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Abstract

This thesis considers a mixed integer least squares optimization problem for flight and 
maintenance planning of mission aircraft. The problem is solved through an exact search 
algorithm, which is based on an existing quadratic programming algorithm. Of course, the 
proposed algorithm includes all necessary modifications that were required for the solution of 
the problem that we address in this work.

Initially, we introduce the basic model upon which the present work builds. Then, we 
develop the theoretical background required for the solution of this problem, we introduce a 
methodology that can be used for that purpose, and we illustrate how this methodology can be 
applied for its solution.

At the same time, we describe and illustrate the adaptations that were made to the 
basic model and we develop the mathematical model, which constitutes the main part of this 
thesis. The code that was used for the implementation of the algorithm was written in C 
programming language, and the necessary computational experiments were performed on one 
of the university’s servers.

Finally, we provide the results of the experiments that we conducted, we illustrate the 
solution procedure through two numerical examples, and we summarize our conclusions and 
suggestions for future problem enhancements.
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Chapter 1 INTRODUCTION

1.1 General Description

The Air Force and the commercial airline industry have several similarities, but also 

exhibit significant differences. Safety is the most important factor in both industries. 

However, while maximization of profit is naturally the overall objective in the commercial 

airline industry, maximization of the readiness to respond to external threats is the main 

objective in the Air Force. Therefore, military aircraft operational problems should generally 

be treated differently than traditional problems arising in the commercial airline industry.

Despite this crucial difference, any aircraft, whether military or civilian, must be 

grounded for maintenance after it has completed a certain number of flight hours since its last 

maintenance check. The safety standards used by Air Force organizations of different 

countries are often similar, due to the fact that they are usually prescribed by the aircraft 

manufacturer and there are a few such manufacturers worldwide.

Flight and Maintenance Planning (FMP) addresses the question of which available 

aircraft should fly and for how long, and which grounded aircraft should perform maintenance 

operations in a group of aircraft that comprise a unit. FMP is an important decision making 

problem arising at the operation level of numerous types of mission fleets, involving military 

or fire-fighting aircraft, rescue choppers, etc. FMP decisions affect more than just economic
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performance measures. In the context of military planning that we study in this work, for 

example, the FMP problem arises as a routine decision making problem in the typical 

operation of a combat wing of the Hellenic Air Force (HAF). The HAF is primarily 

responsible for Greece's national air defense. Therefore, a good/poor flight and maintenance 

plan can have a serious impact on national security, in this particular application.

In this thesis, we present a nonlinear mixed integer optimization model for a special 

case of Problem FMP, in which the planning horizon consists of a single time period and all 

aircraft belong to the same squadron. Typically, each aircraft is distinguished by its 

availability status. By “available” we refer to the aircraft that can participate in missions, and 

by “grounded” we refer to the aircraft that are currently undergoing maintenance operations, 

and are therefore unable to participate in missions. An available aircraft must be grounded for 

service as soon as it finishes its remaining flight hours, while a grounded aircraft becomes 

available as soon as it finishes its maintenance service.

For the maintenance needs of the unit, there exists a station, responsible for providing 

service to the aircraft of the unit. This station has certain space and time capacity capabilities. 

Given the flight requirements of the unit, and the physical constraints that stem from the 

capacity of the maintenance station, the objective is to issue a flight and maintenance plan for 

each individual aircraft, so that some appropriate measure of effectiveness is optimized. The 

most appropriate measure of effectiveness for this problem is to maximize the balance 

between the remaining flight times of the available aircraft, and the remaining maintenance 

times of the grounded aircraft. In other words, our objective is to maximize the smoothness of 

the distribution of the total residual flight and maintenance times. In Chapter 4, we introduce a 

mathematical formulation that addresses this effectively.
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In order to solve this problem, we introduce an exact nonlinear programming 

algorithm, which is based on an existing quadratic programming algorithm. Of course, the 

proposed algorithm includes all necessary modifications that were necessary in order to 

address the special requirements of the problem under consideration.

1.2 Structure of Postgraduate Work

The remaining of this postgraduate work is structured as follows:

In Chapter 2, we review related works that have been published in the past, most of 

which refer to various applications encountered in the commercial airline industry, and few of 

which refer to problems encountered in the Air Force.

In Chapter 3, we present a detailed description of the problem under consideration. We 

give a thorough insight into the various aspects of the problem, and we lay the foundation for 

the mathematical formulation that follows.

In Chapter 4, we introduce the mathematical model that we develop in this thesis and 

we elaborate on the definition of its objective and constraints.

In Chapter 5, we provide some insight into our problem and we develop an analytical 

methodology that can be used for its solution. We also present the pseudo-code that illustrates 

the various steps of this methodology.

In Chapter 6, we analyze the computational complexity of the proposed algorithm. 

The same chapter also includes the computational results of the experiments that were 

conducted, after the proposed algorithm was implemented in C programming language. The 

chapter concludes with two numerical examples, which illustrate the proposed methodology.

3
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In Chapter 7, we present the conclusions that we reached from the analysis of our 

results and we point to some promising directions for future research.

Appendix A contains the C Programming Language implementation of the proposed 

algorithm. Appendix B contains the C Programming Language implementation of the 

algorithm that was used to generate the random problem instances.
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Chapter 2 LITERATURE REVIEW

In this chapter, we review works that have been published in the past, which refer to 

various types of problems related to the flight and maintenance planning problem. The 

research literature dealing with airline operations is quite rich. Most of the published research 

in this area, however, has been directed towards problems in the commercial airline industry, 

which have different objectives and requirements than those in the Air Force.

Several authors have presented reviews of models and methods for problems related to 

airline operations. Arguello et al. (1997) study models and methods for dynamic management 

of airline operations in case of irregular situations. Gopalan and Talluri (1998) are survey 

models and solution techniques for various airline problems that include fleet assignment and 

maintenance routing decisions. Barnhart et al. (2003) present an overview of several 

important areas of operations research applications in the air transport industry, as well as a 

brief summary of the state of the art.

In the context of military aircraft operations, Radosavljevic and Babic (2000) consider 

the problem of determining the optimal assignment of fighter plane formations to enemy 

formations and solve it via fuzzy logic and integer linear programming. Kurokawa and 

Takeshita (2004) propose a neural network method for air transportation planning in the Japan 

Air-Self Defense Force. This method partitions the master problem into three sub-problems 

which are successively solved by three neuron blocks. Yeung et al. (2007) develop a model- 

based methodology for mission assignment and maintenance scheduling of systems with
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multiple states. The authors utilize heuristics and simulation to solve the model and illustrate 

its application on a hypothetical scenario of a fleet of aircraft.

FMP is an important decision making problem encountered in several diversified areas 

(see for example Jardine and Hassounah, 1990). The published research dealing with the FMP 

problem as approached in this work, however, is rather limited. Sgaslik (1994) introduces a 

decision support system for maintenance planning and mission assignment of a helicopter 

fleet, which partitions the master problem into two subproblems. The first subproblem is used 

to assign helicopters to inspections and to exercises, while the second one is used to assign 

helicopters to missions. The author develops two elastic mixed integer programs to formulate 

these two sub-problems and solves them using standard optimization software. Pippin (1998) 

develops a mixed integer linear program and a quadratic program to model the flight hour 

allocation problem. Both models try to find a flight hour allocation that ensures a steady-state 

sequence of aircraft into phase maintenance. The U.S. Department of the Army has released a 

Field Manual (US DoA, 2000), which describes the aircraft flowchart for scheduling periodic 

inspections and deciding which aircraft should fly in certain missions.

The Hellenic Air Force (HAF) and many other Air Force organizations worldwide 

solve the FMP problem empirically, utilizing in an ad-hoc manner a 2-dimensional graphical 

tool called the “aircraft flowchart” (US DoA, 2000). In current practice, the aircraft flowchart 

is at best used as a graphical device by the officer responsible for issuing the flight and 

maintenance plans. Kozanidis and Skipis (2006) introduce a biobjective model for flight and 

maintenance planning of military aircraft in order to achieve maximum fleet availability. 

Kozanidis (2009), introduces a multiobjective mixed integer linear model for maximizing 

fleet availability under the presence of flight and maintenance requirements, provides an 

application of this model on a real-life instance drawn from the HAF, and presents two
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heuristic approaches that can be utilized for solving large instances of the problem. Kozanidis 

et al. (2010) extend that work, by developing a single objective optimization model that 

adopts one out of these objectives (wing aircraft availability) and incorporates the remaining 

ones with the introduction of associated constraints.
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Chapter 3 PROBLEM DESCRIPTION

In this chapter, we provide some important information about the problem setting that 

we address in this work. This information is important because it justifies the mathematical 

developments that we present in the next chapters.

In this work, we study the optimization of a nonlinear mixed integer problem for flight 

and maintenance planning of mission aircraft. The problem is solved for a simple case with a 

single-period time horizon and a single squadron. Our aim is to achieve a balance between the 

remaining flight times of the available aircraft, and the remaining maintenance times of the 

grounded aircraft.

We consider a setting, in which the aircraft of a unit are partitioned into available ones 

which are able to participate in missions, and grounded ones which are currently receiving 

maintenance service. At the beginning of each particular time period, the wing command 

issues the flight requirements of the unit. These requirements (also called “flight load”) 

denote the total time that the aircraft of the unit should fly during this time period. They are 

expressed as target values, from which only small deviations are permitted.

For each specific aircraft, we define its “residual flight time” as the total remaining 

time that the aircraft can fly until it has to undergo a maintenance check. The residual flight 

time of an aircraft is positive if and only if this aircraft is available to fly. Similarly, we define 

the “residual maintenance time” of an aircraft as the total remaining time that the aircraft 

needs in order to complete its maintenance check. The residual maintenance time of an
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aircraft is positive if and only if this aircraft is undergoing a maintenance check and is 

therefore not available to fly.

For the maintenance needs of the unit, there exists a station, responsible for providing 

service to the aircraft of the unit. This station has certain space (also referred to as “dock 

space”) and time capacity capabilities. Given the flight requirements, and the physical 

constraints that stem from the capacity of the maintenance station, the objective is to issue a 

flight and maintenance plan for each individual aircraft, so that some appropriate measure of 

effectiveness is optimized.

Consider a 2-dimensional graphical tool called the “aircraft flowchart”. The vertical 

axis of this flowchart represents residual flight time measured in some appropriate unit, and 

the horizontal axis represents the indices of the available aircraft in non-decreasing order of 

their residual flight times, 1 being the index of the aircraft with the smallest and V being the 

index of the aircraft with the largest residual flight time, where V is the total number of 

available aircraft.

On the aircraft flowchart, consider the line segment connecting the origin with the 

point with coordinates (V, Y), where Y is the maximum time that an aircraft can fly between 

two consecutive maintenance checks, often referred to as “phase interval” in the related 

military literature. This line segment is also referred to as the “diagonal”. By mapping the 

available aircraft of each squadron on the aircraft flowchart, we can visualize the total 

availability of the unit. Substituting the residual flight times of the available aircraft with the 

residual maintenance times of the grounded aircraft and parameter Y with parameter G (the 

total maintenance requirements of an aircraft grounded for service), we can get a similar 

graphical depiction of the maintenance requirements of the grounded aircraft of the unit.
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To describe the smoothness of the distribution of the total residual flight time of the 

available aircraft, we use a “total deviation index”. This index is equal to the sum of the 

vertical distances (deviations) of each point mapping an available aircraft from the diagonal. 

The smaller this sum is, the smoother the distribution of the total residual flight time. Ideally, 

the total deviation index is equal to zero, when all points lie on the diagonal. When issuing the 

individual aircraft flight plans, the intention is to keep each point as close to the diagonal as 

possible, in order to keep the total deviation index as small as possible.

A similar “total deviation index” can be used to describe the smoothness of the 

distribution of the total residual maintenance times of the grounded aircraft. In 

correspondence with the previous index, this index is equal to the sum of the vertical 

distances (deviations) of each point mapping a grounded aircraft from the diagonal. The 

smaller this sum is, the smoother the distribution of the total residual maintenance time. 

Ideally, the total deviation index is equal to zero, when all points lie on the diagonal. When 

issuing the individual aircraft maintenance plans, the intention is to keep each point as close 

to the diagonal as possible, in order to keep the total deviation index as small as possible. Our 

objective is to minimize the cumulative deviation index, which is equal to the sum of the two 

individual deviation indices.

In order to compute the optimal flight and maintenance times of the unit’s aircraft, we 

use an analytical solution procedure which is introduced in Chapter 5. This approach utilizes 

two integer decision variables, one that denotes the number of available aircraft that will enter 

the station for service at the end of the current period, and one that denotes the number of 

grounded aircraft that will finish their service and exit the maintenance station.

Of course, these decision variables have trivial upper bounds. The number of available 

aircraft that will be grounded, for example, cannot be larger than the total number of available
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aircraft, or larger than the station’s space capacity. Similarly, the number of aircraft that will 

exit the maintenance station cannot be larger than the total number of grounded aircraft, or 

larger than the station’s space capacity, too.

Tighter upper and lower bounds are computed at the beginning of the solution 

procedure for these decision variables, based on the remaining parameter values. For every 

feasible value-pair of these two variables, we solve two quadratic programming problems, one 

for the available aircraft and one for the grounded aircraft of the unit. Then, we add the 

optimal objective function values of these two sub-problems, in order to compute the optimal 

value of the cumulative deviation index for this particular pair of values of variables z\ and z2. 

Next, this value is compared to the best cumulative deviation index value that has been found 

so far. The significance of the proposed solution procedure stems from the fact that each 

quadratic programming sub-problem can be solved very easily, expediting the total 

computational effort. Additionally, the solution procedure is exact, ensuring this way that the 

global optimal solution will be found.
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Chapter 4 MODEL DEVELOPMENT

In this section, we present the mathematical model that was developed for the 

problem under consideration. We use the following mathematical notation:

Decision Variables:

Xi: flight time of available aircraft i during the current period,

hj: maintenance time of grounded aircraft j during the current period,

yin: residual flight time of aircraft i at the beginning of the next time period,

gjn : residual maintenance time of available aircraft j at the beginning of the next time period,

bi: binary decision variable that takes the value 1 if available aircraft i enters the 
maintenance station at the beginning of the next time period, and 0 otherwise,

Cj : binary decision variable that takes the value 1 if grounded aircraft i exits the 
maintenance station at the beginning of the next time period, and 0 otherwise,

zy : number of aircraft that will enter the maintenance station at the beginning of the next time 
period,

Z2 : number of aircraft that will exit the maintenance station at the beginning of the next time 
period.

Parameters:

S: required flight load during the current period,

B : time capacity of the maintenance station during the current period,

yip : residual flight time of available aircraft i at the beginning of the current period,

gjP : residual maintenance time of grounded aircraft j at the beginning of the current period,

Xmax'. maximum time an available aircraft can fly in a single time period,
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Gmin : minimum residual flight time of a non-available aircraft,

C : maximum number of aircraft that the maintenance station can accommodate,

G : residual maintenance time of an aircraft immediately after it enters the maintenance 
station,

Y: residual flight time of an aircraft immediately after it exits the maintenance station, 

na : number of available aircraft during the current period,

na : number of non-available aircraft during the current period,

L , U: real numbers denoting the maximum deviation from the value of S that can be 

tolerated,

N: total number of unit aircraft = na + n ■
a

Additional auxiliary notation:
Y

sx = ----------------r: the slope of the diagonal in the flowchart of the available aircraft at the
K -Z1 +Zl)

beginning of the next time period,

£
s2 = -7=-------------\ : the slope of the diagonal in the flowchart of the grounded aircraft at the

V*a + zi - Z2 j
beginning of the next time period.

Ymin : minimum residual flight time of an available aircraft,

Then, the problem under consideration can be formulated as follows:

Min Z = Σ Ο" *>.-)· (Λ, ~ — z.) · )~ +b, ·(£-(«, + * - Z2 ) * -^2)
/=i L v 7

n“ V 2 2 "
Σ (x-cj)\gjn-(j-zi)-si) +cj\Y-{n,+j-zx)-s,)-

s.t. y,n =Υψ-χη i=h-,na (1)

Sjn=gjp-hj, j = l-,na (2)
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(3)
na

zi = |>„
i=1

na ___

Z2=TJCj’ J=l’-’na (4)
j=1

n.

LS<js,
i=l

< U-S (5)

na ( ϊ >
'^hj = min *Σ£»» (6)
>1 V »

«α + z, - z2 <c (7)

•cf1

ΛΙε: ■ ^min ’ i = h...,na (8)

Sjn^-Cj J'^rnin 7 = U,i (9)

yM i-^)· >V i = 1, ■·,». (10)

' gjp > 7 = U,i (11)

/ = 1,... (12)

^ vip, i~-= !,···,«a (13)

hj^sjP, i = 1,..·, "a (14)

Z^ ^ na (15)

Z2 ^ na (16)

^° > *' = 1,···’"a (17)

hj’gjn^0’ 7 = 1 ~’”a (18)

/} binaiy, i na (19)

c binary, 7 = 1- ’"a (20)
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(21)Ζχ ,ζ2 ε Ζ, +

The objective function minimizes the cumulative deviation index, which is equal to 

the sum of squares of all deviations of the residual (flight and maintenance) times from their 

diagonal target values. More specifically, the first summation is associated with the available 

aircraft of the unit and consists of two terms, the first one referring to those that will retain 

availability and the second one referring to those that will be grounded. The second 

summation is associated with the grounded aircraft of the unit and consists of two terms, the 

first one referring to those that will remain grounded and the second one referring to those 

that will become available.

The first set of constraints is used to update the residual flight time of each available 

aircraft at the beginning the next period, based on its residual flight time at the beginning of 

the current period and the time that it will fly during this period. The second set of constraints 

is used to update the residual maintenance time of each grounded aircraft at the beginning of 

the next period, based on its residual maintenance time at the beginning of the current period 

and the time that it will receive maintenance during this period.

Constraint sets (3) and (4) are used to compute the number of aircraft that will enter 

and exit the maintenance station, respectively. These computations utilize binary variables bt 

and Cj, for which the following hold:

If hi is equal to 1, then available aircraft /' will be grounded at the beginning of the next period. 

Similarly, if Cj is equal to 1, grounded aircraft j will become available at the beginning of the 

next period.

j = l-,na
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Constraint set (5) ensures that the flight requirements are met. Variables L and U 

define an interval [LS, C/5], in which the actual flight time of the available aircraft should lie. 

For example, when L = 0.95 and U = 1.05 a maximum of 5% deviation from the flight 

requirements is permitted.

Constraint (6) is introduced to ensure that the maintenance crew will not idle 

whenever there is at least one aircraft waiting for service. More specifically, this constraint 

ensures that the total maintenance time provided by the station will either be equal to the total 

time capacity of the station during this period, or to the total maintenance requirements of this 

period, whichever of these two is smaller. Constraint (7) ensures that the space capacity of the 

maintenance station is not violated.

Constraint set (8) imposes a lower bound on the residual flight time of each 

available aircraft, and constraint set (9) imposes a lower bound on the residual maintenance 

time of each non-available aircraft. These constraints are introduced to eliminate the situation 

in which an aircraft has negligible but positive residual flight or maintenance time. Constraint 

set (10) states that the residual flight time of an available aircraft in the next time period 

cannot exceed that of the current time period, and ensures that it will be zero whenever this 

aircraft is grounded. Similarly, constraint set (11) states that the residual maintenance time of 

a grounded aircraft in the next time period cannot exceed that of the current time period, and 

ensures that it will be zero whenever this aircraft becomes available.

Constraint set (12) imposes an upper bound on the maximum time that an available 

aircraft can fly during a single time period. Such a restriction is usually present due to 

technical reasons. Constraint set (13) ensures that the total time that an available aircraft will 

fly during the current time period does not exceed its residual flight time at the beginning of 

the same period. Similarly, constraint set (14) ensures that the total time that the maintenance
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crew will work on a particular aircraft during the current time period will not exceed the 

residual maintenance time of this aircraft at the beginning of the same period. Constraints (15) 

and (16) impose trivial upper bounds on decision variables z; and Z2. Constraints (17)-(18) 

and (19)-(21) are the non-negativity and integrality constraints, respectively.

The above formulation utilizes implicitly a fundamental property of the problem, i.e., 

that the order of available and grounded aircraft in the optimal solution can always remain 

unchanged. In other words, the available aircraft can always be grounded in non-decreasing 

order of their residual flight times, and the grounded aircraft can always finish their service in 

non-decreasing order of their residual maintenance times. The validity of this property 

becomes immediately clear with the following line of reasoning. If this is not the case at the 

optimal solution of the problem, then we can directly transfer flight (or maintenance) time 

from an aircraft that disrupted this order to the aircraft that was originally next in line to be 

grounded (or finish service). This action retains feasibility, and additionally, the optimal 

solution remains the same.
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Chapter 5 SOLUTION ALGORITHM

5.1 Solution Methodology

In this chapter, we develop our solution methodology. We start by developing some 

theoretical background, and based on that, we develop an exact solution algorithm that returns 

the problem’s global optimal solution. We also document in detail the proposed algorithm, 

providing its various steps in pseudo-code.

Initially, the available aircraft of the unit are arranged in a non-decreasing order of 

their residual flight times. Thus, the available aircraft with the lowest residual flight time 

appears first in this arrangement, assuming an index of 1 (/'=1) and the available aircraft with 

the highest residual flight time appears last in the arrangement, assuming an index of na 

(i=na), where na is the total number of the unit’s available aircraft. The same procedure is also 

followed for the grounded aircraft; they are arranged in non-decreasing order of their residual

maintenance times with indices between j= 1 and j—na , where na is the total number of the 

unit’s grounded aircraft.

The next step is to determine the feasible values for z\ and zj. As already mentioned, z\ 

is the number of available aircraft that will enter the station at the beginning of the next time 

period and Z2 is the number of grounded aircraft that will exit the maintenance station at the 

beginning of the next time period. Several checks are performed in order to eliminate 

infeasible values for these decision variables. Initially, z\ can take integer values in the
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interval [0, min(C,«a)] and Z2 can take integer values in the interval [0,n ]· Then, a search 

procedure is applied, in order to find the feasible value-pairs of variables z\ and Z2.

Let Sum be an auxiliary variable. In order to find feasible values for z\, we set Sum = 

0, and then we start adding to it the residual flight time of an aircraft, if it is less or equal to 

Xmax, always in the order that the aircraft appear in the corresponding arrangement. As long as 

Sum remains less or equal to US, the index of the aircraft that was considered last is a feasible 

value for z\. The procedure stops either when Sum exceeds US, or when the residual flight 

time of the next aircraft is higher than Xmax.

A lower bound for z\ is obtained using a similar procedure. Initially, we set again Sum 

= 0. Then, we add to it, the minimum between (yiP-Ymin) and Xmax, for all available aircraft i, in 

the reverse order of the corresponding arrangement. If this summation becomes greater or 

equal to LS, then the minimum feasible value for z\ is 0. If not and the complete list of aircraft 

is scanned, then the minimum feasible value for z\ greater than 0. In this case, we can divide 

the grounded aircraft into two categories: those that can be grounded without exceeding the 

maximum flight load, Xmax, and those that cannot. Thus, we allocate the extra flight load 

needed to reach LS to the former aircraft, until this summation becomes greater or equal to LS. 

The minimum feasible value for z\ will be equal to the number of aircraft that will be 

grounded until this condition is satisfied.

As far as the bounds for Z2 are concerned, their computation is based on the fact that 

the station works continuously in any time period, until either its time capacity is fully 

utilized, or the service of all grounded aircraft is completed. Thus, if the total maintenance 

load of all grounded aircraft is less or equal to the station’s time capacity, then all grounded

aircraft can become available and the maximum feasible value for z2 is na ■ Otherwise, we set
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again Sum = 0, and we start adding to it the residual flight times of all grounded aircraft, in

the order that they appear in the corresponding arrangement. As long as this summation 

remains less or equal to B, the index of the last aircraft that was considered is a feasible value 

for Z2. The procedure stops when Sum exceeds B.

In order to obtain a lower bound for Z2, we set again Sum = 0. Then, we add to it, the 

quantity (gjP-Gmin), for all grounded aircraft j, in the reverse order of the corresponding 

arrangement. If this summation becomes greater or equal to B, then the minimum feasible 

value for Z2 is 0. If not and the complete list of aircraft is scanned, then we continue adding to 

Sum the quantity Gmin for each grounded aircraft, until this summation becomes greater or 

equal to B. The number of times that this quantity needs to be added before this condition is 

satisfied is the minimum feasible value for Z2. The last step after the bounds for z\ and z2 have 

been obtained is to check which value-pairs are feasible with respect to constraint (7).

The proposed methodology is based on the fact that for a particular value-pair of 

variables z\ and Z2, the problem is split into two sub-problems that can be solved 

independently rather easily. The first of these sub-problems involves decisions related to the 

available aircraft, and the second one involves decisions related to the grounded aircraft. More 

specifically, since we know the values of z\ and Z2, we know which available aircraft will be 

grounded and which grounded aircraft will finish their service at the beginning of the next 

time period. Thus, the indices of the aircraft are recomputed as follows.

The index of an available aircraft i becomes:

z'-Z], if i > z 

na+i-z2, if i ^ z]

The index of a grounded aircraft j becomes:
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j-z2, if j > z2 

na+J~z\» if j ^z2

Note additionally, that when z\ and zo are known, variables b, and Cj are determined, as 

well. Thus, the mathematical model becomes simpler, because we have two smaller sub­

problems that can be solved separately.

The first sub-problem that involves decisions related to the available aircraft is:

Min Z, = £ [yin - (i - z, )j, f + J [Y - is, f
i'=z, +1 <=«„ -z, +1

s.t. y,„ = yip -x, , i= (z, +1(na)

L·5-Σ y>p - Σ xi -s~ΣyiP1=1 /=Zj+l i=l

Tm - ^nin , l' = (zi+l),...,«a 

i = (z,+l),...,«fl

/ = (Zi+l),...,na

The second sub-problem that involves decisions related to the grounded aircraft is:

Min Z2= J [gy„-C/'-z2)-s2]2+ J [G-y-52]2
i=z2+l y'=n„-z2+l

S.t. g jn — gjp~ hj, j = z2+\,...,na

( t. \
TsJP+ Σ hj =min
7=1 7=^+1 v >> y

g* ^, y = z2+i,...,«a
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hj,gjn>Q, j = z2+\,...,na

Each of these two nonlinear problems can be solved independently of the other, using 

an efficient procedure called “Sweep” (see Gavranis, 2007) that we describe briefly next. 

From the optimal objective function values of these two sub-problems, we obtain the 

cumulative deviation index value (Z = Z; + Z2) of the original problem for this particular 

value-pair of variables z\ and z2. The main idea of the proposed algorithm is to compare the 

optimal cumulative deviation index value of the original problem for all feasible values of z\ 

and Z2, and choose the best out of them.

5.2 Sweep Algorithm

The two sub-problems introduced above are quadratic programming problems. The 

Hessian of their objective function is diagonal with all diagonal elements equal to 2; therefore, 

their objective function is convex. Hence, the KKT conditions (see Bazaraa et al., 2006) are 

necessary and sufficient for optimality. We introduce next a procedure called “Sweep” that 

can be utilized to obtain their optimal solution.

Consider the flowchart that maps the available aircraft. An aircraft that will exit the 

maintenance station at the beginning of the next time period is considered to have residual 

flight time equal to Y at the beginning of the current period in the aircraft arrangement, but its 

flight time is also restricted to 0-value (since this aircraft will be grounded during the current 

time period). On the other hand, an aircraft that will enter the maintenance station at the 

beginning of the next time period is not portrayed on this graph, since its flight time will be
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equal to its residual flight time, which implies that this aircraft will affect the total deviation 

index that refers to the grounded aircraft of the unit.

On this flowchart, consider a line parallel to the diagonal which is initially placed far 

enough to the top, so that all the aircraft lie below it, as shown in Figure 5-1 (in what follows, 

we do not distinguish between a point on the graph and the aircraft that this point maps). 

Assume now that this line starts moving towards the diagonal (and past it, while always 

remaining parallel to it), sweeping along vertically each aircraft that it comes across. 

Throughout this move, flight times are accordingly assigned to the aircraft in the order that 

they are swept by the line. If during this procedure the flight time of an aircraft i reaches its 

maximum possible value, Xui = mm(Xtnax, yiP-Ymin), then the line should “disengage” this 

aircraft and continue its move without sweeping it further, to ensure that the resulting solution 

will remain feasible.

Figure 5-1: Illustration of the Procedure “Sweep”

Consider now the following 4 solutions that can be obtained during the application of 

this procedure:
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1. The solution in which the sum of the assigned aircraft flight times is equal to LS.

2. The solution in which the sum of the assigned aircraft flight times is equal to US.

3. The solution in which each aircraft, i, is assigned its maximum possible flight time, 

Xui. In what follows, we refer with “X” to the sum of the assigned aircraft flight times of this 

solution.

4. The solution in which the sweeping line coincides with the diagonal. In what 

follows, we refer with “£>” to the sum of the assigned aircraft flight times of this solution.

The following is a very crucial and interesting result, utilized in the development of 

our proposed methodology:

Proposition 1. If the quantities LS, US, X and D are placed in non-decreasing order,

then:

a) If, after taking into consideration any ties present, there does not exist an 

arrangement in which LS precedes X, then the problem is infeasible.

b) If an arrangement in which LS precedes X exists, then the optimal solution of the 

problem is the one obtained by Procedure Sweep when the sum of the assigned aircraft flight 

times becomes equal to the quantity that appears second in this arrangement.

Proof: See Kozanidis et al., 2008.

The application of Procedure Sweep produces the flight time of each available aircraft. 

The same procedure can also be applied for the production of the maintenance time of each 

non-available aircraft. The only differences are that, in that case, L = U (since the total

"a
maintenance load carried out must be exactly equal to the minimum between B and^g;),

j=i

and XUj = (gjP-Gmin), since there does not exist an upper bound on the maintenance time of
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each grounded aircraft. Therefore, the optimal solution in this case is obtained by Procedure 

Sweep when the sum of the assigned aircraft maintenance times becomes equal to B.

5.3 Solution Algorithm

Based on the above discussion, the detailed steps of our solution methodology are 

introduced next. The following additional notation is used in the pseudo-code:

Sx = total flight time in current time period

Sy= total residual flight time in current time period

Sh = total maintenance time in current time period

Sg= total residual maintenance time in current time period

Cres ~ residual maintenance space capacity

C = maintenance space capacity

Z = cumulative deviation index value of the original problem 

M = sufficiently large number 

N = total number of aircraft of the unit

Step 0: initialization

na = 0, na = 0, Sy = 0, Sg = 0, Cres = C, Z = M 

for n = 1 to N do

y„p = Y\n,Sy=Sy+ynp 

if y>iP > 0 ----- ► na = na + 1
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gnp = G\n,Sg = Sg + gnp

if gnp '> 0 ► ηa Cres Gres 1

end for

arrange in non-decreasing order of ynp the available aircraft and determine their 

indices i

arrange in non-decreasing order of gnp the grounded aircraft and determine their 

indices j

Step 1: bounds for feasible values of z\ and zi

find feasible integer values for variables z\ and Z2 

for every feasible pair of (zi, Z2)

Step 2: initialization of sub-problems

s\ = Y/(na-zx +z2)

52 = G/(na +zi z2) 

for i = 1 to z\

Xu(^ -Z2+0 = 0

Xi = yip, yin = 0, gin = G 

end for 

for j = 1 to Z2

Xu(na-z\ +j) = 0 

f = gjp, gjn = 0, yjn = Y
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end for

Step 3: development of flight and maintenance plans

using Procedure Sweep, issue the aircraft flight and maintenance plans for the 

current time period

Step 4: evaluation of solution

Compute Zcur = objective function value of original problem 

if Zcur < Z —► Z = Zcur, keep current solution as best so far

end for

Print best solution

27
Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 01:24:23 EEST - 3.145.36.43



Chapter 6 COMPUTATIONAL IMPLEMENTATION

In this chapter, we analyze the computational complexity of the proposed algorithm 

and we present the computational results of the experiments that we conducted after this 

algorithm was implemented in C programming language. The full implementation code is 

included in Appendix A.

6.1 Computational Complexity

As already mentioned, when we fix particular values for variables z\ and Z2, the 

problem that we address is split into two sub-problems, each of which can be solved to 

optimality with Algorithm Sweep. Kozanidis et al. (2008) have proven that the worst-case 

computational complexity of Algorithm Sweep is 0(A), where A is the total number of 

decision variables. Therefore, the worst-case computational complexity for solving once both 

these problems is also 0(A), where A is the total number of aircraft (both available and 

grounded). The worst-case complexity for finding the feasible values for z\ and Z2 is 0(A) + 

0(C2), since the procedure performs first a scanning of the aircraft lists a finite number of 

times and then performs a maximum of (C+l) checks in order to eliminate feasible value- 

pairs.

Of course, the worst-case computational complexity for solving the original problem 

depends on the total number of times that these sub-problems must be solved, which is equal 

to the total number of feasible value-pairs of the variables z\ and zi. This number is not known
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in advance, but cannot be larger than (C+l)2, since the number of aircraft that will exit or 

enter the maintenance station cannot be larger than C. Therefore, the worst-case 

computational complexity for solving the original problem is 0(77) + 0(C2) + 0(7VC2) = 

0(NC2').

6.2 Computational Results

Our computational experiments were performed on a Dual Xeon server with a 2 GHz 

processor and 2 GB system memory. We used 5 different values for the unit’s total number of 

aircraft (TV = 500, 1000, 1500, 2000 and 2500), and solved 10 random problem instances for 

each of them. The procedure for generating these random instances was the following: 

Parameter C was set equal to 0.2TV, rounded up to the nearest integer. The number of 

grounded aircraft was generated randomly, using a uniform discrete probability function that 

considered the integer values between 0.157V and 0.27V, inclusive. Of course, the number of 

available aircraft was equal to TV minus the number of grounded aircraft.

The residual flight time of each available aircraft was a random number 

uniformly in the interval [0,y] and the residual maintenance time of each grounded aircraft 

was a random number distributed uniformly in the interval [0,(7]. Parameter B was set equal 

to 0.8y,g„, where index j runs over all grounded aircraft. Parameter S was set equal to
j

0.75^min(yip,Xmax), where index i runs over all available aircraft. Actual values drawn
i

from real applications were used for the other problem parameters, i.e., L = 0.95, U = 1.05, 

Xmax — 50, Ymin ~ 0.1 and Gmin ~ 0.1.

Table 6.1 presents the results of our experiments. More specifically, rows 2-4 of this 

table show the algorithm’s maximum, average and minimum computational times,
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respectively, over the 10 instances. Rows 5-7 of the same table show the maximum, average 

and minimum feasible value-pairs of variables z\ and z2, respectively.

Number of aircraft 

(N)
500 1000 1500 2000 2500

Max Run Time 

(seconds)
4.06 50.23 223.43 702.82 1656.23

Average Run Time 

(seconds)
3.601 46.837 203.836 623.419 1454.049

Min Run Time 

(seconds)
3.16 44.02 185.02 561.71 1279.59

Average Number of 

feasible pairs (ζ]? z2)
3822 15223 33688 60626 95157

Max Number of 

feasible pairs (zi, z2)
4031 15821 34390 62865 98666

Min Number of 

feasible pairs (zj, z2)
3481 14460 32115 59508 92073

Table 6-1: Computational results for different values of N

As seen in Table 6.1, as the total number of aircraft increases, the average 

computational time increases, too. For N = 2500, the average time is about 25 minutes. 

Considering the large number of feasible value-pairs of variables z\ and z2, it becomes clear 

that the actual computational effort required for the solution of the two sub-problems (when 

variables z\ and z2 have been fixed to particular values) is practically negligible. In any case, 

the worst-case computational complexity of 0(NC ) reveals that the increase of the
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computational effort is polynomial and not exponential. Additionally, it is possible that the 

proposed C implementation code can be further improved through appropriate enhancements.

6.3 Numerical examples

In this subsection, we illustrate the application of the proposed algorithm through two 

small numerical examples.

6.3.1 Numerical example 1

Parameter values:

5= 125

5 = 350

Amax = 50

Ymin Gmin — 0.1

L = 0.95, {7=1.05

Y= 300

G = 320

C = 3

N=6

i: index for available aircraft 

j: index for grounded aircraft
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N 1 2 3 4 5 6

yip 0 0 50 298 38 273

Sjp 300 130 0 0 0 0

Table 6-2: First problem’s initial flight and maintenance times

Results:

LS = 118.75, US = 131.25 

na = 4, na = 2

Non-decreasing order:

yip 38 50 273 298 - -

i 1 2 3 4 - -

Sjp 130 300 - - - -

j 1 2 - - - -

Table 6-3: Sorting in non-decreasing order

Initially, z\ can take integer values in the interval [0, min(C,na)] = [0,3].

Feasibility check 1:

Sum = 0, Sum = Sum + 38 = 38 < 131.25, Sum = Sum + 50 = 88 < 131.25. Since the 

residual flight time of the third aircraft is strictly larger than Xmax, z\ cannot be larger than 2.

Feasibility check 2:

Sum = 0, Sum = Sum + min [y4p - FT,, Xmax) = 0 + 50 = 50 < 118.75, Sum = Sum + 

min(T3p 50 + 50 = 100 < 118.75, Sum = Sum + min(y2p ~Ymm,Xmm) = 100 +

49.9 = 149.9 > 118.75. Therefore, z\ = 0 is feasible.

Combined with the previous check, z\ can take integer values in the interval [0,2],

Initially, z? can take integer values in the interval [0] = [0,2].
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Feasibility check 3:

Sum = 0, Sum = Sum + 130 = 130 < 350, Sum = Sum + 300 = 430 > 350. Therefore, Z2 

= 2 is not a feasible value. Thus, Z2 can take integer values in the interval [0, 1].

Feasibility check 4:

Sum = 0, Sum = Sum + (g2p ~Gmin)= 0 + 299.9 = 299.9 < 350, Sum = Sum +

(glp -Gmin) = 299.9 + 129.9 = 429.8 > 350. Therefore, Z2 = 0 is feasible. Combined with the 

previous check, zi can take integer values in the interval [0, 1],

Feasibility check 5:

(zi,z2) = (0, 0)

na + Zx~ Z2 <C ---- ► 2 + 0- 0 = 2<3, OK

(zi,z2) = (0, 1)

na + Z\ ~ z2 < C ---- ► 2 + 0- 1 = 1 <3, OK

(zi,z2) = (l,0)

na+Z \~Z2^C —► 2 + 1 - 0 = 3 = 3, OK

(z,,z2) = (l, 1)

na +Z1 Z2 ^ c ---- ► 2 + 1 - 1 = 2 <3, OK

(zi, z2) = (2, 0)

na + Z\ ~ z2 <C —► 2 + 2- 0 = 4>3 infeasible

(zi, z2) = (2, 1)
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wfl+z1-z2<C —► 2 + 2-1=3 = 3, OK 

Therefore, the feasible pairs are (0,0), (0,1), (1,0), (1,1), (2,1). 

Iteration 1:

(zi,z2) = (0, 0)

Available

s = 300/4- 0 + 0 = 75 

y5 = 38 s = 75 i = 1

y3 = 50 2s = 150 i = 2

y6 = 273 3s = 225 i = 3

y4 = 298 4s = 300 i = 4

Grounded

s = 320/2 + 0- 0 = 160 

g2 = 130 s = 162 j = l

gi = 300 2s = 320 j = 2

After application of Algorithm Sweep, we get the following results:

ij 1 2 3 4 5 6

yin " 50 248 19.25 223

Xi “ - 0 50 18.75 50

Sjn 104.9 0.1 " -

hj 195.1 129.9 " “ "

Table 6-4: Results of first iteration of the first problem
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The value of the objective function is: Z =87652.0825

Iteration 2:

(z1,z2) = (0, 1) 

Available

s = 300 / 4 - 0 + 1 = 60

y5 = 38 cn II O
s O i = 1

oIIcn 2s = 120 i = 2

ye = 273 3s = 180 i = 3

y4 = 298 4s = 240 i = 4

y2 = 300 5s = 300 i = 5 (x2 = -, h2 = g2)

Grounded

s = 320/2 + 0 - 1 =320 

g, =300 s = 320 j = 1

After application of Algorithm Sweep, we get the following results:

ij 1 2 3 4 5 6

yin - 300 50 248 19.25 223

X, “ 0 50 18.75 50

Sjn 105 “ - -

hj 195 130 "

Table 6-5: Results of second iteration of the first problem
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The value of the objective function is: Z =54698.56

Iteration 3:

(zi, z2) = (1, 0)

Available

s = 300/4- 1 + 0= 100 

y3 = 50 s = 100 i = 1

y6 = 273 2s = 200 i = 2

y4 = 298 3s = 300 i = 3

Grounded

s = 320/2+ 1 - 0 = 106.6

g2 = 130 s= 106.6 j = 1

g, = 300 2s = 213.3 j = 2

g5 = 320 3s = 320 j = 3 (h2 = x2 = y2)

After application of Algorithm Sweep, we get the following results:

u 1 2 3 4 5 6

yin - - 50 267.25 - 223

Xi - - 0 30.75 38 50

Sjn 104.9 0.1 - 320

hj 195.1 129.9 - - "

Table 6-6: Results of third iteration of the first problem
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The value of the objective function is: Z =27215.805

Iteration 4:

(z,,z2) = (l, 1)

Available

s = 300 / 4 - 1 + 1 = 75 

y3 = 50 s = 75 i = 1

y6 = 273 2s = 150 i = 2

y4 = 298 3s = 225 i = 3

y2 = 298 4s = 300 i = 4

Grounded

s = 320/2 + 1 - 1 = 160 

gi = 300 s = 160 j = 1

g5 = 320 2s = 320 j = 2

After application of Algorithm Sweep, we get the following results:

U 1 2 3 4 5 6

yin 300 50 254.75 " 223

Xj " - 0 43.25 38 50

gjn 105 " - -

hj 195 130 - -

Table 6-7: Results of forth iteration of the first problem
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The value of the objective function is: Z = 9864.0625

Iteration 5:

(zi, z2) = (2, 1) 

Available

s = 300 / 4 - 2 + 1 = 100

y6 = 273 II

ooII(Λ

y4 = 298 2s = 200 i = 2

to II O
J o o 3s = 300 i = 3

Grounded

s = 320/2+ 2 - 1 = 106.6

g2 = 300 s= 106.6 j = l

gs = 320 2s = 213.3 j = 2

g3 = 320 3s = 320 j = 3

After application of Algorithm Sweep, we get the following results:

ij 1 2 3 4 5 6

yin - 300 298 " 229.75

Xi - - 50 0 38 43.25

Sjn 105 320 - 320 -

kJ 195 130 -

Table 6-8: Results of fifth iteration of the first problem
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The value of the objective function is: Z = 37819.6185

After the solution of all feasible pairs, we compare the values of Z, to find the pair that 

has the minimum Z. For this problem, the optimum solution is given for the pair (zi, z2) = (1, 

1).

6.3.2 Numerical example 2

Parameter values:

5= 150

5 = 425 

Amax = 50 

Ymin ~ Gmjn — 0.1 

1 = 0.95, 17=1.05 

7=300 

G = 320 

C = 4 

N = 8

i: index for available aircraft 

j: index for grounded aircraft
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N 1 2 3 4 5 6 7 8

yip 175 30 48 105 79 130 0 0

Sjp 0 0 0 0 0 0 320 105

Table 6-9: Second problem’s initial flight and maintenance times

Results:

LS = 142.5, US = 157.5 

na = 6, na = 2

Non-decreasing order:

yip 30 48 79 105 130 175 - -

i 1 2 3 4 5 6 - -

Sjp 105 320 - - - - - -

j 1 2 - - - - - -

Table 6-10: Sorting in non-decreasing order

Initially, z\ can take integer values in the interval [0, min(C, na)] = [0, 4],

Feasibility check 1:

Sum = 0, Sum = Sum + 30 = 30 < 157.5, Sum = Sum + 48 = 78 < 157.5. Since the 

residual flight time of the third aircraft is strictly larger than Xmax, z\ cannot be larger than 2.

Feasibility check 2:

min(y; - Tmin, ) < LS: if this is valid, then z\=0 infeasible
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29.9 + 47.9 + 50 + 50 + 50 + 50 = 277.8 > LS

Therefore, the case that none of the aircraft will become non-available at the start of 

the next period is feasible. As result, and considering check 2, zl is feasible in [0, 2],

Sum = 0, Sum = Sum + min(y6;, ~ΥΙίάΒ,Χπαχ)= 0 + 50 = 50 < 142.5, Sum = Sum + 

min(j5p -YaiaiXim)= 50 + 50 = 100 < 142.5, Sum = Sum + min(yAp - )= 100 +

50 = 150 > 142.5, Sum = Sum + min(y3p -Fmjn,Xmax) = 150 + 50 = 200 > 142.5, Sum = Sum 

+ min(y2p-Yndn,Xmax)= 200 + 47.9 = 247.9 > 142.5, Sum = Sum + min(ylp -Tn1in,Xmax) = 

247.9 + 29.9 = 277.8 > 142.5. Therefore, z\ = 0 is feasible.

Combined with the previous check, z\ can take integer values in the interval [0,2],

Initially, z2 can take integer values in the interval [0, na ] = [0,2]

Feasibility check 3:

Sum = 0, Sum = Sum + 105 = 105 < 425, Sum = Sum + 320 = 425 = 425. Therefore, z2 

= 2 is the only feasible value. Thus, z2 can take only the value 2.

Feasibility check 4:

Sum = 0, Sum = Sum + [g2p ~Gmin^j= 0 + 319.9 = 319.9 < 425, Sum = Sum + 

(glp - Gmin) = 319.9 + 104.9 = 424.8 < 425. Therefore, z2 = 0 is infeasible, and z2=l as well. 

Combined with the previous check, z2 can only take the value 2

Feasibility check 5:

(z,, z2) = (0,2)

na+zx-z2<C ---- ► 2 + 0 - 2 = 0 < 4, OK
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(z,,z2) = (l,2)

na + Zj - z2 < C ---- ► 2+l-2 = l<4, OK

(z1} z2) = (2,2)

na+zx-z2<C ---- ► 2 + 2 - 2 = 2 < 4, OK

Therefore, the feasible pairs are (0,2), (1,2), (2,2). 

Iteration 1:

(z1;z2) = (0, 2)

Available

s = 300/6 -0 + 2 = 37.5

y2 = 30 s = 37.5 i = 1

y3 = 48 2s = 75 i = 2

y5 = 79 3s = 112.5 i = 3

II o 'j\ 4s = 150 i = 4

y6 = 130 5s = 187.5 i = 5

yi = 175 6s = 225 i = 6

y8 = 300 7s = 262.5 i = 7

y7 = 300 8s = 300 i = 8

Grounded

There is none grounded aircraft

After application of Algorithm Sweep, we get the following results:
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u 1 2 3 4 5 6 7 8

yin 159.88 0.1 9.88 84.88 47.38 122.38 300 300

Xi 15.12 29.9 38.12 20.12 31.62 7.62 - -

Sjn - - - - - - - -

hjn - - - - - - 320 105

Table 6-11: Results of first iteration of the second problem

The value of the objective function is: Z = 24008.082 

Iteration 2:

(z,, z2) = (1,2)

Available

s = 300/6 - 1+2 = 42.86

ooIIC
*-> s = 42.86 i = 1

y5 = 79 2s = 85.72 i = 2

II o 3s = 128.58 i = 3

130 4s = 171.44 i = 4

II 5s = 214.3 i = 5

y8 = 300 6s = 257.16 i = 6

y7 = 300 7s = 300 i = 7

Grounded

s = 320 / 2 + 1 - 2 = 320 

g2 = 320 s = 320 j = 1

After application of Algorithm Sweep, we get the following results:
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ij 1 2 3 4 5 6 7 8

yin 170.4 0 0.1 84.7 41.8 127.5 300 300

Xt 4.6 30 47.9 20.3 37.2 2.5 - -

Sjn - 320 - - - - - -

hj - - - - - - 320 105

Table 6-12: Results of second iteration of the second problem

The value of the objective function is: Z = 11373.747959 

Iteration 3:

(z,, z2) = (2, 2)

Available

s = 300/6 -2 + 2 = 50 

y5 = 79 s = 50 i = l

y4 = 105 2s =100 i = 2

ye = 130 3s = 150 i = 3

y, = 175 4s = 200 i = 4

y8 = 300 5s = 250 i = 5

y7 = 300 6s = 300 i = 6

Grounded

s = 320/2 + 2 -2 = 160 

g2 = 320 s = 160 j = 1

g3 = 320 2s = 320 j = 2

After sweep algorithm and update we have the results
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U 1 2 3 4 5 6 7 8

yin 175 - - 84.75 34.75 130 300 300

Xt 0 30 48 20.25 44.25 0 - -

Sjn - 320 320 - - - - -

hJ - - - - - - 320 105

Table 6-13: Results of third iteration of the second problem

The value of the objective function is: Z = 29590.125

After the solution of all feasible pairs, we compare the values of Z, to find the pair that 

has the minimum Z. For this problem, the optimum solution is given for the pair (zi, Z2) = (1, 

2)·
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Chapter 7 CONCLUSIONS - FUTURE RESEARCH

In this thesis, we studied a nonlinear mixed integer optimization problem for flight and 

maintenance planning of mission aircraft, and we developed an analytical methodology that 

can be utilized for its solution. This methodology is based on the fact that the original 

problem can be solved through the consecutive solution of several sub-problems. Each of 

these sub-problems can be solved separately and quite easily, using an existing algorithm for 

quadratic programming.

The proposed algorithm was implemented in C programming language in order to test 

its performance. An additional code implementation was developed for the generation of 

random problem instances. The obtained computational results are very satisfactory, since 

they reveal that the computational effort does not increase very fast with problem size. This 

observation is also supported by the computational complexity analysis that we present.

The main contribution of the research reported in this work is that we have developed 

an exact mixed integer nonlinear programming algorithm for the solution of the Flight and 

Maintenance Planning problem with a single time period and a single squadron, having very 

reasonable solution times.

Future research should be directed towards the improvement of the existing algorithm, 

possibly through more thorough feasibility checks, which would lead to smaller 

computational times. The question of whether the considered objective functions have special 

convexity-related properties is also a very important question that remains open for future
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research. Note that if this were true, we would be able to reduce the number of considered 

value-pairs for variables z\ and z2, which would lead to significant computational savings.

Another possible direction is the embedment of the present approach within a more 

generalized algorithm that addresses the general Flight and Maintenance Planning problem 

with several time periods and squadrons. Finally, it would also be very interesting to evaluate 

the computational effort required by commercial optimization packages, such as LINGO, in 

order to solve the problem under consideration. This was not done as part of this work, 

because the commercial optimization software that our laboratory currently owns 

(AMPL/CPLEX) does not include a subroutine for solving mixed integer nonlinear 

programming models.
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Appendix A C Implementation of main Algorithm

/*--------------------------------------------------------------------------------------------

The solution of FMP problem using the aircraft flowchart heuristic 

Eftychia Kostarelou<ekostarelou@yahoo.gr> March 2009 

This code is part of an implementation for the purposes 

of a postgraduate research.

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <math.h>

#define N 2500 

#define LIMIT le-36 

#define MAXFLOW le38

#defme SWAP(a,b) {long double temp=(a);(a)=(b);(b)=temp; }

typedef struct ACTag{ 

int n;

long double g_y; 

struct ACTag *RightLink;

} ACNode;
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struct node
{
int index; 
int datal; 
int data2; 
struct node *link;
};

/*--------------------- Functions: ANSI C prototypes----------------------------- */

long double qmedian(long double a[], int n); 
void swap(long double *x, long double *y); 
void bsortl(long double list[], int n);
void pardalos(long double x[], long double a[], long double b[], long double d, int n); 
long double choose_bound(long double x[],long double b[],long double L, long double U, 
int n);
long double choose_boundl(long double x[],long double b[],long double L, long double U, 
int n);

long double minimum(long double xl , long double x2); 

long double maximum(long double xl , long double x2);

void mod_solve(long double Y[], long double Xleft[] ,int n, long double apokl[], long double 
L, long double U);

void mod_solvel(long double G[], long double Hleft[] ,int n, long double apokl[], long 
double L, long double U);

void total_flow(long double apoklisi[N_SIZE]);

void total_flowl(long double apoklisi[N_SIZE]);

void sweep(ACNode **L, int Z2);

void sweepl(ACNode **L,int Zl);

void teliko(int Zl, int Z2, long double *k, long double *p, long double *r, long double *q, int 
*v, int *fl, int *f2, long double *Q);

int elegxos();

int elegxosl(int Zl);

void elegxos2(int *number2, int *number3); 

void allagi_thesis(int Zl, int Z2);

void teliko(int Zl, int Z2, long double *k, long double *p, long double *r, long double *q, int 
*v, int *fl, int *f2, long double *Q);

void epanafora(int Zl, int Z2);

void epanaforal(int Zl);

void epanafora2(int Z2);
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void insert_inplace (int n, long double g_y, ACNode **L, ACNode **T); 

void append (int n, long double g_y, ACNode **L, ACNode **K); 

void appendl (int n, long double g_y, ACNode **L, ACNode **K); 

void delete_head(ACNode **L, ACNode **R); 

void delete_end(ACNode **L, ACNode **R); 

void getData();

/* main() */

main()

{
long double start,stop,duration; 

int i;

long double s,Y,Xmax,target,G,Ymin,Gmin;

long double L,U;

long double *a;

long double *b;

long double *x;

long double y[N];

long double g[n];

long double x[N];

long double h[N];

FILE *myfile;

myfile=fopen("exodosl.txt","w");

start=clock();

getDataO;
number = elegxos(); 

elegxos2(&number2, &number3); 

for(Z 1 =0;Z 1 <=Sa;Z 1 ++)

{
numberl = elegxosl(Zl);
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for(Z2=0;Z2<=(N_SIZE-l-Sa);Z2++)

{
printf("\nZ 1 =%d,„Z2=%d\n\n",Z 1 ,Z2);

if((Zl-Z2)>dock || number2<Z2 || number<Zl || number 1 = 0)

{

//printf("\n\n(Zl,Z2)=(%d,%d) INFEASIBLE\n\n",Zl,Z2);

} }

else if(number3 > Z2)

{
//printf("\n\n(Z 1 ,Z2)=(%d,%d) INFEASIBLE\n\n",Zl,Z2);

}
else

{
counter++;

allagi_thesis(Zl, Z2);

sweep(&Available,Z2);

sweep 1 (&Grounded,Z 1);

teliko(Zl, Z2, k, p, r, q, v, &fl, &f2, &Q);

epanafora(Z 1, Z2);

epanaforal(Zl);

epanafora2(Z2);

}
FPRINT OPTIMAL SOLUTION 

stop=clock();

duration=(long double)(stop-start)/CLOCKS_PER_SEC;

FPRINT DURATION 

fclose(myfile);
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/* **************************** ***functions* ************** **** ******* *****/

/**************N<***g^ygj£ pjjp^^pjQ^g**************/

void insert_inplace (int n, long double g_y, ACNode **L, ACNode **T){ 

ACNode *N, *K, *R;

N = (ACNode *)malloc(sizeof(ACNode));

N->n = n;

N->g_y = g_y;
N->RightLink = NULL;

if((*L) == NULL)

(*L) =N;

else if ((*L)->g_y > g_y){

N->RightLink = (*L);

(*L) = N;

}
else{

K = (*L);

R = K->RightLink;

while (R != NULL && R->g_y < g_y){

K = K->RightLink;

R = R->RightLink;

}
K->RightLink = N;

N->RightLink = R;

}

if ((*T) == NULL) (*T) = (*L);

else if ((*T)->RightLink != NULL) (*T) = (*T)->RightLink;
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void append (int n, long double g_y, ACNode **L, ACNode **K){ 

ACNode *N;

N = (ACNode *)malloc(sizeof(ACNode));

N->n = n;

N->g_y = g_y;
N->RightLink = NULL;

if ((*K) = NULL){

(*K) = N;

(*L) = N;

}

else{

(*K)->RightLink = N;

(*K) = N;

}

}

void appendl (int n, long double g y, ACNode **L, ACNode **K){ 

ACNode *N, *R, ““current, *M;

N = (ACNode *)malloc(sizeof(ACNode));

N->n = n;

N->g_y = g_y;

R = N;

R->RightLink = (*L);

(*L) = R;

if ((*K) == NULL){

(*K) = R;

}
else

{

current=(*L);
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while(current != NULL)

{

M=current;

(*K)=M;

current=current->RightLink;

}

}

}

void delete_head( ACNode **L, ACNode **R)

{
ACNode *K;

if((*L) = (*R)){ 

free(*L);

*L = NULL;

*R = NULL;

}
else{

K = (*L)->RightLink; 

free(*L);

(*L) = K;

}

}

void delete_end(ACNode **L, ACNode **R)

{
ACNode *K,*T,*M;

if((*L) = (*R)){ 

free(*L);

*L = NULL;

*R - NULL;

}
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else {

T=(*L);

while(T->RightLink != NULL)

{
if(T->RightLink == (*R)) 

Μ = T;

T=T->RightLink;

}

K = T; 

free(K);

(*R)=M;

(*R)->RightLink = NULL;

}

}

/****************peasibility CHECKS********************/

int elegxos()

{
int number;

long double e=0;

long double sum;

long double value[N_SIZE]={0};

ACNode * current;

sum=u*S;

number=0;

current = Available; 

while(current != NULL)

{
value[current->n]=minimum(current->g_y,Xmax); 

sum -= value [current->n]; 

e=current->g_y-value[current->n];
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if(sum>=0 && e==0) 

number++;

current=current->RightLink;

}
return number;

}

int elegxosl(int Zl) { 

int number 1; 

int i;

long double sum;

long double value[N_SIZE]={0};

ACNode *current;

sum=l*S; 

number 1=0;

i=0;

current = Available; 

while(current != NULL)

{
if(i<Zl)

{
sum -= current->g_y; 

i++;

}
else

{
value[current->n]=minimum(current->g_y-Ymin,Xmax); 

sum -= value [current->n];

}

current=current->RightLink;
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if(sum>0)

number 1=0;

else

number 1=1; 

return number 1;

}

void elegxos2(int *number2, int *number3)

{
int numb2;

long double sum;

long double value[N_SIZE]={0};

long double target;

ACNode *current;

sum=0;

numb2=0;

target=minimum(B, Sg);

current = Grounded; 

while(current != NULL)

{
value [ current->n] =current->g_y; 

sum += value[current->n]; 

if(sum<=target

numb2++;

current=current->RightLink;

}
*number2=numb2;

if(numb2==(C-dock))

*number3=numb2;

else

*number3=0;

}
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/**************£p[^]sjQ£ POSITIONS AT FLOWCHARTS*************/ 

void allagi_thesis(int Zl, int Z2)

{
int i,j;

entering=0; 

exiting=0; 

enteringtime = 0; 

exiting_time = 0;

if(Zl>0)

{
i=i;

while(i<=Zl)

{
entering = entering + i;

x 1 [ Available->n]=Available->g_y;

append(Available->n,G,&Grounded,&Tail_Grounded);

entering_time=entering_time+Available->g_y;

delete_head(&AvaiIable,&Tail_Available);

Sa=Sa-l;

dock=dock-l;

i++;

}

}
else

{

entering = 0; 

entering_time=0.0;

}

if(Z2>0)

}
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{

j=i;
while(j<=Z2)

{
exiting = exiting + j; 

hi [Grounded->n]=Grounded->g_y; 

append(Grounded->n,Y,&Available,&Tail_Available); 

exiting time=exiting time+Grounded->g y; 

delete_head(&Grounded,&Tail_Grounded);

Sa=Sa+l;

dock=dock+l;

j++;

}

}
else

{
exiting_time=0; 

exiting = 0;

LS=1*S;

LS=LS-entering_time;

US=u*S;

US=US-entering_time;

}

/******C0NVERTING T0 GENERAL form FOR AVAILABLE**********/

b=(long double *) malloc (N*sizeof(long double)); 

for (i=0;i<N;i++) b[i]=Y[i] - apokl[i];

/*apokl[i]=(i+l )*'Y/(Sa-z 1 +z2 )*/ 

a=( long double *) malloc (N*sizeof(long double)); 

for (i=0;i<N;i++) a[i]=Y[i]- apokl[i] -Xleft[i]; 

xpar=(long double *) malloc (N*sizeof(long double));
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for (i=0;i<N;i++) xpar[i]=0;

X=( long double *) malloc (N*sizeof(long double)); 

for (i=0;i<N;i++) X[i]=0;

SWAP(L,U);

L=-L;

U=-U;

for (i=0;i<N;i++) {

L+=(Y[i]_ apokl[i]);

U+=(Y[i]- apokl[i]);

}

/******C0NVERTING TO GENERAL FORM FOR GROUNDED**********/

belong double *) malloc (N*sizeof(long double)); 

for (i=0;i<N;i++) b[i]=G[i] - apokl[i]; 

a=( long double *) malloc (N*sizeof(long double)); 

for (i=0;i<N;i++) a[i]=G[i]- apokl[i] -Hleftfi]; 

xpar=(long double *) malloc (N*sizeof(long double)); 

for (i=0;i<N;i++) xpar[i]=0;

H=( long double *) malloc (N*sizeof(long double)); 

for (i=0;i<N;i++) H[i]=0;

SWAP(L,U);

L=-L;

U=-U;

for (i=0;i<N;i++) {

L+=(G[i]- apokl[i]);

U+=(G[i]- apokl[i]);

}

/******COMPUTE IDEAL VALUES FOR AVAILABLE**********/ 

apokl[i]=(i+1 )* Y/(Sa-z 1 +z2)
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/******C0MPUTE IDEAL VALUES FOR GROUNDED**********/

apokl[i]=(i+l)*G/(N-Sa+zl-z2)

long double minimum(long double xl , long double x2) 

{long double value; 

value= (xl<x2) ? xl : x2; 

return value;

}
long double maximum(long double xl , long double x2) 

{long double value 1; 

valuel= (xl>x2) ? xl : x2; 

return value 1;

}

void swap(long double *x,long double *y)

{
long double temp; 

temp = *x;

*x = *y;

*y = temp;

}

void bsortl(long double list[], int n)

{
int i,j;

for(i=0;i<(n-1) ;i++) 

for(j=0 ;j <(n-(i+1)) ;j++) 

if(list[j] > list[j+l])

swap(&list[j],&list[j+l]);

}
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long double choose_bound(long double a[], long double L, long double U,int n) 

{int i;

long double bound[4]; 

bound[0]=L; 

bound[l]=U; 

bound[2]=0;

for (i=0;i<n;i++) bound[2]+=a[i]; 

bound[3]=0;

for (i=0;i<n;i++) bound[3]+=minimum(Xmax,maximum(a[i],0));

bsortl(bound,4); 

return bound[2];

}

long double choose_boundl(long double a[], long double L, long double U,int n) 

{int i;

long double bound[4]; 

bound[0]=L; 

bound[l]=U; 

bound[2]=0;

for (i=0;i<n;i++) bound[2]+=a[i]; 

bound[3]=0;

for (i=0;i<n;i++) bound[3]+==maximum(a[i],0);

bsortl(bound,4); 

return bound[2];

}

void pardalos(long double x[], long double a[], long double b[],long double d,int n)

{int *unsetv;

long double *intervalpts;

long double *templ;

int *temp2;

long double min=-(long double)MAXFLOW,
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max=(long double)MAXFLOW; 

long double tightsum=0, 

slackweight=0, 

testsum=0; 

int i,j=l,counter; 

long double mid; 

int pts_size; 

int unsetv_size;

unsetv= (int *) malloc(n*sizeof(int));

intervalpts= (long double *) malloc((2*n+2)*sizeof(long double));

pts_size=2*n+2;

unsetv_size=n;

for (i=0;i<n;i++) unsetv[i]=(i+l);

for (i=0;i<n;i++) intervalpts[i]=a[i]; 

for (i=n;i<2*n;i++) intervalpts[i]=b[i-n]; 

intervalpts[2*n]=-(long double)MAXFLOW; 

intervalpts [2 *n+1 ]=(long double)MAXFLOW;

for (;(unsetv_size!=0);){

tempi = (long double *)malloc(pts_size*sizeof(long double)); 

memcpy(temp 1,intervalpts,pts_size*sizeof(long double));

mid=qmedian(templ ,pts_size);

free (tempi);

testsum=0;

for (i=0;i<unsetv_size;i++) if ((b[unsetv[i]-l]-mid)<0) testsum+=b[unsetv[i]-l];
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testsum+=a[unsetv[i] -1 ];
else if ((a[unsetv[i]-l]-mid)>0)

else testsum+=mid;

testsum=testsum+tightsum+slackweight*mid;

/******** * UPDATE *******************/

if (testsum<=d) min=mid; 

if (testsum>=d) max=mid;

tempi = (long double *)malloc(pts_size*sizeof(long double)); 

counter=0;

for (i=0;i<pts_size;i++) if ( ((intervalpts[i]-min)>0) && ((intervalpts[i]-max)<0) ) { 

temp 1 [counter]=intervalpts[i]; 

counter++;

};
pts_size=counter; 

free (intervalpts);

intervalpts = (long double *)malloc(pts_size*sizeof(long double)); 

memcpy(intervalpts,temp 1 ,pts_size* sizeof(long double)); 

free (tempi);

temp2 = (int *)malloc(unsetv_size*sizeof(long double)); 

counter=0;

for (i=0;i<unsetv_size;i++) if ((b[unsetv[i]-l]-min)<LIMIT) tightsum+=b[unsetv[i]-l];

else if ((a[unsetv[i]-l]-max)>-LIMIT)
tightsum+=a[unsetv[i] -1 ];

else if (((a[unsetv[i]-l]-
min)<LIMIT)&&((b[unsetv[i]-l]-max)>-LIMIT)) slackweight++;
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else {

temp2[counter]=unsetv[i];

counter++;

};

unsetv_size=counter;

free(unsetv);

unsetv= (int *)malloc(unsetv_size*sizeof(int));

memcpy(unsetv,temp2,unsetv_size*sizeof(int));

free(temp2);

j++;

}

for (i=0;i<n;i++) if (b[i]<=min) x[i]=b[i];

else if (a[i]>=max) x[i]=a[i];

else if ((a[i]<=min)&&(b[i]>=max))
x[i]=(d-tightsum)/slackweight;

}

long double qmedian(long double a[], int n)

{
int low, high ; 

int median; 

int middle, 11, hh;

low = 0 ; high = n-1 ; median = (low + high) / 2; 

for (;;) {

if (high <= low) /* One element only */ 

return a[median] ;

if (high = low + 1) { /* Two elements only */ 

if (a[low] > a[high])
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SWAP(a[low], a[high]); 

return a[median] ;

}

/* Find median of low, middle and high items; swap into position low */ 

middle = (low + high) / 2;

if (afmiddle] > a[high]) SWAP(a[middle], a[high]); 

if (a[low] > a[high]) SWAP(a[low], a[high]);

if (a[middle] > a[low]) SWAP(a[middle], a[low]);

/* Swap low item (now in position middle) into position (low+1) */ 

SWAP(a[middle], a[low+l]);

/* Nibble from each end towards middle, swapping items when stuck */ 

11 = low + 1; 

hh = high; 

for (;;) {

do 11++; while (a[low] > a[ll]); 

do hh—; while (a[hh] > a[low]);

if (hh < 11) 

break;

SWAP(a[ll], a[hh]);

}

/* Swap middle item (in position low) back into correct position */ 

SWAP(a[low], a[hh]);

/* Re-set active partition */ 

if (hh <= median) 

low = 11;

if (hh >= median)
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high = hh - 1;

}

}

/* * * * * ^converting solution to proper form FOR AVAILABFE**********/

for (i=0;i<n;i++) X[i]=(Y[i]-apokl[i])- xpar[i];

for (i=0;i<n;i++) Y[i]=xpar[i]+apokl[i];

Temp = Available; 

while (Temp !=NULL){ 

x[Temp->n] = X[i];

Temp->g_y = Temp->g_y - X[i];

Temp = Temp->RightLink;

}

/***** * converting solution to PROPER FORM FOR GROUNDED**********/ 

for (i=0;i<n;i++) H[i]=(G[i]-apokl[i])- xpar[i];

for (i=0;i<n;i++) G[i]=xpar[i]+apokl[i];

Temp = Grounded; 

while (Temp != NULL){ 

h[Temp->n] = H[i];

Temp->g_y = Temp->g y - H[i];

Temp = Temp->RightLink;

}

#undef SWAP
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/***********ppqp) the optimum solution***********/

if(KOSTOS[Zl][Z2]<P)

{
P=KOSTOS [Z1 ] [Z2];

*Q=P;

*fl=Zl;

*f2=Z2;

for (i=0;i<N;i++) k[i]=x[i+l]; 

for (i=0;i<N;i++) p[i]=y[i+l]; 

for (i=0;i<N;i++) q[i]=g[i+l]; 

for (i=0;i<N;i++) r[i]=h[i+l]; 

for (i=0;i<N;i++) v[i]=a[i+l];

}

/***********RETURN TO THE INTIAL STATE AND VALUES*********/ 

if(Zl>0)

{
while(i<=Zl)

k=T ail_Grounded->n;

q=y[Tail_Grounded->n];

append l(k,q,&Available,&Tail_Available);

delete_end(&Grounded,&Tail_Grounded);

i++;

}

if(Z2>0)

{
while(j<=Z2)

{
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p=Tail_Available->n; 

r=g[T ail_A vailable->n]; 

appendl(p,r,&Grounded,&Tail_Grounded); 

delete_end(&Available,&Tail_Available);

j++;

}

}

ACNode *current;

i=i;

current=A variable; 

while(current != NULL)

{
if(i<=Zl)

current->g_y=current->g_y+x 1 [current->n];

else

current->g_y=current->g_y+x[current->n];

i++;

current=current->RightLink;

}

}

{
ACNode *current;

i=i;

current=Grounded; 

while(current != NULL)

if(i<=Z2)
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current->g_y=current->g_y+h 1 [current->n];

else

current->g_y=current->g_y+h[current->n];

i++;

current=current->RightLink;

}

}

/***********ppjp) Qp *********/
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Appendix B C Implementation of Algorithm for the Generation

of Random Data

int *a;

long double *y,*g;

long double Xmax=50,Y=300,G=320,Ymin=0.1 ,Gmin=0.1 ,l=0.95,u=l .05; 

FILE *myfile;

myfile=fopen("fleetl ,txt","w");

printf("DOSE N:\n"); 

scanf("%d", &N);

C=0.2*N;

Cl=ceil(c);

0.15*N <nao ^).2*N; //nao: possible # of grounded aircraft

/*Count how many integers are between these two numbers and assume that there are

“count”.*/

W=(double)rand()/(double)(RAND_MAX);

p=0.15*N;

for(i=0;i<count;i++) {

k=0*j);
m=((i+l)*j);

if(W = 0) 

f=p;

else if(W>k && W<=m)
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f=p;

p++;

} /**f is the final number of non-available aircraft**/

for (n=0; n<N-f; n++) 

a[n] = 1; 

if(nao>0)

{

for (n=N-f; n<N; n++) 

a[n] = 0;

}

for (i=0;i<N;i++){ 

if (a[n] = 1){

y[n]=(((double)rand()/(double)(RAND_MAX)))*300;

g[n]=0;

}

for (i=0;i<N;i++){ 

if(a[n]=0){

g[n]=(((double)rand()/(double)(RAND_MAX)))*320;

y[n]=0;

}

}

B = 0.80*Sg;

S = 0.75*Sy;

/**************pRJNTF DATA***********/

fprintf(myfile,"%d\n",N);

fprintf(myfile,”%d\n",C);

fprintf(myfile,"\n%.2Lf\n%.2Lf\n%.2Lf\n%.2Lf\n%.2Lf\n%.2Lf\n%.2Lf\n\n", Xmax, 

G, Y, Gmin, Ymin, 1, u);
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for(n=l; n<=N; n++){ 

fprintf(myfile,"%d ", a[n-l]); 

fprintf(myfile,"%.2Lf ", y[n-1 ]); 

iprintf(myfile,"%.2Lf ", g[n-1 ]);

}
fclose(myfile);

/**********ENE) OF THE PRODUCTION OF RANDOM data**********/
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