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On the motion of charged particles subject to 

random forces and fields

Sarantis Pantazis

University of Thessaly, Department of Mechanical Engineering, 2009 

Association EURATOM - Hellenic Republic

Supervisor: Prof Dimitris Valougeorgis

Abstract

In plasma physics, it is often necessary to study the motion of a charged particle 

in a magnetic field, modelling the effect of collisions by additive random forces. 

Following Langevin, the force is taken to be the sum of a friction term, proportional to 

the velocity, and a fluctuating component referred to as “noise”. This stochastic term is 

assumed to be a Gaussian stationary process with vanishing mean and a covariance 

matrix characterized by correlation times which may vanish (“white noise”) or be finite 

(e.g. “coloured noise”). This problem, for the case of a uniform field, leads to two 

systems of equations, one for the ID longitudinal motion along the direction of the field 

and another for the 2D transverse motion perpendicular to it. These two systems can be 

studied independently. Because of the linearity of the equations, formal solutions are 

written and expressions for the expectation values of powers of the position and/or the 

velocity of the particle are obtained. For white noise, the problem has been studied 

analytically and numerically. However, the case of a stochastic term with finite 

correlation time has not been considered in detail.

Here, the influence of non-white noises is studied and numerical simulations 

based on two different approaches are presented. In the first approach, by adding an
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equation for the evolution of the stochastic term, the problem is reduced essentially to 

that of white noise. However, this technique is not to be adopted in general since it can 

only reproduce specific kinds of noise. In the second approach the forcing term is 

modelled by a Fourier series with random, uniformly distributed, phases and may be 

considered as more general. Simulations with the latter method are presented for a 

random force with the correlation function of coloured, Gaussian or Lorentzian noise. To 

judge the extracted accuracy from the computational approaches, the numerical results 

have also been compared with available analytical solutions. In addition, an extensive 

parametric study has been performed with respect to various involved parameters 

including the correlation time and the friction coefficient.

This numerical investigation serves for validating and benchmarking purposes of 

the implemented computational schemes and will be used in more complex problems. 

The problem of motion of a charged particle inside a space dependent electric field has 

also been investigated. The governing system of equations is non-linear and can only be 

solved numerically using the Fourier series approach because the explicit form of the 

field is not available. Results show good qualitative agreement with benchmark problems.

In the future, random motion in electromagnetic fields and inhomogeneous 

magnetic fields will also be considered.
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Nomenclature

BM
c

E(rj)

F(<)

m

N

N(t)

V*

P

<1

r(0

rab (*> s) 

T

V{t)

magnetic field

stochastic force component strength 

electric field

force imposed on the particle 

particle mass

number of Fourier series terms

sample values from a normal distribution jV(0,1)

number of simulations 

stochastic electric field strength 

electric charge

particle position vector [x, y, z] 

correlation function of A and B 

spectral energy density of A 

total time

particle velocity vector [w, v, w]

Greek symbols

r
Αω
ε

«0
λ

σΑ

Φη

Ω

friction factor 

frequency step 
correlation time

stochastic force vector [ξχ,ξγ,ξζ^

correlation length 
standard deviation of A

variance of A

random angle, uniformly distributed in [0,2π\ 

cyclotron frequency

maximum value of frequency considered
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Chapter 1 - Introduction and Literature Review
Any realistic model of a real-world phenomenon must take into account possible 

random fluctuations. Randomness (also referred to as “noise”) should be integrated into 

the calculation of any important quantity since an inherent variation is exhibited, 

prohibiting accurate estimation. This behaviour is modelled by stochastic differential 

equations.

One of the first to observe stochastic motion was Robert Brown in 1827. He 

noticed that particles contained in pollen move irregularly inside a fluid. His initial 

thought was that pollen was “alive” but this hypothesis was quickly rejected after 

repeating the experiment with coal dust. The theory of Brownian motion was later 

established by Einstein [1, 2], and verified experimentally by Perrin [3]. Similar results 

were obtained by von Smoluchowski [4] using the random walk approach. The use of 

equations of motion subject to random forces was introduced by Langevin [5] and his 

work is a concrete basis of Brownian motion. It led to an extensive use of stochastic 

differential equations in problems of physics and engineering.

The formulation developed by Langevin is the starting point for the study of 

particle motion, which in the general case is governed by the following equations

ψ=νθ (Μ)

m^jp-=q[E(r,t)+v(l)«B(r,t)] + F(t) (1.2)

Ρ(ί) = -ηιχν(ή + η>€ξ(ί) (1.3)

In the above expressions, the main unknowns are r(i) = (x(/),j>(f),z(/)) and

V (t) = {u{t), representing the particle position and velocity, respectively,

while F (t) = (Fx (t), Fy (t),Fz (/)) is the force vector and ξ (t) = (ξχ (ή,ξγ (/),ξζ (/))

the stochastic force component. We investigate motion inside time and space dependent 

magnetic or electric fields, denoted by B(r,/) and E(r,/). The constants q,γ and c

symbolize the particle’s electric charge, the friction factor and the strength of the random 

force, respectively. The equations are derived from their deterministic counterparts with
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the addition of a force F (/) exerted by the surrounding molecules, composed of a

friction component and a stochastic part. Furthermore, a random force may also stem 

from a stochastic component of the magnetic/electric field.

In the following chapters, two cases will be considered: the motion of a charged 

particle in a stationary, uniform magnetic field B(r,/) = B0ex under the influence of 

friction and random forces, and that of frictionless, one-dimensional motion in a spatially 

dependent stochastic electric field E(x,t) = E(x) with the properties

(£(*)) = 0 (1.4)

J2 _l_
(E(x)E(x+y)) = j-j=e ^ (1.5)

where p, λ are constants.

The stochastic term can have many qualities. It is frequently assumed to be a 

Gaussian stationary process with vanishing mean and a covariance matrix characterized 

by correlation times which may vanish (“white noise” [6, 7]) or be finite (e g. “coloured 

noise” [8, 9]). This noise can either be additive (as shown in equation 1.3) or 

multiplicative [10] or even a combination of the previously mentioned types [11, 12], 

There also exist non-Gaussian noises.

The appropriate type of noise depends on the application. The common properties 

of the noise term are

0) (f(0) = 0 and

(π) (ξί(ήξί(ί + τ)) = φ( |r|)

(1.6)

(17)
00

with i = x,y or z, and φ (|r|) is chosen so that j* 0(|r|)c/r - 1. The following types of
-oo

noise and their corresponding correlation functions will be used in this work:

White noise ^(|r|) = j(|r|) (1.8)

Coloured noise ^(H)=(2f) 'exp(_H/f) (19)

Gaussian noise φ(^ = [ε4π} exp(-r2/£r2) (1.10)
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Lorentzian noise : Φ( H) = ^[^(r2+e2)] (1.11)

The parameter ε is called correlation time and it indicates that the correlation of the 

stochastic force at time t with another instance of the force in the time interval 

[/-ε,/ + ε] is not negligible. It can be seen that, as ε -» 0 all noises approach the white

noise, while for ε -» go the noise vanishes. In Figure 1.1 the correlation function of each 

noise (except white) is plotted for two values of the ε parameter. There are significant 

differences among them, especially near zero r and for large correlation times ε (the 

Lorentzian noise is spread over a larger area while coloured noise has a steeper curve).

Figure 1.1: Correlation functions of coloured (blue), Gaussian (green) and Lorentzian 

(red) noise at two correlation times (dashed: ε = 0.2 , continuous: ε = 0.005).

A simplified version of stochastic motion is often described in literature using the 

“random walk” example [13], shown in Figure 1.2. Imagine a particle, which can either 

move left or right for a distance equal to Δ.χ . If motion to each direction has the same 

probability and x0 = 0, it follows that the mean displacement is zero. Its position after N 

steps will be
N

xN = Δχ, + Δχ2 +... + Δχν ~ ^ Δχ(
i=l

(1.12)
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where Δχ, = ±Δχ depending on the direction of motion, and the squared length of the 

trajectory will be

x2N=N(Axf + £ tejtek (113)
j=\,k=\,j*k

When (1.13) is averaged and due to the fact that the steps are independent from each 

other, it gives

(x2) = N(Ax)2 (1.14)

Therefore, since Δχ = υτ, where υ is the particle velocity and r the travelling time, we 

obtain

(x2) = —-(u-r Ax) = D t (115)

where l is the total time (t = Ντ) and D = uAx is a constant. It is important to note that 

(x2) is proportional to time t We can reach the same conclusion in three dimensions or

for non-fixed Δχ (in this case, knowledge of the probability distribution for the 

increments is necessary).

Figure 1.2: Realizations of the random walk example.

The dependence of the mean square displacement on time is a vital factor of the 

diffusion process. Therefore, assuming that

(r2)~ta (1.16)
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where r is the position of the particle, diffusion is classified via the superscript a. The 

value a = 1 corresponds to normal diffusion, while all other cases are termed anomalous. 

When a > 1 or a < 1, superdiffusive or subdiffusive processes take place, respectively. 

The special case a = 2 is called ballistic diffusion. An important difference between 

normal and anomalous diffusion is shown in Figure 1.3. In the case of anomalous 

diffusion, the trajectory consists of long ‘Tree flight” paths and local "trapping" of the 

particle in certain areas of the flow domain, in contrast to the more homogeneous motion 

appearing during normal diffusion.

Figure 1.3: Trajectories in conditions of normal (left) or anomalous diffusion (right).

Another way of investigation of stochastic motion is through the Fokker-Planck 

equation (FPE) [14], This is a partial differential equation which can be used to estimate

located in λ-Δα-, Therefore, equation (1.17) denotes the probability that the particle 

moves from (a-Aχ,ί-Δί) to (a,/). If we expand both elements of the integrand in a 

Taylor series we obtain the FPE

the probability that a particle will be located at a position x at time t. This probability can 

be calculated using the Chapman-Kolmogorov equation
oo

(1.17)

where ί/(Δν, α-Δχ) is the probability that the particle will move for Δχ when it is

(US)
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where V (v) is the mean velocity and /)(*) = ^Av2\/(2A/) is the diffusion coefficient.

An important difference of this approach is the appearance of the drift term (first term of 

the right hand side in equation 1.18) and the spatial dependence of both the drift velocity 

and diffusion coefficient. Therefore, it can be applied in a wider range of problems. 

However, it is valid only in near-equilibrium situations. The Fokker-Planck equation has 

not been used in this work.

A significant amount of work has been accomplished on the theoretical aspects of 

stochastic differential equations and their numerical solution. In contrast to classical 

numerical analysis, here we differentiate between “strong” convergence (a simulation 

path is approached) and “weak” convergence (a bulk quantity, such as the mean value of 

position, is approached) [15, 16], Some basic information on numerical simulation, as 

well as many details of the mathematics of Brownian motion, the Ornstein-Uhlenbeck 

process and the extraction of the spectral energy density function, are presented by 

Gillespie [17],

Similarly with classical numerical analysis, there are also algorithms of second 

order accuracy in time step [18], stochastic versions of Runge-Kutta algorithms [15, 19, 

20] and implicit schemes [15] Significant differences exist between them and their 

corresponding deterministic counterparts, which can not be applied in stochastic 

differential equations, and a lot of work has been performed in this field.

Alternatively, an integral algorithm is presented in [21, 22] for the generation of 

coloured noise. The authors consider it a substantial improvement since the time step can 

be larger than in first order algorithms and it is faster and more accurate.

Another method of calculation of the stochastic force is by a series obtained by 

Fourier transform [23], In this approach there are important merits, such as the fact that 

the spectral energy density of the noise is only needed. Thus, it is a very general approach 

able to implement any kind of noise. In addition, the long “tails” are simulated, a larger 

time step can be used and the series is ergodic (reaching convergence sooner). 

Furthermore, it is one-dimensional (some noises may need more than one equations) and 

the amount of terms required does not depend on the discretization. The authors give 

more specific instructions about the numerical parameters in [24] and the method is used

14

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:52:05 EEST - 3.147.84.240



again in [25, 26, 27] and compared with Fokker-Planck results. Due to its flexibility, this 

approach will be applied in the present work.

The force can also originate in the presence of a field that may have a stochastic 

component, which is the case for example when a charged particle moves inside a 

magnetic/electric field of a fusion reactor. This is a problem of increased interest during 

the past decades due to the applications in plasma confinement. The work of Lemons and 

Kaufmann [7] studies the motion of a particle in a uniform, stationary, non-stochastic 

magnetic field, while in [28] the magnetic field is composed of a constant and a 

stochastic perturbation component. Both articles include the influence of an additive 

white noise term. In [29] the influence of both stochastic magnetic and electric fields in a 

tokamak are studied assuming uniform average magnetic and electric fields with 

Gaussian fluctuations and using some experimental results. Plasma diffusion in the 

presence of a magnetic field is also examined [30] using the Fokker-Planck equation and 

explicit expressions are provided for the particle density and its moments.

Some work has also been performed in the measurement of stochastic magnetic 

fields in several tokamaks around the world (TEXTOR, Madison Symmetric Torus, 

ASDEX Upgrade). These data serve for the introduction of new models [31], the 

comparison with numerical simulations [32], or the determination of certain parameters, 

in order to numerically study fast MHD phenomena in a computationally efficient 

manner [33], Finally, there are also studies concerning the topology of stochastic 

magnetic fields in tokamaks [34] and stellarators [35],

Stochastic electric fields, dependent both on time and position, have also been 

investigated in many works. The range of applicability of the quasilinear theory is 

investigated in [36] using the problem of stochastic acceleration of a charged particle in a 

random electric field. A comparison of quasilinear theory, resonance broadening theory 

and direct numerical integration of trajectories is performed in [37] and agreement is 

found at low amplitudes Above a certain value, however, both theoretical formulations 

fail simultaneously. Ishihara et al [38, 39, 40] have also examined the turbulent motion of 

charged particles inside an electric field with stochastic fluctuations. They have mostly 

performed test particle experiments to determine the range of applicability of the quasi-
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linear theory, investigated the long term behaviour of the diffusion coefficient and also 

considered non-Markovian effects.

Apart from the applications mentioned above, many more exist in mathematics, 

engineering and physical sciences, causing a considerable increase of interest on the 

solution of stochastic differential equations during the last decades. In particular, there 

are numerous applications in genetics, electric circuits, financial sciences, fatigue 

cracking [16], structural mechanics [16, 41], stability of helicopter/spacecraft/satellite 

[16, 27, 42] and more.

The main purpose of this work is to study diffusion of charged particles inside 

electromagnetic fields. In particular, we are interested in the magnetic confinement of the 

particles in a fusion reactor and therefore our goal is to study their motion perpendicular 

to the magnetic lines. Furthermore, the motion of charged particles in a fluctuating 

magnetic field, with or without an additive random force, is of considerable interest in 

plasma physics, see e g. [43] and references cited there. For this purpose, numerical codes 

have been developed to simulate simple benchmarking cases and will be used in the 

future for the investigation of stochastic electromagnetic or inhomogeneous magnetic 

fields.

In Chapter 2, motion in a uniform magnetic field will be examined by the 

analytical solution of the governing equations. In Chapter 3, the motion under the 

influence of two types of noises will be investigated numerically, while in Chapter 4 a 

more general approach, suitable for the study of any noise or field, will be employed and 

benchmarked. The results will be analysed in Chapter 5. Finally, in Chapter 6 the case of 

motion inside a stochastic electric field will be examined.
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Chapter 2 - Motion in a uniform magnetic field

2.1 Introduction

The equations describing the motion for a positively charged particle inside a 

uniform, homogeneous, stationary magnetic field and subject to a random force are

dr(t)
v -v(*)dt V 1

(2.1.1)

(2.1.2)

II 1 + (2.1.3)

where r = [x,y,z], V = [u,v,w], f = \_fx,fy,fz~\ are the position, velocity, and force

per unit mass and ex is the unit vector in the x direction. These equations are derived 

from (1.1)-(1.3) after dividing with m and defining Ω = B0q / m as the cyclotron 

frequency, where m is the particle mass, q is the particle electric charge and B0 the 

strength of the magnetic field. The constant c is the strength of the stochastic force and 

may obtain different values parallel and perpendicular to the magnetic field, while γ is a 

parameter related to the friction exerted by the surrounding molecules. This problem can 

be decomposed in two systems of equations, one for the longitudinal motion along the 

direction of the field and another for the two dimensional transverse motion. These two 

systems can studied independently due to the linearity of the problem.

The analytical expressions for the average and standard deviation of the position, 

velocity and force applied on the particle are some of the useful information we can 

acquire about the motion. The correlation function

Rab(i,s) = (A(i)B(s)) (2.1.4)

is defined, where A, B can be substituted by any component of r, V or ξ and s = ί+τ

with t the current time and r an arbitrary time constant. The ξ correlations are 

preferred over / since the force contains the friction term as well and it is preferred to 

study only the noise term. These expressions will be used to benchmark the numerical
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results and to perform numerical simulations, as well as provide further insights to the 

underlying physics.

2.2 Motion along the magnetic field

The motion of the particle in the x -coordinate is not affected by the magnetic 

field. The system of equations is

ίΦ=.(/)
dt y ’

du(t)
dt

= -ru(t) + c£x(t)

The general solution of (2.2.2) for the corresponding velocity component is
t

u(t) = u0e rt i-ce *ξχ(ί^άί .
0

The position is calculated from (2.2.1) and is equal to
t

x(0 = xo+JI/(0 dt

(2.2.1)

(2.2.2)

(2.2.3)

= xo+j u0e n +cfe ^' ^x(t}dt dt

= jc0+—(\-e ^+crJj*e ‘^x[i}didt
0 t

(2.2.4)

After integrating once and changing t to t we obtain

x(‘)=xo+t^{ i-^)+7ii1-^'’')U(0i//·
/ / o ^ '

Since the term ξ (/ ) is stochastic, we can only acquire information on the mean 

value and standard deviation of position and velocity. The mean value of each quantity is 

obtained by averaging (2.2.3) and (2.2.4) since (ξχ (t)} = 0

(«,(/)) = »„*-* (2.2.5)

(x(l))=x0 + ‘^(\-e'·). (2.2.6)
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Due to the linearity of the problem, it is enough to solve for zero initial conditions. 

Therefore, x0=u0= 0 is assumed for the rest of the calculations and we have

t

u (t) = cefe* ξχ [t) dt
0

(2.2.7)

(2.2.8)

We are also interested in the correlations including the particle position and 

velocity. These are obtained by multiplying (2.2.3) and (2.2.4) accordingly and then 

averaging. For example, the variance of velocity is

Ruu(t1s) = {u(t)u(s))-lce rtjert ce ^je'^^s'^ds' C(t)dt
\ 0 _ 0

= c2e~^t+s^J|e^5 +t^ (ξ(s )ξ^dsdt =
0 0 

t s

= cze -s ^jdsdt (2.2.9)
0 0

with φ^ί -j’|j according to (1 8)-(l. 11). The integral of (2.2.9) can be simplified after 

some transformations (see Appendix B). The result is

Ku (ί’ή = ττ\β ή*~ή j «'VQ* \)dt +e~H‘~s) J e^^di
-t -i

-e -Hl+
Lo

(2.2.10)

This expression is valid for any non-negative t and 5, while for s = t we get

2 t

Y lo 0 J
Similarly, the correlations

^M = (x(0m(5)) =

= — -s^jdsdt -s'^jds'dt

(2.2.11)

(2.2.12)

0 0 0 0
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^ Μ=(*(')*(*))=
2 Γ t s t s

——j //^(K ~51}dsdt -e~rs^ers φ{^ί -s ^jdsdt 
r Loo oo

-e~nφ{^ -s^jds'dt +e”^'+,)Jje^'+s V(|/ -s^ds'dt 
0 0 0 0

can be calculated. For s~t we finally acquire

(2.2.13)

2 1
*χ»('>') = £Γ\\φ(^ί +β-2*\β*φ{ϊ)άί -e-» \φ(ΐ)άί +\ε*φ(ί)άί

Ύ ο ο
(2.2.14)

(2.2.15)

K{td) = ^u(Yt -\ + ε~η)\φ(ί')άί ~ 2γ\ (*’ ) ώ
' [ ο ο

+(le^ - ε~2" ) J β*φ (/') di - j β ^φ (/') di 1 
0 0 J

There is an alternative solution for the autocorrelation of position. It can be seen that 

and therefore

K(l,l) = 2\R„(i,i)di. (2.2.16)
0

Based on the above closed form expressions, some results for the noises (1 8)-(l. 11) are 

provided in Section 2.4.

2.3 Motion transversal to the magnetic field

The next step will be the solution in the two dimensions y and z, perpendicular 

to the magnetic field of frequency Ω in the direction of x . The governing equations are

d_
dt

d V
- Ω

0 f V
-γ

V
+ c

i-----
1___

dt w -1 0 w w L6J

(2.3.1)

(2.3.2)
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To calculate the mean values, we average (2.3.1) and (2.3.2) and as a result the noise 

terms are eliminated. The solution of the system is

<-Κ0> = +^[Vo +b(Wo + Ω>'ο)]

e~r‘
+----- [(Z»v0 - H,0)sin(Q/)-(v0 + dw'0)cos(Q/)J

(z(0) = jzo +*(-v0 +Ωζ0)]

β-η
H-------[(^vn - w0)cos(n/) + (vn + &w0)sin(O/)J

(2.3.3)

(2.3.4)

(v(0) = eyt [v0 cos(i>) + w0 sin (Ω/)] (2.3.5)

( m>(1 )) = e~r< [ w0 cos ( Ω/) - v0 sin (Ω/) ] (2.3.6)

The deterministic solution for the position of the particle for a non-zero initial 

velocity is a spiral trajectory, as shown in Figure 2.1. Due to the linearity of the problem, 

calculations with a random force can be performed with the particle at rest in the 

beginning and the complete solution is obtained with superposition with the deterministic 

path for the appropriate initial velocity.

Figure 2.1: Deterministic trajectory for c = 1, γ = 1, Ω = 10 and w(0) = 10.

For initial conditions equal to zero, the general solution is

dt dtM')1
-c \\e(Qi~ry'

]

vj
f1* T*
·*. 1

"--
-1

.*(')_ cUe
0 0

I

I

_

1

(2.3.7)
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(2.3.8)

Correlations can be calculated in the way shown in Section 2.2. The analytical derivation 

of the corresponding quantities is tedious and does not exhibit substantially different 

features in comparison to the one-dimensional problem, while the resulting expressions 

are more difficult to handle. It must be noted that for large times, the variance of position 

behaves asymptotically as

in the case of white noise.

2.4 Analytical solutions for various noises along the magnetic field

We are interested in the extraction of analytical expressions for the estimation of 

the variance of position x and velocity u and the x-u correlation at any given time for 

the specific noises (1.8)-(1.11). The behaviour of these quantities reveals important 

information about the nature of the motion. The equations extracted here will also be used 

to benchmark the numerical codes of Chapter 4.

At this stage the correlation function φ[ΐ) can be substituted from (1.8-1.11) into

(2.2.11), (2.2.14) and (2.2.15) and the integrals are either handled analytically (for white 

and coloured noise) or numerically (for Gaussian and Lorentzian noise). In the case of 

white noise, the expression

(2.3.9)

o
(2.4.1)

has been used. This is merely a convention, since Dirac’s function may be derived by 

taking the limit ε -» 0 of a sequence of functions Sc ), which can either be symmetric 

or not. The final expressions are

(2.4.2)
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(24.3)

iU'.')=|j[>r-3+4e-'’-<rw] (2.4.4)

for white noise and

(2.4.6)

(2.4.5)

(2.4.7)
/

+2a2 (l + a)e * +2^<72 -a-2}c~n +{a + \)e 2yt +[-2<?3 -2<72 +0 + 3J

for coloured noise.

The expressions (2.4.2) to (2.4.7) are consistent with the remarks of Chapter 1, 

that is, the variance of position is proportional to the time after a short transitional period. 

Therefore, in long term conditions normal diffusion prevails, but we are also interested in

from the integrals of (2.2.11), (2.2.14) and (2.2.15). For that purpose, a graphical 

representation of three correlations, (/,/), R^ (/,/) and Ruu (/,/), for certain values of 

the parameters is given in Figures 2.2 and 2.3. Four noises and two values of ε, namely 

10 3 and 10 1, are considered for a short time interval. It is seen that for small ε the 

curves practically coincide. This is not unexpected, since equations (1.9) to (1.11) can 

describe white noise as the correlation time approaches zero. Where larger values are 

examined, the curves display small differences near the beginning of time, where the 

exponential terms are still not negligible. Overall, they are qualitatively similar and for 

larger times (more than 7 units) the long term behaviour is recovered (R^ (tj) is

proportional to time and Ruu (/,/) is constant). We will also comment on the dependence 

of the results in terms of c and γ in Chapter 4, where a more detailed interpretation is 

attempted.

short times. It is not trivial to determine how small this time interval is in the general case
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Figure 2.2: Comparison of Ki1^) (υΡλ Κ{{^) (middle) and /ζ„(/,/) (down) for various 

noises, with c2 = 1, χ^ΙΟ1, ε -103 (left) and ff = 10 1 (right).
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Figure 2.3: Comparison of R^(t,t) (up), Rm (/,/) (middle) and Rm (t,t) (down) for various 

noises, with c2 = 10, γ = 1, ε = 1 O'3 (left) and ε = 1CT1 (right).
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Chapter 3 - Discretized form of the governing 
equations

3.1 General considerations

The discretized form of equations (2.1. l)-(2.1.3), obtained by substituting 

dA ->AA = A(t + At)-A(t) (3.1.1)

where A is equal to any component of r, V or ξ, is required to perform numerical 

calculations. The system depends on the type of stochastic force. The discretized

governing equations are

x(t + At) = x(t) + u(t)At (3.1.2)

y(t + Δ/) = >’(/) + ν(/)Δ/ (3.1.3)

z(t + At) = z(t) + w(t)At (3.1.4)

u (t + Δ/) = u (/) - γιι (/) Δ/ + εξχ (/) At (3.1.5)

ν(/ + Δ/) = ν(/) + (-χν(/) + Μ'(/)Ω )Αί + οξ>,(ί)Αί (3.1.6)

η'(/ + Δ/) = + ν(?)Ω)Δ/ +οξ. (ί)Α/ (3.1.7)

In the case of white noise, the ξί (/) term with / = x,y, z can be substituted by 

ξί(ή = Ν(ή/^[ΑΪ (3.1.8a)

with N(t) denoting random values conforming to a normal distribution with zero mean 

and standard deviation unity ;V(0, l). The explanation for this approximation is found in

[44], Additional equations can also be added to describe the evolution of the stochastic 

force if we are interested in simulating coloured noise [21], The expressions

ξί(ί + Αή = ξί(ή-^-Α( + ^-Ν(ί) (3.1.8b)
ε ε

are included for each random force component, i = x,y,z . This is a common practice in 

the literature when coloured noise must be included. However, it must be noted that, 

unless the initial conditions are appropriate, that is £(-oo) = 0, this is not the typical 

coloured noise described by (1.9). In this work, we have used zero initial conditions for
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results. It must be noted that other noises, such as Gaussian or Lorentzian, can not be 

simulated this way since we can not extract an expression like (3.1.8) for the evolution of 

noise to close the system.

Since the majority of available random generators produce random numbers R 

uniformly distributed in [0,l], an algorithm is required to obtain the appropriate noise.

The most commonly used methods to obtain a non-uniform distribution are: i) the 

inverse-cumulative [45], ii) acceptance-rejection [45] and iii) Box-Mueller method [6], 

The first one is unsuitable for this case because it can not reproduce a normal distribution. 

A description and comparison of the two latter methods is found in Appendix B. The 

Box-Mueller algorithm is preferred in this work due to its simplicity and relatively small 

computational cost.

The initial conditions are r (0) = Vt (0) = ξι (0) = 0. Alternatively, the initial value 

of the force ξ0 could be selected according to a Gaussian distribution [9, 21]

the stochastic force, i.e. £(0) = 0, and therefore this is a special case of the Chapter 2

This is achieved using again the Box-Mueller algorithm.

3.2 Analytical solution

The mean values of position and velocity are obtained by averaging the 

discretized equations of white noise (3.1 2)-(3.1.8a). For example, for (3.1.2) we write

(3.1.9)

(x(t + At))-(x(t)) = (u(t))Al

By dividing with At and taking the limit Al -> 0 we obtain

(3.2.1)

and by repeating this procedure for the rest of the quantities we get

(3.2.2)

27

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:52:05 EEST - 3.147.84.240



(3.2.3)ά-ψ-Η'))

^=-rHf(4))n 

Ά-Μ, )>-(,·(,)>ω

The solution of this system of first order ode’s is

{y(f)) = fTp-p +y[v« +*("'« +rl>’«)]
Q-n

Λ----- [(Z>v0 - w0) sin (Ω/) - (v0 + bw0) cos (Ω/)]

[ 0 +^[wo +Λ(-ν0+Οτ(1)]

e~y*
H------ [(/>V0 ~W0)cOS^/) + (v0 +^o)s*n(^0]

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

(u(i)) = u0ert (3.2.10)

{v(t}) = e r‘ [v0 cos(^) + u’0 $ίη(Ω/)] (3.2.11)

(u’(/)} = e~yt [vr0 cos(fll) -v0 5ΐη(Ω?)] (3.2.12)

These expressions are the same as those obtained in Chapter 2. Therefore, it is seen that 

the order of averaging and integrating the governing equations does not play a role.

It is well known that variances and covariances can be calculated using the

expressions a2A(t) = (A2{t)')-lKA(t)'f and ΰον[Λ(/)/φ)] = φ(/)/φ))-(Λ(/))(β(φ. By

squaring and averaging (3.1.2) and omitting higher powers of Al we get

(^x2 (t + Αίγι = (^x2 (ί)^ + 2^\:(φ/(ί)^Δ/ (3.2.13)

If we reverse the order of squaring and averaging we obtain
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(x{t + At)Y =(x(t))2 + 2(x(f))(u(t))At (3.2.14)

Equations (3.2.13) and (3.2.14) can be combined to give an ordinary differential equation 

for the evolution of the variance of position as Δ/ -» 0

=2covHo»(o} (3.2.15)

In a similar way we can extract an o d e. for each variance and covariance. The final 

system for ID motion under the influence of white noise also includes the equations

dt
■=~2yal{t) + c2

dcoxix(t)u(t)) , . . .
--------^---------L = -ycov{x{t)u(t)} + au(t)

(3.2.16)

(3.2.17)

The initial values of all variances and covariances are assumed to be zero. Solving 

(3.2.15)-(3.2.17) yields the final expressions

y
yt-2(\-er,) + U\-e2yl) (3.2.18)

(3.2.19)

cov{x(f)z/(/)} = ^—^{\-2e n +e 2/')
2 y

(3.2.20)

The corresponding system in y, z already exists in the literature [7] and therefore is not 

repeated here. This procedure can be employed to simulate non-white noises, using 

equations (3.1.8) for the evolution of the noise term. The averages remain the same, while 

the covariance o d e’s are presented in Tables 3.1-3.5. The one-dimensional problem 

leads to the equations of Table 3.1, while for the two-dimensional motion perpendicular 

to the magnetic field we must use equations (3.2.27)-(3.2.47), appearing in Tables 3.2- 

3.5. These were separated to indicate the discrete steps through which the solution is 

reached. Due to the symmetries of the problem, some expressions are shown to be equal 

(or opposite). The solution of the two systems is shown in Tables 3.6 and 3.7. In the 

following expressions, we have substituted a = εγ and d = εΩ.. It has been confirmed 

that in the limit ε —> 0, the resulting equations are identical to the corresponding white 

noise equations.
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Table 3.1: System of ode’s for the ID problem.

J 2cov{*(')«(')} (3.2.21)

dt ~ 2γσ" (0+2ccovM04(0} (3.2.22)

dGl (0 2σ{ (f) i i
ώ ε ε2

(3.2.23)

^ ώ rcov{x(/)i/(/)} + cc°v{x(/)4(/)}+a„2(/) (3.2.24)

rfcovMo&w}=_g+^eev{w(0&(0}+OTi ( (3.2.25)

_ _cov{x(,)i,(o}+cw{ii(/)f (<)} (3.2.26)

Table 3.2: First system of ode’s for the 2D problem.

dmM>)rn __ _covw/)f,(o}+cm{r(0f (0} (3.2.27)

</cov{,(,)f..(0} = _cov{r(0i;(0} +cov{„,(()i (/)} (3.2.28)

dsm{y(t)ir{t)} _ ^ίΗ')ί, (')}+οον{ν(,κ(,)} (3.2.29)

dcov{z(/)i,(r)} _ «wt(*)f,(0} + cov{wWi (;)j (3.2.30)

Table 3.3: Second system of ode’s for the 2D problem.

d°i (0 2σΐ (0! i
dt ε ε2

(3.2.31)

άσ1 (0 _ (0 , ι
dt ε ε2

(3.2.32)

</cov{v(/)£,(/)} _ 

dt
f 0 / + - cov{v(/)£v (/)} + Qcov{w(f)£, (/)}+ca2f (t) (3.2.33)

</cov{w(/)£(/)}

dt
r i
/+- 

V «·,
cov {w(04 (0} - ΩCOV {v(/)ξζ (0} + «0 (/) (3.2.34)

ί/cov {*>(/) £,(/)} 

dt (7+T
c°v{w(ί)ξγ (t)} - Ωοον{v(t)ξy (/)} + ccov[ξγ (ήξζ (/)} (3.2.35)

i/cov{v(/)£(/)} _ ί 

dt ~ 1 r0)
ΖΟ\{ν{ί)ξ2 (0} + Qcov{u’(/)^. (/)}+ccov{^r (ήξ2 (/)} (3.2.36)

^COV{4 (04 (0} _ 2covfe (04 (0}
dt ε

(3.2.37)
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Table 3.4: Third system of o d e’s for the 2D problem.

d( ^Οθν{>’(/)ν(/)} + Ωθθν{>'(/)ν(/)} + 6·Οθν{>'(/)^,(/)} + σ,:(/) (3.2.38)

dt ~~ rcov{>'(/)^(/)} Qcov{>-(r)v(i)} + c'cov[}'{ΐ)ξ- (i)} + cov{v(V)w(i)} (3.2.39)

^ = 7COv|z(/)v(/)j + Qcov[r(/)w'(/)} + ccov|r(/)^v(/)J + cov{v(/)u(/)| (3.2.40)

dt rcov{z(/)M'(/)} Ωοον{ζ(/)ν(/)} + όχον{ζ(/),^(/)} + σ;(/) (3.2.41)

^ = 2γσν (/) + 2Qcov{v(f)w(f)} + 2ccov{v(/)£v, (7)} (3.2.42)

d^ = 2γσκ(ή 2Qcov{v(/)m’(/)} + 2ccov{m’(/)£. (/)} (3.2.43)

^ ώ 2ycov{v(/)w(/)} + Q(ffw(/) σν (/)) + ccov{vt'(/)^, (/)} + ccov{v(/)^ (?)} (3.2.44)

Table 3.5: Final system of ode’s for the 2D problem.

df -2cov{^(/)v(/)} (3.2.45)

J )-2cov{z(/)»♦■ (i)} (3.2.46)

</cov{j-(0r(»)}=cov^(()w(<)j+covjz(()v(i)} (3.2.47)

Table 3.6: Solution of the ID problem.

σ; (/) = c2 {4aV(,/ff+r)i -(e~2n +a3e~2t,E)(a +1)-A(ert-a2e tU )(a2 -1) 

-(a-l)2 [3 +a(5 +3a)-2^(1 +a)/]|/|^2^3 (a-l)(a2
(3.2.48)

2( , 2 -(l +a)e~2r‘ + 4ae~^' E+r^‘ +(a-l)“-ae 2"ε (l + a)

°u{t)~C 2/(a-l)(a2 -l)
(3.2.49)

-l W=i(>-<■“*) (3.2.50)

cov |x(/)h (/)} = c2 |V~rt - ae ,lE + (a -1)J / |^2χ2 (a -1)" (3.2.51)

οον{//(/)£Λ. (/)} = “ l_2e - a + e~216 (a + l)J/(l-a:) (3.2.52)

cov {*(/)£ (/)} = c[a(a-l) + a(l + a)e“2i/e+2e',/<r(l-a2)-2e~(1/e+r)' /^2/(a2 -l)J (3.2.53)
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Table 3.7: Solution of the 2D problem.

σ1 (0 = σ.- (ή = -c2 {e 2yl [r + Ω; ][(l + af +a 

-4ae t,£ [αχ + ί/Ω][/(α-ΐ)+ί/Ω] (l + a)~ + d2 

+Ω;κ(8αί/ + 6α2ί/ + 3αρ)-2;κ(;!/2 + Ω2)((ΐ + α)~ 

(ν(α- \)-d&)cos(Qt) + (l -2α)Ω8ΐη(Ω/)^4 

-{γ + αγ-άζί) οοδ(Ω/) + (ΐ + 2α)Ω8Ϊη(Ω/)]^

l2 + ae 2ί/ε[αγ + α

+ (a-iy+d2

+i/2j/J + 4^ e-»[ 

-e-[VE+r)t{a2+d2) 

)i\2r[r-+nl^\

Ώ]2[(

-Ω2 H 

(1 + a)

l + 2(c

1 + of + d 

-γ2 (3 + 8a

2+d2~

f-a~)+(

2

+ 8a2 + 3a3^

a2+rf2)2ll

(3.2.54)

= = {(ΐ + α)

+4ae {Vcrr)t [(ΐ + α)οοδ(Ω/

(a -1)2 + ί/2 ] - (e~2·" 

) — sin (Ω/)^|| /12^

+ ae_2i/e)[^(l +af 

1 + 2 {d2 -a2) + (a

+ c/2]

2+d2
>1

(3.2.55)

(3.2.56)

cov{v(/)m,(/)} = cov{>■(/)ζ(/)} = οαν{ξγ (ήξ2 (/)} = 0 (3.2.57)

cov{v(/)£v(i)} = cov{w(/

+2e^he+/>t — t/2 — 1^ co ϊ(Ω/) 2adsin[Cif) j /j2 1 4 (t/ -a ) f 2 (a2

)[(1+«)2' 

+ J2) J

f</2
(3.2.58)

cov {ν(ί)ξ2 (/)} = -cov {w(ί)ξν (0} = c{</[[(« -1)2 + d2 ] - [(1 + 6 

+2β~{υε+γ)ι \ΐαάοοδ(Ω7) + (α2 -d2 — l)sin(Ω/)^|/1^2 + 4^c/2 -α2)

if+d 

+ 2 [a2

2Υ2,Ιελ
(3.2.59)

COV

ο-

/(

W/)^W}=covM/

t- a)2 + d2 J - 2e "εγ 1 

a2 -3d2 — l)cos (Ω/) +

)^(/)}=c{^(i+a)(r+i2:)[(«-i)2- 

t- 2 (j2 - a2) + (a2 +1/2): 1 - 2β^νε+γ^

Ω(ΐ-3α2 + £/2)δίη(Ω/)^|/j2[V2 +Ω2

+ i/:J + £-c 2</ε(α-ΐ)(;κ2+Ω2 

1 + 2 (d2 -a2) + (a2 +d2)

(3.2.60)

cov{>’(/)ξ: (/)} = - covjr 

(l + α)2 +d2~\-2e~tlEQ 1 

Ω(ΐ -3α2 + c/2)cos(Q/)-t

(t)ξν (/)} = c {ω (ο2 + d2) [(a -1 f + d2 

+ 2(t/2 -a2) + (a2 +i/2)2J + 2c {Ue+r)t 

-γ[\-α2 + 3<72)δίη(Ω/)^/ |2[χ2 + Ω [l + 2

Ώ(α2 +d 

[d2-a-y

2)

-(»=+</=)2]

(3.2.61)

cov

<

|_y(/)v(/)J = cov{z(/)w(/)} = c2 \e2rl + e 2 

ae~{λΙε+γ')ι +e~n (a-l))cos^/)-i/(-e^l£

Ιε (a2 + d2) - 2e 11 ε [ a {a

'r)t +c/()sin(^)]J/|2

“0 + i^2]‘ 

/+Ω2]

(-Γ(α-ΐ)2 +c 

(a-l)2 +d2
])

(3.2.62)

cov

-2γ

-e

{^(i)w(/)} = -c°v{z(/)v(/)} = c2 |-Ω(ΐ + 

^] + 2a-(a2 +dzy^ + e'rt (l+a 

1 l£+y)‘ [a3 + (2 + a)c/2]jsin^/) j/|2χ[;κ2 +

2a) (a-l)2+t/2J

)“ + d2 Jjcos(^)-

Ω2] 1 + 2 (d2-a2

+ Ω(<+

i-iac (1

M"2

2y1 + 2ae '

ic+rY +e~fl

+ d2) J

“)[(l + ")22

(a-l) (1+i

d2

l)2+d2~ (3.2.63)
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3.3 Numerical implementation

of section 3.2, provided that analytical expressions for the mean value and variance exist. 

Then, the exact updating formulas can be used (only written for the x-component here) 

u(t+dt) = (u(t))+a2u(t)Nx(t) (3.2.1)

The time interval (0,/) can be replaced with (/, Z + Δί) in the analytic solutions

. X / / \\ covlx(t)u(tj):(/+<*) = {*(»))+—L_—!#,(») + ίσ· (')]’
cov{x (/)//(/)]

h2«]2
-AT, (/) (3.2.2)

where Nx (t) and N2 (/) are independent normal random variables with the properties

mentioned in Section 3.1, are used to obtain numerical values for χ(ί + Δ/) and

μ(/ + Δ/) and progress in time, step by step [6, 7], A proof of the relations shown above

is straightforward and may be found in [6], The main shortcoming of this approach is that 

the analytical expressions must already be available and therefore has little practical 

value since it can only be used to obtain individual trajectories.

Alternatively, the discretized equations (3.1.2)-(3.1.8) can be directly used to 

simulate the motion step by step in time (In this work, this technique will be called Direct 

Simulation, DS). This is a first order approximation and corresponds to a set of Euler 

integration steps. After realizing several hundreds of simulations, the values of position, 

velocity and force and their squares are averaged for every time instant in order to obtain 

the mean values and standard deviation. In one-dimensional problems, where only one 

random number is needed in every iteration, the second number generated by the Box- 

Mueller method is stored and used in the next step. This is the main numerical algorithm 

used in this chapter.

The numerical parameters are the time step At and the number of simulations 

Nr . In order to determine the impact of the time step, a series of tests was performed

concerning the auto-correlation function of the stochastic force ξχ (t) in the case of non­

white noise. The numerical values were benchmarked with the analytical ones, while the 

time step ranged from 10 2 down to 10 6 and 102 simulations were executed (NR = 103).
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Some results are shown in Table 3.8. It is seen that for smaller time intervals the 

comparison is very good, while for larger At it is not possible to obtain some correlations 

and others are not estimated correctly. This is especially true for smaller values of 

correlation times ε because in this case white noise is approached and φ{τ) is closer to

Dirac delta function. The time step also plays an important role due to the fact that the 

numerical procedure consists of a set of three Euler type integration steps and therefore 

the results are strongly dependent on the time step. Furthermore, exceedingly large file 

sizes (about 1.5 Gb for a set of five simulations, their averages and standard deviations) 

occur when the quantities of interest are stored in every time step. More advanced 

schemes, such as stochastic Runge-Kutta integration, may be applied in the future.

Table 3.8: Estimation of φ(τ) correlation using a variable time step, with c = 1, γ - 1, NR = 103.

At
0.0002 0.0005 0.002

r
0.005 0.02 0.05 0.2 0.5

10 3 - - 0.50 -0.26 -0.24 -0.13 -0.02 -0.09
10 4 426.35 310.84 64.40 2.78 0.11 -0.21 0.29 -0.21ε = 10
10 5 411.16 304.15 67.30 3.44 0.18 0.15 -0.34 0.14

Analytical 409.37 303.27 67.67 3.37 0.00 0.00 0.00 0.00

At
0.0002 0.0005 0.002

T
0.005 0.02 0.05 0.2 0.5

10 3 - - 42.46 30.94 6.39 0.27 -0.04 -0.06
10 4 49.23 47.76 41.08 30.39 6.80 0.40 -0.04 0.02

£• = 10
10 5 49.04 47.59 40.96 30.34 6.74 0.35 0.10 0.01

Analytical 49.01 47.56 40.94 30.33 6.77 0.34 0.00 0.00

At
0.0002 0.0005 0.002

T
0.005 0.02 0.05 0.2 0.5

10 3 - - 4.89 4.74 4.08 3.02 0.67 0.02

oIIC
O

10 4 4.96 4.94 4.87 4.72 4.07 3.01 0.66 0.03
10 5 4.94 4.93 4.85 4.71 4.05 2.99 0.66 0.07

Analytical 4.99 4.98 4.90 4.76 4.09 3.03 0.68 0.03
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The influence of the number of simulations was also investigated. The mean and 
variance of position and velocity in the x-direction was calculated with Direct Simulation 
and compared with the analytic expressions. It is observed in Figured 3.1 that the 
numerical curves fluctuate around the analytical ones. This characteristic behaviour is 
inherent in every numerical method for stochastic differential equations and disappears if 

a larger number of realizations is taken into account. It is seen that, for 104 simulations, 
the analytical and numerical curves eventually coincide. More calculations were 
performed for this parameter and some results are shown in Figure 3.2. The value of three 
correlation functions was calculated and the number of simulations didn’t seem to affect
them significantly after about 1000 realizations. However, since the computational cost 
for this method is not very high, we have used 10000 realizations for the calculations of

this chapter (Nr = 104).

χ = 1, * = 10“2, Δ/ = 10 3).

Figure 3.2: Convergence of typical correlation functions with increasing number of 
simulations (c = 1, γ -1, ε = 10 2 (left) and ε -10 '(right), Δ/ = 10 4).
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Finally, it was assumed that satisfying accuracy can be achieved faster with single 

precision simulations. It has been found that it can be used for individual realizations but 

is inappropriate for the calculation of the standard deviation because the accumulation of

round-off errors results in comparable values of (A')2 and 2) · Therefore the standard

deviation can not be estimated in some cases and double precision becomes necessary.

Summarizing, the parameters shown in Table 3.9 have been used in the 

calculations of Section 3.4, unless otherwise stated These values have also been used for 

the two dimensional y-z problem.

Table 3.9: Final choice of numerical parameters for extensive Direct Simulation runs.

DS ε
10‘3 lcr ΚΓ

10000 10000 10000
At 10'5 10"4 10-4

3.4 Numerical results

The mean value and standard deviation of the two most important quantities, 

position and velocity, were calculated numerically and analytically for non-white noise 

and the results are displayed in Figures 3.3-3 8. Due to the large number of simulations 

performed, the agreement between analytical and numerical curves is very good in every 

case examined (maximum relative error is less than 5%). It can be observed that for the 

time interval examined, the long term behaviour, i.e. σ2χ (/) ~ t, (/) = constant, is

reached in most cases.

In Figures 3.3-3.5, the effect of the three physical parameters, c, ε and γ, is 

investigated It is shown in Figure 3 3 that, for the values of ε examined here, the 

differences in the estimation of the mean and variance were very small. Therefore, we 

deduce that this parameter does not play an important role when it takes values on the 

specific interval and for non-white noise.

In Figure 3.4, it is observed that a change in the noise strength c does not change 

the results qualitatively. The magnitude of the standard deviation depends proportionally 

to c, as can be seen from taking the square root of (3.2.48) and (3.2.49). Finally, the
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value of γ strongly affects the standard deviation curve, as seen in Figure 3.5. The 

curvature of the standard deviation curve changes significantly since the maximum 

velocity is reached in a larger amount of time. This leads to higher velocities and larger 

position variances.

A representative two-dimensional case is also shown in Figure 3.6. It is seen that 

the variation of c changes the standard deviation curves similarly to the one dimensional 

case. It must be noted that the presence of oscillations in this case is due to the transversal 

magnetic field. The influence of these parameters will be commented again in Chapter 4, 

where results obtained by a different method will be presented.

Several simulations are also plotted in Figures 3.7-3.8. In Figure 3.7 the exact 

updating formulas with a fixed sequence of random numbers are used to simulate several 

instances for different values of ε. The mean ± one standard deviation curves are also 

drawn. It is seen that, as the correlation time becomes smaller, the curves retain the same 

form but with a lower magnitude. Finally, the discretized equations have been used in 

Figure 3.8 to track the trajectory of the particle in each time step when c = 1 ,ε - 10 2 and 

γ takes the values 10 2,10 ',1. It is seen that the displacement and velocity become 

larger as the friction parameter decreases.
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Figure 3.3: Mean and standard deviation of position and velocity for the ID problem,
with c = \,y = \, £“ = 10 3 (up), £ = 10 2 (middle), £ = 10 1 (down).
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Figure 3.4: Mean and standard deviation of position and velocity for the ID problem,
with £ = 10~3,y = l, c = 0.1 (up), c = l (middle), c = 10 (down).

39

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:52:05 EEST - 3.147.84.240



Figure 3.5: Mean and standard deviation of position and velocity for the ID problem,
with c-1, £ = 10”', γ = \ (up), χ = 0.1 (middle), γ = 0.01 (down).
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Figure 3.6: Mean and standard deviation of position and velocity for the 2D problem, with
ε = 10"2, γ = 1, Ω = 10, c = 0 1 (up), c = 1 (middle), c = 10 (down).
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Figure 3.7: Realizations using the exact updating formulas, with c = 1, γ = 10 2 (up),
y-\0l (middle), γ -1 (down).
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Figure 3.8: Realizations using the discretized form of equations, with c = 1, ε = 10 2, 
χ = \ (up), ;κ = 10_1 (middle) and χ = \02 (down).
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Chapter 4 - Fourier series expansion

4.1 Introduction

The stochastic force term can also be obtained in a different way. It is 

approximated by a Fourier cosine series which depends on the noise’s spectral energy 

density (SED) and the discretization of the frequency space. This approach has been used 

for a long time [27] and is known to have many advantages [23], Any type of noise 

(including white, coloured, Gaussian and Lorentzian) can be simulated by substituting the 

appropriate SED, without the need for an explicit equation for the time evolution of the 

force. The result is an ergodic, Gaussian process and a substantial portion of the “tail” is 

reproduced, a characteristic which is missing when the Box-Mueller algorithm is used. 

This was the case in the calculations of Chapter 3. The time step can also be at least one 

order of magnitude larger than in previous methods.

4.2 Series expansion of the force term

The noise term, following Billah and Shinozuka [23], is approximated by the 

Fourier series

cos (<*>/ + Φη) . (4.2.1)
«=■]

Each value of frequency is ωη =//Δω , where Δω is the frequency step. The step depends 

on the maximum frequency considered comas and the number of series terms N according 

to the equation

Αω = ω^/Ν (4.2.2)

The co^ frequency parameter is chosen according to

= * (42·3)

where the value of the constant K determines the included percentage of the spectral 

energy density (SED) of the noise Ξξ(ωη), which in turn depends on its correlation

function. Finally, the Φ„ angles are random, mutually independent and uniformly
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distributed in [0,2;r] This is a special case of the general expression appearing

elsewhere [46, 47], also containg random coefficients.

The definition of spectral energy density (SED) is

1 00
5(o) =—jV(r)cos(<yz-)i/z 

n i
(4.2.4)

where the correlations ^(|r|) are chosen according to expressions (1.8)-(1.11). Thus, the 

following expressions are derived

swhJle(0) 2π (4.2.5)

ScCaurrtH- 1π1+ε2ω2 (4.2.6)

L7C
(4.2.7)

λπ
(4.2.8)

The SED curves are plotted in Figure 4.1. It is seen that as the correlation time ε 

approaches zero, all noise spectra approach the white noise spectrum which is constant 

for any frequency.

S((o)

Figure 4.1: SED of three noises (coloured: blue, Gaussian: green, Lorentzian: red) and 
two correlation times (dashed: ε = 0.2 , continuous: ε = 0.005).
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4.3 Numerical simulation
To perform simulations with this approach, equations (3.1 2)-(3.1.7) are used 

again for the estimation of position and velocity and the force component is calculated by 
(4.2.1). The results depend on the selection of the numerical parameters.

The number of series terms N and the maximum frequency parameter are

two parameters which did not exist in previous methods. The main disadvantage of the 

Fourier Series method is that it demonstrates a periodic behaviour in fixed intervals of 

duration Τ = 2π/Αω. Therefore, Δ© must be significantly low (N must be high 

enough) in order to simulate non-periodic motion. To calculate the required number of 

terms, we take into account (4.2.2) and (4.2.3) and obtain

Ν = 2Τ/(Κπε) (4.2.9)

If N is smaller, the periodic trend is apparent in the simulations, as shown in Figure 4.2. 

This feature causes crucial difficulties for very small ε (e g. 1CT4) since a prohibitively 

large number of terms is required (~1.7xl05 for a time interval of 10 time units). 

Furthermore, numerical tests have indicated that to calculate correctly the standard 

deviation, the actual number required is at least ten times the value of N obtained by 

(4.2.9). Using a smaller amount of terms leads to a discrepancy in the numerical standard 

deviation curve (Figure 4.3). In [24] it is argued that since the SED is almost constant 

over a wide range of frequencies for small ε, i.e. nearly white noise conditions, a small 

number of terms is adequate to obtain reasonably accurate results. However, this is not 

the case in our calculations, where as it pointed before a large number of terms is 

required.

Figure 4.2: Periodic behaviour in position(left) and velocity(right), with c = 1, γ = 1,
TV = 5000 and ε = \0^
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Figure 4.3: Discrepancy in the standard deviation of position (left: N = 12 -103) and better
agreement with more terms (right: N = 18 · 103) (c = 1, γ = 1 and ε - 1ft ').

Additionally, the time step and number of realizations are also important 

parameters of our computational scheme. The earlier comments regarding the number of 

simulations are also valid here. However, the computational cost is much larger in this 

case since, instead of determining the force by generating a random number, a large 

number of series terms must be added together in every time step. Therefore, by taking 

into consideration the computational effort, we deduce that NR =1000 leads to satisfying 

accuracy with reasonable computational times.

The behaviour of the scheme relative to the time step is also similar to other 

methods, except that larger values of At could be used. This happens because only two 

Euler integration steps take place for the position and velocity through equations (3.1.2)- 

(3.1.7), while the force is modelled by the Fourier series, which is independent of At. 

Time interval related discrepancies occur mostly for small values of γ and manifest as an 

overestimated standard deviation. In Figure 4.4, it is observed that the numerically 

predicted standard deviation of position largely diverges from the analytically calculated 

curve. The divergence in this case is due to the large time step in conjunction with a small 

value of the correlation parameter ε . The combination of sparse time discretization with 

a small friction parameter produces similar results, as seen in Figure 4.5, because even a 

small error in the estimation of the force may cause a significant displacement of the 

particle. The oscillating behaviour in this case is due to the fact that in this case, two- 

dimensional motion in a magnetic field is described.
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Figure 4.4: Discrepancy in the estimation of the standard deviation of position due to 
large time step and small ε (ID, c -1, y = l, N = 1.8-106 ,ε = 10 4, Δ/ = 10~3).

Figure 4.5: Discrepancy in the estimation of the standard deviation of position due to large 
time step and small γ (2D, c-1, 7 = 10'2, Ω = 10, ΛΑ = 1.8·105,£ = 10 3, Δ/ = 10“3).
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The set of parameters providing accurate results has been chosen based on 

numerical experiments and is shown in Table 4.1. These values have been used in the 

calculations in the following Figures. The maximum frequency ω^ was selected 

according to (4.2.3), with = 10. This value establishes that about 94% of the total 

spectral energy density curve is included.

Table 4,1: Final choice of numerical parameters for Fourier Series simulation

FS ε
1(T ΚΓ 101

N 180000 18000 18000

nr 1000 1000 1000

«max 10000 1000 100

At ίο-4 10'3 10‘3

These parameters have been used to calculate the correlation function of

coloured noise numerically and the results are shown in Figure 4.6. The continuous line 

corresponds to the analytical expression (1.9) and the dots represent the numerical 

approximation. It is seen that the agreement is very good for the parameters used here.

Figure 4.6: Correlation function <^(|r|) of coloured noise. Analytical curve (continuous 

line) and numerical approximation (dots) for ε = 10 2 (left) and ε = 10 1 (right).

A complete comparison between numerical results, obtained by the present 

analysis, and analytical results, obtained in Chapter 2, has been performed to benchmark 

the accuracy of the computational codes. The average and standard deviation of position
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and velocity were estimated analytically and numerically and, taking into account the 

moderate number of simulations, the agreement is considered good in most cases. It is 

also observed that by increasing N , NR and i»max and reducing the time interval the error

is monotonically reduced. The maximum value of the relative error is about 10%.

It should be noted that the agreement depends significantly on the particular set of 

simulations. It is possible to repeat the calculations with a different random seed and 

obtain better (or worse) agreement. These conclusions are also valid for the two- 

dimensional motion.

4.4 Results and discussion

The results on the influence of every physical parameter on the mean and standard 

deviation of the particle’s position and velocity are shown here. All previously mentioned 

noises for one-dimensional and two-dimensional motion have been considered. 

Concerning the stochastic term, the most usual choice in previous works was white noise. 

However, this hypothesis may not always be appropriate for the description of particle 

motion. Therefore, in order to have an idea about how appropriate this assumption is, the 

analytical white noise curves have also been added in the Figures. The symbol 

σ i = ψ*Α4 has been used below to denote the standard deviation of the quantity A, with 

A being the one dimensional position x or velocity u , or the two dimensional position 

/· = yjy2 +z2 or radial velocity V = λ/v2 + w2 .

The parameter c2 is equal to 0.1, 1 and 10, the friction factor γ equal to

10 2,10_1,1 and ε equal to 10 3,10 2,10 1. The values of γ are selected to be low 

because we are interested in the behaviour of the motion of charged particles in low- 

friction mediums, like fusion plasma. Results with such values of γ have not previously 

appeared in the literature.

The behaviour of the system in a variation of the value of c is examined in Figure 

4.7. It is observed that the results do not change qualitatively but are only amplified or 

reduced accordingly. In fact, the quantities of interest seem to grow or diminish
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proportionally to c. All curves are in good agreement due to the small value of 

correlation time.

On the contrary, the influence of γ is very apparent in Figure 4.8, where the 

standard deviation curve changes significantly, that is, the curvature is reversed. The 

curves also come closer to the white noise curve as the friction parameter is reduced. The 

magnitude of velocity is also increased because of the decreased amount of friction and 

larger times are required to obtain the long term behaviour, as predicted by the analytical 

results of Chapter 2.

In Figure 4.9, the influence of ε is examined while keeping other parameters 

constant. It is seen that for the values of correlation times studied here and for coloured 

noise, the results do not differ significantly. The curves remain qualitatively the same and 

also very close to each other. This is in agreement with Figures 2.2 and 2.3. This is not 

the case for the Lorentzian noise, as seen in Figure 4.10. We can see that if we examine a 

small time interval the divergence from white noise results is apparent and also in 

agreement with previous results.

The two-dimensional results and in particular the variance of radial position are of 

larger practical interest because of their application in nuclear fusion. It is attempted to 

determine how fast do plasma particles and/or impurities that travel along with them 

diffuse perpendicularly to the magnetic lines. As it is seen in Figure 4.11, the strength of 

the noise does not affect the curves qualitatively. On the other hand, a change of the 

friction factor / did not have the same effect as in the one-dimensional problem, that is, 

the curvature of the standard deviation did not reverse, as it is seen in Figure 4.12. An 

important observation is that for smaller friction factors the effect of the oscillations due 

to the magnetic field become more apparent on the standard deviation curve.

In Figure 4.13, the mean and standard deviation of the radial position is also 

plotted against time as ε is varied. The oscillations owe their presence to the magnetic 

field and diminish as we increase the value of ε . Finally, the influence of the magnetic 

field through the Ω parameter is seen in Figure 4.14. For weak magnetic fields the 

oscillations occur with a low frequency and can be clearly observed. As the magnetic 

field becomes stronger and Ω = 100, the oscillations are repeated so frequently that they
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can not be easily distinguished (they do exist in the average in the two bottom pictures of 

Figure 4.14 but they are too small to see).

Some individual trajectories are shown in Figures 4.15 and 4.16. For large 

correlation times the particle moves in a smaller range and the trajectory nearly 

diminishes to zero displacement. The low γ, high ε curves tend to be smoother than the 

rest, in the case of both velocity and position. In Figure 4.16 some trajectories in two 

dimensions are shown. The circular motion is due to the magnetic field and is more 

noticeable for small values of the friction term γ. The trajectory is also longer in this case 

due to the larger velocity magnitude.

52

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:52:05 EEST - 3.147.84.240



Figure 4.7: Mean and standard deviation of position and velocity for the ID coloured noise
problem, with y = \, f = 10“3, c2 = 10-1 (up), c2 =1 (middle), c2 =10 (down).
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Figure 4.8: Mean and standard deviation of position and velocity for the ID coloured noise
problem, with c2 -1, ε = \0~\γ = \ (up), γ = 10 1 (middle), χ = 102 (down).
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Figure 4.9: Mean and standard deviation of position and velocity for the ID coloured noise
problem, with c2 = 1, / = 10 2, ε = 103(up), £ = 102 (middle), ε = 10“' (down).
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Figure 4.10: Mean and standard deviation of position and velocity for ID Lorentzian noise and a
small time interval, with c2 = 1, γ = \0 2, ε = 10 3 (up), ε = 10 2 (middle), ε = 10'1 (down).
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Figure 4.11: Mean and standard deviation of position and velocity for 2D coloured noise, with
y = lOTl, ε = 10”2, Ω = 10, c2 = 10 1 (up), c2 -1 (middle), c2=10 (down).
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Figure 4.12: Mean and standard deviation of position and velocity for 2D coloured noise, with
c2=l, ε = IQ1, Ω = 10,χ = 1 (up), χ = \0 ι (middle), / = 1(T2 (down).
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Figure 4.13: Mean and standard deviation of position and velocity for 2D coloured noise, with
c2=l, χ-10Γι, Ω = 10,£ = 10 3(up), ε = \0 2 (middle), ε = ΚΓ' (down).
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Figure 4.14: Mean and standard deviation of position and velocity for 2D coloured noise, with
c2=l, / = 1(Γ2, ε = \Ο'2, Ω = 1 (up), Ω = 10 (middle), Ω = 102 (down).

60

Institutional Repository - Library & Information Centre - University of Thessaly
30/06/2024 19:52:05 EEST - 3.147.84.240
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Figure 4.15: Simulations in ID, with γ-1, £ = 10 1, c1 -10 1 (up), c2 = 1 (middle),

c2 -10 (down).
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Figure 4.16: Simulations in 2D, with c2 -1, ε = 10 1 ^ γ = 1 (up), γ = 10 (middle),

/ = 10 2 (down).
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Chapter 5 - Motion in a stochastic electric field

5.1 Formulation

The random motion can also occur due to the presence of a stochastic field. The 

difference here is that the field is spatially dependent. The governing equations are 

dx(t)
dt

du{t)
dt

=M(0 

= P2E(x)

(5.1.1)

(5.1.2)

and our goal is to study the motion of the charged particle in a field with the properties 

(£(*)) = 0 (5.1.3)

1 -
(E(x)E(x + xfj = j-j=e *2 . (5.1.4)

This can be performed numerically by approximating the field distribution with a Fourier 

cosine series with random phases (from equation 4.2.1)

Ε(,χ) = ΊΪΣ V^irK)4·” οο3(β>πχ + Φ„) (5.1.5)
n=1

A benchmark problem, susceptible to analytical solution, is also investigated here. 

A charged particle is moving in a stationary electric field, expressed by a cosine function 

with a random, uniformly distributed phase Φ e [0,2π\

£■(.*:) =/?2 cos (χ + Φ). (5.1.6)

This simple problem will be used to become acquainted with electric fields of cosine 

form.

5.2 Analytical solution of the benchmark problem

We define U (x) so that

E(x) = ~
dU(x)

dx

and therefore

(5.2.1)
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(5.2.2)
du(t)_ 2 dU (x) 

dt dx

It follows that

du(t) 2dU(x)
——u(t) = -p -----

dt W dx WΛ 
and

dt
λ-Η'(,)+Ρ'υ(χ) = 0

(5.2.3)

(5.2.4)

Thus the quantity

C = iw2(') + /72f/(X)

is constant and expresses the energy. The solution can be found by further integration 

dx
— = J2[C-Au(x)]

= -[- rdy (5.2.5)
V2 ^ y]C -Au(y)

It must be noted that the expression in brackets must be non-negative.

In the specific case of (5.1.6)

t/(x) = -sin(x + 0) (5 2.6)

Consequently, assuming p2 = 1 for simplicity, the initial conditions lead to the 

expression

C(°) = |«02-sin(x0+O) 

and

F{x) = C-U(*) = ~uo -sin(Ar0 + 0) + sin(y(/) + 0) (5.2.7)

The initial position Jf0 can be omitted if we introduce the displaced position x = x- x0 

with initial condition x0 = 0 and random phase Φ' = Φ + x0, uniformly distributed in the 

same angle interval.
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It is observed in (5.2.7) that the initial condition of velocity plays an important 

role. For |«0| > 2, F(x) > 0 and the particle velocity does not change its sign. For u0 = 0

and x0 = 0, F(x) vanishes when

sin(Φ) = sin(x + Φ) ->x = £(2;r) , k = 0,1... (5.2.8)

or

χ + Φ^π-Φ + kfa) -+x = π-2Φ+k(2π),k = 0,\... (5.2.9)

The instant that the motion stops may be expressed by an elliptic integral
x-2Q>+k(2x)

dx
π-Φ+!ί(2π)

■=± 1
dy

V2 l φϊη(χ+Φ) -sinO V2 0 ^sinj-sinO 

In the case that the field is time dependent 

E{x,t) = p2 cos(x — t + Φ),

(5.2.10)

(5.2.11)

the problem reduces to the previous one by substituting x -χ-t and u -u-\ with 

appropriate boundary conditions.

5.3 Results

The verification is performed on the simpler case where the electric field is of the 

explicit form (5.1.6). Since the force is given, the numerical solution of the problem can 

be realized using the discretized form of equations (5.1.1), (5.1.2) and (5.1.6). 

Furthermore, due to the fact that each phase has the same probability, we can choose to 

simulate a number of equidistant angles.

The easiest way to benchmark our numerical results would be to test if u = 0 

when x-k{2n) and x = π-2Φ + k(2π}, k = 0,1..., where the expressions (5.2.8) and

(5.2.9) hold. It can be observed in the position-velocity plot of Figure 5.1 (up) for u0 =0

that this is true for angles distributed in the whole 2π .

It is observed that the particle engages in an infinite motion in many occasions 

when the initial velocity is not zero (Figure 5.1). It is also interesting to note that the 

oscillations in the standard deviation curve are much more evident for small initial
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velocities (Figure 5.2). The examination of this simple case offers important insights for 

the more complex case where only the properties of the field (5 .1.4) is known, because 

this kind of problems can only be solved using the Fourier Series method. Therefore, 

through this example, an intuitive estimation of the behaviour of each cosine term was 

sought to be gained.

When the field of the form (5.1.4) is examined, it is seen that several properties 

are shared with the benchmark case, such as the periodicity of the simulation curves and 

the zero mean values for u0- 0 (Figure 5.3). It has been confirmed through numerical 

experiments that this periodicity is not due to a small number of series terms. The mean 

and standard deviation of position and velocity are also shown in Figure 5.4. Again, the 

particle moves endlessly for some initial velocities. However, the velocity has a 

decreasing tendency for u0 = 1. This is in agreement with the corresponding case for the

cosine-formed electric field where, as shown in Figure 5.2 (middle), the velocity does not 

remain constant and equal to the initial value but is reduced instead. The parameters 

appearing in Table 4.1 were also used in this problem, substituting ε with λ. The only 

modification was that, due to the non-linear nature of the problem, the time step had to be 

further decreased by one order of magnitude.
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Figure 5.1: Simulations and x-u plot for 5 equidistant angles for 
the cosine-formed electric field problem, with p2 = 1, u0 = 0 (up), 

u0 = 1 (middle), w0 = 3 (down).

(2π)/5
2(2π)/5
3(2π)/5
4(2π)/5
2π
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Figure 5.2: Mean and standard deviation of position and velocity for the cosine-formed
electric field problem, with p2 =1, u0 = 0 (up), u0 = 1 (middle), u0 = 3 (down).
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Figure 5.3: Simulations of motion in a stochastic electric field with Gaussian correlation, with 
p2 =1, u0 - 0, λ-10 2 (left) and λ = 1ft(right).
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3

Figure 5.4: Mean (continuous line) and standard deviation (dashed line) for various initial 
conditions of velocity, with p2 -1, λ-10 3 (up), λ -10“2 (middle) and λ -1 O'1 (down).
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Concluding Remarks

Analytical and computational solutions of stochastic differential equations have 

been presented and applied to the problem of motion of a charged particle inside a 

homogeneous magnetic field under the influence of an additive random force. This 

problem is related to the anomalous transport phenomenon and is of main interest for 

plasma confinement in fusion reactors. Following Langevin, the force is taken to be the 

sum of a friction term, proportional to the velocity, and a fluctuating component referred 

to as “noise”. Four different types of noise, namely the cases of white, coloured, Gaussian 

and Lorentzian have been investigated. The problem has been decomposed in two 

systems of equations, one for the longitudinal motion along the direction of the field and 

another for the two dimensional transverse motion. These two systems have been studied 

independently due to the linearity of the problem. Correlations of position and velocity 

have been obtained and plotted for several types of noise.

In addition two different simulation methodologies have been applied. The first is 

based on an additional expression for the evolution of noise, while the second one on a 

stochastic Fourier series expansion of the random force. The latter approach has been 

applied successfully to several engineering fields but not in the area of fusion plasma 

technology. Extensive parametric investigation has been carried out and the influence of 

the strength of the noise c, the friction factor γ and the correlation time ε has been 

observed and commented. It has been found that the noise strength produces qualitatively 

similar behaviour while all correlations increase proportionally to the second power of c. 

The effect of the friction factor is more significant, changing in many cases the curvature 

of the standard deviation. Also, as γ is increased, the velocity of the particles is increased 

as well. It is noted that small values of γ are particularly important within the scope of 

this work because it can be used to model fusion plasma conditions. The correlation time 

does not affect the results significantly because for the range of parameters tested all 

types of noise are close to the classical white noise.

The above results have been verified by both methodologies of noise numerical 

simulation. In both cases the computational effort is modest and the results are in good
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agreement with the corresponding analytical ones. However, the potential of the Fourier 

series expansion is more promising since it can be used to tackle non-linear problems 

with arbitrary noise. This is an important advantage since it allows more complete and 

reliable modelling of transport phenomena.

As a first step in that direction the Fourier expansion methodology has been used 

to study a stochastic, space dependent electric field. This is a non-linear problem and has 

been solved in an efficient manner. Such problems are highly dependent on the imposed 

initial conditions. Therefore, three different initial conditions for the velocity have been 

applied deducing different results for particle trajectories, velocities and the 

corresponding correlations. The overall performance of the scheme has been evaluated 

positively through benchmarking. The fact that the Fourier series expansion approach has 

proven to be very efficient is very encouraging for its implementation in other physical 

systems.

Based on the above, other non-linear problems such as random motion in 

inhomogeneous magnetic fields and electromagnetic fields occurring from a cylindrical 

approximation will be investigated. Further efforts for the improvement of computational 

accuracy and time will be made with the modification of the numerical codes in order to 

work in a parallel computer environment.
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Appendix A: Elements of Statistics

The symbol (^(0) denotes the mean value of the quantity A at time t. This is

obtained by taking a large number of particle trajectory simulations (or realizations) and 

averaging over the values of the quantity A

R i=1

In the text, the symbol N{t) denotes random values, conforming to a normal 

distribution with zero mean value and standard deviation equal to unity 7V(0,l). Its 

properties are

{N(l)) = 0 (A. 1)

{N2 (<)> = ! (A2)

It can be generated with two ways: the acceptance-rejection method [45] and the Box- 

Mueller method [6],

Acceptance-Rejection method

We define the normalized position

. x-a
x =-------

b-a

and distribution

f'(x) = f(x),fmax

(A. 3)

(A. 4)

where is the maximum value of the distribution. The distribution function plot

would fit this way in a unit square. We choose pairs of random numbers R^,7^ uniformly

distributed in [0,l] and check whether R, <f(R^) ■ If this relation holds then x is

accepted and x is determined by equation B.l, otherwise another pair of random 

numbers is calculated and the process is repeated. The efficiency of this algorithm 

depends on the value of
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I = \f'(x)dx (A. 5)
0

The closer this integral is to unity, the least amount of random numbers will be rejected. 

Box-Mueller method

Two uniform random numbers R,,/^ are generated and replaced in

s = y]2\n(\/Rl) (A. 6)

and

Θ = 2kRi . (A. 7)

These can be used to yield two statistically independent sample values of Α(θ, l) 

ni=s cos θ (A.8)

and

r^^ssinO. (A.9)

1

Both methods work well, as seen in Figure A. 1. The Box-Mueller algorithm has been 

chosen because it’s simple, it is widely used in the literature and for efficiency reasons, 

since R, and are guaranteed to provide two normally distributed random numbers.

Figure A.1: Generation of normal distributions 

with two methods and comparison with analytical 

curves.

Acceptance-Rejection
Analytical
Box-Mueller
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Appendix B: Analytical solution of the x-component 
correlations

Starting from expression (2.2.9)

Ku (t,s) = c2e~*t+s)jje^+' V(|* -s^jdsdt -c2e~^t+s)I (B.l)
0 0

we can simplify the integral if we substitute x = t -s' and y = t +s. The Jacobian is 

equal to 1 / 2 and the limits will also be transformed according to Figure B. 1

Figure B. 1: Transformation of coordinates for the calculation of I 

Thus, the integral is split in three parts

0 Γ x+2s Ί t-s Γ x+2 s 1 t Γ-x+lt

7 = -jJV(lxl) j e”dy dx+ \ φ(\χ\) J ervdy dx + J <2i(|x|) J erydy 
Δ [-j L -x J o |_ jc J ts L x

-I\ +I2 +I1

dx>-

·. 0 x+2 s/i=rf^(H) J e"dy2
Jr* o

dx~

(B.2)

\β'χφ(\χ\)(ά-±-]β-'χφ(\χ\)(ίχ
2 ri

i t-s x+2s

'ι=τ\φ{\Α) i‘,ydy
~ 0 

2ys t-s

dx

(B.3)

2r J0

3 -J * 3| e^d^l)^- - J
2^ o
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1 'r -x+21

^=-\φ{\Α) i
t-s

Jr* '

cbc

\e^(\x\)dx~\e^(\x\)dx
2 Yi

Combining the above expressions yields

Ρ4ϊμψ*4[μ·

and thus we obtain (2.2.10). The integral
t s

J = JjV* ^ (|/ - s |j dsdt
0 0

(B 4)

(B 5)

(B 6)

which is found in -s) is calculated similarly. The transformation t -t -s' is

needed for J and the integration limits are determined in Figure B.2.

Figure B.2: Transformation of coordinates for the calculation of J.

Then, we have

*-]m

—i

J er’ds
t s

dt'- $</>(|/”|) feeds' dt (B.7)

The integration in relation to s' can be carried out and we obtain
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J=eys )φ(\ί\)ώ'-\φ(\ι\)α'-]β-'·'φ(\ι\) dt'+e* |/'|)
t-s

dt (B 8)

Combining the above results, we have

R„(t,s) = j[e-’*J-e*',)]) (B.9)

and the calculations lead to (2.2.12).

Finally, the R^ correlation function consists of integrals I and J, as well as

l s

0 0 
t s

L = J | eri’ φ (|/-s' | j dsdt
0 0

The transformation i -t - s is used again and we obtain
t 0 t

κ = ^\φ^ώ' + \t<f>^di - J (5

ers-\ r
L =

r s
The final expression is

λ

? v / — 1

r <\·¥

Jtxx(tjs) = lT(K- eysJ - enL + e~r[ns)I) =

= Ιφ(Ϋ\)λ'+(*ί) 1 φ(\*\)α'

+e -r* Ί)λ'J^(|/|)€*· -rj-r J \)dt
+<rrijV'>(\i\)di J e*φ(\t\)dt

-f(s-t) s-t

+ - i
-/(*+*) t

iWdi ,rt
-/(is) t-

t Wdt +-
—Λ

f ,r< t'Wdt

-r(f+i)
J e n<t>{\f^dt -e r'Je

and substituting s = t leads to (2.2.15).

(BIO) 

(B 11)

(B 12) 

(B 13)

(B 14)
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