = i(t+1), m = i(t−1).
Execution: The algorithm is executed continuously in a time sequence t = (t0, t1, . . .).
Each specific time, every node i executes one of the Actions below (Action 1-Action
2) and then checks the Termination Condition.
(Action 1 - Variables Update): Node i calculates its data and storage surplus gi(t) and:

1.1 If [gi(t) > 0]Then updates its local variables [pi(t), pj(i, t), xij(i, t), xji(i, t),
yij(i, t), yji(i, t)] by executing Steps 2 - 5 of the ε-relaxation algorithm, [6, Chap.5.3].
(Action 2 - Notification): Node i sends messages with its primal-dual vars to its neigh-
bors:

2.1 Send [pi(t), xij(i, t)] to every child node j ∈ Fi

2.2 Send [pi(t), xji(i, t)] to every parent node j ∈ Bi

(Action 3 -Coordination): Node i receives messages from its neighbors and updates his
variables:

3.1 For every message received at t′ < t from a child node j ∈ Fi, update the local
variables:

3.1.1 If [ pj(i, t) ≤ pj(t
′) ]Then set pj(i, t) = pj(t

′)
3.1.2 If [( pi(t) ≤ pj(t

′) + α)& (xij(i, t) > xij(j, t
′))]Then set xij(i, t) = xij(j, t

′)
3.2 For every message received at t′ < t from a parent node j ∈ Bi, update the local

variables:
3.2.1 If [pj(i, t) ≤ pj(t

′)]Then set pj(i, t) = pj(t
′)

3.2.2 If [(pi(t) ≤ pj(t
′)− α)& (xji(i, t) < xji(j, t

′))]Then set xji(i, t) = xji(j, t
′)

where α = −1 if (i, j) = (d, s) and α = 0, otherwise.
(Action 4 - Store Decisions Update): Node i considers the information from its instances
m = i(tG−1) and n = i(tG+1) for t′ < t and updates its storage decisions as follows:

4.1 If [pn(i, t) ≤ pn(t
′)]Then set pn(i, t) = pn(t

′).
4.2 If [pi(t) ≤ pn(t

′) & yin(i, t) > yin(n, t
′)]Then set yin(i, t) = yin(n, t

′).
4.3 If [pm(i, t) ≤ pm(t′)]Then set pm(i, t) = pm(t′).
4. If [pi(t) ≤ pm(t′) & ymi(i, t) < ymi(m, t′)]Then set ymi(i, t) = ymi(m, t′).

Termination Condition: The algorithm terminates when the data and storage surplus
for all nodes becomes zero: gi(t) = 0 ∀i ∈ VT .
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Chapter 7

Conclusions and Future work

7.1 Summary of contributions

The goal of this dissertation was to analyze the challenges in emerging dynamic spec-
trum markets and propose mechanisms that will contribute to their efficient operation.
The deployment of these markets is expected to improve spectrum utilization and enable
the satisfaction of the ever increasing user demand for wireless services. However, market-
based solutions are not a panacea and if they are not properly designed they will fail to
yield the anticipated results. Our analysis was based on game theory and network eco-
nomics. Whenever existing market mechanisms were not suitable for the problems we
studied we proposed novel methods such as the β-optimal auction in Chapter 3 and the
dynamic pricing mechanism in Chapter 6.

Additionally, we studied the impact of in-network storage on the capability of a network
to convey data. We showed that, under certain conditions, node storage can be used as
a low-cost alternative to the expensive link capacity. This technique will be particularly
important the coming years when operators will need to manage the huge volume of users
data traffic.

Hierarchical Spectrum Markets

First we studied hierarchical spectrum allocation schemes that are expected to prolif-
erate in emerging dynamic spectrum (DS) markets. We considered the scenario where a
governmental agency (CO) sells channels to Primary Operators (POs) who subsequently
resell them to Secondary Operators (SOs). We showed that this hierarchical scheme re-
sults in inefficient channel allocation because of the revenue-maximizing strategy of the
POs. Each PO reassigns his channels so as to increase his revenue and not the welfare of
his underneath secondary market. This strategy induces efficiency loss. Moreover, it cre-
ates a coordination problem. That is, the CO fails to allocate the channels efficiently to the
POs in the first stage of the hierarchical allocation. We proposed an incentive mechanism
that aligns the objective of the POs with the objective of the state agency and alleviates
these issues.

The basic idea of the mechanism is that the CO exploits feedback information provided
by the secondary operators and reimburses each PO in proportion to the welfare of his
secondary market. This pricing induces the POs to reconsider their channel management
policy. In other words, this mechanism creates a coupling between the channel reallocation
decisions of the POs and their cost for buying the spectrum from the CO. Technically, the
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proposed scheme is a combination of an auction and a pricing mechanism. The auction is
used in order to elicit the hidden information about spectrum demand while the pricing
component enables the alignment of the objective of the POs with the goal of the agency.

We also discussed how this mechanism can be applied to spectrum markets where the
CO-POs and the PO-SOs interactions are realized in different time scale. In this case,
the coordination problem is inherently unsolvable. The CO assigns the channels in the
beginning of each time period while the needs of the SOs under each PO change randomly
on a per-slot basis (each period consists of many slots). Despite this issue, the mechanism
increases the secondary market welfare since it induces the POs to adopt a more efficient
channel allocation strategy.

Understanding the machinery and analyzing the efficiency of hierarchical spectrum al-
location schemes is of crucial importance for emerging spectrum markets. Such hierarchies
are expected to proliferate in DS markets in many different cases. For example, a similar
hierarchy arises when spectrum is allocated from the controller to the POs and from the
latter to their primary users.

Competition in Wireless Services Markets

Accordingly, we analyzed the competition of operators in a wireless services market for
a common pool of users (clients) and discussed the necessity of regulation. The particular
characteristic of our model is the assumption that users have an alternative out-of-the-
market option to satisfy their communication needs. This is a very likely scenario today
where users have concurrently access to multiple different networks. For example, a user
may either access the Internet through a 3G (or 4G) wireless connection or through a WiFi
network. We modeled the alternative option by introducing the concept of the neutral
operator P0 who offers a service of value U0 to users. The existence of P0 affects both the
operator selection strategy of the users and the price competition among the operators.
For example, in this setting, unlike other competition markets, operators cannot collude
and fix very high prices because this will induce users to leave the market and select the
alternative communication method (P0).

We considered a very large population of users and employed an evolutionary game
theoretic model in order to capture the users interaction and analyze their operator selection
strategy. In evolutionary games the players update (revise) their strategy according to a
certain revision protocol. For this problem, we assumed that users employ a hybrid revision
protocol that is based both on imitation of better strategies and direct selection of the
neutral operator. We derived the differential equations that describe the evolution of the
market and found its stationary points. The advantage of using evolutionary game theory
is that we were able to capture the realistic aspect of the users’ limited information about
the market, and at the same time to describe the dynamics of the users interaction with a
good precision.

Due to the existence of the neutral operator, the price competition game of operators
differs significantly from other similar games. We studied an oligopolistic market, with
I > 2 operators. Each operator selects the price that believes it will yield the highest
revenue. We assumed that the pricing game among operators is a non-cooperative game,
with simultaneous moves and complete information. However, we allowed the operators to
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update their pricing strategy based on the previous prices other operators have adopted.
This gives rise to a repeated interaction where in every stage the same static pricing game
is played. We assume that operators are myopic and use best-response strategies on a per-
stage basis. Our model is very similar to Bertrand price competition model. We proved
that this is a Potential game which means that it has pure Nash equilibriums (NE) and
moreover they are reachable under any finite improvement path. That is, any best response
strategy of operators will finally drive the game to (one of) its equilibriums.

We found the Nash equilibriums of the pricing game for the particular case that oper-
ators have the same amount of spectrum W . Interestingly, the NE depend on W and on
the value U0 of the neutral operator service. This allows us to consider how a regulator
can intervene in the market and steer the equilibrium according to his objective. The
regulator may either tune U0 or change the total spectrum of each operator. For example,
if the regulator is interested in increasing the efficiency of the market, i.e. improve the
services that users enjoy, he can increase U0. This will induce the market operators to
lower their prices in order to offer more attractive services than P0. On the other hand, if
the regulator wants to increase the revenue of the operators, he may decrease U0 or allow
them to acquire more spectrum (e.g. by lowering its price). Different regulation methods
have different results on the market efficiency and on the revenue of operators.

Dynamic Pricing Mechanisms for Spectrum Markets

Next, we focused on secondary markets where peer entities such as Secondary operators
(SOs) or secondary users will interact directly with each other in order to satisfy their
dynamic communication needs. For example, each SO will be able to temporary lease his
idle spectrum channels to other SOs and request channels from them when he has increased
spectrum needs. Similarly, users will exchange bandwidth by routing each other traffic and
satisfy their communication needs in an ad hoc fashion. These scenarios are expected to
proliferate in dynamic spectrum markets.

We assumed a perfect competition market. That is, there exist many market entities
(SOs or users) and hence no one of them can independently estimate the impact of his
strategy on the price the spectrum (or bandwidth) is traded. In other words, the players
are assumed to be price-takers. Each entity has to decide how much of his resource to sell,
at what price, and how much he is willing to pay for the resource other entities offer to
him. The basic characteristic of the spectrum markets we studied is that each entity is at
the same time a resource provider and a resource consumer. This distinguishes this market
from other similar resource trading markets and calls for novel market clearing mechanisms
that will ensure the social welfare maximization.

We introduced a dynamic pricing mechanism that captures the double role of the net-
work entities (SO or SU) and we proved that there exist bidding and charging strategies
that maximize social welfare and we explicitly computed them. The mechanism determines
the resource allocation, resource request and pricing strategies of each player. We designed
also a decentralized realization of this scheme that relies only on lightweight feedback from
the market, through which the entities coordinate in a distributed fashion. This is an im-
portant property of the mechanism since it allows the market to operate without a central
coordinator or broker. Finally, we explained that the mechanism can be used also for the
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optimization of a generic network objective, other than the social welfare. For example,
consider a set of users trying to serve each others traffic and at the same time achieve load
balancing.

Storage Capacity Control Policies for Dynamic Networks

Finally, we discussed methods for exploiting in-network storage. We identified the
benefits that node storage capacity has for a network and the conditions under which these
benefits are realizable. We showed that for networks with time-varying link capacities it is
possible to use properly designed store and forward policies in order increase the amount of
data that can be transferred from source to destination within a certain time interval. This
result is of high interest for network operators because storage has very low cost compared
to bandwidth and is available in large scale.

We began our study with linear networks where the routing policy is simple. Accord-
ingly, we extended our analysis in general networks and provided a formulation based on
time-expanded graphs. We showed that by adding storage in certain nodes, one can increase
the minimum cut of the graph and hence improve its data transfer capability. Additionally,
we proposed the conjunction of storage control with routing and defined the joint storage
control and routing max-flow problem. We solved this problem using a relaxation method
which is amenable to parallel execution. The solution reveals how much data should be
stored in each node in every time slot and how much data should be routed over each link.

7.2 Future Work

Hierarchical Spectrum Markets

First, it is challenging to consider the scenario where the SOs anticipate the impact of
their bidding to the mechanism and strategize against it in order to increase their perceived
utility. One can also consider the scenario of POs colluding with their SOs clients so as to
deceive the controller. Another intriguing direction is to consider the more realistic setting
where there is no prior knowledge about the SOs types or the family of POs and SOs
valuation functions, and apply learning schemes to elicit this hidden information. Finally,
it is important to quantify the cost of regulation for the controller. That is, how much
money has the CO to inject into the market so as to improve its efficiency? The cost
of regulation should be compared with the improvement in the welfare of the secondary
markets.

Our study can also contribute towards understanding hierarchical resource allocation
mechanisms. These schemes are expected to arise in many different settings in the near
future. Dynamic spectrum markets is only one of the many examples. Cloud services
markets or even power electricity market are fields where such hierarchies will proliferate.
The common characteristic of all these instances is that more than two different classes of
entities interact concurrently, while traditional resource allocation problems involve usually
two parties (e.g. client-server architectures).
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Competition and Regulation in Wireless Services Markets

The liberalization of the spectrum market will increase competition among spectrum
sellers and among providers of associated wireless services. It is important to analyze all
the aspects of this new market environment and understand when and how one should
intervene so as to ensure its efficient operation. A basic challenge is to devise realistic and
detailed models of the market which at the same time will be tractable.

In this context, it is interesting to extend our study by considering the possibility
that operators cooperate and make peering agreements for jointly serving the users or
collude and set their prices without competing. Strategies like these will have an impact
on the market equilibrium and affect the welfare of the market. More interestingly, we can
analyze the price competition game not only for the stationary point of the market but
even before the users dynamics reach a stable point. This will allows us to understand how
the operators should select their optimal pricing policy in a real time fashion.

Dynamic Pricing Mechanisms for Spectrum Markets

We introduced a dynamic pricing framework which is generic and can be used for
devising resource allocation algorithms for various different settings such as peer-to-peer
networks, disruption-tolerant storage clusters and wireless ad-hoc networks with energy
constrained nodes. In all these instances, each network entity possesses some resource and
can engage in transactions with others to achieve its needs. Nodes face the dilemma of
devoting their limited resource to their own benefit and thereby directly gaining utility,
versus acting altruistically, with the anticipation to be aided themselves when needed.
Specifically, scenarios that our proposed mechanism can be applied, are the following:

• Wireless ad hoc networks, where nodes may use their limited battery energy to trans-
mit their own traffic to the next hop en route to the destination, or forward other
nodes’ traffic to their respective next hop. The underlying scarce resource is energy.
A node clearly benefits only if it uses its energy to transmit its own traffic.

• Peer-to-peer networks, where peers may use their access link bandwidth either to
download content from other peers or to let other peers upload content from them.
That is, a peer may act both as client and a server. The resource here is link
bandwidth or equivalently service time. Clearly, a node obtains utility that captures
node satisfaction only as client, namely through downloads.

• Disruption-tolerant networks, where nodes store content in case of intermittent con-
nectivity and transmit it when link conditions allow it. In that case, the resource may
be the cache memory that is used for short-term storage, or the disk space for more
permanent storage. Nodes need to decide whether to allocate their storage space to
their own content to facilitate their own transmission or reserve some amount for
received content by others.

Finally, on of the most fascinating directions for future work is to relax the assumption
of price-taking users and study the impact of strategic, price anticipating behavior of nodes
on the system overall performance.
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Storage Capacity Control Policies for Dynamic Networks

In-network storage is a resource that has not be exploited adequately until now. Under
certain conditions it can improve the performance of a dynamic network. The methodology
we proposed has many interesting applications. For example, it can be used to analyze and
improve inter-data center communication where the cost of bulk data transfer is extremely
high and time varying, [62]. Intra-data center networking is another area that we believe
it can benefit from this analysis. Designing the architecture of a data center is a very
challenging task and must take into account both the performance and the cost of the
equipment, [39]. Hence, it is very important to use efficiently both the available storage
and links capacity resources. Moreover, node storage can be used to enhance the operation
of peer-to-peer systems where the performance bottleneck is the uplink capacity, [60]. It is
important to analyze carefully all these cases and devise proper algorithms tailored to the
needs of each specific networking scenario.

This was a first attempt to understand the impact of storage capacity in networks with
full knowledge over the link capacity state and its evolution. The next big step that can
be pursued is towards understanding the online version of the problem. In this case, link
capacities obey a known discrete or continuous probability distribution, but the controller
knows only the current value of link capacities just before taking a decision. Again, it is
imperative to consider algorithms which are amenable to distributed implementation.
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