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Παραγωγής / Υπηρεσιών

Περίληψη

Αυτή η μελέτη αφορά συνεχή προβλήματα Quadratic Knapsack με περιορισμούς άνω 
ορίων. Τα προβλήματα αυτά αποτελούν ειδικές περιπτώσεις Quadratic Programming και 
γενικότερα Μη Γραμμικού Προγραμματισμού. Η επιβολή περιορισμών τύπου Knapsack σε 
τέτοιου είδους προβλήματα έχει αρκετές ενδιαφέρουσες θεωρητικές εφαρμογές.

Επιπρόσθετα παρουσιάζονται εφαρμογές σε σημαντικούς τομείς που χρησιμοποιούν 
τη μορφοποίηση αυτή ως βάση για την επίλυση προβλημάτων, όπως για παράδειγμα η 
Βέλτιστη Επιλογή και Αναπροσαρμογή Χαρτοφυλακίου στον Οικονομικό Κλάδο, 
Προβλήματα Μεταφοράς και Ροών σε Δίκτυα στην Επιχειρησιακή Έρευνα, ο Ισοσκελισμός 
Πινάκων στο Μαθηματικό Κλάδο καθώς και εφαρμογές στον Τομέα της Συντήρησης 
Αεροσκαφών.

Οι μελέτες που έχουν γίνει μέχρι τώρα αφορούν την κλασσική μορφοποίηση όπου ο 
περιορισμός τύπου Knapsack ικανοποιείται σαν ισότητα. Σε αυτή την μεταπτυχιακή εργασία 
ερευνάται η περίπτωση όπου επιτρέπονται αποκλίσεις γύρω από μια κεντρική τιμή. 
Προτείνουμε και αναλύουμε έναν καινούριο αλγόριθμο και τροποποιούμε έναν ήδη 
υπάρχοντα για να καλύψουμε αυτή τη διαφοροποίηση. Τέλος παρουσιάζουμε αποτελέσματα 
που προκύπτουν από την υλοποίηση και εφαρμογή του αλγορίθμου σε διάφορα αριθμητικά 
προβλήματα.
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Abstract

This thesis considers continuous Quadratic Knapsack problems with bound 
constraints. These problems belong to the family of Quadratic Programming which is a major 
subdivision of Nonlinear Optimization. The addition of Knapsack constraints on Quadratic 
Programming problems is shown to have numerous applications, including Quadratic 
Programming defined on the convex hull of a set of points and the maximum clique problem.

Moreover important fields of study that use Quadratic Knapsack as core formulation 
are being presented. These include the Optimal Portfolio Selection, Quadratic Transportation, 
Multi-commodity Network Flows, Matrix Balancing problems and Aircraft Maintenance.

Traditional approaches for accommodating such Quadratic Knapsack constraints have 
been proposed and analyzed for the case of a single tight-bounded Knapsack constraint. 
Instead we introduce the case where deviation from the target value of the Knapsack 
constraint is allowed. In order to deal with our problem needs we modify an existing 
algorithm, and we propose and analyze a new one. Computational results on a variety of test 
problems are presented.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80



Contents

Contents

Chapter 1.. Introduction.............................................................................................................. 1

1.1 Motivation and Background.......................................................................................................... 1

1.2 Quadratic Knapsack....................................................................................................................... 2

1.3 Literature Review............................................................................................................................ 3

1.4 Structure of Postgraduate Work................................................................................................... 6

Chapter 2.. Knapsack Problems and Nonlinear Programming.............................................8

2.1 Introduction.................................................................................................................................... 8

2.2 The Family of Knapsack Problems................................................................................................ 8

2.2.1 Knapsack Problem Formulation............................................................................................... 8

2.2.2 Knapsack Applications............................................................................................................14

2.3 Nonlinear Programming...............................................................................................................15

2.4 Types of Nonlinear Programming Problems...............................................................................16

2.4.1 Linearly Constrained Optimization........................................................................................ 17

2.4.2 Quadratic Programming......................................................................................................... 17

2.5 The Karush-Kuhn-Tucker (KKT) Conditions for Constrained Optimization.......................... 18

2.6 Quadratic Programming..............................................................................................................22

2.6.1 The KKT Conditions for Quadratic Programming................................................................ 25

2.6.2 The Modified Simplex Method................................................................................................ 26

2.7 Conclusions................................................................................................................................... 30

Chapter 3 Quadratic Knapsack Applications....................................................................... 31

3.1 Introduction.................................................................................................................................. 31

3.2 Portfolio Selection Problem..........................................................................................................31

3.3 Quadratic Transportation Problems........................................................................................... 35

3.4 Multi-commodity Network Flows................................................................................................ 38

3.5 Matrix Balancing.......................................................................................................................... 41

3.5.1 A brief review of matrix balancing.......................................................................................... 42

3.6 Aircraft Maintenance....................................................................................................................44

xi
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80



Contents

3.6.1 Problem Formulation..............................................................................................................47

3.6.2 General Form transformation................................................................................................. 49

3.7 Conclusions..................................................................................................................................51

Chapter 4.. Box Constrained Quadratic Knapsack Problem with Upper Bounds.......... 52

4.1 Introduction.................................................................................................................................. 52

4.2 Applying the KKT Conditions......................................................................................................52

4.3 Solution Algorithm....................................................................................................................... 63

4.3.1 Proof of optimality....................................................................................................................66

4.3.2 Algorithm Complexity.............................................................................................................73

4.4 General Form............................................................................................................................... 75

4.4.1. General Form Formulation......................................................................................................75

4.4.2 Optimality Theorem.................................................................................................................76

4.4.3 Solution Algorithm...................................................................................................................77

4.5 Modifying Existing Solution Techniques to fit our needs......................................................... 79

4.6 Conclusions................................................................................................................................... 81

Chapter 5.. Computational experience and numerical examples........................................ 82

5.1 Introduction.................................................................................................................................. 82

5.2 Computational Results................................................................................................................. 82

5.3 Numerical Examples.................................................................................................................... 86

5.3.1 Numerical Example 1...............................................................................................................86

5.3.2 Numerical Example 2...............................................................................................................89

5.4 Conclusions................................................................................................................................... 92

Chapter 6.. Concluding Remarks............................................................................................ 94

Appendix A C Implementation of the Algorithms.........................................................96

Appendix B AMPL Modeling.......................................................................................... 115

References................................................................................................................................. 116

xii
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80



Contents

List of Tables

Table 2.1 Necessary and sufficient conditions for optimality................................................ 19

Table 2.2 Application of the modified Simplex to the Quadratic Programming Example.. .29

Table 4.1 Transformation between general form and special case......................................... 75

Table 4.2 Term correspondence between general form and special case...............................76

Table 4.3 All possible orderings of the constraints.................................................................80

Table 5.1 Computational Results for different values of .............................................. 83

$
Table 5.2 Computational Results for different values of........ ............................................... 84

Table 5.3 Algorithms Comparison Results 85

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80



Contents

List of Figures

Figure 3.1 Linear Transportation Problem............................................................................36

Figure 3.2 A matrix and its associated transportation network........................................... 43

Figure 3.3 Visual representation of aircraft residual flight times........................................ 46

Figure 4.1 Constraints ordering in Case 1........................................................................... 67

Figure 4.2 Constraints ordering in Case 2........................................................................... 68

Figure 4.3 Constraints ordering in Case 3........................................................................... 70

Figure 4.4 Constraints ordering in Case 4........................................................................... 71

XIV
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80



Chapter 1 Introduction

Chapter 1 Introduction

Before progressing into the mathematical content of this thesis, it is important to first 

provide some context and motivation. This thesis grew out of research in the area of 

optimization. As the name suggests, optimization deals with the application or development 

of mathematical programming techniques for decision-making. Evidence of vigorous research 

activity within this field is easy to document.

This introduction gives an overview of the optimization concept showing major 

subfields and describing the way mathematical programming techniques are applied to 

problems so as to render solutions. The introduction is closed with an overview of the 

complete work, placing it in relation to the rest of the literature.

1.1 Motivation and Background

This thesis presents an application of mathematical programming, specifically 

Quadratic Programming, which provides useful information to aid decision-makers. It is the 

work of subsequent sections and chapters to show exactly how a topic such as Quadratic 

Programming can be productively applied to many types of decisions. In detail, we focus on a 

specific application in Aircraft Maintenance which introduces a new formulation of the 

original Continuous Quadratic Knapsack formulation.

The main contribution of the research reported in this work is that we develop a new 

exact algorithm for a special class of Continuous Quadratic Knapsack Problems having 

reasonable solution times for nearly all instances encountered in practice, despite having 

Quadratic time bounds for a number of highly contrived problem instances. We give proof of

1
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Chapter 1 Introduction

the optimality of the algorithm, implement it in C programming language and give numerical 

results. We also describe a Quadratic Knapsack framework for the formulation, analysis and 

computation of solutions to a specific problem of military-aircraft maintenance. Last we 

present a modification of an exact algorithm presented by Pardalos and Kovoor [13], in order 

to cope with the specific formulation of the problem in case the large number of variables 

poses long execution time problem.

1.2 Quadratic Knapsack

The Quadratic Knapsack problem (QKP) is one of the simplest Quadratic Programming 

problems defined as follows:

n

subject to

The continuous bounded Quadratic Knapsack problem is defined as follows

subject to

n

Σάίχι=ά o

2
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80



Chapter 1 Introduction

ai<xi<bi, i =

where xeiR" is a variable vector, Q e 9Γχη, c e 9Γ and d0 is a scalar.

1.3 Literature Review

The Quadratic Knapsack problems are mainly classified by the nature of matrix Q. 

When the matrix Q is positive semidefinite, i.e., the objective function z(x) is convex,

problem can be solved in polynomial time by the ellipsoid algorithm [8], and several kinds of 

interior point algorithms (e.g. [7], [11], [5], which solve general convex Quadratic problems 

including (QKP) as a special case). Also, P.M. Pardalos, Y. Ye and C.G. Han [15] show a

potential reduction algorithm for a special case of (QKP) defined below, 

min / (x) = xrQx

n

s.t ]Tx,=l,x>0
i'=l

where Q is a nxn symmetric matrix.

In particular, when (QKP) has a diagonal matrix Q with positive elements, an 0{n) 

algorithm has been proposed by P. Brucker [3]. The algorithm generates the corresponding 

KKT condition using binary search. Pardalos and N. Kovoor [13] also propose an 0{n) 

randomized method.

3
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Chapter 1 Introduction

The convex case is important because of its frequent appearance as a subproblem in 

many application areas. Among those are general convex Quadratic Programming [9], 

multicommodity network flow problems [1], resource management [2], and portfolio 

selection problems [10],

The problem becomes extremely difficult if z(x) is not convex. S. Sahni [16) shows 

that problems with negative diagonal matrix Q are Np - hard, which implies that the general 

indefinite case is also Np - hard .

Let points in whose convex hull is P. The least distance problem is that

of finding the point of P having the smallest Euclidean norm. This problem can be stated as

min xT\

n

s.t x = YJzivi
i=1 

n

Σ*, = 1 ,z(. >0,/' = 1,...,«
1=1

The above problem can be formulated as in [15] with Q = VrV and V = (υ,,...,υπ).

As we see in the above, the indefinite case arises in several combinatorial optimization 

problems. For example, given a graph G(V,E) where V = {l,...,«} is a set of vertices and

£cf2 is a set of edges, a clique is a complete subgraph of G . The maximum clique problem 

is the problem of finding the maximum complete subgraph of G .For each vertex ui, introduce 

a variable xt,i =.This problem can be formulated in the following way:

4
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Maxf(x) = Σ xixj
(',./>£

n

s-t- Σχί =1 >0,/ = l,...,n
1=1

il-il
V kj

We can also formulate the maximum independent set problem and the node covering problem 

in a similar fashion.

One can also formulate any Quadratic minimization problem over a convex hull by the 

Quadratic Knapsack problem. Consider the problem of the form:

min q(z)= zTMz (1)
zeP

where z,r e W ,M e ${m*m and P e 9?“is the polytope described as the convex hull 

of a given set of points {v,,...,vn}. It can be verified easily that the above general Quadratic 

problem has the following equivalent formulation

global min i{x)=xTQx (2)

s.t jc e D = jx: ^ xt = 1, x > 0 

with Q = VTMV and V = {v,,...,vn}.

Let z* and x* be optimum solutions of (I) and (2), respectively. Then we have

If G has a maximum clique of size k, then the global maximum is / (x*) = —

5
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q{z) = min q(z)= f(V) = min f(x) and moreover z = Vx* .
zeP xeD

There exist only a few algorithms for obtaining a global optimum solution for the case 

of the general indefinite Q. See [15] for a partitioning approach as well as an interior point 

method, while [4[ surveys algorithms for general nonconvex Quadratic problems.

The case when the objective function is separable has also been well investigated by 

several authors. Some practical algorithms to obtain an exact solution are reported in [14], [6].

S.A. Vavasis [18] shows an o[n(\ognf jalgorithm for finding a local minimum of the

problem, while K.G. Murty and S.N. Kabadi [12] show that verifying a local minimum for an 

indefinite Quadratic problem with general constraints is Np-hard. Also, Vavasis [17] gives 

an ε-approximation algorithm which is weakly polynomial in the problem size if the number 

of negative diagonal elements is fixed.

1.4 Structure of Postgraduate Work

The rest of this postgraduate work is divided into five chapters. More specifically:

In Chapter 2, we consider first a family of combinatorial problems known under the 

name Knapsack Problems and we present some important applications. Next, we study the 

foundations of nonlinear programming and focus on one of its major subsectors, namely 

Quadratic Programming .We introduce the Karush-Kuhn-Tucker (KKT) conditions for 

optimality and then use these conditions to provide a linear transformation of the Quadratic 

Programming Problem which can be dealt with the modified-SIMPLEX method.

6
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In Chapter 3, we present some major applications of the Quadratic Knapsack 

formulation, which denote its major role in real-life applications. More precisely we begin 

with the Portfolio Selection and the Portfolio Rebalancing Problems. We continue with the 

Quadratic Transportation Problem and present the advantages of a Quadratic Programming 

formulation for Spatial Interaction Patterns over a linear one. We then specialize on Multi- 

commodity Network Flow Problems. Matrix balancing problems are being introduced next 

and we finish our application reference by introducing a special military-aircraft maintenance 

problem with a slight differentiation from the classical formulation of the Quadratic Knapsack 

Problem, in that a box Knapsack constraint is imposed

In Chapter 4, we focus on this special case of Box Constrained Quadratic Knapsack 

Problem with upper Bounds. After formulating the Problem we use the KKT Conditions of 

optimality applied on our specific problem in order to characterize the optimal solution. 

Global optimality is proven next. We then present an algorithm for the solution of the 

problem also dealing with algorithm optimality and complexity. In the last part of the chapter, 

we present the modification of an existing algorithm in order to make it applicable to our 

specific case.

In Chapter 5, we consider some theoretical and numerical aspects of the algorithms 

implementation comparing results with other known solution tools (i.e. AMPL) and present 

results of some numerical experiments so as to make clear the way the algorithm works.

In Chapter 6, this postgraduate work is summarized and directions for further research 

are given.

Appendix A contains the C Programming Language code of the algorithms 

implementation. Appendix B contains the AMPL modeling file.
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Chapter 2 Knapsack Problems and Nonlinear Programming

2.1 Introduction

We begin this chapter by giving an overview of the family of Knapsack Problems, and 

by showing several applications of theoretical as well as of practical interest. We then 

introduce the basic concepts of Nonlinear Programming, and describe some basic 

application examples which make the difference with Linear Programming clear. Following 

this we state the Karush-Kuhn-Tucker conditions for Constrained Optimization. Quadratic 

programming is analyzed next and a transformation to a linear formulation is given by 

applying the KKT Conditions. One solution technique that can be used on the transformed 

Quadratic Problem, namely modified-SIMPLEX, is analyzed last.

2.2 The Family of Knapsack Problems

2.2.1 Knapsack Problem Formulation

This section considers several problems from the family of Knapsack Problems. In all 

variants of the problem we have a collection of items, each with a profit Pj and weight w .,

which are packed into one or more Knapsacks of capacity c. We will assume that all 

coefficients pj ,Wj, c are positive numbers although weaker assumptions sometimes may be 

handled in the individual problems.

The 0-1 Knapsack Problem is the problem of choosing a subset of the n items such 

that the corresponding profit sum is maximized but the knapsack capacity is not exceeded. 

This may be formulated as the following maximization problem:

8
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Maximize Σ Pjxi
7=i

Subject to
n

TwjXj^c
7=1

Xj € {0,1} ,7 =!,...,«

where x. is a binary variable equal to 1 if item j is included in the Knapsack and 0 otherwise.

If we have a maximum quantity m j for each item type j, then the Bounded Knapsack 

Problem arises, formulated as:

Maximize ί>Λ·
7=1

Subject to
n

Zw.x.<c
7=1

Xj € {0,l,...,my}

Here, x. is the number of items of each type to be included in the Knapsack, in order to obtain 

the largest objective value.

The Unbounded Knapsack Problem is a generalization of the Bounded Knapsack 

Problem, where an unlimited number of items for each type is available:

9
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Maximize Σρλ
7=1

Subject to
n

ZW7*7-C
7=1

Xj > 0 integer, j = 1,...,n

In general there is no advantage by transforming an Unbounded Knapsack Problem to 

the bounded version.

Another generalization of the 0-1 Knapsack problem is to choose exactly one item j 

from each of k classesAj, i = \,...,k such that the profit sum is maximized. This gives the 

Multiple-choice Knapsack Problem which is defined as

Maximize Σ Σ Puxvi=l jeNj

Subject to ΣΣ wuxu^ci=l jeNj

X xu =1, i = l,...,k
jeN'

e {0,1} , i'= jeN,

Here the binary variable xy = 1 states that item j was chosen from class i. The 

constraint ^ xy = 1, i = 1 ensures that exactly one item is chosen from each class.
jeN,

10
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If the profit p; equals the weight w . for each item in a 0-1 Knapsack Problem we 

obtain the Subset-sum Problem, which may be formulated as:

Maximize ί>Α
7=1

Subject to
n

7=1

Xj e {0,1} , j =

The name indicates that it can also be seen as the problem of choosing a subset of the 

values w,,..., wn such that the sum is as large as possible without exceeding c.

Now, imagine a cashier who has to give back an amount of money c by using the 

smallest possible amount of the coins νν,,...,ννπ. The Change-making Problem is then defined

as:

Minimize
n

Σν
7=1

Subject to
n

Hwjxj=c
7=1

Xj > 0 integer , j = 1,..., n

where w. is the face value of coin j, and we assume that an unlimited amount of each coin is
J J

available. The optimal number of each coin j that should be used is then expressed by Xj.

11
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This problem may be considered as a minimization variant of the Unbounded Knapsack 

Problem, where p; = 1 for j = 1,...,« and where equality must hold in the capacity constraint.

If we have to choose n items to pack in m Knapsacks of possibly different capacities 

ci such that the total profit is maximized we obtain the Multiple Knapsack Problem

m n

Maximize ΣΣρλ
i=1 j=1

Subject to ^ WjXy < Cj i = 1
7=1

m

Σ-1» J' = l>->n
i=l

e{0,l} , i = , j = l,...,n

Here xi} = 1 indicates that item j should be packed into Knapsack i, while the constraint

^ WjXVj < ci ensures that the capacity constraint of Knapsack i is satisfied. The constraint
7=1

yj xu < 1 ensures that each item is chosen at most once.

A very useful model is the Bin-packing Problem where all n items should be packed in 

a number of equally sized bins, such that the number of bins actually used is as small as 

possible. Thus we have

n

ΣλMinimize
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n

Subject to Σ wjX‘j - cyi
7=1

m

i = l,-,«

II j = !,···,«

T,e{o,i}, i = l,...,n

xy e {o?i} ,

where yi indicates whether bin i is used, and xtj states that item j should be packed in bin i.

m

The constraint = 1 ensures that every item is packed exactly once, while inequality
1=1

n

WjXy < cyt ensures that the capacity constraint holds for all bins actually used.
;=i

The most general form of a Knapsack Problem is the Multi-constrained Knapsack 

Problem, which basically is a general Integer Programming Problem where all coefficients, 

Pj, Wy and c,. are nonnegative integers. Thus it may be formulated as

Maximize ^ P jxj

7=1

Subject to WyXj < ci, i = 1,...,/«
7=1

Xj >0integer, j =!,...,«

13
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2.2.2 Knapsack Applications

Knapsack Problems have numerous applications in theory as well as in practice. From 

a theoretical point of view, the simple structure pleads for exploitation of numerous 

interesting properties, that can make the problems easier to solve. Knapsack Problems also 

arise as subproblems in several algorithms for more complex combinatorial optimization 

problems, and these algorithms will benefit from any improvement in the field of Knapsack 

Problems.

Despite its name, practical applications of Knapsack Problems are not limited to 

packing problems: Assume that n projects are available to an investor, and that the profit 

obtained from the jth project is pj,j = 1. It costs w.to invest in project j, and only c

dollars are available. An optimal investment plan may be found by solving a 0-1 Knapsack 

Problem.

Another application appears in a restaurant, where a person has to choose k courses, 

without surpassing the amount of c calories, his diet prescribes. Assuming that there are Nt

dishes to choose among for each course / = 1,...,k, and wtj is the nutritive value while p{j is a

rating saying how well each dish tastes. Then an optimal meal may be found by solving the 

Multiple-choice Knapsack Problem (37).

The Bin-packing Problem has been applied for cutting iron bars in a kibbutz [39], in 

order to minimize the number of bars used each day. Here w. is the length of each piece

demanded, while c is the length of each bar, as delivered from the factory.

Apart from these simple illustrations we should mention the following major 

applications: Problems in cargo loading, cutting stock, budget control, and financial
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management may be formulated as Knapsack Problems, where the specific model depends on 

the side constraints present. Sinha and Zoltners [37] proposed to use Multiple-choice 

Knapsack Problems to select which components should be linked in series in order to 

maximize fault tolerance. Diffe and Heilman [36] designed a public cryptography scheme 

whose security relies on the difficulty of solving the Subset-sum Problem. Martello and Toth 

[37] mention that two-processor scheduling problems may be solved as a Subset-sum 

Problem. Finally the Bin-packing Problem may be used for packing envelopes with a fixed 

weight limit.

The more theoretical applications either appear where a general problem is 

transformed to a Knapsack Problem, or where the Knapsack Problem appears as subproblem, 

e.g. for deriving bounds in a branch-and-bound algorithm designed to solve more complex 

problems. In the first category G. B. Mathews back in 1897 [34] showed how several 

constraints may be aggregated to one single Knapsack constraint, making it possible to solve 

any IP Problem as a 0-1 Knapsack Problem. Moreover Nauss [35] proposed to transform 

nonlinear Knapsack Problems to Multiple-choice Knapsack Problems. In the second category 

we should mention that the 0-1 Knapsack Problem appears as a sub problem when solving the 

Generalized Assignment Problem, which again is heavily used when solving Vehicle Routing 

Problems [32], Also Krarup and Illes [31] apply a Knapsack type relaxation in connection 

with finite projective planes.

2.3 Nonlinear Programming

A key assumption of linear programming is that all its functions (objective function 

and constraints) are linear. Although this assumption essentially holds for numerous practical
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problems, it frequently does not hold. In fact, many economists have found that some degree of 

nonlinearity is the rule and not the exception in economic planning problems. Therefore, it is 

often necessary to deal directly with nonlinear programming problems, so we turn our 

attention to this important area.

In one general form, the nonlinear programming problem is to find x = (x,,x2,...,xn)

so as to

Maximize / (x)

Subject to g(.(x) ^ i = 1,2

x > 0

where /(x) and the g, (x) are given functions of the n decision variables.

No general algorithm that will solve every specific problem fitting this format is 

available. However, substantial progress has been made for some important special cases of 

this problem by making various assumptions about these functions, and research is 

continuing very actively. This area is quite extensive, and there is not enough space to survey 

it completely. Besides, that is beyond the scope of this research.

2.4 Types of Nonlinear Programming Problems

Nonlinear programming problems come in many different shapes and forms. Unlike 

the simplex method for linear programming, no single algorithm can solve all these different
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types of problems. Instead, algorithms have been developed for various individual classes (special 

types) of nonlinear programming problems. The class which is of great interest in this research is 

introduced briefly in the following section.

2.4.1 Linearly Constrained Optimization

Linearly constrained optimization problems are characterized by constraints that 

completely fit linear programming, so that all the g, (x) constraint functions are linear, but the 

objective function f(x) is nonlinear. The problem is considerably simplified by having just 

one nonlinear function to take into account, along with a linear programming feasible region. 

A number of special algorithms based upon extending the simplex method to consider the 

nonlinear objective function have been developed. One important special case, which we 

consider next, is Quadratic Programming.

2.4.2 Quadratic Programming

Quadratic programming problems again have linear constraints, but now the objective 

function /(x) must be Quadratic. Thus, the only difference between such a problem and a 

linear programming problem is that some of the terms in the objective function involve the 

square of a variable or the product of two variables.

Quadratic programming is very important, partially because such formulations arise 

naturally in many applications. For example, the problem of portfolio selection with risky 

securities described fits into this format. However, another major reason for its importance 

is that a common approach to solving general linearly constrained optimization problems is to 

solve a sequence of Quadratic Programming approximations.
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2.5 The Karush-Kuhn-Tucker (KKT) Conditions for Constrained 

Optimization

We now focus on the question of how to recognize an optimal solution for a nonlinear 

programming problem (with differentiable functions).More precisely we focus on the 

necessary and under certain requirements sufficient conditions for an optimal solution.

In the preceding sections we already noted these conditions for unconstrained opti­

mization, as summarized in the first two rows of Table 2.1. In the third row of Table 2.1 the 

conditions for the slight extension of unconstrained optimization where the only constraints are 

nonnegativity constraints are shown. As indicated in the last row of the table, the conditions for the 

general case are called the Karush-Kuhn-Tucker conditions (or KKT conditions), because they 

were derived independently by Karush [19] and by Kuhn and Tucker [20]. Their basic result is 

embodied in the following theorem.

Theorem 2.1 Assume that /(x), g,(x),g2(x),...,gm(x)are differentiable functions 

satisfying certain regularity conditions. Then x‘ = (χ,*,χ2*,.··,*„*) can be an optimal solution

for the nonlinear problem only if there exist m numbers ul,u2,...,um such that all the 

following KKT conditions are satisfied:

>atx = x* for j = \,2,...,n
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3. g(.(x*)-6,.< O'

4. w,(g;(x )-Z),) = 0
for i = 1,2

5.x] >0 for j = \,2,...,n

6. uj > 0 for i = 1,2, ...,m

Problem Necessary Conditions for Optimality Also Sufficient if:

One-variable unconstrained
oII f(x) concave

Multivariable unconstrained f-0 (;=l,2,-,n)
OXj

f(x) concave

Constrained, f = 0 (y = 1,2,...,/?)
OXj

nonnegativity constraints f(x) concave

only
(or <0ifx; =0)

f(x) concave and g((x) convex
General constrained problem Karush-Kuhn-Tucker conditions

(i = 1,2,..., w)

Table 2.1 Necessary and sufficient conditions for optimality

Note that both conditions 2 and 4 require that the product of two quantities be zero. 

Therefore, each of these conditions is really saying that at least one of the two quantities must 

be zero. Consequently, condition 4 can be combined with condition 3 to express them in another 

equivalent form as
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(3,4)*,(χ*)-*,=0

(or <0ifw,=0) for i = 1,2,..., m

Similarly, condition 2 can be combined with condition 1 as

(1,2) 0

(or < 0 if x* = O) for j = l,2,...,n

When m = 0 (no functional constraints), this summation drops out and the combined 

condition (1, 2) reduces to the condition given in the third row of Table 2.1. Thus, for m > 0, 

each term in the summation modifies the m = 0 condition to incorporate the effect of the 

corresponding functional constraint.

In conditions 1, 2, 4, and 6, theu,., correspond to the dual variables of linear 

programming (we expand on this correspondence at the end of the section), and they have a 

comparable economic interpretation. However, the w(., actually arose in the mathematical derivation

as Lagrange multipliers. Conditions 3 and 5 do nothing more than ensure the feasibility of the 

solution. The other conditions eliminate most of the feasible solutions as possible candidates for 

an optimal solution.

However, note that satisfying these conditions does not guarantee that the solution is 

optimal. As summarized in the rightmost column of Table 13.3, certain additional convexity 

assumptions are needed to obtain this guarantee. These assumptions are spelled out in the 

following extension of the Theorem 2.1.
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Corollary. Assume that /(x)is a concave function and thatg,(x),g2(x),...,gm(x) are convex 

functions (i.e., this problem is a convex programming problem), where all these functions satisfy 

the regularity conditions. Then x* = [x‘ ,χ* ,...,x^ j is an optimal solution, if and only if all the 

conditions of the theorem are satisfied.

For many complicated problems, it may be difficult, if not essentially impossible, to 

derive an optimal solution directly from the KKT conditions. Nevertheless, these conditions still 

provide valuable clues as to the identity of an optimal solution, and they also permit us to 

check whether a proposed solution may be optimal.

There also are many valuable indirect applications of the KKT conditions. One of these 

applications arises in the duality theory that has been developed for nonlinear programming to 

parallel the duality theory for linear programming. In particular, for any given constrained 

maximization problem (call it the primal problem), the KKT conditions can be used to define a 

closely associated dual problem that is a constrained minimization problem. The variables in 

the dual problem consist of both the Lagrange multipliers ut (/ = l,2,...,m) and the primal

variables x . (y = 1,2,..., n). (For details on this formulation, see Chapter 8 of [21]. For a unified

survey of various approaches to duality in nonlinear programming, see [22].)In the special case 

where the primal problem is a linear programming problem, the Xj variables drop out of the dual

problem and it becomes the familiar dual problem of linear programming. When the primal 

problem is a convex programming problem, it is possible to establish relationships between the 

primal problem and the dual problem that are similar to those for linear programming. For 

example, the strong duality property, which states that the optimal objective function values of 

the two problems are equal, also holds here. Furthermore, the values of the ui variables in an
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optimal solution for the dual problem can again be interpreted as shadow prices ;i.e., they give 

the rate at which the optimal objective function value for the primal problem could be increased 

by (slightly) increasing the right-hand side of the corresponding constraint. We will see another 

indirect application of the KKT conditions in the next section.

2.6 Quadratic Programming

As already indicated in previous section, the Quadratic Programming problem differs 

from the linear programming problem only in that the objective function also includes 

xf and XjXj,i Φ j terms. Thus, if we use matrix notation like that introduced at the beginning 

of Sec. 5.2, the problem is to find x so as to

Maximize /(x) = cx-^xTQx

Subject to Ax < b and x > 0

where c is a row vector, x and b are column vectors, Q and A are matrices, and the 

superscript T denotes the transpose of a matrix. The qy (elements ofQ) are given constants

such that qy = qji (which is the reason for the factor of in the objective function). By

performing the indicated vector and matrix multiplications, the objective function then is 

expressed in terms of these qiy, the Cj (elements of c), and the variables as follows:

/ M=cx - \ *TQx=Σ cjxj - \■ Σ Σ
7=1 Z 1=1 >1
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product of xi and x}.

To illustrate this notation, consider the following example of a Quadratic 

Programming problem.

Maximize/(x, x2) = 15x, + 30x2 + 4x,x2 - 2x\ - \x\ ,

subject to 

x, +2x2 < 30 and

x, > 0, x2 > 0.

In this case

c = [15 30] x =
x.
X,

A = [l 2] b = [30]

xTQx = [x, x2 ]
4 -4 x,

-4 8 x-
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= [(4x,-4x2) (-4x,+8x2)]

= 4x,2 - 4x2x, - 4x,x2 + 8x22

4, Λ ^ ^ ^22^2

Multiplying through by — gives

—xTQx = -2x,2 +4x,x2 -4x2 2

which is the nonlinear portion of the objective function for this example. Since^u=4

1
a.ndq22 = 8, the example illustrates that —is the coefficient of x; in the objective function.

The fact that qn = qn = -4 illustrates that both -qx) and -qji give the total coefficient of the 

product of x(. and x..

Several algorithms have been developed for the special case of the Quadratic 

Programming problem where the objective function is a concave function. (A way to verify 

that the objective function is concave is to verify the equivalent condition that

xTQx > 0

for all x, that is, Q is a positive semidefinite matrix.) One of these algorithms [23], the 

modified simplex method, has been quite popular because it requires using only the simplex 

method with a slight modification. The key to this approach is to construct the KKT
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conditions from the preceding section and then to re-express these conditions in a convenient 

form that closely resembles linear programming. Therefore, before describing the algorithm, 

we shall develop this convenient form.

2.6.1 The KKT Conditions for Quadratic Programming

For any Quadratic Programming problem, its KKT conditions can be reduced to a 

convenient form containing just linear programming constraints plus one complementarity 

constraint. In matrix notation again, this general form is

Qx +Aru-y = -cr

Ax + v = b

x > 0 u > 0 y > 0 v > 0

xry + urv = 0

where the elements of the column vector u are the ui, of the preceding section and the elements of 

the column vectors y and v are slack variables.

Because the objective function of the original problem is assumed to be concave and 

because the constraint functions are linear and therefore convex, the corollary to the Theorem

2.1 applies. Thus, x is optimal if and only if there exist values of y, u, and v such that all four 

vectors together satisfy all these conditions. The original problem is thereby reduced to the 

equivalent problem of finding a feasible solution to these constraints.
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It is of interest to note that this equivalent problem is one example of the linear 

complementarity problem, and that a key constraint for the linear complementarity problem is 

its complementarity constraint.

2.6.2 The Modified Simplex Method

The modified simplex method exploits the key fact that, with the exception of the 

complementarity constraint, the KKT conditions in the convenient form obtained above are 

nothing more than linear programming constraints. Furthermore, the complementarity constraint 

simply implies that it is not permissible for both complementary variables of any pair to be 

(nondegenerate) basic variables (the only variables > 0) when (nondegenerate) BF solutions are 

considered. Therefore, the problem reduces to finding an initial BF solution to any linear 

programming problem that has these constraints, subject to this additional restriction on the 

identity of the basic variables. (This initial BF solution may be the only feasible solution in this 

case.)

As we discussed in Sec. 4.6, finding such an initial BF solution is relatively 

straightforward. In the simple case where cr < 0 (unlikely) and b > 0, the initial basic 

variables are the elements of y and v (multiply through the first set of equations by -1), so that 

the desired solution is x = 0, u = 0, y = -cr, v = b. Otherwise, you need to revise the problem 

by introducing an artificial variable into each of the equations where Cj > 0 (add the variable on 

the left) or bt < 0 (subtract the variable on the left and then multiply through by -1) in order to 

use these artificial variables (call them z,, z2, and so on) as initial basic variables for the revised 

problem. (Note that this choice of initial basic variables satisfies the complementarity constraint, 

because as nonbasic variables x = 0 and u = 0 automatically.)
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Next, use phase 1 of the two-phase method to find a BF solution for the real problem; 

i.e., apply the simplex method (with one modification) to the following linear programming 

problem

Minimize Z = ^zy. »
j

subject to the linear programming constraints obtained from the KKT conditions, but with 

these artificial variables included.

The one modification in the simplex method is the following change in the procedure 

for selecting an entering basic variable.

Restricted-Entry Rule: When you are choosing an entering basic variable, exclude from 

consideration any nonbasic variable whose complementary variable already is a basic 

variable; the choice should be made from the other nonbasic variables according to the usual 

criterion for the simplex method.

This rule keeps the complementarity constraint satisfied throughout the course of the 

algorithm. When an optimal solution x*, u*, y*, v*, z\= 0,.. .,z„ = 0 is obtained for the phase 1 

problem, x* is the desired optimal solution for the original Quadratic Programming problem. 

Phase 2 of the two-phase method is not needed.

Example. We shall now illustrate this approach on the example given at the beginning of the 

section.

Q = is positive definite, so the algorithm can be applied.
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The starting point for solving this example is its KKT conditions in the convenient 

form obtained earlier in the section. After the needed artificial variables are introduced, the 

linear programming problem to be addressed explicitly by the modified simplex method then 

is

Minimize Z = z, + z2 , 

subject to

4χ, -4x2 +«, -y] +z, =15

-4.x, +8x2 +2 w, -y2 +z2 =30

x] +2x2 +v, =30

and x] > 0 x2 > 0 w, > 0 yi > 0 y2 > 0 v, > 0 

z, > 0 z2 > 0

The additional complementarity constraint x,y, +x2y2 +m,v, = 0 is not included

explicitly, because the algorithm automatically enforces this constraint because of the 

restricted-entry rule. In particular, for each of the three pairs of complementary variables 

(x,,^1),(x2,^2),(w1,v1) whenever one of the two variables already is a basic variable, the

other variable is excluded as a candidate for the entering basic variable. Remember that the 

only nonzero variables are basic variables. Because the initial set of basic variables for the 

linear programming problemz,,z2,v,, gives an initial BF solution that satisfies the
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complementarity constraint, there is no way that this constraint can be violated by any 

subsequent BF solution.

Table 2.2 shows the results of applying the modified simplex method to this problem. 

The first simplex tableau exhibits the initial system of equations after converting from 

minimizing Z to maximizing -Z and algebraically eliminating the initial basic variables from 

Eq. (0). The three iterations proceed just as for the regular simplex method, except for 

eliminating certain candidates for the entering basic variable because of the restricted-entry 

rule. In the first tableau, w, is eliminated as a candidate because it’s complementary variable

(v,) already is a basic variable (but x2 would have been chosen anyway because-4 < -3).

Iteration
Bask

Variable Eq. *1 *2 «1 ri V2 V, 2i 22 Side

0 -4 -3 1 1 0 0 0 -45
4 -4 1 -1 0 0 1 0 15

1 -4 8 2 0 -1 0 0 1 30
1 2 0 0 0 1 0 0 30

Right

Z (0)
(1)
(2)
(3)

Z

i\

x2

(0)

(1)
(2)

(3)

-2

2

0 -2

1 t

1
2
1

'2
1
8
1
4 o -4

-30

30

4
22-J

*2

*1

Z

u,

*2

(0)

(1)
(2)

(3)

(0)
0)
(2)

(3)

0 1 
1 0

-1 --

8

_4

0
1

0
0

0
0

0
_2

5
J_
20

"10

X
16

8

0
_3_

"10
X

"40

20

1
4
J_
2

0
_2

5
J_
10

2
5

1
2
5

X
'20

10

0 16
» -1

1
_3_
10
X
40
X

'20

-4
ή
n

o
3

9

12

Table 2.2 Application of the modified Simplex to the Quadratic Programming Example
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In the second tableau, both m, and y2 are eliminated as candidates (because v, and x2 

are basic variables), so x, automatically is chosen as the only candidate with a negative 

coefficient in row 0 (whereas the regular simplex method would have permitted choosing either

x, or Μ, because they are tied for having the largest negative coefficient). In the third tableau, both

y, and y2 are eliminated (because x, and x2 are basic variables). However, w, is not eliminated 

because v, no longer is a basic variable, so w, is chosen as the entering basic variable in the usual 

way.

The resulting optimal solution for this phase 1 problem isx, =12, x2 =9andw, =3, 

with the rest of the variables zero. Therefore, the optimal solution for the Quadratic 

Programming problem (which includes only the x, and x2 variables) is (x,, x2) = (l 2,9).

2.7 Conclusions

In this chapter, we have considered a family of combinatorial problems known under 

the name of Knapsack Problems and. We have also studied the foundations of nonlinear 

programming and focused on one of its major subsectors namely Quadratic Programming .We 

have introduce the Karush-Kuhn-Tucker (KKT) conditions and showed an indirect 

application of these conditions to provide a linear transformation of the Quadratic 

Programming Problem which can be dealt with the modified SIMPLEX method.

Applications for both Knapsack Problems and Quadratic Programming have been 

presented, denoting why both are of great research interest. As we can easily see the 

combination of these two major subjects of interest, leads to the Quadratic Knapsack Problem 

which is the key concept of this thesis.
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Chapter 3 Quadratic Knapsack Applications

3.1 Introduction

This chapter consists of the analysis of Quadratic Knapsack Applications. In detail we 

will study Problems of Portfolio Selection, Quadratic Transportation, Multi-Commodity 

Network Flow and Matrix Balancing. We supply brief introduction of the problem concepts 

as well as references of past work. We also consider their Quadratic Knapsack formulations. 

In the last section of the chapter we present a new formulation, where deviations from the 

target value are allowed for the Knapsack Constraint applied to an Aircraft-Maintenance 

Problem.

3.2 Portfolio Selection Problem

Constructing a portfolio of investments is one of the most significant financial 

decisions facing individuals and institutions. A decision-making process must be 

developed which identifies the appropriate weight each investment should have within the 

portfolio. The portfolio must strike what the investor believes to be an acceptable 

balance between risk and reward. In addition, the costs incurred when setting up a new 

portfolio or rebalancing an existing portfolio must be included in any realistic analysis. 

Convex transaction costs, including linear (proportional) transaction costs, piecewise 

linear transaction costs, and Quadratic transaction costs can be considered. In order to 

properly reflect the effect of transaction costs, we suggest rescaling the risk term by the 

funds available after paying the transaction costs.
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Essentially, the standard portfolio optimization problem is to identify the optimal 

allocation of limited resources among a limited set of investments. Optimality is measured 

using a trade-off between perceived risk and expected return. Expected future returns 

are based on historical data. Risk is measured by the variance of those historical returns.

When more then one investment is involved, the covariance among individual 

investments becomes important. In fact, any deviation from perfect positive correlation allows 

a beneficial diversified portfolio to be constructed. Efficient portfolios are allocations that 

achieve the highest possible return for a given level of risk. Alternatively, efficient 

portfolios can be said to minimize the risk for a given level of return. These ideas 

earned their inventor a Nobel Prize and have gained such wide acceptance that countless 

references could be cited. The model of portfolio selection is originally presented in 

Markowitz [10] and is as follows. Assume:

(a) n securities

(b) an initial sum of money to be invested

(c) the beginning of a holding period

(d) the end of the holding period

Let χλ,...,χη be investment proportion weights. The xt are the proportions of the 

initial sum invested in the n securities to form a portfolio at the beginning of the holding 

period. Unless restricted to the contrary, an xt can take on any value. Nevertheless, all xt

must sum to one. An xt < 0 means that security i is sold short with the cash generated then 

providing additional money to be invested in the other securities. An x( >1 is possible.
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Assume a two-stock portfolio and an initial sum of $100. If security 1 is sold short to the 

extent of $40, then because all weights must sum to one, the $40 plus the initial sum are 

invested in security 2 in which case x{ = -0.4 and jc, =1.4.

Let η be the random variable for the percent return realized on security i between the 

beginning of the holding period and the end of the holding period. Let rp be the random

variable for the percent return realized on a portfolio between the beginning of the holding 

period and the end of the holding period, where

n
rp=HriXi

1=1

In this way, rp is a function of both the r and the xt. Since the r are not known until 

the end of the holding period, but the xt must be chosen at the beginning of the period, 

attempting to maximize rp via the above equation is a stochastic optimization problem. With

solutions of a stochastic optimization problems not well defined, a decision is required on 

how to proceed.

Since an investor can never know at the beginning of the holding period the value of 

rp to be realized at the end of the holding period, the investor is in a quandary. Ideally, an 

investor would like to position his initial sum to maximize his chances of reaping a high value 

of rp while at the same time minimizing his exposure to disconcertingly low values of rp.

Assuming that all η are from distributions whose means μ{, variances au and covariances 

cr. are known, Markowitz's mean-variance solution procedure, which has come to form the
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foundation of what we know of today as "modem portfolio analysis”, is to proceed with the 

bi-criterion program

min I LLxi(Tijxj^(TP 
l'=l »

max = **p
. 1=1

5.t. X^,=l
i=l

< xt < ut where σ2ρ is the variance of rp and μρ is expected value. Let E0

be the minimum expected portfolio return. The problem can take the following form

mm- |xTQ Χ = ΣΣχίσϋχ]=σ2ρ

n

μΓχ=Σ/νο· -Eoi=l

s.t. X^,=l
1=1

/,. < X,. < «,

By varying the parameter E0 and solving multiple instances of the problem, the set of 

efficient portfolios can be generated. This set, visualized in a risk/retum plot, is called the
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efficient frontier. An investor may decide where along the efficient frontier (s)he finds an 

acceptable balance between risk and reward.

3.3 Quadratic Transportation Problems

The Linear Transportation Problem (L.T.P.) can be described as a minimum-cost 

flow problem over a network depicted in Fig 3.2 .This network includes I supply and J 

demand nodes connected by direct links. Hitchcock's formulation of the transportation 

problem is

Mwz(x) = ZZcr*i,·
M 7-1

J

subject to Z xu = 0(
7=1

Σλ=£, Y/ = l,2,...,7 
1=1

Xj>0 / Vi,j

Assume further that the total supply equals the total demand, that is

l j

where xy is the amount of movement from place i to j, cy is the given transport cost and O 

and D are the supplies and demands.
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SUPPLY DEMAND
NODES NODES

Figure 3.1 Linear T ransportation Problem

In addition to the known marginal totals 0: and Ζλ, the transport cost quantities ctj are also

given. The Quadratic Transportation Problem (Q.T.P.) is an optimization problem defined 

as follows :

Minz{x) = ]-YYjcl]{xIJ) +XIXW

j
subject to

j=i
Vi = 1,2,

Σχυ=dji=l
Vj = 1,2,

xs>0 Vi,j

M II M

i j
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where

Xy is the amount of movement from place i to j 

Cj is the per unit transport cost

dy is the per unit depreciation cost (wear and tear or damage cost) 

and O and D are the supplies and demands.

Properties that distinguish the solution to the Q.T.P. from that of the L.T.P. are that

(a) The Xy are on average smaller numbers. This is forced by the Quadratic term in the 

objective function.

(b) The number of non-zero xiy will exceed I+ D +1 and will approach ID.

(c) The Xy are generally not integers.

Properties (a) and b) are more in accord with empirical spatial interaction tables than 

are the solutions to the L.T.P. This is expected because commodity flows are rendered more 

reliable by a diversity of sources, urban traffic is diverted to avoid congestion, and migration 

patterns are rendered diffuse due to information inadequacies. Spatial allocation models that 

use the L.T.P. thus yield results that are less realistic than can be obtained through the use of 

the Q.T.P. solution. Property c) of the L.T.P. is desirable, however, and suggests investigation 

of an Integer Q.T.P.
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3.4 Multi-commodity Network Flows

In the classical transportation problem the cost of transportation is directly 

proportional to the number of units of the commodity transported. But in real world situations 

when a commodity is transported, a fixed cost is incurred in the objective function. The fixed 

cost may represent the cost of renting a vehicle, landing fees in an airport, set up costs for 

machines in a manufacturing environment etc.

The three dimensional fixed charge bi-criterion indefinite Quadratic transportation 

problem, can be used to formulate the real-world problem.

Suppose i = 1,2are the origins

j = 1,2,...,n are the destinations and

k = 1,2,...,/» are the various types of commodities to be transported in a three dimensional 

transportation problem. Let

xijk = the amount of kth type of commodity transported form the ith origin to the jth destination

Cp - the variable cost per unit amount of kth type of commodity transported form the ith 

origin to the jth destination, which is independent of the amount of the commodity 

transported, so long as xiJk > 0.

dijk = the per unit depreciation cost (wear and tear or damaged cost) of kth type of commodity 

transported form the ith origin to the jth destination, which is independent of the amount 

of the commodity transported, so long as xijk > 0
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A* = the total quantity of kth type of the commodity received by jth destination from all the 

sources.

Bki = the total quantity of kth type of the commodity available at the ith origin to be supplied to 

all destinations.

Ey = the total quantity of all types of commodities to be supplied from the ith origin to the jth 

destination.

Fik = the fixed cost associated with origin i and the kth type of commodity. We define Fik 

according to the amount supplied as

n

Fik =Σ^Λ*’ = k = \,2,...,p
M

Γ 1 if xijk > 0
where djk = \ i = \,2,...,m, j = l,2,...,n,k = \,2,...,p

lJ xjk = 0

Then the three dimensional indefinite Quadratic transportation problem is defined as

m n p \ f m n p

Min z(x) = ΣΣΣ°Λ ΣΣΣ^λ +ΣΣ^*
^ ι*1 7=1 k=1 /=1 7=1 k=\ y /=! k=1

m p

subject to

m

Σν =Ajk J = l2,...,n,k = l,2,...,p
1=1

39
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80



Chapter 3 Quadratic Knapsack Applications

n

Σχβ* =Bk‘ ,k = l,2,...,p,i = \,2,...,m,
7=1

P

Xijk ^ij ’Ϊ 1,2,...,7M , j 1,2,...,72
7=1

Xijk ,i = l,2,...,m, j = 1,2,...,«,k = 1,2,..,,p

Also

ίΧ=ΣΧ.*=1>2.···..ρ 0)
7=1 k=1

Σ5*< =Σ£//’/ = 1’2’···’™ (ϋ)A:=l y=l

m p
Σ^Σ^’^1’2’···’" 0^)
1=1 *=1

m p p m m n

ΣΣα*=ΣΣ =ΣΣΕυ (iv)
7=1 7=1 7=1 i=l i=l 7=1

Here, there are m origins, n destinations and p types of commodities to be transported.

(i) implies kth type of commodity received by all destinations = kth type of commodity 

supplied from all origins,

(ii) implies different types of commodities supplied by the ith source = amount of 

commodities received by all destinations from the ith source
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(iii) implies amount of commodities supplied from all sources to jth destination = different 

types of commodities received by the jth destination,

(iv) implies amount of commodities received by all destinations of different types of 

commodities = amount of commodities supplied from all origins to all destinations = 

amount of different types of commodities supplied from all origins.

Note: (i) to (iv) indicates that the transportation problem considered is a balanced 

transportation problem.

3.5 Matrix Balancing

The problem of adjusting the elements of a matrix so that they satisfy certain 

consistency requirements but still remain 'close' to the original matrix is generically referred 

to as matrix balancing. Matrix balancing problems arise in a wide range of practical contexts 

that include accounting, transportation, and demographics. These and several other 

applications are reviewed in an excellent overview by Schneider and Zenios [28].

In a typical matrix balancing problem, we have a matrix that estimates certain 

quantities of interest, but these estimates do not satisfy consistency requirements that the 

actual values are known to satisfy. An example might be estimating the elements of a 

transition probability matrix which we know to be doubly stochastic. Consistency with the 

doubly stochastic property requires that the rows and columns sum to one. The doubly 

stochastic matrix is an example of one of two types of matrix balancing problems discussed 

by Schneider and Zenios [28]. They are adjusting the elements of a matrix so that the row and
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column sums equal certain prescribed values; adjusting the elements of a square matrix so that 

its row and column sums are equal to each other, but not necessarily to any prescribed values.

The conditions imposed on the row and column sums are called balance conditions, 

and a matrix that satisfies the balance conditions is said to be balanced. In the applications 

considered by Schneider and Zenios [28], the balance conditions relate only to row and 

column sums. More generally, the balance conditions can be restrictions on the sums of 

various combinations of matrix elements. (See, for example, Censor and Zenios [29].) The 

fair representation problem considered by Balinski and Demange [30] is one example. In the 

most general case, the balance conditions can be any set of linear restrictions on the matrix 

entries.

For a particular set of balance conditions there may be a large number of balanced 

matrices, but in matrix balancing, we seek a balanced matrix that is close to the original 

matrix.

3.5.1 A brief review of matrix balancing

We present a standard matrix balancing formulation for producing matrices with prescribed 

row and column sums. This formulation appears in [28[. Suppose that we are given an nxn 

nonnegative matrix M and positive vectors s and d, both in 91", that provide target row and 

column sums. The associated matrix balancing problem can be written

/ j

Min z (x) = Σ Σ f‘jxv

j
subject to
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Yxa=dj Y/ = 1,2,...,J
1=1

xij - o Vi, 7

xy > 0 only if nij > 0

The constraints in this model can be viewed as the flow-balance equations in an associated 

transportation problem.

r:

0 12 3 
4 0 6 7 

6 10 7
1 i 2 0_ 

5: 6 17 18 4

6

17
18 
4

Figure 3.2

ROWS COLUMNS

A matrix and it’s associated transportation network

Figure 3.3 provides an example of a small matrix and its representation as a 

transportation network. There is one left-hand node associated with each row of M and one 

right-hand node associated with each column of M. There is a link from left-hand node i to 

right-hand node j whenever the corresponding matrix element my of M is nonzero. Left-hand

node i has supplysn while right-hand node i has demandd,.. To complete the network flow 

description of the problem, we associate a cost fy of sending xiy units of flow on the link
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from i to j and try to minimize the total cost of satisfying demands. The optimal flows xtj 

provide the new balanced matrix.

The objective function employed in matrix balancing is typically separable, nonlinear, 

and convex. The role of the objective is clearly to penalize deviations from the original 

matrix. Nonlinear objectives are attractive because they promote balance among the 

deviations by penalizing large deviations disproportionately more. Schneider and Zenios [28] 

note that Quadratic and entropy penalty functions are the ones that are typically used in 

practice.

Quadratic objective functions that minimize the (weighted) sum of squared deviations 

from the target matrix have been more widely studied. For problem [MB], we obtain the 

Quadratic penalty objective by letting

where the w{j ’s are nonnegative weights. The resulting problem has a separable Quadratic

objective and transportation constraints, whence we can see that the problem simplifies to the 

Quadratic Transportation Problem already referenced.

3.6 Aircraft Maintenance

The problem that we present here arises as part of an operations management problem 

in a typical Combat Wing of Military Aircrafts.

At the beginning of each planning horizon, the wing command issues the flight 

requirements for each period. These requirements determine the total time that all the aircraft

44
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80



Chapter 3 Quadratic Knapsack Applications

should fly during each time period. Separate requirements are issued for each type of aircraft, 

because different aircraft types have different flight capabilities and maintenance needs. For 

this reason, the model introduced in this section can be applied repeatedly until all plans have 

been issued, if more than one aircraft types are involved. The requirements issued by the wing 

command contain target values from which only small deviations are permitted.

For each specific aircraft, we define its residual flight time as the total remaining time 

that the aircraft can fly until it has to undergo a maintenance check. The residual flight time of 

an aircraft is positive if and only if this aircraft is available to fly. The total residual flight time 

of the wing is equal to the sum of the residual flight times of all squadrons. Clearly, there 

exist many possible combinations of individual aircraft residual flight times that can result in 

the same total squadron or wing residual flight time. Similarly, we define the residual 

maintenance time of an aircraft as the total remaining time that the aircraft needs in order to 

complete its maintenance check before it can be available to fly again.

For the maintenance needs of the wing, there exists a maintenance station that is 

responsible for providing maintenance services to the aircraft of the wing. This station has 

certain space and time capacity capabilities. Given the flight requirements for each squadron 

and the physical constraints that stem from the capacity of the maintenance station, the 

objective is to issue a flight and maintenance plan for each individual aircraft so that some 

appropriate measure of effectiveness is optimized.

Consider the 2-dimensional graph shown in Fig 3.4. The vertical axis represents 

residual flight time measured in some appropriate units, and the horizontal axis represents the 

indices of the aircraft in increasing order of their residual flight times, 1 being the index of the
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aircraft with the smallest and N being the index of the aircraft with the largest residual time 

(N is the total number of aircraft).

Consider also the line segment connecting the origin and the residual flight times point 

with coordinates (jV,_ymax), where ynm is the maximum time that an aircraft can fly between

two consecutive maintenance checks. By mapping each aircraft on this graph, we can have a 

picture of the total availability of the squadron or the wing, whichever of the two the graph 

refers to.

residual

Figure 3.3 Visual representation of aircraft residual flight times

To describe the smoothness of the distribution of the total residual flight time of all 

aircraft we use a "total deviation index". This index is equal to the sum of the vertical 

distances (deviations) of each point mapping a single aircraft from the line segment that 

connects the origin with point (N,ymax). The smaller this sum is, the smoother the 

distribution of the total residual flight time. Ideally, the total deviation index is equal to zero,
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in which case all points lie on the line segment. When issuing the individual aircraft plans, the 

intention is to keep each point as close to the line segment as possible, so that these deviations 

remain small.

The intuition behind the utilization of the graph described above is straightforward. By 

providing a wide range of different residual aircraft flight times, we can establish a smooth 

sequence that determines the order in which the aircraft should visit the maintenance station. 

This in turn prevents bottlenecks in the maintenance station and ensures a smooth utilization 

of the maintenance station. More importantly, it ensures a fairly constant level of aircraft 

availability.

As already noted, the flight time availability is equal to the sum of all aircraft residual 

flight times, but there are many residual flight time combinations that can result in the same 

total availability. To comprehend this better, consider a problem with four aircraft, each of 

which can fly a maximum of 120 hours between two consecutive maintenance checks. For a 

total flight time availability of 300 hours, a possible combination of the residual flight times is 

30-30-120-120. Another one is 30-60-90-120. For the technique described above, the second 

distribution is preferable, because it ensures a smooth rotation of the aircraft, i.e. a smooth 

utilization of the maintenance center and a fairly constant level of aircraft availability. From 

the maintenance point of view smoothing the rotation of the aircraft is the most appropriate 

measure of effectiveness.

3.6.1 Problem Formulation

In this section, we present the mathematical model that we developed for the problem 

described above. We use the following notation:
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Decision Variables:

Xj : flight time of aircraft i during planning horizon,

Parameters:

S : required total flight time during planning horizon

y( : residual flight time of aircraft i at the beginning of planning horizon,

A”max : maximum time an aircraft can fly during planning horizon ,

Tmin : minimum residual flight time of an available aircraft,

L, U : real numbers denoting the maximum deviation from the value of S that can be 

tolerated (U > L),

s = y,max : the slope of the deviation line where
N

.Vmax : maximum residual flight time of an available aircraft,

N : total number of aircrafts available for flight

Then, the referenced problem can be formulated as follows:

s.t. L-S <Σχι ^U-S
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yt-Xt=y't*Ynin « + T, i £ N = {1,2,...,#}

and can take the following form

Μη ζ=Σ(^,-ΐ·ή-Χ,)2
i

s.t. L S < <U-S
i

0 ^ *i * Xleft (0 = min(^max » X - K»n )

U>L,ieN = {\,2,...,N}

The objective function minimizes the sum of squares of all deviations from the line.

The first constraint set (Knapsack constraint) ensures that the flight requirements are 

met. Variables L and U define an interval [L ■ S,U -5], in which the actual flight time for the

planning horizon should lie. For example whenL = 0.95 and U = 1.05 a 5% deviation from 

the flight requirements is permitted.

The second constraint set (box constraints) ensures that the residual flight time of an 

aircraft cannot exceed the maximum value neither the upper bound of the maximum time it 

can fly during the planning horizon.

3.6.2 General Form transformation

Let (yt - i ■ s) - x,. = xt' <=> x, = (yt - i ■ s)- x,■'
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Then Σ*/=ΣΟ'/-*'·5)-Σχ<'
i i i

We make the necessary transformations.

ζ=Σ((^·*)-*,)2=Σ(ν)2

Then
Yjxi-U-S<0

i
L-S~Yx,< 0

i i
LS-Yi(y,^i-s) + '£xl'<0

i i

Σ,χι'-Έ(?ι~ΐ!)-18

Σν^1'
i

Σχ^υ
U'> V where

i'=ZU-;·

υ' = Σ(γ,-ί·

Last 0<x, <XkJI(i)oO<(yt-i-s)-x,'<Xkt(i)

<=> (y,-< ■ ή - x<x,'<(y,-is)na,Zxl'<bl where
-is)

*,=u-

The problem takes the following form

Min z=Y(x,)
2

s.t.
Yxi>L

Σχ^υ
\U > L

s)-U-S

s)-LS

i-s)
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ai - xi - b,

Which is the general case of the box constrained Quadratic Knapsack with upper bounds.

3.7 Conclusions

In this chapter, we studied Quadratic Knapsack Applications including Problems of 

Portfolio Selection and Rebalancing, Quadratic Transportation, Multi-Commodity Network 

Flow and Matrix Balancing. All these problems can be formulated in accordance with the 

standard Quadratic Knapsack Formulation. All formulations have in common that there exists 

one or more tight Knapsack constraint.

We find interest in investigating the case where deviations from the target value are 

allowed for the Knapsack Constraint, which is exactly what we have seen in the Aircraft- 

Maintenance Application.
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Chapter 4 Box Constrained Quadratic Knapsack Problem with 
Upper Bounds

4.1 Introduction

In this chapter we focus on the special case of Quadratic Knapsack Problems, where 

deviations from the target value are allowed for the Knapsack constraint. Because of this 

deviation allowance algorithms and known techniques for the standard Quadratic Knapsack 

formulation cannot be directly applied. That is why we use the KKT Conditions in order to 

characterize the optimal solution to the problem. After that we prove global optimality of the 

solution. We introduce an algorithm for the solution of the problem and then focus on 

optimality and complexity issues.

The formulation used in this chapter is fitted for the need of the Aircraft maintenance 

application, but in the end of the chapter we generalize the concept.

4.2 Applying the KKT Conditions.

As we can see from Section 3.6 the Aircraft-Maintenance problem can be formulated as

Min z=Yj((yl-i-s)-x,)2

s.t.
Σχ,-υ·Ξ< 0
i

L-S-^Xi< 0
U>L

0<x,.< Xleft (i) = min(Amax , yt - 7min)
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Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

The Lagrangian for the problem is

Ζ(χ,^,ϊ/,ν)=Σ((χ-/ *)-*,)2+v
f λ i Λ

M 1 c: +Λ ■ L-S-Σχ,
V i V / /

Σν, ’(*, -X,efi(i))

The necessary and sufficient Karush-Kuhn Tucker (KKT) conditions are:

-2((y,-i-s)-x,) + ^-l2+vi >0

V,-(*4-^(0) = 0 V,.6^

-US = 0 4 e9T

V X, = 0 \ e3t

L-S-Xxii0
i

0<Xi<XHt(i)
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Theorem 4.1 (Characterization of the optimal solution of the Problem).

A feasible solution x* = (x*)is optimal solution for the problem if and only if there exist 

/l1,/l2€9?+:/ll-A2=0 such that for λ = λι-λ2 the following hold:

x* = 0 , i e Nq = {/e N: λ > 2(yi -/· j)}

=(.V<-*'·*)" » ={/eN:2[(yi-i-s)-Xlefi(i))<A<2(yi-i-s)}

x;=Xlefl(i) , ieN}* ={/EA:A<2((y(.-ri5)-^(0)}

Proof

Necessity

Let x* = (x*) be the optimal solution.

Let A, > 0 and A, > 0

From the KKT conditions we have

Yjxi-U-S = 6
i

L-S~Yjxi =0
><=>(/ = L Not feasible because U > L

We conclude that an optimal solution of the problem exists if and only if \ ^ = 0
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We have the following cases:

Case 1. y1*,. =LS
i

so Aj - 0 and > 0 that is λ -

The KKT conditions take the following form

-2(O’,-'·*)-*,)-Λ+ν, iO

v,SM*

i

^x,=LS
i

0<Xi<Xlefl(i)

a) For jc* = 0 we have that vi = 0 

So -2(yi-i-s)>A2 = -λ

<=> λ > 2 (>v - i · 5·)

b) For x] = Xlefl(i) we have that v(. > 0

So -2((>v -1 · j) - 2f/e/( (0)-λ1-νί<λ7=-λ
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c) For 0 < x] < X,eft{i) we have that v(. = 0

So -2((yl-i-s)-x*) = \ =-λ <=> yi-i-s-x‘
λ
2

λ
<=>*/ =y.-i-s-~

However 0 < x* < X,eft(i)

λ
<=> 0 < y, - i ■ s-—< Xtef (/)

» y, - i ■ s - Xlefi (i) < | < yt - i -s

Xleft (i))<A<2(y,-i-s)

Case 2. ^x; = U S

So \ > 0 and = 0 that is λ = \

The KKT conditions take the following form

-2(0',-*'·ί)-*,) + Λ+ν,

ν(·(χ,-*,)=0 ν,€«*
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Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Σχι^υ-s
i

Σ*<>Ls
i

0<Xi<X,eft(i)

a) For x* = 0 we have that v(. = 0

So —2(y. -i s) > -A, = -A

<=> A > 2(>>( -/ s)

b) For x* = X,efl{i) we have that v. > 0

So -2((y, - s)- jrw(0) = -A - v, < -Λ, = -Λ

<=> Ί S 2((j>, — / · j)—

c) For 0 < x- < Xleft(i) we have that v(. = 0

So -2((^, - i ■ s) - x*) = -A, = -A <=> yt - i ■ s - x*
A
2

»x. =y.-i-s--

However 0 < x* < X,eft{i)
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λ
»0 <y,-i-s--<Xlefl(i) 

v ... λ^yi-i-s-Xleft{i)<-<y,-i-s 

«2 (y,-i-s- Xleft (/')) <λ< 2(yi-i-s)

Case 3. L S <^x,. <[/·5
i

So λ, = 0 and = 0 that is λ = 0

The KKT conditions take the following form

-2((y,-i s)-xl) + v, >0

v,e9i*

Y,Xi^Us
i

I

0 < x,. < Xleft (i)

a) For x* = 0 we have that v(. = 0

So -2 (_y. - / · s) > 0 = -λ
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<=> λ > 2(y,. -i-s)

b) For x* = X,eft{i) we have that v,. > 0

So -2((y, -i-s)-X,efl(0) = -v, <0 = -λ 

ο λ <2((y,-i-s)-Xlefl(i))

c) For 0 < x* < Xleft(i) we have that v(. = 0

So -2((yj-i-s)-x*) = 0 = -λ o yt -i-s-x*
λ
2

λ
ox,. = y.-i-s--

However 0 < x* < Xkft{i)

λ
<*0<yi-i-s--<Xleft(i)

oyi-i-s-Xlef{i)<-<yi-i-s

<=> 2 (yt ~ i ■ s - Xlefl (/)) < A < 2 (y, - i ■ s)
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Sufficiency

On the contrary let x* satisfy the following 

x* = 0 , i € Nq = {/ 6 N: A > 2(yi-i-s)}

x* =(y,-/-5)-y , ieN* ={ieN:2((yi-i-s)-Xlefl(i))<A<2(yi-i-sj}

xj = X*(0 ’ ie ΝχΙφ = {/ e W: A < 2((y, - i-s)-Xleft(/))}

where A = A, -A^with:λι·λ2=0

We have the following cases

Case 1. A, = 0 and > 0 Then A = -Aj < 0

Moreover for i e Νλ 2 (y,· - / · s) - x* = A < 0 

Let

(a) A = 2(y,--i-s)-x* taken from the solution of the equation
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(b) U{ = v, = 0 για i e Νλ

(c) ut = 2(yi-i-s)-X>0 vi = Ο για i e N(

(d) u. = 0 V( = 2 ((y, -i-s)- Xleft (i))-A>0 για i e

We can see that the KKT conditions are satisfied.

Case 2. A] > 0 and A2 =0 Then λ - λ, > 0

Moreover for ie Νλ 2 (y,- i ■ s) - x* = λ > 0 

Let

(a) λ = 2(y: - i-s)-x* taken from the solution of the equation

(b) m. = v, = 0 για i e Νλ

(c) u,: = 2(yi -is)-A>0 v; =0 για i e N*

(d) m. =0 v, =2 ((y, -i-s)- Xlefl (ί))-λ> 0 για i e

We can see that the KKT conditions are satisfied.
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Case 3. Λ, = 0 and ^ = 0 Then λ = 0 

Moreover for i e Νλ=0 2(yi-i-s)-x* = λ = 0 

Let

(a) λ = 2 (y, -/'· s)-x* = 0

(b) II II o για i € Νλ

(c) m, = 2(y(-i s)-λ > 0 v,=0 για i e N*'

(d) _S II 0 II to ST 1 -Χ„,(ί))-λ>0 για i e Νί:1 Al

The KKT conditions are satisfied once again.

Remarks

Global optimality is proven by convexity. In detail we can see that the 

Hessian V2 (/(*)) of our objective function is positive semidefmite, thus our objective 

function is convex and by [43] our optimal solution is global minimum..

We can see that the Lagrange multipliers \ and/L, take zero value only if the 

Knapsack constraint ^x. equals the value U -S or L S respectively. In all other cases we
i

shall have λ]=λ2 = 0 and as a result/l = 0. This remark leads to the conclusion that if an 

optimal solution exists between the limits ^ xt =L ■ S and ^ =i/ S then λ = 0.
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Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

x* — 0 ,ie Nt=0 ={ieN: 0 > 2(y;-i-s)}

χ! =(η~ί·ή , /6^=0 = {/e ^:2((^-/·ί)-^Μ(θ)<0<2(^-ι··ί)}

=xkf,(t) . /e^={/eJV:0£2((j.,-/-j)-jrw(i))}

By noting that (>».-/·j) is the original deviation from the line, it follows that for 

VieN having original deviation (yi-i · s)> Xleft(i)we shall have an optimal value 

x* = X,eft(i) For the rest we shall have an optimal value xj = (y, - i-s) equal to the original 

deviation from the line or optimal value x* = 0 for Vi e N having negative original deviation 

from the line. As a result, if the solution lies between L ■ S and U ■ S then it must either be on 

the line or at the point where all** = Xkf,{i), if this happens before reaching the line.

4.3 Solution Algorithm

We present the following algorithm for the solution of the problem. 1 2 3

1 Sum = xt - 0 *(. = 0Vie N
i

2 decision = not final

3 While decision = not final {
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12
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14

15

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

If not all x =X,efl(i) {

Find diff = Max{(y: - is-x,) where ie N :x:-Xleft(/) < 0j

Γ / . where i e N: x, - X.ft (/) < Ol
diff2 = Maxj(y, -/·s-*,) ^ j

and all x. at diff

If diff>0{

If not US{

find diff = min diff ~ diff2, diff,\, Xlefl - x,,
US - Sum

where 7^(0 =
J1 (U -i-s)-xi) = diff andx, -Xlefl(/) < o]

otherwise

update Sum = Sum + diff ■ ^ Idiff (i)

xi = xt + diff for all x; at diff

}

else if US -> decision=optimal

else if diff < 0 { 

If not LS{

find diff = min diff -diff2,Xleft -x„
LS - Sum

where 7^(0 =
_ f 1 ((>>, - i ■ ή ~ x,) = diff and x, - Xleft (/) < o]

otherwise
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16 update Sum = Sum + diff · Id.ff (/)

X; = xi + diff for all xt at diff

17

18

19

20 

21

22

23

24 }

else if LS —» decision=optimal

else if all xt = Xleft(i) {

if LS < Sum < US —> decision=optimal 

else ->decision=infeasible

The way this algorithm takes action is similar to the way we use the sweep. In detail 

the algorithm acts on those points only that have not yet met the limit xt < Xleft (;).

We begin from the point with the maximum deviation from the line and keep going 

down like sweeping until we reach the one having the second maximum deviation from the 

line, concurrently increasing the value of by the amount of the difference of those two
i

deviations. At this point we must note that in case two or more points have the same 

maximum deviation then the algorithm acts on these points as a group by altering the 

correspondent xt ’s by the same amount equal to the difference between the two largest

deviations and by increasing the value of^x, by the amount of this multiplied by the number
i

of points on which the algorithm takes action. At the end of each iteration we update both
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then’s and the Σx. and calculate from scratch the difference between the two largest
i

deviations, always ensuring that no basic restriction of the problem is being violated.

As a result the algorithm sets zero value to the points it has not yet reached when 

terminated because of some constraint violation, value Xkft{i) to the points that have already

reached their limit value and value x] = (y, - i-s)-d to the rest points where d is the final

distance from the line of the algorithm terminating point. This distance may be either positive 

when the algorithm stops above the line or negative when the algorithm stops below the line. 

The algorithm terminates either at the optimum solution if one exists or with no feasible 

solution.

We use the following notation

Zero-Line The /(z) = i■ s Line where x, = (y\ -i-s)

L-Line The parallel to the Zero-Line where ^x(. =L · S

U-Line

Xleft-Line

The parallel to the Zero-Line where ^x; =U ■ S
i

The parallel to the Zero-Line where

=ΣΧ^(0 aIld Xi = Xleft (0

4.3.1 Proof of optimality
Corollary: The algorithm terminates at the optimum solution if one exists.

Proof

Given that a feasible solution exists we have that L S < ^ Xleft
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if Σχ» <U S then L S <^Xleft <U S and we examine all possible orderings of
i I

the constraints.

Casel Zero —>L—► Xleft —>U Optimal Solution L

Figure 4.1 Constraints ordering in Case 1

λ
Let — = Distance between L and the line. This distance is negative because L-Line is

below the Zero-Line .We also have that \ =0and X, >0 because the algorithm has stopped 

on L-Line so λ = λι-λ2= -λ^ < 0

We have variables of three kinds

(a) x* = 0 For the points that have not been reached

λ— >-i-s) is valid, since the points have not been reached that means their initial

deviation is lower than the algorithm terminating point.
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λ
(b) x* =(y.-i-s)For the points that lie on L.

λ
{{yl-i-s)-Xiefi{i))<-<{yl -i s) is valid since the points lie on L that is between

Xleft and their initial deviation.

(c) x* = X,eM) For the points we left behind because they have reached their upper

bound.

λ
— < ((_y, - / · s) -Xleft (/')) is valid because the algorithm has continued downwards and

has terminated at L.

Since λΛ·λ1=0 our solution fulfils the requirements of the Theorem 4.1 thus is 

optimal.

Case2 L—► Zero -^Xleft —>U Optimal Solution Zero-Line

Figure 4.2 Constraints ordering in Case 2
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We have that \ - 0 and ^ = 0 because the algorithm terminates between L-Line and 

U-Line so λ = 0

We have variables of three kinds

(a) x] = 0 For the points that have not been reached

0>(_yi. -i-s) is valid, since the points have not been reached that means their initial 

deviation is lower than the Zero-Line.

(b) x] = (y, - i-s) For the points that lie on the Zero-Line.

(^ι-ί·ή-χι<Α 0)<o <(_y( - i-s) is valid since the points lie on the Zero-Line that 

is between Xleft and their initial deviation.

(c) x] = X,M) For the points we left behind because they have reached their upper

bound.

0<((>v -i■ s)-Xleft{i)) is valid because the algorithm has continued downwards and 

has terminated at the Zero-Line.

Since λ,-λ2 =0 our solution fulfills the requirements of the Theorem 4.1 thus is 

optimal.
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Case3 L—» Xleft —> Zero —>U Optimal Solution Xleft

Figure 4.3 Constraints ordering in Case 3

We have that \ = 0 and =0 because the algorithm terminates between L-Line and 

U-Line so λ - 0

We have only one kind of variables

x* = Xleft(i) Because all points have reached their upper bound since the Algorithm 

has terminated on Xleft.

0<((y, - is valid since the Algorithm has terminated on Xleft before

reaching the Zero-Line.

Since λι·λ2= 0 our solution fulfills the requirements of the Theorem 4.1 thus is 

optimal.
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Case4 L—> Xleft —>U—>· Zero Optimal Solution Xleft

Figure 4.4 Constraints ordering in Case 4

We have that \ =0and/l2 =0 because the algorithm terminates between L-Line and U- 

Line so λ - 0

We have only one kind of variables

x] = Xleft (i) Because all points have reached their upper bound since the Algorithm 

has terminated on Xleft.

0<-i-s)-X,e/i(i)) is valid since the Algorithm has terminated on Xleft before 

reaching the Zero-Line.

Since λι·λ2 = 0 our solution fulfills the requirements of the Theorem 4.1 thus is 

optimal.

λ
Let — = Distance between U-Line and the Zero-Line. This distance is positive because U-

Line is above the Zero-Line. We also have that \ > 0 and = 0 because the algorithm has 

stopped on U-Line soZ = /l1-/l2=/l1>0
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We have variables of three kinds

(a) x* = 0 For the points that have not been reached

λ / \
— > {y;-i-s) is valid, since the points have not been reached that means their initial 

deviation is lower than the algorithm terminating point.

λ
(b) x] = (y, - / · s) -— For the points that lie on U.

b-*w(9)<f <(y: - i-s) is valid since the points lie on U, that is between

Xleft and their initial deviation.

(c) x* = Xlefi(i) For the points we left behind because they have reached their upper

bound.

?)-X,efl(i)) is valid because the algorithm has continued downwards and

has terminated at U.

Since \ = 0 our solution fulfills the requirements of the Theorem 4.1 thus is

optimal.

2) If ΣΧ,φ^υ-S then L S<U S < ^ Xlefi and we examine all possible orderings of
i i

the constraints.

Zero —>L —»U—> Xleft Optimal Solution L

L—> Zero —>U—>Xleft Optimal Solution Zero

L —>U —>Zero —> Xleft Optimal Solution U

L —>U—> Xleft—> Zero Optimal Solution U

The proof can be done with the same reasoning.
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4.3.2 Algorithm Complexity

1 Sum = Σχί “ 0 xt=0\/ieN
i

2 decision = not final

3 While decision = not final {

4 If not all xi = Xleft (i) {

6

7

8

Find cliffy = Mxc{(y, - is-x,) where ieN:xi- Xleft (i) < 0 j

i where ieN:xi-Xl f (i) < Ol
and diff = Max -j (y, - is-x;)

and all xt at diff 

If diff> 0 {

If not US{

and (yi-i-s-xi)*diff

find diff = min diff ~ diff2, diff,, Xlefl - x,,
US - Sum

0(1)

0(n)

0{n)

0(1)

0(1)

where 7^(0 =

Σ V')
i

i1 ((y,-i-s)-x,) = diff andx, -X,eft(/) <0j

0(«)

0 otherwise

update Sum = Sum + diff ■ ^ Idiff (/)

xt = + diff for all xi at diff

0(h)

10 }

11 else if US —» decision=optimal 0(1)

12 }

13 else if diff < 0 { 0(1)

14 If not LS{ 0(1)
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15

find diff = min diff-diff, Xleft -x„
LS - Sum

Iwo

16

17

18

19

20 

21

22

23

24 }

where (Uand*,-X,,//)<oj
[0 otherwise

update Sum - Sum + diff · ^ Idiff (i)
i

xt = xt + diff for all xt at diff

}

else if LS —» decision=optimal

}

}

else if all xt = Xlefl(i) {

if LS < Sum < US ->■ decision^optimal 

else -» decision=infeasible

0(n)

0(n)

0(1)

0(n)

0(1)

0(1)

Each while loop is 0(n) since each command is worst case 0(n) and all commands are executed 

in serial.

In Worst Case line 8 will be executed n+3 times

1
1
n

1

for diff -diff

for diff

fir Xleft ~x,

Us - Sum
for

Σ'
ieNdlff

>(n + 3) = 0(n)

In Worst Case line 15 will be executed n+2 times
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1 for diffx-diff2 

n for Xleft - x,
Ls - Sum

ieNdlff

>{n + 2) = 0(n)

Finally lines 11, 18, 22 and 23 will be executed no more than once (since after their execution 

causes the termination of the algorithm).Thus the while loop is 0{n), and the algorithm worst

case complexity is 0(n2).

Note: No sorting is needed for computing the maximum values, but we need to calculate diffx 

and diff2 at each iteration.

4.4 General Form

4.4.1. General Form Formulation

Table 4.1 presents the correspondence of the general form and the special case introduced in 

Section 3.6.2 and Table 4.2 utilizes the transformations needed to transfer between these 

forms.

Special Case General Form

Mm Ζ=Σ((τ, - i·s)~x,)2
i

Min z=7(x, ')2
i

s.t. Σχ^υ-S
i

C
o IV

U > L
i

£v<t/ u>L
i

Table 4.1 Transformation between general form and special case
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Correspondence

0<x, < X,efl(i) ΙΛ ΙΛ

xi χι'=(η-ΐ·ή-*ι

Σ*.
i i i i

0 b,=(y,-i-s)

LS
i

U-S £=Y(y~ls)-us
i

Table 4.2 Term correspondence between general form and special case

It is obvious that the solution xi' s obtained by solving the general form problem can be used 

to render the solution to our specialized problem thus

T; -xi = xi '+i-s

4.4.2 Optimality Theorem

Theorem 4.2 (Characterization of the optimal solution of the Problem).

A feasible solution x* =(x*)is optimal solution of the problem if and only if there exist 

Λ,, Aj e 9C : 4 · /^ = 0 such as for λ = λι-λ2 the following hold:
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x]=bt , ieNf ={ieN:X> 2b]

x* = | , i e Νλ = {/ e N :2ai < λ < 2b:}

x- = a, , i e Ni -{i e N: λ< 2b,}l l Alefl l l )

4.4.3 Solution Algorithm

We present the form of the algorithm in the general case

1 Sum = y xi = 'J'jbj x,. = fyVi e N
i i

2 decision = not final

3 While decision = not final {

4 If not all x(. = at {

5 Find diff^ = Max { x. 

and diff2 = Max |x;

and all x,. at diff^

6 If diffx > 0 {

7 If not L{

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

where / e ,/V: x, - a, > 0}

x; where i e N: x( - at > 0 
and x. Φ diffx
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8

9

10

11

12

13

14

15

16

17

18

19

20

21

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

find diff = min diffx-diff2tdiffXixt-an
Sum-L

Σ7^(ο

where 7^(0 =
f 1 x,. = diff, 1
[0 otherwise \

update Sum = Sum - diff ■ ^ I diff (0

x. = xt - diff for all xt at diff

}

else if L -> decision=optimal

}

else if diff < 0 {

If not U {

find diff = min diff -diff ,x,-a„
Sum-U

Σνο

where Idiff (i) = [1 *= diff 1
10 otherwise

update Sum = Sum - diff ■ Idjff (i)

x= x(. - diff for all xi at diff

}

else if U —> decision=optimal

}

}

else if all xt = at {
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22 if L<Sum<U —» decision=optimal

23 else —»decision=infeasible

24 }

4.5 Modifying Existing Solution Techniques to fit our needs

Looking into the characterization theorem in more detail one can see that in every case 

the optimal solution satisfies one or more of the following Knapsack constraints.

Σχι=υ
i

representing the U-Line or

Σχ.=ζ
i

representing the L-line or

Σ*;=Σα.·i i
representing the Xleft-line or

Σχι = Σ ai
i <:a,>0

representing the Zero-line.

It is obvious that our problem can be separated in four different Quadratic Knapsack 

Problems of the traditional formulation. Solving these problems separately using 0(n)

algorithm already proposed by P. Brucker [3] or Pardalos and N. Kovoor [13] and then 

choosing the best optimal solution of the four yields the desirable optimal solution to the

problem we study.

Examining all possible orderings of the constraints we can summarize on the 

following results.
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Casel Zero--»L—> Xleft·

Case2 L—» Zero—» Xleft-

Case3 L—» Xleft—» Zero-

Case4 L—» Xleft—» U-»

Case5 Zero—»L—» U—»

Case6 L—» Zero—» U—>

Case7 L—» U—» Zero-

Case8 L—» Xleft

U Optimal Solution L 

U Optimal Solution Zero-Line 

U Optimal Solution Xleft 

Zero Optimal Solution Xleft 

Xleft Optimal Solution L 

Xleft Optimal Solution Zero 

Xleft Optimal Solution U 

Zero Optimal Solution U

Table 4.3 All possible orderings of the constraints

We can easily see that the optimal solution always lies on the second-ordered 

constraint met that is on the constraint with the second largest value. Thus there is no need to 

solve four different Quadratic problems but only one after doing a simple ordering of the 

constraints’ target values. (We hereby note that in the special case the second-ordered 

constraint is met on the constraint with the second smallest value). Thus by applying Pardalos 

and Kovoor [13] algorithm we get a O(n) solution algorithm. In fact the algorithm uses binary 

search combined with a 0{n) median search implementation which yields 0{n log n). 

However in terms of computational time we have 0(h). Since Ω(η) is an obvious lower 

bound for the problem complexity our proposed algorithm is Θ(η) and thus is optimal.
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Although our first method has worst-case performance of θ(η2) it is of interest

because of its efficiency in practice and its simplicity and ease of implementation. One feature 

of our algorithm is that it requires no sorting to be performed, nor does it require either 

randomized or exact ordinal statistics to be computed. Cases that consist of many variables 

can be met with the modified 0{n) algorithm which gives optimal results in terms of 

computational time.

4.6 Conclusions

In this chapter we have focused on the special case of Quadratic Knapsack Problems, 

where deviations from the target value are allowed for the Knapsack constraint. We have used 

the KKT Conditions in order to characterize the optimal solution to the problem. After that we 

have proven global optimality of the solution. We then introduced a new algorithm for the 

solution of the problem and focused on optimality and complexity issues.

Throughout the chapter we followed the formulation of the Aircraft-Maintenance 

Problem presented in Section 3.6 which gave rise to investigating this special kind of 

Quadratic Knapsack Problem. Later on we gave the more general form of this special type of 

Problem and supplied both the optimal solution characterization theorem and the solution 

algorithm suited for the general case. In the end of the chapter we showed how known 

techniques for the standard Quadratic Knapsack formulation can be directly applied in case 

the number of variables grows too large.
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Chapter 5 Computational experience and numerical examples.

5.1 Introduction

In this chapter, we present results of some numerical experiments obtained by 

applying the algorithms suggested in the previous chapter to problems under consideration. 

The algorithms have been implemented in the C programming language and one can find this 

implementation in Appendix A. AMPL can also be used for solving the problem and thus 

computational times are supplied for comparison. AMPL modeling code can be found in 

Appendix B We also present some numerical examples so that the approach of the previous 

chapter can be made clear.

5.2 Computational Results

The computations were performed on an Intel Celeron 335 Prescott Processor 

2.8Ghz/lGB DDR SDRAM IBM PC compatible. Each Problem was run 30 times. Parameters 

were randomly generated between regions that have physical meaning. Notation used is taken 

from Section 3.6.Parameters L and U were randomly chosen in each running so that the 

Algorithm randomly chooses the binding constraint. We first comment on the results of the 

(9 (A2) algorithm.

When A <400 the run time of the algorithm is so small, that the timer does not 

recognize the corresponding value from its computer zero. In such cases the timer displays 0 

seconds. As we can observe the (average number of iterations) is nearly equal to the number
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of variables for large N. Computational time is proportional to N2 besides the algorithm’s 

complexity is O^N2).

*«=300 5 = 0,75·^
Number of 
variables

400 2000 4000 20000 40000

Average 
Number of 
Iterations

415 2106 4176 20899 41876

Average run 
time
(seconds)

0.015 0.125 0.468 11.5 45.75

X = 3000max S = 0,75-X„
Number of 
variables

400 2000 4000 20000 40000

Average 
Number of 
Iterations

512 2556 5160 25517 51151

Average run 
time
(seconds)

0.015 0.092 0.381 9.294 37.186

*« =30000 5 = 0,75·^
Number of 
variables

400 2000 4000 20000 40000

Average 
Number of 
Iterations

537 2753 5559 27669 55196

Average run 
time
(seconds)

0 0.074 0.279 6.991 27.6

Table 5.1 Computational Results for different values of Xnm
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Different values of-------do not seem to alter results thus we can conclude that the algorithms
max

efficiency is independent of -------. L, U were on purpose randomly selected because we
...

wanted the selection of the tight constraint to be made randomly.

*«=300 5 = 0,75·^
Number of 
variables

400 2000 4000 20000 40000

Average 
Number of 
Iterations

415 2106 4176 20899 41876

Average run 
time
(seconds)

0.015 0.343 1.359 34.265 137.75

*™=300 5 = *™
Number of 
variables

400 2000 4000 20000 40000

Average 
Number of 
Iterations

415 2106 4176 20899 41875

Average run 
time
(seconds)

0.015 0.343 1.359 34.265 137.765

^=300 5 = 125^
Number of 
variables

400 2000 4000 20000 40000

Average 
Number of 
Iterations

415 2106 4176 20899 41876

Average run 
time
(seconds)

0.015 0.343 1.359 34.265 137.703

Table 5.2 Computational Results for different values of
S

y
max
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We now compare the sweep algorithm versus 0(«) Pardalos and Kovoor

modified algorithm and AMPL package.

Average run time (seconds)

Number of 

variables

400 2000 4000 20000 40000 80000

SWEEP 0.016 0.112 0.397 8.728 37.186 145.744

PARDALOS 0 0 0 0.015 0.032 0.047

AMPL 0.24 0.52 1.07 2.14 4,29 8.51

Average Number of Iterations

Number of 

variables

400 2000 4000 20000 40000 80000

SWEEP 415 2106 4176 20899 41875 81982

PARDALOS 11 13 14 17 17 17

AMPL 10 11 12 14 15 17

Table 5.3 Algorithms Comparison Results

The θ{η) Pardalos and Kovoor modified algorithm is completely dominant in terms 

of execution time. AMPL also produces excellent results. The sweep algorithm has the

worst of the three execution times, especially when the number of the variables grows large. 

However all running times are fairly sensible meaning that in spite of being the slowest 

solution technique it can still be used in many real-life problems with satisfactory results.
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5.3 Numerical Examples

We provide below the solution of two simple particular problems obtained by using 

the solution approach suggested in this thesis. We revise the model formulation of the Aircraft 

maintenance application.

5.3.1 Numerical Example 1 

Parameter values:

S = 200 : required total flight time during planning horizon

y. : residual flight time of aircraft i at the beginning of planning horizon,

^max =300 : maximum time an aircraft can fly during planning horizon ,

Ymin = 0· 1 : minimum residual flight time of an available aircraft,

L = 0,95 , U = 1,05 : real numbers denoting the maximum deviation from the value of S

that can be tolerated (U > L),

s = = 37,5 : the slope of the deviation line where
N 8

^max = 300 · maximum residual flight time of an available aircraft,

N - 8 : total numbers of aircrafts available for flight

Results

yi = 90 s = 37.5 
yi = 100 2s = 75
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Y3= 133 3s = 112.5oIT)
r iII£ 4s = 150

y5 = 218 5s = 187.5
y6 = 250 6s = 225
Yi = 263 7s = 262.5
yg= 300 8s = 300

Iteration 1:
diffl - diff2 = 22
diffl - line == 52.5
Xmax - xi = 50
Ls-Σχϊ = 210

xi = 22 II O
N oo

X K> II o ooII£

oIIX mII£

X II o y4= 150

X Ln II o y5 = 218
X6=0 y6 = 250
x7= 0 y7 = 263
Xg= 0

Σχΐ = 22
y8 = 300

Iteration 2:
diffl - diff2 - 5.5 
diffl - line = 30.5 
Xmax - xi - 28
(Ls - Σχΐ)/2 = (210 - 22)12 = 188/2 - 94

Xi = 27.5 yi = 62.5 
x2 = 0 y2= 100
X3 = 0 y3 = 133
x4 = 0 y4 - 150
X5=5.5 y5 = 212.5
X6 = 0 y6 = 250
x7 = 0 y7 = 263
x8 = 0 y8 = 300
Σχϊ = 33

Iteration 3:
diffl - diff2 = 4.5 
diffl - line = 25 
Xmax - xi = 22.5
(Ls - Σχϊ)/4 = (210 - 33)/4 = 177/4 = 44.25

xi = 32 yi = 58
x2 = 4.5 y2= 95.5
X3 = 0 y3 = 133
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X4 = 0 y4=150
x5=10 y5 = 208
x6 = 4.5 y6 = 245.5
X7 = 0 y7 = 263
xg=0 yg = 300
Σχί = 51

Iteration 4:
diffl - diff2 = 20 
diffl - line = 20.5 
Xmax - xi = 18
(Ls - Σχΐ)/5 = (210 - 51 )/5 = 159/5 = 31.8

xi = 50 yi = 40
x2 = 22.5 y2= 77.5
x3= 18 y3 = 115
X4 = 0 y4 = 150
X5 = 28 y5 = 190
x6= 22.5 y6 = 227.5
x7 = 0 y 7 = 263
x8=0 yg = 300
Σχί = 141

Iteration 5:
diffl - diffi = 2 
diffl - line = 2.5 
Xmax - xi = 22
(Ls - Σχϊ)/4 = (210 - 141 )/4 = 69/4 =17.25

xi = 50 yi = 40
x2 = 24.5 y2= 75.5
x3 = 20 y3 = 113
x4 = 0 y4 = 150
X5=30 y5 = 188
x6= 24.5 y6 = 225.5
X7 = 0 y7 = 263
x8 = 0 y8 = 300
Σχί=149

Iteration 6:
diffl - diff2 = 0.5 
diffl - line = 0.5 
Xmax - xi = 20
(Ls - Σχϊ)/5 = (210 - 149)/5 = 61/5 = 12.2

xi = 50 yi = 40
x2 = 25 y2= 75
x3 = 20.5 y3 = 112.5
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X4= 0 
X5 = 30.5 
Χό=25 
X7 — 0.5
X8=0

Σχΐ = 151.5

Iteration 7:

y4 = 150 
y5 = 187.5 
y6 = 225 
y7 - 262.5 
y8 = 300

diffl - diff2 = 0 - (-00) = +00 
Xmax -xi = 19.5
(Us - Σχΐ)/7 = (190 - 151.5)/7 = 38.5/7 - 5.5

Xi = 50 
x2= 30.5
X3 = 26
X4= 5.5 
x5 = 36 
X6 = 30.5 
x7 = 6 
x8= 5.5 
Σχΐ= 190

optimal

yi = 40 
y2= 69.5 
y3 -107 
y4 = 144.5 
y5 = 182 
y6 = 219.5 
yy = 257 
y8 = 294.5

5.3.2 Numerical Example 2 

Parameter values:

5 = 200 : required total flight time during planning horizon

yt : residual flight time of aircraft i at the beginning of planning horizon,

X =300max : maximum time an aircraft can fly during planning horizon ,

Y =0.1min : minimum residual flight time of an available aircraft,

L = 0,45, U = 1,05 : real numbers denoting the maximum deviation from the value of S

that can be tolerated (U > L),
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, = ^max = 300
N 8

37,5 : the slope of the deviation line where

^max = : maximum residual flight time of an available aircraft,

N = 8 : total numbers of aircrafts available for flight

Results

y, = 90 s = 37.5
y2 = 100 2s = 75
y3= 133 3s = 112.5
y4 = 150 4s = 150
y5 = 218 5s = 187.5
y6 = 250 6s = 225
y7 = 263 7s = 262.5
y8 = 300 8s = 300

Iteration 1:
diffl - dif£2 = 22
diffl - line == 52.5
Xmax - xi = 50
Ls - Σχΐ = 90

xi = 22 yi = 68
x2 = 0 y2= 100
X3=0 y3 = 133
X4=0 y4 = 150
X5 = 0 y5 = 218
X6 = 0 y6 = 250
X7 = 0 y7 = 263
x8=0 y8 = 300
Σχΐ = 22

Iteration 2:
diffl - diff2 = 5.5 
diffl - line = 30.5 
Xmax - xi = 28
(Ls - Σχϊ)/2 = (210 - 22)12 = 188/2 = 34

xi = 27.5 yi = 62.5
x2 = 0 y 2= 100
X3 = 0 y3 = 133
X4 = 0 y4 = 150
X5=5.5 y5 = 212.5
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X6=0 y6 = 250
x7= 0 y7 = 263
xs = 0 ye = 300
Σχΐ = 33

Iteration 3:
diffl - diff2 = 4.5 
diffl - line = 25 
Xmax - xi = 22.5
(Ls - Σχΐ)/4 = (210 - 33)/4 - 177/4 - 14.25

xi = 32 yi = 58
x2 = 4.5 y2=95.5
x3~ 0 y3 = 133
x4 = 0 y4 = 150
x5=10 y5 = 208
x6 = 4.5 y6 = 245.5
x7 = 0 y7 = 263
x8=0 y8 = 300
Σχΐ = 51

Iteration 4:
diffl - diff2 = 20 
diffl - line = 20.5 
Xmax - xi = 18
(Ls - Σχΐ)/5 = (210 - 51)/5 = 159/5 = 7.8

xi = 39.8 yi = 50.2
x2 = 12.3 y2= 87.7
x3 = 7.8 y3 = 125.2
x4 = 0 y4=150
X5= 17.8 y5 = 200.2
x6=12.3 y6 = 237.7
x7 = 0 y7 = 263
x8=0 ys = 300
Σχΐ = 90

Iteration 5:
diffl - diff2 = 12 
diffl - line = 12.7 
Xmax - xi = 10.2
(US - Σχΐ)/5 = (210 - 90)/5 = 120/5 = 24

oIIX o·**II

x2 = 22.5 y2= 77.5
x3= 18 IIC

*·»oIIX y4= 150
X5 = 28 y5 = 190
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x6 = 22.5 y6 = 227.5 
x7= 0 y7 = 263
xs = 0 y8 = 300
Σχϊ - 141

Iteration 6:
diffl - diff2 = 2 
diffl - line = 2.5 
Xmax - xi = 22
(Ls - Σχΐ)/5 = (210 - 141 )/4 = 69/5 = 17.25

xi = 50 yi = 40
x2 = 24.5 y2= 75.5
X3- 20 y3 = 113
X4 = 0 y4 = 150
x5=30 y5 = 188
x6 = 24.5 y6 = 225.5
x7 = 0 y7 = 263
xs = 0 y8 = 300
Σχϊ = 149

Iteration 7:
diffl - diff2 = 0.5 
diffl - line = 0.5 
Xmax - xi = 20
(Us - Σχΐ)/7 = (210 - 149)/5 = 61/5 = 12.2

X 11 o 0̂4-11>Z

x2= 25 y2= 75
X3-20.5 y3 = 112.5
X4= 0 £ 11 C

/ϊ O

X5 = 30.5 y5 = 187.5
x6 = 25 y6 = 225
x7 = 0.5 y7 = 262.5
X8=0 y8 = 300
Σχϊ = 151.5

optimal

5.4 Conclusions

In this chapter, we presented results of some numerical experiments obtained by 

applying the algorithm suggested in the previous chapter to problems under consideration.

Although the algorithm has complexity instances of 40000 variables have been solved
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in a relatively sensible computational time. Its easy implementation makes it suitable for 

relatively small number of variables. Useful remarks have been made regarding sensitivity 

analysis. The C programming language implementation can be found in Appendix A. The 

AMPL modeling file can be found in Appendix B. The numerical examples presented at the 

end of the Chapter help so as the approach of the previous chapter can be made clear.
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Chapter 6 Concluding Remarks

In this thesis, we studied Quadratic Knapsack problems where bound constraints are 

directly imposed on the continuous decision variables. These problems belong to the family of 

Quadratic Programming which is a major subsection of Nonlinear Optimization. The addition 

of Knapsack constraint on Quadratic Programming problems is shown to have numerous 

applications, including the least distance problem, Quadratic Programming defined on the 

convex hull of a set of points, and the maximum clique problem.

Moreover important fields of study that use Quadratic Knapsack as core formulation 

have been being presented. These include the Optimal Portfolio Selection, Quadratic 

Transportation, Multi-commodity Network Flows, Matrix Balancing problems and Aircraft 

Maintenance

Traditional approaches for accommodating such Quadratic Knapsack constraints have 

been proposed and analyzed for the case of a single tight-bounded Knapsack constraint. We 

have introduced the case where deviation from the target value of the Knapsack constraint is 

allowed.

The main contribution of the research reported in this work is that we have developed 

a new exact algorithm for a special class of Continuous Quadratic Knapsack Problems having 

reasonable solution times for nearly all instances encountered in practice, despite having 

Quadratic time bounds for a number of highly contrived problem instances.We have given 

proof of the optimality of the algorithm, implemented it in C programming language and gave 

numerical results. We also described a Quadratic Knapsack framework for the formulation, 

analysis and computation of solutions to a specific problem of military-aircraft maintenance.
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We have also proposed modifications of existing algorithms so as they can deal with our 

specialized problem. Computational results on a variety of test problems have been presented

showing that in spite of being θ[η2) the algorithm remains appealing for problems with a

reasonable number of variables.

Since Ω(π) is the lower bound for the complexity of every optimal solution algorithm

and we have already presented an 0[n-\ogn) implementation that takes O(n)computational

time, it is of great interest whether a straightforward approach can be used to render an 0{n)

algorithm. Besides, application of the results of this research on integer programming can also 

be a topic of further research. In detail the exact algorithms thoroughly presented in this thesis 

could be used to solve continuous relaxations of the integer programming problem, and then 

use rounding schemes or branch-and-bound techniques to find the optimal integral solution.
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Appendix A C Implementation of the Algorithms.

/*---------------------------------------------------------------------------------------
Comparison of Quadratic Knapsack Exact Solution algorithms 
Gavranis Andreas <agavranis@gmail.com> March 2007 
This code is part of an implementation for the purposes 
of a postgraduate research.

---------------------------------- ----------------------------------- ----------------*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define N 30000 
#define LIMIT le-6 
#define MAXFLOW le38
#defme SWAP(a,b) { float temp=(a);(a)=(b);(b)=temp; }
#defme MAXLIMIT le32

struct node
{

int index; 
int datal; 
int data2; 
struct node *link;

};

/*--------------------- Functions: ANSI C prototypes------- --------------------- */

float qmedian(float a[], int n);

void swap(float *x,float *y); 

void bsortl (float list[], int n);

void pardalos(float x[], float a[], float b[],float d,int n); 

float choose_bound(float x[],float b[], float L, float U,int n);

struct node *insert(struct node *p, int valuel,int value2, int count);

void erase (struct node *p);

void fprintnode list ( struct node *p );
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void printnode_list ( struct node *p ); 

float minimum(float xl , float x2); 

void bsort2(float list[][2], int n); 

void readlist(float list[],int n);

float positive_minlist(float list[],struct node *front,int count,int n);

float positive_mindist(float list[][2], struct node *front,int count, int n);

void printlist(float list[],int n);

void printlist2(float list[][2],int nl,int n2);

int xlefl_empty(float list[],int n);

int dist_empty(float dist[][2],float list[],int n);

struct node * next_dist(float xleft[],float dist[][2],int n, struct node *p, int *count, float *diff);

void update (float x[],float xleft[],float dist[][2] ,int n,struct node *front,int count,float xopt);

void print_compare(char *name, int j, float diff, float dist[][2],float Xlefl[],struct node 
* front,int count,int n, float L,char* lim);

void print_updated(char *name, float X[],float Xleft[],float Y[],float sum,int n);

void print_fmal(char *name,int n,float Y[],float s);

void print_iterations(char *name,int j);

void solve(float Y[],float Xleft[],int n,float s,float L,float U);

void print_ampl(char *name,int n,float Y[],float Xleft[],float s,float L,float U);

void print_original(char *name,int n,float Y[],float Xleft[],float s,float L,float U,float Xmax);

void print_duration(char *name,long double duration);

float choose_bound(float x[],float a[], float L, float U,int n);

void bsort(float list[], int n);

void pardalos(float x[], float a[], float b[],float d,int n); 

float qmedian(float a[], int n);
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/*■ main() */

main()
{

long double start,stop,duration; 
int i;
float s,Ymax,Xmax,target,alpha;
float L,U;
float *a;
float *b;
float *x;
float Xleft[N],Xleft_COPY[N]; 

float Y[N],Y_COPY[N];

/*floatXleft[]={50,50,50,50,50,50,50,50}; 
float Y[]={90,100,133,150,218,250,263,300};*/

Xmax=300;
Ymax=(float)0.5*Xmax;
alpha=0.25;
s=Xmax/N;
L=( 1 -alpha)* Y max;
U=( 1+alpha) * Ymax;

for (i=0;i<N;i++) Y[i]=300*((float)rand())/(float) RAND MAX; 

for (i=0;i<N;i++) Y_COPY[i]=Y[i];

for (i=0;i<N;i++) Xleft[i]=s*((float)rand())/(float) RAND_MAX; 

for (i=0;i<N;i++) Xleft_COPY[i]=Xleff[i];

/************** ppjNp DATA FOR AMPL *****************/ 

print_ampl("sweep.dat",N,Y,Xleft,s,L,U);

/************** ppjfsj'p ORIGINAL DATA *****************/ 

print_original("num_sweep.txt",N,Y,Xleft,s,L,U,Xmax);
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j ******* Η****** COUNT EXECUTION TIME *****************/

start=clock();

solve(Y,Xleft,N,s,L,U);

stop=clock();

duration = (long double) (stop-start)/CLOCKS_PER_SEC;

/************** ρρρΝχ FINAL DATA *****************/ 

print_duration("num_sweep.txt",duration);

printf ("\nSweep Total execution time=%f\n",duration);

for (i=0;i<N;i++) Y[i]=Y_COPY[i]; 
for (i=0;i<N;i++) Xleft[i]=Xleft_COPY[i];

/************** pRjfsjx ORIGINAL DATA ***** ****** ******/ 

print_original("num_pardalos.txt",N,Y,Xleft,s,L,U,Xmax);

/******CONVERTING TO GENERAL FORM**********/

b=(float *) malloc (N*sizeof(float)); 
for (i=0;i<N;i++) b[i]=Y[i]-(i+l)*s;

a=(float *) malloc (N*sizeof(float));
for (i=0;i<N;i++) a[i]=Y[i]-(i+l)*s-Xleft[i];

x=(float *) malloc (N*sizeof(float)); 
for (i=0;i<N;i++) x[i]=0;

SWAP(L,U);
L=-L;
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U=-U;
for (i=0;i<N;i++) {

L+=(Y[i]-(i+l)*s);
U+=(Y[i]-(i+l)*s);

}

/************* COUNT EXECUTION TIME *****************/

target=choose_bound(x,a, L,U,N);

start=clock();

pardalos(x,a,b,target,N);

stop=clock();

duration = (long double) (stop-start)/CLOCKS_PER_SEC;

/******CONVERTING SOLUTION TO PROPER FORM**********/ 

for (i=0;i<N;i++) Y[i]=x[i]+(i+l)*s;

Ζ************** PRINT FINAL DATA *****************/

print_final("num_pardalos.txt",N,Y,s);

print_duration("numj3ardalos.txt",duration);

printf ("\nPardalos Total execution time=%f Vn",duration);

/****************************************************/

return 0;
}

struct node *insert(struct node *p, int valuel,int value2, int count)
{
if(p=NULL)
{

p=(struct node *)malloc(sizeof(struct node));
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if(p==NULL)
{

printf("Error\n");
exit(O);

}
p-> datal = value 1; 
p-> data2 = value2; 
p-> index = count; 
p-> link = NULL;

}
else

p->link = insert(p->link,valuel,value2,count);/* the while loop replaced by 
recursive call */ 

return (p);
}

void erase (struct node *p)
{

struct node *temp=p; 
while(p !=NULL)
{

temp = p; 
p = p->link; 
free(temp);

}
p=NULL;

}

void fprintnode_list ( struct node *p )
{ FILE * fp;

fp=fopen("num_sweep. txt"," a");
fprintf(fp,"\nActing on variables with indexes:"); 

while (p!= NULL)
{

fprintf(ip,"\n%5d",(p-> datal)+l); 

p = p-> link;
}

fprintf(ip,"\n");
fclose(fp);
}

void printnode_list ( struct node *p )
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{
printf("The data values in the list are"); 
while (p!= NULL)
{

printf("\n%d\t",(p-> data 1)+1); 
p = p-> link;

}

float minimum(float xl , float x2)
{float value;
value= (xl<x2) ? xl : x2; 
return value;
}

void bsort2(float list[][2], int n)
{

int i,j;
for(i=0;i<(n-l);i++) 

for(j =0;j <(n-(i+1)) ;j++)
if(list[j][0] < list[j+l][0])

{
swap(&list[j][0],&list[j+l][0]);

swap(&list[j][ 1 ],&list[j+l ] [ 1 ]);
}

void readlist(float list[],int n)
{

int i;
printf("Enter the elements\n"); 
for(i=0;i<n;i++)

scanf("%f',&list[i]);
}

float positive_minlist(float list[],struct node * front,int count,int n)
{

float minl=M AXFLO W;

struct node *temp2=front;

while (temp2!= NULL)
{
if (list[temp2->datal]>0) mini = min(minl,list[temp2->datal]); 
temp2 = temp2-> link;

}
return mini;
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}

float positive_mindist(float list[][2], struct node *front,int count, int n)
{

float mind=M AXFLO W; 
struct node *temp2=front;

while (temp2!= NULL)
{
if (Iist[temp2->data2][0]>0) mind = min(mind,list[temp2->data2][0]); 

temp2 = temp2-> link;
}

return mind;
}

void printlist(float list[],int n)
{

int i;
for(i=0;i<n;i++) 

printf("%3d %f\n",i+l,list[i]); 
printf("\n");
}

void printlist2(float list[][2],int nl,int n2)
{

int ij;
for(i=0;i<nl;i++)

{
printf("%3d ”,i+l);
for(j=0;j<n2;j ++) printf("%f\t",list[i][j]);
printf("\n");

}
}

int xleft_empty(float list[],int n)
{int i,result=0;
for (i=0;(i<n)&&(list[i]=0);i++); 
result = (i=n) ? 1 : 0 ; 
return result;
}

int dist_empty(float dist[][2],float list[],int n)
{int i,result=0;
for (i=0;(i<n)&&((dist[i][0]<=0)||(list[(int)(dist[i][l]-l)]==0));i++); 
result = (i=n) ? 1 : 0 ; 
return result;
}
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struct node * next_dist(float xleft[],float dist[][2],int n, struct node *p, int *count, float *diff)
{

int i,counter=0; 
float val; 
p=NULL;

for (i=0;(xleft[(int)(dist[i][l]-l)]==0)&& (i<n);i++); 
p=insert(p,((int)dist[i] [ 1 ]-1 ),i,counter+1); 
val=dist[i] [0]; 
counter=l;

for (i=i+l; ((i<n) && (( dist[i][0]==val) || ( xleft[(int)(dist[i][l]-l)]=0))) ;i++)
if ((dist[i][0]=val )&&( xleft[(int)(dist[i][ 1 ]-1 )]>0 ))
{

p=insert(p,((int)dist[i] [ 1 ]-1 ),i,counter+1);

counter++;
};

*diff=(i==n)? MAXFLOW : (val-dist[i][0]);

*count=counter; 
return p;
}

void update (float x[],float xleft[],float dist[][2] ,int n,struct node *front,int count,float xopt)

{
struct node *temp2=front;

while (temp2!= NULL)
{

x[temp2->datal ]=x[temp2->datal ]+xopt;

xleft[temp2->datal]=xleft[temp2->datal]-xopt;

dist[temp2->data2][0]=dist[temp2->data2][0]-xopt; 
temp2 = temp2-> link;
};

}

void print_compare(char *name, int j, float diff, float dist[][2],float Xleft[],struct node 
* front,int count,int n, float L,char* lim)
{

FILE *fp;
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fp=fopen(name,"aM); 
fprintf(fp,"Iteration %d\n",j);

if (diff>MAXLIMIT) fprintf(fp,"diffl -diff2=+oo\n");
else fprintf(fp,"diffl-diff2=%10.5f;\n",diff);

if (positive_mindist(dist,front,count,n)>MAXLIMIT) fprintf(ip,"diffl-line=+oo\n");
else fprintf(fp,"diffl-

line=%10.5f;\n",positive_mindist(dist,front,count,n));
fprintf(fp,"Xleft(i)-Xi=%10.5f;\n",positive_minlist(Xleft, front, count, n));
φΓίηίί(φ,"(");
fprintf(fp,lim);
fprintf(fp,"-Sxi)/count=%10.5f;\n",L/count);
fprintf(fp,"\n");

fclose(fp);

iprintnode_list( front);

}

void print_updated(char *name, float X[],float Xleft[],float Y[],float sum,int n)
{

FILE *fp; 
int i;

fp=fopen(name,"a");

iprintf(fp,"\n");

for (i=0;i<N;i++)
iprintf(fp,"x%5d=%10.2f\txleft%5d=%10.2f\ty%5d=%10.2f\n",i+l,X[i],i+l,Xleft[i],i

+l,Y[i]-X[i]);

iprintf(ip,"\n");

iprintf(fp,"Sxi=%f;\n",sum);

fprintf(fp,"\n");

fclose(fp);
}

void print_fmal(char *name,int n,float Y[],float s)
{
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FILE *fp; 
int i;
float z=0;

fp=fopen(name,"a"); 

fprintf(fp,"Optimal solution:\n");

for (i=0;i<n;i++) fprintf(fp,"y%5d=%10.5f\n",i+l,Y[i]);

fprintf(fp,"\n");

for (i=0;i<n;i++) z=z+(Y[i]-(i+l)*s)*(Y[i]-(i+l)*s); 

fprintf(fp,"N=%5d\n0bjective optimum = %10.5f \n",N,z);

fclose(fp);

}

void print_iterations(char *name,int j)
{

FILE *fp;

fp=fopen(name,"a");

fprintf(fp,"Total iterations=%5d\n",j);

fclose(fp);

}

void solve(float Y[],float Xleft[],int n,float s,float L,float U)
{
long double z=0;

int i,j=l,count=0; 
float xopt,diff,sum=0;
float X[N]; 
float dist[N][2];
struct node *front=NULL,*rear=NULL;

for (i = 0; i < n; i++ ) X[i]=0;

for (i = 0; i < n; i++ )
{
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dist[i][0]=Y[i]-(i+l)*s;
dist[i][l]=i+l;
}

bsort2 (dist,n);

for (;!((xleft_empty(Xleft,n))||(dist_empty(dist,Xlefit,n))||(L<LIMIT));)
{

front = next_dist(Xleft, dist,n,front, &count ,&diff);

xopt =
min(min((diff),positive_minlist(Xleft,front,count,n)),min((positive_mindist(dist,front,count,n) 
),(L/count)));

update (X,Xleft,dist,n,front,count,xopt);

erase(front);

U=U-count*xopt;
L=L-count*xopt;

sum+=count*xopt;

j++;

}

if (dist_empty(dist,Xleft,n)) for (;!((xleft_empty(Xleft,n))||(L<LIMIT));)
{
{
front=NULL;

front = next_dist(Xlefit, dist,n,front, &count ,&diff); 

xopt =
min(min((diff),positive_minlist(Xleft,front,count,n)),min((positive_mindist(dist,front,count,n) 
),(L/count)));

update (X,Xleft,dist,n,front,count,xopt);

erase(front);

U=U-count*xopt;
L=L-count*xopt;
sum+=:count*xopt;
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j++;
>
if (xleft_empty(Xleft,n)) printf("\nNo feasible solution.\n");
}

else if (L<LIMIT) for
(;!((xleft_empty(Xleft,n))||(U<LIMIT)||(dist_empty(dist,Xleft,n)));)

{

front=NULL;

front = next_dist(Xleft, dist,n,front, &count ,&diff); 

xopt =
min(min((diff),positive_minlist(Xleft,front,count,n)),min((positive_mindist(dist,front,count,n) 
),(U/count)));

update (X,Xleft,dist,n,front,count,xopt); 

erase(front);

U=U-count*xopt;
L=L-count*xopt;
sum+-count*xopt;

j++;
}

else printf("\nNo feasible solution.\n");

for (i=0;i<N;i++) Y[i]=Y[i]-X[i];

/* ************* *PJNAL* * * ******** ***** */

print_final("num_sweep.txt",N,Y,s);
print_iterations("num_sweep.txt",j);

}

void print_ampl(char *name,int n,float Y[],float Xleft[],float s,float L,float U)
{
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FILE *fp; 
int i;

fp=fopen(name,"w"); 

fprintf(fp,"param N:=%d;\n\n",N); 

fprintf(fp,"param yl:=\n");

for(i=0;i<N;i++) fprintf(fp,"%d %f\n",i+l,Y[i]);

fprintf(fp,";\n");

fprintf(fp,"param xleft:=\n");

for (i=0;i<N;i++) fprintf(fp,"%d %f\n",i+l,Xleft[i]);

fprintf(fp,";\n"); 

fprintf(fp,"param s:=%f;\n",s); 

iprintf(fp,"param L:=%f;\n",L); 

iprintf(fp,"param U:=%f;\n",U); 

fclose(fp);
}
void print_original(char *name,int n,float Y[],float Xleft[],float s,float L,float U,float Xmax)
{

FILE *fp; 
int i;

fp=fopen(name,"w");

fprintf(fp,"Xmax=%f;\n",Xmax);
fprintf(fj3,"LS=%f;\n",L);
fprintf(f|),"LfS=%f;\n",U);
fprintf(fp,"\n");

for (i=0;i<n;i++)
fprintf(fp,"y%5d=%10.5f\txleft%5d=%10.5f\t%5ds=%10.5f\n",i+l,Y[i],i+l,Xleft[i],i+

l,(i+l)*s);

fprintf(fp,"\n");

fclose(fp);
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}

void print_duration(char *name,long double duration)
{

FILE *fp;

fp=fopen(name,"a");

iprintf(ip,"Total Execution Time=%10.5f\n",duration); 

fclose(fp);

}

float choose_bound(float x[],float a[], float L, float U,int n) 
{int i;
float bound[4]; 
bound[0]=L; 
bound[l]=U; 
bound[2]=0;
for (i=0;i<n;i++) bound[2]+=a[i]; 
bound[3]=0;
for (i=0;i<n;i++) bound[3]+=max(a[i],0);
bsortl(bound,4);
return bound[2];

}

void swap(float *x,float *y)
{

float temp; 
temp = *x;
*x = *y;
*y = temp;

}

void bsortl (float list[], int n)
{

int ij;
for(i=0;i<(n-l);i++) 

for(j =0;j <(n-(i+1)) ;j++) 
if(list[j] > list[j+l])

swap(&list[j],&list|j+l]);
}

void pardalos(float x[], float a[], float b[],float d,int n)
{
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int *unsetv; 
float *intervalpts; 
float *templ; 
int *temp2;
float min=-(float)MAXFLOW,

max=(float)MAXFLOW; 
float tightsum=0,

slackweight=0, 
testsum=0; 

int i,j-l,counter; 
float mid; 
int ptssize; 
int unsetv_size;

unsetv= (int *) malloc(n*sizeof(int));

intervalpts= (float *) malloc((2*n+2)*sizeof(float));

pts_size=2*n+2;
unsetv_size=n;

for (i=0;i<n;i++) unsetv[i]=(i+l);

for (i=0;i<n;i++) intervalpts[i]=a[i]; 
for (i=n;i<2*n;i++) intervalpts[i]=b[i-n]; 
intervalpts[2*n]=-(float)MAXFLOW; 
intervalpts[2*n+1 ]=(float)M AXFLOW;

for (;(unsetv_size!=0);){

tempi = (float *)malloc(pts_size*sizeof(float)); 
memcpy(templ,intervalpts,pts_size*sizeof(float));

mid=qmedian(temp 1 ,pts_size);

free (tempi);

testsum=0;
for (i=0;i<unsetv_size;i++) if (b[unsetv[i]-l]<mid) testsum+=b[unsetv[i]-l];

else if (a[unsetv[i]-l]>mid)
testsum+=a[unsetv[i] -1 ];

else testsum+=mid;

testsum=testsum+tightsum+slackweight*mid;
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/****** ** *upda.te** ************* * * * */

if (testsum<=d) min=mid; 
if (testsum>=d) max=mid;

tempi = (float *)malloc(pts_size*sizeof( float)); 
counter=0;

for (i=0;i<pts_size;i++) if ((intervalpts[i]>=min) && (intervalpts[i]<=max)) { 

tempi [counter]=intervalpts[i]; 

counter++;

};
pts_size=counter; 
free (intervalpts);
intervalpts = (float *)malloc(pts_size*sizeof(float)); 
memcpy(intervalpts,tempi,pts_size*sizeof( float)); 
free (tempi);

temp2 = (int *)malloc(unsetv_size*sizeof(float)); 
counter=0;

for (i=0;i<unsetv_size;i++) if (b[unsetv[i]-l]<=min) tightsum+=b[unsetv[i]-l];
else if (a[unsetv[i]-l]>=max)

tightsum+=a[unsetv[i] -1 ];
else if ((a[unsetv[i]-

l]<=min)&&(b[unsetv[i]-l]>=max)) slackweight++;
else {

temp2[counter]=unsetv[i];
counter++;
};

unsetv_size=counter;

free(unsetv);
unsetv- (int *)malloc(unsetv_size*sizeof(float));
memcpy(unsetv,temp2,unsetv_size*sizeof(float));
free(temp2);

j++;

}

for (i=0;i<N;i++) if (b[i]<=min) x[i]=b[i];
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x[i]=(d-tightsum)/slackweight;

else if (a[i]>=max) x[i]=a[i]; 
else if ((a[i]<=min)&&(b[i]>=max))

*** ******** ********* *FJNAL* ***** * * * * * ********* */

print_iterations("num_pardalos.txt",j);

/****************************************************/

}

float qmedian(float a[], int n)
{

int low, high ; 
int median; 
int middle, 11, hh;

low = 0 ; high = n-1 ; median = (low + high) / 2; 
for (;;) {

if (high <= low) /* One element only */ 
return a[median] ;

if (high = low + 1) { /* Two elements only */ 
if (a[low] > a[high])

SWAP(a[low], a[high]); 
return afmedian] ;

}

/* Find median of low, middle and high items; swap into position low */ 
middle = (low + high) / 2;
if (a[middle] > a[high]) SWAP(a[middle], a[high]); 
if (a[low] > a[high]) SWAP(a[low], a[high]);
if (a[middle] > a[low]) SWAP(a[middle], a[low]) ;

/* Swap low item (now in position middle) into position (low+1) */ 
SWAP(a[middle], a[low+l]);

/* Nibble from each end towards middle, swapping items when stuck */ 
11 = low + 1; 
hh = high; 
for (;;) {

do 11++; while (a[low] > a[ll]); 
do hh—; while (a[hh] > a[low]);
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if (hh < 11) 
break;

SWAP(a[ll], a[hh]);
}

/* Swap middle item (in position low) back into correct position */ 
SWAP(a[low], a[hh]);

/* Re-set active partition */ 
if (hh <= median) 

low = 11;
if (hh >= median) 

high = hh - 1;
}

}
#undef SWAP
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Appendix B AMPL Modeling

# Parameters 

param N;

param yl {1..N}; # initial values of y

param xleft {1..N}; # initial values of Xleft

param L; 
param U;

# lower limit on plan
# upper limit on plan

param s

# Decision variables

# slope

var x {1..N} >=0; 
var y {1..N} ;

# flight time of aircraft
# residual flight time of aircraft

minimize convex 1 : sum {n in 1..N} (y[n]-n*s)A2;

subject to flight_hrs {n in 1..N}:
y[n] = yl [n] - x[n] ; # residual flight time

subject to progr hrs :
L <= sum {n in 1..N} x[n] <= U; # observe program

subject to upper_x {n in 1..N}:
x[n] <= xleft[n]; # maximum flight time
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