MANENIZTHMIO OEZZAANIAZ

MOAYTEXNIKH ZXOAH

TMHMA MHXANOAOTI' QN MHXANIKQN BIOMHXANIAZ

Metarttuxiokn Epyaoia

ENAZ AKPIBHZ AATOPIOMOZ I'TA MIA OMAAA

TETPAITQNIKQN NMPOBAHMATQN ZAKIAIOY

ME MNMEPIOPIZMOYZ EYPOYZ KAI ANQ OPIQN

uTto

ANAPEA T'ABPANH

MnXavIKoU TNAETTIIKOIVWVIOV Kol HAEKTPOVIKWVY ZX0AAG Ikapwv, 2003

YTEBAAON yia TNV EKTTANPWON PEPOUC TWV

QTIAITACEWV YIA TNV OTIOKTNOT TOU

MetaTtttuxiakoU ArrtAwpuatoc Eidikeuong

2007

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

© 2007 Avdpeac Mappavng

H €éykpion Tn¢ METATITUXIOKNG €pyaciag¢ omdé 1o TuAua MnXavoAoywv Mnxavikwv
Blopunxavia¢ tng MOAUTEXVIKNG ZXOANCG Tou [lavertioTnuiov OecoaAiag dev LTTOONAWVEL

0T10d0XN TWV aTIoYewv Tou ouyypaéa (N. 5343/32 ap. 202 map. 2).

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

EykpiBnke améd ta MEAN tng MevtapeAov EEeTaoTiKAC ETITpOTNC:

MpwTtog EgetaoTrq

(ETUBAETTOOV)

Ae0tepog EEetaoTrq

Tpitog Egetaotrg

TEétapTtog EgeTaoThg

Méumtog Egetaothq

Ap. Tewpylog Kolavidng
Néktopag, Tunua MnxavoAoywv Mnxavikwv Bilounxaviog,
Mavemiotriyio @eaaaliag

Ap. Tewpylog ALUTIEPOTIOUVAOG
AvamiAnpwtg Kabnyntig, TpApa MnxavoAdywv — MnxXOaviKwv
Biounxaviag, Mavermiotrpio @scaaiiag

Ap. ABavaaciog ZNAIOGKOTIOUAOG
AvomAnpwtg Kabnynmg, Tunga MnxovoAdywv — MnxoviKov
Biounxaviag, Maveriotruio @sccaiiag

Ap. Anuntplog MavteAng
Adaokwv MA 407/80, Tunua MnxavoAdoywv Mnxavikwv Blounxaviag,
Mavemiotruio @scoaliog

Ap. Mamadnuntpiov Kwvotavtivog
Kabnyntg, TuAuga MnxovoAoywv Mnxovikwv Biopnxoaviog,
Mavemiotruio @scoaliog

111

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Euxaplotieg

Mpwta arr’ O0Ad, BEAW va EVXAPICTACW TOV ETUPAETIOVIA TNG METATITUXIOKIC EPyAaiog
pou, Aéktopa Mewpylo Kolavidn, yia tnv 1oAvtiun Boribsia kal kabodriynon tou Kotd Tn
OIAPKEID TNG MEAEING pou. Emiong, €ipal evuyvopwv ota LTIOAOITIA PEAN TNG E€EETACTIKIC
ETUTPOTIAC TNC METATITUXIOKNAG €pyaoiag pou, Kabnyntég KK Tewpylo AuutepOTouAo,
ABavAcio ZnAIdoKOTIOUAO, Anuntplo MavieAr kol Kwvotavtivo Mamadnunipiov yia v
TIPOCEKTIKI aVAYVWAnN TNG EPYOCIiag JoU Kal yia TIG TTOAUTIUEG YVWOEIG TIOU HOU TIPOCEPEPAY
KaTd Tn OIAPKEID TwV OToudwv pou. O@eidw €LXOPIOTIEC O OAOUC TOUG KATA KalpoUC
KaBnyntég Hou, Ol OTI0I0I CLVETEAECOV KOBOPIOTIKA OTNV ATIOKINON Tou BgwpnTikol Hou
uTtoBAbpoL, TO OTIoI0 ATIOdEIXTNKE OTIAPAITNTO YyiA TNV OAOKANPwon HIag 1dlaitepa
aTIaITNTIKAG Epyaaciag. Evxapiotw t Mapia ZaBol yia v kKatavonar] Tng, IS1aiTepa KaTd TN
OIAPKEIO TWV TEAEUTAIWY PNVWV TN TIPOCTIAOEIAC OV Kol OAOULG TOUC (QIAOLG POUL yia TNV
nOkr toug cuumapdctacn. Mavw o’ OAa, €ipal EVYVWHPWV OTOUC YOVEIC Jou, Oavdaon Kal
MéEvn, Kal atnv adep@n Pou ACTIEAIVA yIa TNV OAOYUXN OYdTIn KAl dlapKr UTIOOTNPIEN TOUC,
OTOUC OTIOIOUC KAl APIEPWVW TNV UETATITUXIOKI] EPYATial.

Avdpéacg Mappdavng

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

ENAZ AKPIBHZ AATOPIOMOZ IT'lA MIA OMAAA

TETPAITQNIKQN NMPOBAHMATQN >AKIAIOY

ME MNMEPIOPIZMOYZ EYPOYZ KAI ANQ OPIQN

ANAPEAZ TABPANHX

MavemoTtuio ©@eaaaliag, Turua MnxavoAoywv Mnxavikwv Blounxaviag, 2007

EmpBAéniwv Kabnynmg: Ap. Fewpylog Kolavidng, AEKTopag BEATIOTOTIOINONG ZUOTNHATWY
Mapaywyncg / Ynpeoiwv

MepiAnyn

AUTIN N PJEAETN a@opd cuvexr TipoPAnuata Quadratic Knapsack pe meplopiopolg dvw
opiwv. Ta TIpOPANUATA AUTA ATIOTEAOUV EIDIKEG TIEPITTTWOEIS Quadratic Programming kai
Yyevikotepa Mn pappikoL Mpoypappatiopyol. H emiBoAn meplopiopwy toTov Knapsack oe
TETOIOU €id0UC TIPORAAUATO EXEI OPKETEC EVOIOPEPOUTEC BEWPNTIKEC EQPAPUOYEC.

EmunpooBeta mmapouaoidlovial EQOPUOYEG O CNUOVTIKOUC TOMEIC TIOU XPNGCIKUOTIOIoVY
N Pop@oTtoinon autl w¢ Bacn yia tnv €miAvon TPORANUATWY, OTIWG YIia TIAPADEIYHUO N
BéATiotn EmiAoyr] Kol Avampocopuoyr] XopTOo@UAOKiou otov OIKOVOUIKO KAdado,
MpopAquata Metagopdc Kal Powv oe Aiktua otnv Emixeipnaoiakn ‘Epevva, o |00OKEAITUOC
Mvakwv oto MaBnuatikd KAGdo Kabw¢ Kal e@apuoyéC otov Topéa TNG Zuvinpnong
AEPOCKAPWV.

Ol PEAETEG TIOU €XOULV YiVEL PHEXPI TWPO APOPOUV TNV KAOCOCIKN HopP@OoTIoinon Omou o
TIEPIOPIOHOC TOTIOL Knapsack IkavoTtolgital oav 1I00TNTa. € auTH TNV PETOTITUXIOKN Epyaacia
EPELVATAL N TIEPITITWON OTIOU ETUTPETIOVIAl OTIOKAICEIC YUPW OO MIO KEVIPIKN TIUA.
Mpoteivoupe Kal avoAUOUUE €vav KAIVOUPIO OAYOpIBUO KOl TPOTIOTIOIOUUE €vav 1on
LTTAPXOVTA YIO VO KAAUYoupE autr TN dla@opoTttoinar. TEAOG TTAPOUCIA{OVUE ATIOTEAECUOTA
TI0U TTPOKUTITOUV ATIO TNV UAOTIOINGN KOl £@appoyn Tou oAyopiBuou oe d1d@opa apIOuNTIKA
TIPOPANOTa.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL & INDUSTRIAL ENGINEERING

Postgraduate Work

AN EXACT ALGORITHM FOR A BOX CONSTRAINED CLASS OF

QUADRATIC PROGRAMS SUBJECT TO UPPER BOUNDS

by

ANDREAS GAVRANIS

Electronics and Telecommunications Engineer of Hellenic Air Force Academy, 2003

Submitted in partial fulfillment
requirements for
Postgraduate Specialization Diploma

2007

Vi
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

© 2007 Andreas Gavranis

The approval of this postgraduate work by the Department of Mechanical and Industrial
Engineering of the School of Engineering of the University of Thessaly does not imply

acceptance ofthe writer’s opinions (Law 5343/32 article 202 par.2).

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Approved by:

First Examiner Dr. George Kozanidis

(Supervisor) Lecturer, Department of Mechanical

University of Thessaly

Second Examiner Dr. George Liberopoulos
Associate Professor, Department
Engineering, University of Thessaly

Third Examiner Dr. Athanasios Ziliaskopoulos
Associate Professor, Department
Engineering, University of Thessaly

Fourth Examiner Dr. Dimitrios Pandelis

Instructor (P.D. 407/80), Department of Mechanical &

Engineering, University of Thessaly

Fifth Examiner Dr. Constantinos Papadimitriou

Professor, Department of Mechanical

University of Thessaly

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

of Mechanical

of Mechanical

Engineering,

Industrial

Industrial

Industrial

Engineering,

viii

Acknowledgements

First and foremost, | want to thank my postgraduate work supervisor. Lecturer Dr.
George Kozanidis, for his valuable help and guidance throughout this work. | am also grateful
to the other members of the examining committee of my postgraduate work Dr. Athanasios
Ziliaskopoulos, Dr George Liberopoulos, Dr. Dimitrios Pandelis and Dr. Costas
Papadimitriou for the close examination of my work and for the valuable knowledge | was
given during my post-graduate studies. | owe grateful thanks to all the teachers | learned from,
so as to obtain the essential theoretical background for the completion of a demanding study. |
thank Maria Zavou for her understanding, especially through the last months of my effort as
well as all my friends for their ethical support. Above all, | am grateful to my parents,
Thanasis and Meni, and my sister Aspelina for their wholehearted love and constant support,
to whom | dedicate this postgraduate work.

Andreas Gavranis

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

AN EXACT ALGORITHM FOR A BOX CONSTRAINED CLASS OF

QUADRATIC PROGRAMS SUBJECT TO UPPER BOUNDS

ANDREAS GAVRANIS

University of Thessaly, Department of Mechanical & Industrial Engineering, 2007

Supervising Professor: Dr. George Kozanidis, Lecturer in Optimization Methods of

Production/Service Systems

Abstract

This thesis considers continuous Quadratic Knapsack problems with bound
constraints. These problems belong to the family of Quadratic Programming which is a major
subdivision of Nonlinear Optimization. The addition of Knapsack constraints on Quadratic
Programming problems is shown to have numerous applications, including Quadratic
Programming defined on the convex hull ofa set of points and the maximum clique problem.

Moreover important fields of study that use Quadratic Knapsack as core formulation
are being presented. These include the Optimal Portfolio Selection, Quadratic Transportation,
Multi-commodity Network Flows, Matrix Balancing problems and Aircraft Maintenance.

Traditional approaches for accommodating such Quadratic Knapsack constraints have
been proposed and analyzed for the case of a single tight-bounded Knapsack constraint.
Instead we introduce the case where deviation from the target value of the Knapsack
constraint is allowed. In order to deal with our problem needs we modify an existing
algorithm, and we propose and analyze a new one. Computational results on a variety of test
problems are presented.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Contents

Contents
Chapter 1. INtrOAUCTION. ...ttt ettt e e et b e e e e sanbe e e e e s aanbe e e e e s abbeeaaeaaas 1
1.1 \ViTe1AVZ=iTo] a - Talo l 2 7= Tod XCo | (o 18 [o O P PSST 1
1.2 QUAArAtIC KNAPSACK........cuiiiiiiiiie st e s e e e e st e e s st ae e e e e nn b ee e s annaeeeeanes 2
1.3 LITEIAtUIE REVIBW...... ittt ettt et et s bt e e s bt e e et et e st e e e e e e saae e e sabe e e sabe e e nees 3
14 Structure Of POStGraduate WOTK..........oouiiiiiiii ettt eaae e eee s 6
Chapter 2.. Knapsack Problems and Nonlinear Programming.............ccccccvvvieveieeeeee e, 8
2.1 [T geTe (8 Tox i o] o TN USRI UPP 8
2.2 The Family of KNnapsack ProbIEmS...........coiiiiie ittt e e tae e ennnaea e 8
22.1 Knapsack Problem FOrmulation......... ..o e 8
VIV QL= 1o 1ST ol QAN o o] [Tor= 1 o] o 1= TSRS 14
2.3 [N\LoTa] I T=T= T gl md o Te] = a o] 411 oV FO S OSPRR 15
2.4 Types of Nonlinear Programming Problems............oov i 16
2.4.1 Linearly Constrained OptimiZation...........ccvieeiiiiieis et e e e e naeeas 17
2.4.2 QuAdratiC ProgramimMing..........ccucuieeeiiiiirieesiieie e s ssiieae e s saee s e ssbbeaeessaaeeaeassteeaessnnaeeeeansraeaenan 17
2.5 The Karush-Kuhn-Tucker (KKT) Conditions for Constrained Optimization..............cccceeeuue. 18
2.6 (@TUF=To = L (ol =d foTe | &= U a1 0 411 0T T PSR 22
26.1 The KKT Conditions for Quadratic Programming.........c.ccecueeeoeeenieeenieeesee e seeeeseeeeseee e 25
2.6.2 The Modified SImplex MEthOG............ccoiiiiie e 26
2.7 (00] o Tox 11 K] To] o 1S PP URPP 30
Chapter 3 Quadratic Knapsack AppliCatioNs..........ccccccviiiiiiii e 31
3.1 g1 geTe 18 Tox i o] o T USRI 31
3.2 POrtfolio Selection ProDIEM.........coi ittt seb e s ne e e aeee e 31
3.3 Quadratic Transportation Problems......... ..o 35
34 Multi-commodity NetWOIK FIOWS.........cociiiiiiiiiei ettt e 38
3.5 1Y/ = U D Q== 1= Vg [od o o TSRS 41
3.5.1 A briefreview of matrix balanCing...........ccccoveiiiiiiii e 42
3.6 AFCIaft MAINTENANCE.eie ittt eb e s bbb et s bt e e ab e e e be e e snbeeesbeeenbaea e 44

Xi
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Contents

3.6.1 Problem FOrMUIALION.oii ettt e e et e e be e e nnbeeeneeas 47

3.6.2 General FOrm tranSfOrMatioN.c.oi ittt s e s seae e eeeas 49

3.7 (@] o Tox 11 £=] T o 1= USSR 51
Chapter 4.. Box Constrained Quadratic Knapsack Problem with Upper Bounds.......... 52
4.1 ([1o Te 18 Tox i o] o TSR 52
4.2 ApPlYiNg the KKT CONAITIONS.....uiiiiiiiiiiie et e e s sir e e s s raee e e sssaseeeeennaeeas 52
4.3 57o] 011 0T g J7AN Lo [0 151 1o ¢ TR PSSP 63
431 Proof Of OPtIMALITY......cooeiie et sneee e snaee e 66

432 AlGOrithm COMPIEXITY.....ccciiiiiiee it ee et e e e e e e s e e e e eataeee e esnaeeeeeesrneeeen 73

4.4 (€T o1 1 o] o o o TSRS 75
4.4.1. General FOrm FOrMUIATION.c.oii ittt e e e e e sbee e 75

N © 1 o) 14 0 F= 111 Y2 I =To) (= o P O PPPPRR 76

v/ T S 1o (011 o] o 172N [o T 11 01 o o USROS 77

45 Modifying Existing Solution Techniques to fit our Needs..........ccccoccvvvee e 79
4.6 (0] o Tox 11557 To] o 1S TSP UPR 81
Chapter 5.. Computational experience and numerical examples...........ccoccoviiiiiieneninne. 82
5.1 [T 18 T 1To] o FO RSP UPRURR 82
5.2 ComMPULALIONAl RESUILS........uiiiiiicii et e e e e et e e e s tae e e e e sataae e e e s ssneeeeeeanees 82
5.3 LU =T Tor= U ez T] o [PSP 86
53.1 Numerical EXAMPIE L.........oiiiiiiiiie ettt et e e s e e et e e e e e e e nnaeae e enaaeeeeennnees 86

5.32 NumeriCal EXAMPIE 2......o ettt ettt en e en e e r e ee e 89

5.4 (00] o Tox 115571 1SRRI 92

Chapter 6.. Concluding REMAIKS..........coiiiiiiiiia et e e e neeeas 94
Appendix A C Implementation of the Algorithms..........cccccceveeiiiiiiiii e, 96
Appendix B AMPL MOAEIING. ... it 115
RETEIEINCES. ... ettt e e e s et bt e e e e ebbe e e e e ettt e e e s e aatbeeaeeanns 116

Xii

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Contents

List of Tables

Table 2.1 Necessary and sufficient conditions for optimality.............ccccccveeeee i, 19

Table 2.2 Application ofthe modified Simplex to the Quadratic Programming Example.. .29

Table 4.1 Transformation between general form and special case.............ccccceveveeeeeeiiiiiinnns 75

Table 4.2 Term correspondence between general form and special case..........ccccccveeeernnnnen. 76

Table 4.3 All possible orderings ofthe CONSIraintS..........c.eeiiiiiiiiiii e 80

Table 5.1 Computational Results for different values of ..., 83
$

Table 5.2 Computational Results for different values Of........cccooiiiiii 84

Table 5.3 Algorithms Comparison Results 85

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Contents

List of Figures

Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4

Linear Transportation Problem............ccccciiiiiii e, 36
A matrix and its associated transportation NetWorkK............cccccevvieiieiiiiiin e 43
Visual representation of aircraft residual flight times...............coocoevviveennenn. 46
Constraints ordering i Case L........ccoccciiiiiiiiiriieee e e e e e e e 67
Constraints ordering iN- CaSE 2........cccciuiiiiiiiiie e aa e 68
Constraints ordering N CaASE 3......ciii it e e e 70
Constraints ordering in Case 4........ccccccciiiiiiieeeeee e e e 71
X1V

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

Chapter 1 Introduction

Before progressing into the mathematical content of this thesis, it is important to first
provide some context and motivation. This thesis grew out of research in the area of
optimization. As the name suggests, optimization deals with the application or development
of mathematical programming techniques for decision-making. Evidence of vigorous research

activity within this field is easy to document.

This introduction gives an overview of the optimization concept showing major
subfields and describing the way mathematical programming techniques are applied to
problems so as to render solutions. The introduction is closed with an overview of the

complete work, placing it in relation to the rest ofthe literature.

1.1 Motivation and Background

This thesis presents an application of mathematical programming, specifically
Quadratic Programming, which provides useful information to aid decision-makers. It is the
work of subsequent sections and chapters to show exactly how a topic such as Quadratic
Programming can be productively applied to many types of decisions. In detail, we focus on a
specific application in Aircraft Maintenance which introduces a new formulation of the

original Continuous Quadratic Knapsack formulation.

The main contribution of the research reported in this work is that we develop a new
exact algorithm for a special class of Continuous Quadratic Knapsack Problems having
reasonable solution times for nearly all instances encountered in practice, despite having

Quadratic time bounds for a number of highly contrived problem instances. We give proof of

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

the optimality of the algorithm, implement it in C programming language and give numerical
results. We also describe a Quadratic Knapsack framework for the formulation, analysis and
computation of solutions to a specific problem of military-aircraft maintenance. Last we
present a modification of an exact algorithm presented by Pardalos and Kovoor [13], in order
to cope with the specific formulation of the problem in case the large number of variables

poses long execution time problem.

1.2 Quadratic Knapsack

The Quadratic Knapsack problem (QKP) is one ofthe simplest Quadratic Programming

problems defined as follows:

subject to

The continuous bounded Quadratic Knapsack problem is defined as follows

subject to

n

= dixt=ao

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction
ai<xi<bi, i=

where xeiR" is a variable vector, Q e 9I'xn,c e 9I' and d0 is a scalar.

1.3 Literature Review

The Quadratic Knapsack problems are mainly classified by the nature of matrix Q.
When the matrix Q is positive semidefinite, i.e., the objective function z(x) is convex,

problem can be solved in polynomial time by the ellipsoid algorithm [8], and several kinds of

interior point algorithms (e.g. [7], [11], [5], which solve general convex Quadratic problems

including (QKP) as a special case). Also, P.M. Pardalos, Y. Ye and C.G. Han [15] show a

potential reduction algorithm for a special case of (QKP) defined below,

min / (X) = XrQx

s.t 1T%,=1,x=0

=l
where Q is a nxn symmetric matrix.

In particular, when (QKP) has a diagonal matrix Q with positive elements, an 0{n)

algorithm has been proposed by P. Brucker [3]. The algorithm generates the corresponding

KKT condition using binary search. Pardalos and N. Kovoor [13] also propose an 0O{n)

randomized method.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

The convex case is important because of its frequent appearance as a subproblem in
many application areas. Among those are general convex Quadratic Programming [9],
multicommodity network flow problems [1], resource management [2], and portfolio

selection problems [10],

The problem becomes extremely difficult if z(x) is not convex. S. Sahni [16) shows

that problems with negative diagonal matrix Q are Np - hard, which implies that the general

indefinite case is also Np - hard .

Let points in whose convex hull is P. The least distance problem is that

offinding the point of P having the smallest Euclidean norm. This problem can be stated as

min XT\

n

s.t X = Y Jzivi

i=l

>*,=1,2>0,/=1,...,«

1=1

The above problem can be formulated as in [15] with Q =VrV and V = (v,,...,un).

As we see in the above, the indefinite case arises in several combinatorial optimization

problems. For example, given a graph G(V,E) where V ={l,...,.«}is a set of vertices and

£ T is a set ofedges, a clique is a complete subgraph of G . The maximum clique problem

is the problem of finding the maximum complete subgraph of G .For each vertex ui, introduce

a variable xt,i .This problem can be formulated in the following way:

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

Maxf(x) = = xixj
(,./>E

S-t- >xi=1 >0,/ =1,...,n

1=1

If G has a maximum clique of size k, then the global maximum is / (x*)=—il—1il
vV Kj

We can also formulate the maximum independent set problem and the node covering problem

in a similar fashion.

One can also formulate any Quadratic minimization problem over a convex hull by the

Quadratic Knapsack problem. Consider the problem ofthe form:

min q(z)= zTMz (D)
zeP

where z,re W ,M e ${m*n and P e 9?*“is the polytope described as the convex hull
of a given set of points {v,,...,vn}. It can be verified easily that the above general Quadratic

problem has the following equivalent formulation

global min i{xX)=xTQx (2)

sticeD=jx ™xt=1,x>0

with Q =VTMV and V ={v,,...,vn}.

Let z* and x* be optimum solutions of (I) and (2), respectively. Then we have

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

q{z) = miFr) q(z)=f(Vv) = milg f(x) and moreover z = Vx*.

There exist only a few algorithms for obtaining a global optimum solution for the case
of the general indefinite Q. See [15] for a partitioning approach as well as an interior point

method, while [4] surveys algorithms for general nonconvex Quadratic problems.

The case when the objective function is separable has also been well investigated by

several authors. Some practical algorithms to obtain an exact solution are reported in [14], [6].

S.A. Vavasis [18] shows an o[n(\ognfjalgorithm for finding a local minimum of the

problem, while K.G. Murty and S.N. Kabadi [12] show that verifying a local minimum for an

indefinite Quadratic problem with general constraints is Np-hard. Also, Vavasis [17] gives

an e-approximation algorithm which is weakly polynomial in the problem size if the number

of negative diagonal elements is fixed.

1.4 Structure of Postgraduate Work
The rest ofthis postgraduate work is divided into five chapters. More specifically:

In Chapter 2, we consider first a family of combinatorial problems known under the
name Knapsack Problems and we present some important applications. Next, we study the
foundations of nonlinear programming and focus on one of its major subsectors, namely
Quadratic Programming .We introduce the Karush-Kuhn-Tucker (KKT) conditions for
optimality and then use these conditions to provide a linear transformation of the Quadratic

Programming Problem which can be dealt with the modified-SIMPLEX method.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

In Chapter 3, we present some major applications of the Quadratic Knapsack
formulation, which denote its major role in real-life applications. More precisely we begin
with the Portfolio Selection and the Portfolio Rebalancing Problems. We continue with the
Quadratic Transportation Problem and present the advantages of a Quadratic Programming
formulation for Spatial Interaction Patterns over a linear one. We then specialize on Multi-
commodity Network Flow Problems. Matrix balancing problems are being introduced next
and we finish our application reference by introducing a special military-aircraft maintenance
problem with a slight differentiation from the classical formulation of the Quadratic Knapsack

Problem, in that a box Knapsack constraint is imposed

In Chapter 4, we focus on this special case of Box Constrained Quadratic Knapsack
Problem with upper Bounds. After formulating the Problem we use the KKT Conditions of
optimality applied on our specific problem in order to characterize the optimal solution.
Global optimality is proven next. We then present an algorithm for the solution of the
problem also dealing with algorithm optimality and complexity. In the last part of the chapter,
we present the modification of an existing algorithm in order to make it applicable to our

specific case.

In Chapter 5, we consider some theoretical and numerical aspects of the algorithms
implementation comparing results with other known solution tools (i.e. AMPL) and present
results of some numerical experiments so as to make clear the way the algorithm works.

In Chapter 6, this postgraduate work is summarized and directions for further research
are given.

Appendix A contains the C Programming Language code of the algorithms

implementation. Appendix B contains the AMPL modeling file.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Chapter 2 Knapsack Problems and Nonlinear Programming

2.1 Introduction

We begin this chapter by giving an overview of the family of Knapsack Problems, and
by showing several applications of theoretical as well as of practical interest. We then
introduce the basic concepts of Nonlinear Programming, and describe some basic
application examples which make the difference with Linear Programming clear. Following
this we state the Karush-Kuhn-Tucker conditions for Constrained Optimization. Quadratic
programming is analyzed next and a transformation to a linear formulation is given by
applying the KKT Conditions. One solution technique that can be used on the transformed

Quadratic Problem, namely modified-SIMPLEX, is analyzed last.

2.2 The Family of Knapsack Problems

2.2.1 Knapsack Problem Formulation

This section considers several problems from the family of Knapsack Problems. In all
variants of the problem we have a collection of items, each with a profit Pj and weightw .,
which are packed into one or more Knapsacks of capacity ¢. We will assume that all
coefficients pj ,Wj, ¢ are positive numbers although weaker assumptions sometimes may be

handled in the individual problems.

The 0-1 Knapsack Problem is the problem of choosing a subset of the n items such
that the corresponding profit sum is maximized but the knapsack capacity is not exceeded.

This may be formulated as the following maximization problem:

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Maximize Z Pixi
7=i
Subject to TwjXj~c
7=1
Xj € {0,1} , 7 =1, <<

where Xx. is a binary variable equal to | ifitemj is included in the Knapsack and 0 otherwise.

If we have a maximum quantity mj for each item type j, then the Bounded Knapsack

Problem arises, formulated as:

Maximize =/
7=1
n
Subject to ZW.X.<C
7=1
Xj €{0,l,...,my}

Here, x. is the number ofitems ofeach type to be included in the Knapsack, in order to obtain

the largest objective value.

The Unbounded Knapsack Problem is a generalization of the Bounded Knapsack

Problem, where an unlimited number of items for each type is available:

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Maximize > A
7=1

Subject to
=W7*7-C

7=1

Xj > Ointeger, j =1,...,n

In general there is no advantage by transforming an Unbounded Knapsack Problem to

the bounded version.

Another generalization of the 0-1 Knapsack problem is to choose exactly one item j

from each of k classesAj, i =\,...,k such that the profit sum is maximized. This gives the

Multiple-choice Knapsack Problem which is defined as

Maximize PUXV
%je]
Subject to A
%je%] wuxu”™c
Xxu=1, i=1I...,k
jeN'
e{0,1} i'= jeN,

Here the binary variable xy =1 states that item j was chosen from class i. The

constraint ™~ xy =1, i =1 ensures that exactly one item is chosen from each class.
jeN,

10

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

If the profit p; equals the weight w. for each item in a 0-1 Knapsack Problem we

obtain the Subset-sum Problem, which may be formulated as:

Maximize

Subject to
7=1

xj e{0,1} , 5 =

The name indicates that it can also be seen as the problem of choosing a subset of the

values w,,..., wn such that the sum is as large as possible without exceeding c.

Now, imagine a cashier who has to give back an amount of money ¢ by using the

smallest possible amount of the coins w,,...,wmn. The Change-making Problem is then defined

as:

n
Minimize v

7=1

n
Subject to Hwjxj=c

Xj>0integer, j=1,...,n

where w, is the face value ofcoinj, and we assume that an unlimited amount of each coin is

available. The optimal number of each coin j that should be used is then expressed by Xj.

11

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

This problem may be considered as a minimization variant of the Unbounded Knapsack

Problem, where p; =1 forj =1,...,« and where equality must hold in the capacity constraint.

If we have to choose n items to pack in m Knapsacks of possibly different capacities

ci such that the total profit is maximized we obtain the Multiple Knapsack Problem

Maximize zZp)\

izl j=!l

Subject to WXy <Cj i=1

7=1

I;‘ o B J =1>->n

e{O,} , i

I
hl
I

=

Here xi} =1 indicates that item j should be packed into Knapsack i, while the constraint

WX\ < ci ensures that the capacity constraint of Knapsack i is satisfied. The constraint
7=1

yjxu <1 ensures that each item is chosen at most once.

A very useful model is the Bin-packing Problem where all n items should be packed in

a number of equally sized bins, such that the number of bins actually used is as small as

possible. Thus we have

Minimize

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

n

Subject to

> wjXj -cyi i=1,-,«
7=1

' = =«
T,e{o,i}, i=l..,n
xy e {o?} ,

where yi indicates whether bin i is used, and x{j states that item j should be packed in bin i.

m
The constraint =1 ensures that every item is packed exactly once, while inequality
1=

n

WijXy < cyt ensures that the capacity constraint holds for all bins actually used.

The most general form of a Knapsack Problem is the Multi-constrained Knapsack
Problem, which basically is a general Integer Programming Problem where all coefficients,

Pj, Wy and ¢, are nonnegative integers. Thus it may be formulated as

Maximize N Pixj
7=1

Subject to WyXj <ci, i=1,..,/«
1=l
Xj =>Ointeger, j =!,...,«

13
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

2.2.2 Knapsack Applications

Knapsack Problems have numerous applications in theory as well as in practice. From
a theoretical point of view, the simple structure pleads for exploitation of numerous
interesting properties, that can make the problems easier to solve. Knapsack Problems also
arise as subproblems in several algorithms for more complex combinatorial optimization
problems, and these algorithms will benefit from any improvement in the field of Knapsack

Problems.

Despite its name, practical applications of Knapsack Problems are not limited to

packing problems: Assume that n projects are available to an investor, and that the profit

obtained from the jth project is pj,j = A - It costs w.to invest in project j, and only ¢

dollars are available. An optimal investment plan may be found by solving a 0-1 Knapsack

Problem.

Another application appears in a restaurant, where a person has to choose k courses,

without surpassing the amount of ¢ calories, his diet prescribes. Assuming that there are Nt
dishes to choose among for each course/ =1,...,k, and wt is the nutritive value while pfj is a

rating saying how well each dish tastes. Then an optimal meal may be found by solving the

Multiple-choice Knapsack Problem (37).

The Bin-packing Problem has been applied for cutting iron bars in a kibbutz [39], in

order to minimize the number of bars used each day. Here w. is the length of each piece

demanded, while c is the length of each bar, as delivered from the factory.

Apart from these simple illustrations we should mention the following major

applications: Problems in cargo loading, cutting stock, budget control, and financial

14
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

management may be formulated as Knapsack Problems, where the specific model depends on
the side constraints present. Sinha and Zoltners [37] proposed to use Multiple-choice
Knapsack Problems to select which components should be linked in series in order to
maximize fault tolerance. Diffe and Heilman [36] designed a public cryptography scheme
whose security relies on the difficulty of solving the Subset-sum Problem. Martello and Toth
[37] mention that two-processor scheduling problems may be solved as a Subset-sum
Problem. Finally the Bin-packing Problem may be used for packing envelopes with a fixed

weight limit.

The more theoretical applications either appear where a general problem is
transformed to a Knapsack Problem, or where the Knapsack Problem appears as subproblem,
e.g. for deriving bounds in a branch-and-bound algorithm designed to solve more complex
problems. In the first category G. B. Mathews back in 1897 [34] showed how several
constraints may be aggregated to one single Knapsack constraint, making it possible to solve
any IP Problem as a 0-1 Knapsack Problem. Moreover Nauss [35] proposed to transform
nonlinear Knapsack Problems to Multiple-choice Knapsack Problems. In the second category
we should mention that the 0-1 Knapsack Problem appears as a sub problem when solving the
Generalized Assignment Problem, which again is heavily used when solving Vehicle Routing
Problems [32], Also Krarup and llles [31] apply a Knapsack type relaxation in connection

with finite projective planes.

2.3 Nonlinear Programming

A key assumption of linear programming is that all its functions (objective function

and constraints) are linear. Although this assumption essentially holds for numerous practical

15

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

problems, it frequently does not hold. In fact, many economists have found that some degree of
nonlinearity is the rule and not the exception in economic planning problems. Therefore, it is
often necessary to deal directly with nonlinear programming problems, so we turn our

attention to this important area.

In one general form, the nonlinear programming problem is to find x = (X,,X2,...,xn)

S0 as to
Maximize /7 (X)
Subject to a.(x)» i=1.2

x>0

where /(x) and the g, (x) are given functions ofthe n decision variables.

No general algorithm that will solve every specific problem fitting this format is
available. However, substantial progress has been made for some important special cases of
this problem by making various assumptions about these functions, and research is
continuing very actively. This area is quite extensive, and there is not enough space to survey

it completely. Besides, that is beyond the scope of this research.

2.4 Types of Nonlinear Programming Problems

Nonlinear programming problems come in many different shapes and forms. Unlike

the simplex method for linear programming, no single algorithm can solve all these different

16

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

types of problems. Instead, algorithms have been developed for various individual classes (special
types) of nonlinear programming problems. The class which is of great interest in this research is

introduced briefly in the following section.

2.4.1 Linearly Constrained Optimization
Linearly constrained optimization problems are characterized by constraints that

completely fit linear programming, so that all the g, (X) constraint functions are linear, but the

objective function f(x) is nonlinear. The problem is considerably simplified by having just

one nonlinear function to take into account, along with a linear programming feasible region.
A number of special algorithms based upon extending the simplex method to consider the
nonlinear objective function have been developed. One important special case, which we

consider next, is Quadratic Programming.

2.4.2 Quadratic Programming

Quadratic programming problems again have linear constraints, but now the objective
function /(x) must be Quadratic. Thus, the only difference between such a problem and a
linear programming problem is that some of the terms in the objective function involve the

square of a variable or the product oftwo variables.

Quadratic programming is very important, partially because such formulations arise
naturally in many applications. For example, the problem of portfolio selection with risky
securities described fits into this format. However, another major reason for its importance
is that a common approach to solving general linearly constrained optimization problems is to

solve a sequence of Quadratic Programming approximations.

17

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

25 The Karush-Kuhn-Tucker (KKT) Conditions for Constrained

Optimization

We now focus on the question of how to recognize an optimal solution for a nonlinear
programming problem (with differentiable functions).More precisely we focus on the

necessary and under certain requirements sufficient conditions for an optimal solution.

In the preceding sections we already noted these conditions for unconstrained opti-
mization, as summarized in the first two rows of Table 2.1. In the third row of Table 2.1 the
conditions for the slight extension of unconstrained optimization where the only constraints are
nonnegativity constraints are shown. As indicated in the last row ofthe table, the conditions for the
general case are called the Karush-Kuhn-Tucker conditions (or KKT conditions), because they
were derived independently by Karush [19] and by Kuhn and Tucker [20]. Their basic result is

embodied in the following theorem.

Theorem 2.1 Assume that /(Xx), g,(X),02(X),...,gm(x)are differentiable functions
satisfying certain regularity conditions. Then x' = (x,*,x2*,.--,*,*) can be an optimal solution

for the nonlinear problem only if there exist m numbers ul,u2,...,um such that all the

following KKT conditions are satisfied:

>atx = x* for j =\,2,...,n

18

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

3. gl.(x*)-6,<0
4. W,(g,(X)_Z)’) =0

5.x] >0

6.u >0

Problem

One-variable unconstrained

Multivariable unconstrained

Constrained,
nonnegativity constraints

only

General constrained problem

Table 2.1

Chapter 2 Knapsack problems and Nonlinear programming

fori=1,2

for j=\,2,....,n

fori=1,2,....m

Necessary Conditions for Optimality Also Sufficient if:

= © f(x) concave

f—O (=1,2,-,n) f(x) concave
OXj

+ =0 (y=12,...,/7?)
oXj
f(x) concave

(or <0Oifx; =0)

f(x) concave and g((x) convex
Karush-Kuhn-Tucker conditions
(i=12,...,w)

Necessary and sufficient conditions for optimality

Note that both conditions 2 and 4 require that the product of two quantities be zero.

Therefore, each ofthese conditions is really saying that at least one of the two quantities must

be zero. Consequently, condition 4 can be combined with condition 3 to express them in another

equivalent form as

19

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

(3 ’ 4)*s (X*) _*s =0

(or <Oifw,=0) fori=12,...,m

Similarly, condition 2 can be combined with condition 1 as

(1,2) 0

(or<0 ifx* =0) for j =1,2,...,n

When m = 0 (no functional constraints), this summation drops out and the combined
condition (1, 2) reduces to the condition given in the third row of Table 2.1. Thus, for m > 0,
each term in the summation modifies the m = 0 condition to incorporate the effect of the

corresponding functional constraint.

In conditions 1, 2, 4, and 6, theu,., correspond to the dual variables of linear

programming (we expand on this correspondence at the end of the section), and they have a

comparable economic interpretation. However, the w., actually arose in the mathematical derivation

as Lagrange multipliers. Conditions 3 and 5 do nothing more than ensure the feasibility of the
solution. The other conditions eliminate most of the feasible solutions as possible candidates for

an optimal solution.

However, note that satisfying these conditions does not guarantee that the solution is
optimal. As summarized in the rightmost column of Table 13.3, certain additional convexity
assumptions are needed to obtain this guarantee. These assumptions are spelled out in the

following extension ofthe Theorem 2.1.

20

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Corollary. Assume that /(x)is a concave function and thatg,(x),g2(x),...,gm(x) are convex
functions (i.e., this problem is a convex programming problem), where all these functions satisfy

the regularity conditions. Then x* = [X',x*,...,x”j is an optimal solution, ifand only if all the

conditions ofthe theorem are satisfied.

For many complicated problems, it may be difficult, if not essentially impossible, to
derive an optimal solution directly from the KKT conditions. Nevertheless, these conditions still
provide valuable clues as to the identity of an optimal solution, and they also permit us to

check whether a proposed solution may be optimal.

There also are many valuable indirect applications of the KKT conditions. One of these
applications arises in the duality theory that has been developed for nonlinear programming to
parallel the duality theory for linear programming. In particular, for any given constrained
maximization problem (call it the primal problem), the KKT conditions can be used to define a

closely associated dual problem that is a constrained minimization problem. The variables in

the dual problem consist of both the Lagrange multipliers ut (/=1,2,...,m) and the primal

variables x. (y =1,2,...,,n). (For details on this formulation, see Chapter 8 of [21]. For a unified

survey of various approaches to duality in nonlinear programming, see [22].)In the special case

where the primal problem is a linear programming problem, the Xj variables drop out ofthe dual

problem and it becomes the familiar dual problem of linear programming. When the primal
problem is a convex programming problem, it is possible to establish relationships between the
primal problem and the dual problem that are similar to those for linear programming. For
example, the strong duality property, which states that the optimal objective function values of

the two problems are equal, also holds here. Furthermore, the values of the ui variables in an

21
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

optimal solution for the dual problem can again be interpreted as shadow prices ;i.e., they give
the rate at which the optimal objective function value for the primal problem could be increased
by (slightly) increasing the right-hand side ofthe corresponding constraint. We will see another

indirect application ofthe KKT conditions in the next section.

2.6 Quadratic Programming

As already indicated in previous section, the Quadratic Programming problem differs

from the linear programming problem only in that the objective function also includes

xfand XjXj,i ® j terms. Thus, ifwe use matrix notation like that introduced at the beginning

of Sec. 5.2, the problem is to find x so as to
Maximize /(X)) = cxX-"XTQx

Subjectto Ax <band x>0

where ¢ is a row vector, x and b are column vectors, Q and A are matrices, and the

superscript T denotes the transpose of a matrix. The gy (elements ofQ) are given constants

such that qy =qji (which is the reason for the factor of in the objective function). By

performing the indicated vector and matrix multiplications, the objective function then is

expressed in terms ofthese qiy, the Cj (elements of c), and the variables as follows:

I M=Cx-*TQX=2 cios - N2 2

11 >1

22

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

product of xi and x}.

To illustrate this notation, consider the following example of a Quadratic

Programming problem.

Maximize/(x, x2) = 15x, +30x2 +4x,x2 — 2x\ = \x\
subject to

X, +2x2 <30 and

X, >0, x2>0.

In this case

c=[15 30] x=
X.

A=l 2] b=[30]

XTOX =[x, X?]

23

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

= [(4%,-4x2) (-4x,+8x2)]

= 4X,) — Ax2x, — 4x,x2 + 8x22

4,/\ n NIQ2M2

Multiplying through by — gives

—XTOQX = -2X,2 +4x,x2 ~4x2°

which is the nonlinear portion of the objective function for this example. Since®*u=4

a.ndg? = 8, the example illustrates that is the coefficient of x; in the objective function.

The fact that gn = gn = -4 illustrates that both -qi and -qji give the total coefficient of the

product of x, and Xx..

Several algorithms have been developed for the special case of the Quadratic
Programming problem where the objective function is a concave function. (A way to verify

that the objective function is concave is to verify the equivalent condition that

XTQx >0

for all x, that is, Q is a positive semidefinite matrix.) One of these algorithms [23], the

modified simplex method, has been quite popular because it requires using only the simplex

method with a slight modification. The key to this approach is to construct the KKT

24

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

conditions from the preceding section and then to re-express these conditions in a convenient
form that closely resembles linear programming. Therefore, before describing the algorithm,

we shall develop this convenient form.

2.6.1 The KKT Conditions for Quadratic Programming
For any Quadratic Programming problem, its KKT conditions can be reduced to a
convenient form containing just linear programming constraints plus one complementarity

constraint. In matrix notation again, this general form is

Qx +Aru-y = -cr

AX+v=D

x>0 u>0 y>0 v>0

Xry+urv=20

where the elements ofthe column vector u are the ui, ofthe preceding section and the elements of

the column vectors y and v are slack variables.

Because the objective function of the original problem is assumed to be concave and
because the constraint functions are linear and therefore convex, the corollary to the Theorem
2.1 applies. Thus, x is optimal ifand only ifthere exist values ofy, u, and v such that all four
vectors together satisfy all these conditions. The original problem is thereby reduced to the

equivalent problem of finding a feasible solution to these constraints.

25

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

It is of interest to note that this equivalent problem is one example of the linear
complementarity problem, and that a key constraint for the linear complementarity problem is

its complementarity constraint.

2.6.2 The Modified Simplex Method

The modified simplex method exploits the key fact that, with the exception of the
complementarity constraint, the KKT conditions in the convenient form obtained above are
nothing more than linear programming constraints. Furthermore, the complementarity constraint
simply implies that it is not permissible for both complementary variables of any pair to be
(nondegenerate) basic variables (the only variables > 0) when (nondegenerate) BF solutions are
considered. Therefore, the problem reduces to finding an initial BF solution to any linear
programming problem that has these constraints, subject to this additional restriction on the
identity ofthe basic variables. (This initial BF solution may be the only feasible solution in this

case.)

As we discussed in Sec. 4.6, finding such an initial BF solution is relatively
straightforward. In the simple case where cr <0 (unlikely) and b > 0O, the initial basic
variables are the elements ofy and v (multiply through the first set of equations by -1), so that
the desired solution is x =0, u =0, y = -cr, v = b. Otherwise, you need to revise the problem
by introducing an artificial variable into each ofthe equations where Cj >0 (add the variable on
the left) or bt <0 (subtract the variable on the left and then multiply through by -1) in order to
use these artificial variables (call them z,, z2, and so on) as initial basic variables for the revised

problem. (Note that this choice ofinitial basic variables satisfies the complementarity constraint,

because as nonbasic variables x = 0 and u = 0 automatically.)

26

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Next, use phase | ofthe two-phase method to find a BF solution for the real problem;
i.e., apply the simplex method (with one modification) to the following linear programming
problem
Minimize Z="2Z))
i
subject to the linear programming constraints obtained from the KKT conditions, but with

these artificial variables included.

The one modification in the simplex method is the following change in the procedure

for selecting an entering basic variable.

Restricted-Entry Rule: When you are choosing an entering basic variable, exclude from
consideration any nonbasic variable whose complementary variable already is a basic
variable; the choice should be made from the other nonbasic variables according to the usual

criterion for the simplex method.

This rule keeps the complementarity constraint satisfied throughout the course of the
algorithm. When an optimal solution x*, u*, y*, v*, z\=0,.. .,z, = 0 is obtained for the phase 1
problem, x* is the desired optimal solution for the original Quadratic Programming problem.

Phase 2 of the two-phase method is not needed.

Example. We shall now illustrate this approach on the example given at the beginning ofthe

section.

Q= is positive definite, so the algorithm can be applied.

27

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

The starting point for solving this example is its KKT conditions in the convenient
form obtained earlier in the section. After the needed artificial variables are introduced, the

linear programming problem to be addressed explicitly by the modified simplex method then

is

Minimize Z=12 +22 ,

subject to

4y, -Ax) g, Y +z, =15
-4.x, +8x2 +2w, -y? +z) =30
X +2x2 +v, =30

and x] >0 x>0 w,>0 yi>0 y2>0 v, >0

z,>0 z2>0

The additional complementarity constraintx,y, +x2y2 +m,y, =0 is not included
explicitly, because the algorithm automatically enforces this constraint because of the
restricted-entry rule. In particular, for each of the three pairs of complementary variables
(x,,"),(x2,22),(wl,vl) whenever one of the two variables already is a basic variable, the
other variable is excluded as a candidate for the entering basic variable. Remember that the
only nonzero variables are basic variables. Because the initial set of basic variables for the

linear programming problemz,,z2,v,, gives an initial BF solution that satisfies the

28

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

complementarity constraint, there is no way that this constraint can be violated by any

subsequent BF solution.

Table 2.2 shows the results of applying the modified simplex method to this problem.
The first simplex tableau exhibits the initial system of equations after converting from
minimizing Z to maximizing -Z and algebraically eliminating the initial basic variables from
Eq. (0). The three iterations proceed just as for the regular simplex method, except for
eliminating certain candidates for the entering basic variable because of the restricted-entry

rule. In the first tableau, w, is eliminated as a candidate because it’s complementary variable

(v,) already is a basic variable (but x2 would have been chosen anyway because-4 < -3).

Bask Right
Iteration Variable Eq. *1 ¥« ri V2 V. 2i 22 Side
z (0) 0 -4 -3 1 1 0 0 0 -45
Q@ 4 4 1 1 0 0 1 0 15
7)) | -4 8 2 0 -1 0 0 1 30
A3 t 2 o0 0 0 | 0 0 30
1
z () -2 o0 -2 2 -30
i\ 1) 2 21 30
1
@ |t 5 4
® . o -4 W

i) 1 - .
NG L S ?
1 ©) 10 4 0 8 Jz_ » -1
z (0) 0 0 0 0 ! ! 0
u, 0 L2 &5 s
NG 0 % a5 T e a0
©) 0 o 20 ; 10 '2>(§ 12
Table 2.2 Application ofthe modified Simplex to the Quadratic Programming Example

29
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

In the second tableau, both m, and y? are eliminated as candidates (because v, and x?
are basic variables), so x, automatically is chosen as the only candidate with a negative
coefficient in row 0 (whereas the regular simplex method would have permitted choosing either
X, or M, because they are tied for having the largest negative coefficient). In the third tableau, both
y, and y? are eliminated (because x, and X2 are basic variables). However, w, is not eliminated
because v, no longer is a basic variable, so w, is chosen as the entering basic variable in the usual

way.

The resulting optimal solution for this phase 1 problem isx, =12, x2 =9andw, =3,
with the rest of the variables zero. Therefore, the optimal solution for the Quadratic

Programming problem (which includes only the x, and x2 variables) is (x,, x2) = (1 2,9).

2.7 Conclusions

In this chapter, we have considered a family of combinatorial problems known under
the name of Knapsack Problems and. We have also studied the foundations of nonlinear
programming and focused on one of its major subsectors namely Quadratic Programming .We
have introduce the Karush-Kuhn-Tucker (KKT) conditions and showed an indirect
application of these conditions to provide a linear transformation of the Quadratic

Programming Problem which can be dealt with the modified SIMPLEX method.

Applications for both Knapsack Problems and Quadratic Programming have been
presented, denoting why both are of great research interest. As we can easily see the
combination ofthese two major subjects of interest, leads to the Quadratic Knapsack Problem

which is the key concept ofthis thesis.

30

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Chapter 3 Quadratic Knapsack Applications

3.1 Introduction

This chapter consists ofthe analysis of Quadratic Knapsack Applications. In detail we
will study Problems of Portfolio Selection, Quadratic Transportation, Multi-Commodity
Network Flow and Matrix Balancing. We supply brief introduction of the problem concepts
as well as references of past work. We also consider their Quadratic Knapsack formulations.
In the last section of the chapter we present a new formulation, where deviations from the
target value are allowed for the Knapsack Constraint applied to an Aircraft-Maintenance

Problem.

3.2 Portfolio Selection Problem

Constructing a portfolio of investments is one of the most significant financial
decisions facing individuals and institutions. A decision-making process must be
developed which identifies the appropriate weight each investment should have within the
portfolio. The portfolio must strike what the investor believes to be an acceptable
balance between risk and reward. In addition, the costs incurred when setting up a new
portfolio or rebalancing an existing portfolio must be included in any realistic analysis.
Convex transaction costs, including linear (proportional) transaction costs, piecewise
linear transaction costs, and Quadratic transaction costs can be considered. In order to
properly reflect the effect of transaction costs, we suggest rescaling the risk term by the

funds available after paying the transaction costs.

31
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Essentially, the standard portfolio optimization problem is to identify the optimal
allocation of limited resources among a limited set of investments. Optimality is measured
using a trade-off between perceived risk and expected return. Expected future returns

are based on historical data. Risk is measured by the variance ofthose historical returns.

When more then one investment is involved, the covariance among individual
investments becomes important. In fact, any deviation from perfect positive correlation allows
a beneficial diversified portfolio to be constructed. Efficient portfolios are allocations that
achieve the highest possible return for a given level of risk. Alternatively, efficient
portfolios can be said to minimize the risk for a given level of return. These ideas
earned their inventor a Nobel Prize and have gained such wide acceptance that countless
references could be cited. The model of portfolio selection is originally presented in

Markowitz [10] and is as follows. Assume:

@ n securities

(b) an initial sum of money to be invested

(9] the beginning of a holding period

(d) the end ofthe holding period

Let x\...,xn be investment proportion weights. The xt are the proportions of the

initial sum invested in the n securities to form a portfolio at the beginning of the holding

period. Unless restricted to the contrary, an xt can take on any value. Nevertheless, all xt

must sum to one. An xt <0 means that security i is sold short with the cash generated then

providing additional money to be invested in the other securities. An Xx(>1 is possible.

32

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Assume a two-stock portfolio and an initial sum of $100. If security ! is sold short to the
extent of $40, then because all weights must sum to one, the $40 plus the initial sum are

invested in security 2 in which case x{ =-0.4 and jc, =1.4.

Let n be the random variable for the percent return realized on security i between the
beginning of the holding period and the end of the holding period. Let rp be the random

variable for the percent return realized on a portfolio between the beginning of the holding

period and the end ofthe holding period, where

n
rp=HiriXi
1=1
In this way, rp is a function of both the r and the xt Since the r are not known until
the end of the holding period, but the xt must be chosen at the beginning of the period,

attempting to maximize rp via the above equation is a stochastic optimization problem. With

solutions of a stochastic optimization problems not well defined, a decision is required on

how to proceed.

Since an investor can never know at the beginning of the holding period the value of

rp to be realized at the end of the holding period, the investor is in a quandary. Ideally, an

investor would like to position his initial sum to maximize his chances ofreaping a high value

of rp while at the same time minimizing his exposure to disconcertingly low values of rp.
Assuming that all n are from distributions whose means u{, variances au and covariances

cr. are known, Markowitz's mean-variance solution procedure, which has come to form the

33

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

foundation of what we know of today as "modem portfolio analysis”, is to proceed with the

bi-criterion program

Min | iTijxjo~(Te

I'=l >

max =%
121

St X, =l

< xt < ut where oRis the variance of rpand pp is expected value. Let E0

be the minimum expected portfolio return. The problem can take the following form

MM- | <TQX = = = xicix]=02p

n

pr)(:IZ:I/vo- —Eo

s.t. XN, =l

l. <X,. < «,

By varying the parameter E0 and solving multiple instances of the problem, the set of

efficient portfolios can be generated. This set, visualized in a risk/retum plot, is called the

34
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

efficient frontier. An investor may decide where along the efficient frontier (s)he finds an

acceptable balance between risk and reward.

3.3 Quadratic Transportation Problems

The Linear Transportation Problem (L.T.P.) can be described as a minimum-cost
flow problem over a network depicted in Fig 3.2 .This network includes | supply and J
demand nodes connected by direct links. Hitchcock's formulation of the transportation

problem is

Mwz(X) = Z Zcr*,
M 7-1

subject to Z xu = 0|
7=1

Z2N=£, Y/ =1,2,...,7

1=1
Xj>0 | Vi,

Assume further that the total supply equals the total demand, that is

where xy is the amount of movement from place i toj, cy is the given transport cost and O

and D are the supplies and demands.

35
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

SUPPLY DEMAND
NODES NODES

Figure 3.1 Linear Transportation Problem

In addition to the known marginal totals O: and ZA, the transport cost quantities ctj are also

given. The Quadratic Transportation Problem (Q.T.P.) is an optimization problem defined

as follows :

Minz{x) =]-Y Yjcll{xld) +>XI>XWW/

subject to Vi=1,2,
i

;XU:dJ Vj=12,

xs>0 Vi,j

36

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

where

Xy is the amount of movement from place i toj

Cj is the per unit transport cost

dy is the per unit depreciation cost (wear and tear or damage cost)

and O and D are the supplies and demands.

Properties that distinguish the solution to the Q.T.P. from that ofthe L.T.P. are that

(@) The Xy are on average smaller numbers. This is forced by the Quadratic term in the

objective function.

(b) The number ofnon-zero xiy will exceed 1+ D +1 and will approach 1D.

(c) The Xy are generally not integers.

Properties (a) and b) are more in accord with empirical spatial interaction tables than
are the solutions to the L.T.P. This is expected because commodity flows are rendered more
reliable by a diversity of sources, urban traffic is diverted to avoid congestion, and migration
patterns are rendered diffuse due to information inadequacies. Spatial allocation models that
use the L.T.P. thus yield results that are less realistic than can be obtained through the use of
the Q.T.P. solution. Property c) ofthe L.T.P. is desirable, however, and suggests investigation

ofan Integer Q.T.P.

37

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

3.4 Multi-commodity Network Flows

In the classical transportation problem the cost of transportation is directly
proportional to the number of units of the commodity transported. But in real world situations
when a commodity is transported, a fixed cost is incurred in the objective function. The fixed
cost may represent the cost of renting a vehicle, landing fees in an airport, set up costs for

machines in a manufacturing environment etc.

The three dimensional fixed charge bi-criterion indefinite Quadratic transportation

problem, can be used to formulate the real-world problem.

Suppose i = L. , —=are the origins

Jj=12,...,n are the destinations and

k=1,2,..,» arethe various types of commaodities to be transported in a three dimensional

transportation problem. Let

xik = the amount of kth type of commodity transported form the ith origin to the jth destination

Cp - the variable cost per unit amount of kth type of commodity transported form the ith

origin to the jth destination, which is independent ofthe amount ofthe commodity

transported, so long as xik > 0.

dik = the per unit depreciation cost (wear and tear or damaged cost) of kth type of commodity

transported form the ith origin to the jth destination, which is independent of the amount

ofthe commodity transported, so long as xik >0

38

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

A* = the total quantity of kth type ofthe commodity received by jth destination from all the

sources.

Bk = the total quantity of kih type ofthe commodity available at the ith origin to be supplied to

all destinations.

Ey = the total quantity of all types of commodities to be supplied from the ith origin to the jth

destination.

Fik = the fixed cost associated with origin i and the kth type of commodity. We define Fik

according to the amount supplied as

n

Fk =="~NA* = k=\,2,....p
M
. re ifxijk>0)
where djk =\ i=\2,..m, j=12,....nk=\2,....,p
J xjk =0

Then the three dimensional indefinite Quadratic transportation problem is defined as

m n p \fm n p m p
MinzxX)= =Z==Z°/\ Z=ZZ=Z>Z">N +>X>N*
AFl 7=1 k=l /=1 7=1 k=\ y /=1 k=1

subject to

> =Ak J=12,...,n,k=1,2,....p

1=1

39
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

n

> xp* =Bk k=1L2,...,p,i=\,2,....m,

-1
p
Xik — Nij T 1,2...,7M, § 1,2,..72
7=1
Xijk Jg=1L2,...m, j=12,....«,k=1,2,..,,p
Also

X=X *=D-p)

oK =Z eI I=r2 ©)
m p
?/\%/\’/\1121_”“. 0/\)
m P p m m n
zror=py =3B (i)

Here, there are m origins, n destinations and p types of commodities to be transported.

0) implies kth type of commodity received by all destinations = kth type of commodity

supplied from all origins,

(i) implies different types of commodities supplied by the ith source = amount of

commodities received by all destinations from the ith source

40

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

(iii) implies amount of commodities supplied from all sources to jth destination = different

types of commodities received by the jth destination,

(iv) implies amount of commodities received by all destinations of different types of
commodities = amount of commodities supplied from all origins to all destinations =

amount of different types of commodities supplied from all origins.

Note: (i) to (iv) indicates that the transportation problem considered is a balanced

transportation problem.

3.5 Matrix Balancing

The problem of adjusting the elements of a matrix so that they satisfy certain
consistency requirements but still remain ‘close' to the original matrix is generically referred
to as matrix balancing. Matrix balancing problems arise in a wide range of practical contexts
that include accounting, transportation, and demographics. These and several other

applications are reviewed in an excellent overview by Schneider and Zenios [28].

In a typical matrix balancing problem, we have a matrix that estimates certain
quantities of interest, but these estimates do not satisfy consistency requirements that the
actual values are known to satisfy. An example might be estimating the elements of a
transition probability matrix which we know to be doubly stochastic. Consistency with the
doubly stochastic property requires that the rows and columns sum to one. The doubly
stochastic matrix is an example of one of two types of matrix balancing problems discussed

by Schneider and Zenios [28]. They are adjusting the elements of a matrix so that the row and

41
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

column sums equal certain prescribed values; adjusting the elements of a square matrix so that

its row and column sums are equal to each other, but not necessarily to any prescribed values.

The conditions imposed on the row and column sums are called balance conditions,
and a matrix that satisfies the balance conditions is said to be balanced. In the applications
considered by Schneider and Zenios [28], the balance conditions relate only to row and
column sums. More generally, the balance conditions can be restrictions on the sums of
various combinations of matrix elements. (See, for example, Censor and Zenios [29].) The
fair representation problem considered by Balinski and Demange [30] is one example. In the
most general case, the balance conditions can be any set of linear restrictions on the matrix

entries.

For a particular set of balance conditions there may be a large number of balanced
matrices, but in matrix balancing, we seek a balanced matrix that is close to the original

matrix.

3.5.1 A briefreview of matrix balancing

We present a standard matrix balancing formulation for producing matrices with prescribed
row and column sums. This formulation appears in [28[. Suppose that we are given an nxn
nonnegative matrix M and positive vectors s and d, both in 91", that provide target row and
column sums. The associated matrix balancing problem can be written

/]

Min z(X) = = = fjxv

subject to

42
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Pl(xa:dj YI=12,.

xij — 0 Vi, 7

xy >0 only if nij >0

Chapter 3 Quadratic Knapsack Applications

J

The constraints in this model can be viewed as the flow-balance equations in an associated

transportation problem.

0 12 3
4 0 6 7
6 10 7
11 2 0

5: 6 17 18 4

Figure 3.2

17
18

ROWS COLUMNS

A matrix and it’s associated transportation network

Figure 3.3 provides an example of a small matrix and its representation as a

transportation network. There is one left-hand node associated with each row of M and one

right-hand node associated with each column of M. There is a link from left-hand node i to

right-hand node j whenever the corresponding matrix element my of M is nonzero. Left-hand

node i has supplysn while right-hand node i has demandd,.. To complete the network flow

description of the problem, we associate a cost fy of sending xiy units of flow on the link

43

Institutional Repository - Library & Information Centre - University of Thessaly

20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

from i to j and try to minimize the total cost of satisfying demands. The optimal flows xij

provide the new balanced matrix.

The objective function employed in matrix balancing is typically separable, nonlinear,
and convex. The role of the objective is clearly to penalize deviations from the original
matrix. Nonlinear objectives are attractive because they promote balance among the
deviations by penalizing large deviations disproportionately more. Schneider and Zenios [28]
note that Quadratic and entropy penalty functions are the ones that are typically used in

practice.

Quadratic objective functions that minimize the (weighted) sum of squared deviations
from the target matrix have been more widely studied. For problem [MB], we obtain the

Quadratic penalty objective by letting

where the wjj ’s are nonnegative weights. The resulting problem has a separable Quadratic

objective and transportation constraints, whence we can see that the problem simplifies to the

Quadratic Transportation Problem already referenced.

3.6 Aircraft Maintenance

The problem that we present here arises as part of an operations management problem

in a typical Combat Wing of Military Aircrafts.

At the beginning of each planning horizon, the wing command issues the flight

requirements for each period. These requirements determine the total time that all the aircraft

44
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

should fly during each time period. Separate requirements are issued for each type of aircraft,
because different aircraft types have different flight capabilities and maintenance needs. For
this reason, the model introduced in this section can be applied repeatedly until all plans have
been issued, if more than one aircraft types are involved. The requirements issued by the wing

command contain target values from which only small deviations are permitted.

For each specific aircraft, we define its residual flight time as the total remaining time
that the aircraft can fly until it has to undergo a maintenance check. The residual flight time of
an aircraft is positive ifand only ifthis aircraft is available to fly. The total residual flight time
of the wing is equal to the sum of the residual flight times of all squadrons. Clearly, there
exist many possible combinations of individual aircraft residual flight times that can result in
the same total squadron or wing residual flight time. Similarly, we define the residual
maintenance time of an aircraft as the total remaining time that the aircraft needs in order to

complete its maintenance check before it can be available to fly again.

For the maintenance needs of the wing, there exists a maintenance station that is
responsible for providing maintenance services to the aircraft of the wing. This station has
certain space and time capacity capabilities. Given the flight requirements for each squadron
and the physical constraints that stem from the capacity of the maintenance station, the
objective is to issue a flight and maintenance plan for each individual aircraft so that some

appropriate measure of effectiveness is optimized.

Consider the 2-dimensional graph shown in Fig 3.4. The vertical axis represents
residual flight time measured in some appropriate units, and the horizontal axis represents the

indices of the aircraft in increasing order oftheir residual flight times, 1 being the index ofthe

45

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

aircraft with the smallest and N being the index of the aircraft with the largest residual time

(N is the total number of aircraft).

Consider also the line segment connecting the origin and the residual flight times point
with coordinates (jV,_ymax), where ynm is the maximum time that an aircraft can fly between
two consecutive maintenance checks. By mapping each aircraft on this graph, we can have a

picture of the total availability of the squadron or the wing, whichever of the two the graph

refers to.

residual

Figure 3.3 Visual representation of aircraft residual flight times

To describe the smoothness of the distribution of the total residual flight time of all
aircraft we use a "total deviation index". This index is equal to the sum of the vertical

distances (deviations) of each point mapping a single aircraft from the line segment that

connects the origin with point (N,ymax). The smaller this sum is, the smoother the

distribution of the total residual flight time. Ideally, the total deviation index is equal to zero,

46

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

in which case all points lie on the line segment. When issuing the individual aircraft plans, the
intention is to keep each point as close to the line segment as possible, so that these deviations

remain small.

The intuition behind the utilization ofthe graph described above is straightforward. By
providing a wide range of different residual aircraft flight times, we can establish a smooth
sequence that determines the order in which the aircraft should visit the maintenance station.
This in turn prevents bottlenecks in the maintenance station and ensures a smooth utilization
of the maintenance station. More importantly, it ensures a fairly constant level of aircraft

availability.

As already noted, the flight time availability is equal to the sum of all aircraft residual
flight times, but there are many residual flight time combinations that can result in the same
total availability. To comprehend this better, consider a problem with four aircraft, each of
which can fly a maximum of 120 hours between two consecutive maintenance checks. For a
total flight time availability of 300 hours, a possible combination ofthe residual flight times is
30-30-120-120. Another one is 30-60-90-120. For the technique described above, the second
distribution is preferable, because it ensures a smooth rotation of the aircraft, i.e. a smooth
utilization of the maintenance center and a fairly constant level of aircraft availability. From
the maintenance point of view smoothing the rotation of the aircraft is the most appropriate

measure of effectiveness.

3.6.1 Problem Formulation
In this section, we present the mathematical model that we developed for the problem

described above. We use the following notation:

47
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Decision Variables:

Xj : flight time ofaircraft i during planning horizon,

Parameters:
S . required total flight time during planning horizon
y(: residual flight time of aircraft i at the beginning of planning horizon,

A'max . maximum time an aircraft can fly during planning horizon ,

Tmin : minimum residual flight time ofan available aircraft,

L, U :real numbers denoting the maximum deviation from the value of S that can be

tolerated (U > L),

s = yma . the slope ofthe deviation line where
N

Vmax : maximum residual flight time of an available aircraft,

N . total number of aircrafts available for flight

Then, the referenced problem can be formulated as follows:

s.t. L-S <>=x "U-S

48

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

yt—Xt=y't*Ynil << +T, i£N={12,..#}

and can take the following form
Mn Z== (", -i-1-X,)2

|
S.t. L S< <U-S

0 ™ =i = xleft (c0 = MIN(™Max » X = K»n)

U>L,ieN ={2,...,N}

The objective function minimizes the sum of squares of all deviations from the line.

The first constraint set (Knapsack constraint) ensures that the flight requirements are

met. Variables L and U define an interval [L1S,U -5], in which the actual flight time for the

planning horizon should lie. For example whenL =0.95 andU =1.05 a 5% deviation from

the flight requirements is permitted.

The second constraint set (box constraints) ensures that the residual flight time of an
aircraft cannot exceed the maximum value neither the upper bound of the maximum time it

can fly during the planning horizon.

3.6.2 General Form transformation

Let (yt—ils)—x,‘ = xt' <> X, =(yt—i|s)—x,|'

49
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Then %*/=Zi0'/—*'-5)—izx<'
We make the necessary transformations.

E2(("*)-*1)==2 (V>

Yjxi-U-S<O
i i i
L-S—YX,<0 LS-Yi(y,"Ni-s)+'ExI1'<0

Then

. . ZV/\].I i'=ZU_; - S)—U—S
! ! ! U'> V where]
> XU-"E(?1={1)-18 =Xy U L' =>(y,-i-s)-LS

Last O<x, <XkI()oO<(yt-i-s)-x,"<XKt(i)

-is)

D (Y,-<1N - ><<<X,'<(Y,-is)na,Zxl'<bl where * — i-s)

The problem takes the following form

Min z=Y(x,)’
Y Xi=L

s.t. \U>L
> XN

50

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

ai — xi — b,

Which is the general case ofthe box constrained Quadratic Knapsack with upper bounds.

3.7 Conclusions

In this chapter, we studied Quadratic Knapsack Applications including Problems of
Portfolio Selection and Rebalancing, Quadratic Transportation, Multi-Commodity Network
Flow and Matrix Balancing. All these problems can be formulated in accordance with the
standard Quadratic Knapsack Formulation. All formulations have in common that there exists

one or more tight Knapsack constraint.

We find interest in investigating the case where deviations from the target value are
allowed for the Knapsack Constraint, which is exactly what we have seen in the Aircraft-

Maintenance Application.

51
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Chapter 4 Box Constrained Quadratic Knapsack Problem with
Upper Bounds

4.1 Introduction

In this chapter we focus on the special case of Quadratic Knapsack Problems, where
deviations from the target value are allowed for the Knapsack constraint. Because of this
deviation allowance algorithms and known techniques for the standard Quadratic Knapsack
formulation cannot be directly applied. That is why we use the KKT Conditions in order to
characterize the optimal solution to the problem. After that we prove global optimality of the
solution. We introduce an algorithm for the solution of the problem and then focus on
optimality and complexity issues.

The formulation used in this chapter is fitted for the need of the Aircraft maintenance

application, but in the end ofthe chapter we generalize the concept.

4.2 Applying the KKT Conditions.

As we can see from Section 3.6 the Aircraft-Maintenance problem can be formulated as

Min z=Yj((yl-i-s)-X,)?

>X,-U- =<0

s.t. U=L
L-S-~"Xi<0

O<x,.< Xleft (i) = min(Amax , yt — 7min)

52
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

The Lagrangian for the problem is

%\ * Tt A i A
Z XN V)= ((X-/)- ,)2+V s s +/\.VL-S—Z/x,/ >, *(*, -X,efi(i))
Vi

The necessary and sufficient Karush-Kuhn Tucker (KKT) conditions are:

-2((Y,-i-s)-x,)+~—12+vi >0

V,-(*4-~(0) =0 V,.6"

-US -0 4 e9T

\V4 x, =0 \ e3t

L-S-XxiiO

O<Xi<XHt(i)

53

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Theorem 4.1 (Characterization ofthe optimal solution ofthe Problem).

A feasible solution x* = (x*)is optimal solution for the problem if and only if there exist

N11,/12€97?+:/11-A2=0 such that for A = At-A? the following hold:

X =0 ,ieNg ={/e N: A > 2(yi -/- j)}
S(V<=*"-F)" ={/eN:2[(yi-i-s)-XIfi(i))<A<2(yi-i-s)}
x; =XIefl(i) ,ieNYy* ={/EA:A<2((Y.-ri5)-~(0)}
Proof
Necessity

Let x* = (x*) be the optimal solution.

LetA, >0 and A, >0
From the KKT conditions we have

Yjxi-U-S =6

><=>(/ = L Not feasible because U > L
L-S~Yjxi =0

We conclude that an optimal solution ofthe problem exists ifand only if \ ™~ =0

54

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

We have the following cases:

Case 1. yi*. =LS

so Aj -0 and >0 thatis A -

The KKT conditions take the following form

-2(0',-"-*)-*)-A+V, i0

V,SM*

"X, =LS

O<=Xi<=XIlefl(i)

a) For jc¢*t =0 we have that vi =0

So -2(yi-i-s)=Al = -A

H>A>2(v-i5)

b) For x] = Xlefl(i) we have that v, >0

So -2((>v —! - j) - 2l (O)-AL-VI<A7=-A

55
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

C) For 0 <x] < X,eft{i) we have that v =0

So -2((yl-i-s)-x*) =\ =-A <> yi-i-s-X'

<= =y -i-s-—

However 0 < x* < X,eft(i)

A
<=>0<y, —ils——< Xitef (/)

>y, —its-Xlefi(iy< | <yt-i-s

Xleft () <A<2(y,-i-S)

Case 2. ™", =U S

So\>0and =0 thatis A=\
The KKT conditions take the following form
-2(0',-*"-D)-*,) + A\+v,
V('(X1_*’)=O V’€((*
56

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

> XW"uU-s

>*<>Ls
I

O<Xi<X,eft(i)

a) For x* =0 we have that v, =0

So —2(y. -1 s)>-A, =-A

<> A>20>(-/ s)

b) For x* = X,efl{i) we have that v. >0

So -2((y, - s)-jrw(0)=-A -y, <-A, =-A

<=>1S2((G>, -/ j)—

C) For 0 <x- < Xleft(i) we have that v =0

So -2((", —i1s)=x*)=-A, =-A <>yt —iIs - x*

»X. =y .-I-S--

However 0 < x* < X,eft{i)

57

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

A
»>0 <y, -i-s--<<XIefl(i)

~yici-s-eliy<P<y-i-s

<2 (Y,-i-s- XEft (1) <A< 2(yi-i-s)

Case 3. L S <™Xx,. <[/-5

1
So A, =0 and =0 thatis A=0
The KKT conditions take the following form

-2((y,-1 s)-xl)+v, =0

v,e9i*
Y, XiNUs
[
0 <x,. < Xleft(i)
a) For x* =0 we have that v[=0

So -2(y.-/'s)>0=-A

58
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

<> A > 2(y,. -i-Ss)

b) For x* = X,eft{i) we have that v, >0
So -2((y, —i-s)-X,efl(0) = -v, <0=-A
O A <2((Y,-i-s)-XIefl(i))

C) For 0 < x* < Xleft(i) we have that v, =0

So -2((yj—i-S)-X*)=0=-A O yt —i-s—x*

. A
OX,. =y .-i-s—-

However 0 < x* < Xkft{i)

A
<*O<yi-i-s-—-<<X|eft(i)

ovyi-i-s-Xlef{i)<-<yi-i-s

<> 2(yt~its = Xlefl(/)) <A<2(y, —i1s)

59
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Sufficiency

On the contrary let x* satisfy the following

x* =0 ,i€Ng ={/6 N: A> 2(yi-i-s)}
x* =(y,-/-5)-y , ieN* ={ieN:2((yi-i-s)-Xlefl(i)) <A<2(yi-i-sj}
xj =><*(0 i€ Nxlo ={/ e W: A< 2((y, - i-s)-Xleft(/))}

where A=A — A" VvIth At A2=0

We have the following cases

Case 1.A, =0 and >0Then A=-Aj <0

Moreover for ie N\ 2(y, —/-s)-x*=A <0

Let

(@) A=2(y,--i-s)-x* taken from the solution of the equation

60
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

(b) U=v,=0 yia i e NA

(©) ut = 2(yi-i-s)-X=0 vi=0 yvia i e N(

(d) u=0 v(=2(y, —i-s)- Xkt (i))-A>0 vyiaie

We can see that the KKT conditions are satisfied.

Case 2. A >0 and A2 =0Then A -\, >0

Moreover for ie N\ 2(y,-i1S)-x*=A>0

Let

@) A=2(y. -i-s)-x* taken from the solution of the equation
(b) m=v,=0 yia ie NA
(©) u, = 2(yi -is)-A=0 v, =0 yia i e N*

(d) m =0 v, =2((y, —i-s)- Xlefl (i))-A=0 yia ie

We can see that the KKT conditions are satisfied.

61

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Case3.A\, =0 and ~=0Then A=0

Moreover for i e NM0 2(yi-i-s)-x* =A =0

Let
@ A=2(y, -I"s)-x*=0
(b) = = yia i € N\
(© m =2(y(-i s)-A>0 v,=0 yia i e N*
(d) "o =2 5 -X,,,())-A=0 yia ie Nj
The KKT conditions are satisfied once again.
Remarks

Global optimality is proven by convexity. In detail we can see that the

Hessian V2 (/(*)) of our objective function is positive semidefmite, thus our objective

function is convex and by [43] our optimal solution is global minimum..

We can see that the Lagrange multipliers \ and/L, take zero value only if the

Knapsack constraint ~x. equals the value U-S or L S respectively. In all other cases we
[

shall have A]=A2 =0 and as a result/l = 0. This remark leads to the conclusion that if an

optimal solution exists between the limits “~xt =L1S and -~ =i/ S thenA =0.

62

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

x*—0 e Nt=0 ={ieN: 0> 2(y;-i-s)}
X! =(N~i-n 16740 = {le N 2((N-1-D)-"M(8)<0<2(M-1--D)}
=xkf,(t) Senn={/eIV.0£2(([-,-/-)-jrw(i))}

By noting that (>».-/-j) is the original deviation from the line, it follows that for
VieN having original deviation (yi-i s)> Xleft(i)we shall have an optimal value
x* = X,eft(i) For the rest we shall have an optimal value xj =(y, -i-s) equal to the original

deviation from the line or optimal value x* =0 for Vie N having negative original deviation
from the line. As a result, ifthe solution lies between L1S and U1S then it must either be on

the line or at the point where all** = Xkf,{i), ifthis happens before reaching the line.

4.3 Solution Algorithm

We present the following algorithm for the solution ofthe problem.1 2 3

1 Sum= xt-0 * =0Vie N

2 decision = not final

3 While decision = not final {

63
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

4 Ifnot all x =X,efl(i) {
5 Find diff = Max{(y: - is-X,) where ie N :x:-Xleft(/) < 0j
r . where ie N: x, - X.ft(/) <Ol
diff2 = Maxj(y, -/-s-*,) > j
and all x. at diff
6 If diff>0{
7 Ifnot US{
8
. US - Sum
find diff = min diff ~ diff2, diff,\, Xlefl - x,,
Jl (U -i-s)-xi) =diff andx, —XIefl(/) <o
where 770 = (=D (<ol
otherwise
9 update Sum = Sum + diff 1™ 1diff (i)
xi = xt + diff for all x; at diff
10 }
11 else ifUS ->decision=optimal
12
13 else if diff <0 {
14 If not LS{
15
. . LS - Sum
find diff = min diff -diff2, Xleft -x,,
_f1 (> -1 ~x,) =diff and x, — Xleft (/) < 0]
where 7~(0 =

otherwise

64
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

16 update Sum = Sum + diff- 1dff (/)

X; = xi + diff for all xtat diff

17

18 else if LS —» decision=optimal
19

20

21 else ifall xt = Xleft(i) {

22 if LS < Sum < US —> decision=optimal
23 else ->decision=infeasible

24 '}

The way this algorithm takes action is similar to the way we use the sweep. In detalil

the algorithm acts on those points only that have not yet met the limit xt < XIeft(;).

We begin from the point with the maximum deviation from the line and keep going

down like sweeping until we reach the one having the second maximum deviation from the

line, concurrently increasing the value of by the amount of the difference of those two

deviations. At this point we must note that in case two or more points have the same
maximum deviation then the algorithm acts on these points as a group by altering the

correspondentxt ’s by the same amount equal to the difference between the two largest

deviations and by increasing the value of™x, by the amount of this multiplied by the number

of points on which the algorithm takes action. At the end of each iteration we update both

65
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

then’s and the =x. and calculate from scratch the difference between the two largest
i

deviations, always ensuring that no basic restriction ofthe problem is being violated.

As a result the algorithm sets zero value to the points it has not yet reached when

terminated because of some constraint violation, value Xkft{i) to the points that have already

reached their limit value and value x] = (y, — i-s)-d to the rest points where d is the final

distance from the line of the algorithm terminating point. This distance may be either positive
when the algorithm stops above the line or negative when the algorithm stops below the line.
The algorithm terminates either at the optimum solution if one exists or with no feasible

solution.

We use the following notation

Zero-Line The /(z) = i1s Line where x, = (Y\ —i-s)
L-Line The parallel to the Zero-Line where ™| =L S
U-Line The parallel to the Zero-Line where ’_\x; =U1S
|
Xleft-Line The parallel to the Zero-Line where

== XNM(O alid Xi = Xleft (o

4.3.1 Proof of optimality
Corollary: The algorithm terminates at the optimum solution if one exists.

Proof

Given that a feasible solution exists we have that L S < ™ Xleft

66
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

if = x> <U S then L S <Xlft <U S and we examine all possible orderings of

the constraints.

Casel Zero —>L— Xleft —>U Optimal Solution L

Figure 4.1 Constraints ordering in Case 1

Let — =Distance between L and the line. This distance is negative because L-Line is

below the Zero-Line .We also have that \ =0and X, >0 because the algorithm has stopped

on L-Line so A = A1-A2=-A\" <0
We have variables ofthree kinds

(@) x* =0 For the points that have not been reached

— —=-i-s) is valid, since the points have not been reached that means their initial

deviation is lower than the algorithm terminating point.

67
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

A
(b) x* =(y.-i-s) F-oOr the points that lie on L.

A
{yl-i-s)-Xiefi{i))<-<<{yl —-i s) is valid since the points lie on L that is between

Xleft and their initial deviation.

(c) x* =X,eM) For the points we left behind because they have reached their upper

bound.

A
—<((y, =/-s) —Xleft (/") is valid because the algorithm has continued downwards and

has terminated at L.

Since M\-A1=0 our solution fulfils the requirements of the Theorem 4.1 thus is

optimal.

Case2 L— Zero -~Xleft —>U Optimal Solution Zero-Line

Figure 4.2 Constraints ordering in Case 2

68

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

We have that\ - 0and ™ =0 because the algorithm terminates between L-Line and

U-Lineso A=0

We have variables ofthree kinds

(&) x] =0 For the points that have not been reached

O>(_yi -i-s) is valid, since the points have not been reached that means their initial

deviation is lower than the Zero-Line.

(b) x] =(y, - i-s) For the points that lie on the Zero-Line.

(N™M-i-r1-x<AO0)<o <(y(- i-s) is valid since the points lie on the Zero-Line that

is between Xleft and their initial deviation.

(c) x] =X,M) For the points we left behind because they have reached their upper

bound.

O<((>v —ins)-Xleft{i)) is valid because the algorithm has continued downwards and

has terminated at the Zero-Line.

Since A,-A2 =0 our solution fulfills the requirements of the Theorem 4.1 thus is

optimal.

69

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Case3 L—» Xleft — Zero —>U Optimal Solution Xleft

Figure 4.3 Constraints ordering in Case 3

We have that\ =0and =0 because the algorithm terminates between L-Line and

U-Lineso A -0

We have only one kind ofvariables

x* = Xleft(i) Because all points have reached their upper bound since the Algorithm

has terminated on Xleft.

o<((y, - is valid since the Algorithm has terminated on Xleft before

reaching the Zero-Line.

Since At:A2=0 our solution fulfills the requirements of the Theorem 4.1 thus is

optimal.

70
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Case4 L— Xleft —>U— Zero Optimal Solution Xleft

Figure 4.4 Constraints ordering in Case 4

We have that\ =0Oand/l? =0 because the algorithm terminates between L-Line and U-

Lineso A -0

We have only one kind ofvariables

x] = Xleft (i) Because all points have reached their upper bound since the Algorithm
has terminated on Xleft.

O —-i-s)-X,eli(i)) is valid since the Algorithm has terminated on Xleft before

reaching the Zero-Line.

Since At:A2 =0 our solution fulfills the requirements of the Theorem 4.1 thus is

optimal.

Let — =Distance between U-Line and the Zero-Line. This distance is positive because U-

Line is above the Zero-Line. We also have that \ > 0and =0 because the algorithm has

stopped on U-Line soZ =/11-/12=/11>0

71

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

We have variables ofthree kinds
(@) x* =0 For the points that have not been reached

A \
—>{y;-i-s) is valid, since the points have not been reached that means their initial

deviation is lower than the algorithm terminating point.

A
(b) x] =(y, -/-s) —— For the points that lie on U.

b-*w(9)<f <(y. - i-s) is valid since the points lie on U, that is between

Xleft and their initial deviation.
(c) x* = Xlefi(i) For the points we left behind because they have reached their upper

bound.

N-X,efl(i)) is valid because the algorithm has continued downwards and

has terminated at U.
Since \ =0 our solution fulfills the requirements of the Theorem 4.1 thus is
optimal.

2) If =X,NuU-S then L S<U S <™ Xlefi and we examine all possible orderings of

the constraints.

Zero —>L —»U—> Xleft Optimal Solution L
L— Zero —>U—>Xleft Optimal Solution Zero
L —U —>Zero — Xleft Optimal Solution U
L —U— Xleft— Zero Optimal Solution U

The proofcan be done with the same reasoning.

72

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

4.3.2 Algorithm Complexity
1 Sum ==xi “0 xt=0VieN
[

2 decision = not final

3 While decision = not final { 0o(1)
4 Ifnot all xi = Xlett (i) { o(n)
Find cliffy = Mxc{(y, - is-Xx,) where ieN:xi- Xleft (i) < 0j

i where ieN:xi-XIf (i) < Ol
and diff = Max(y, - is-x;) o] i 0{n)
and (yi-i-s-xi)*diff

and all xtat diff

6 If diff>0 { 0(1)
7 If not US{ o(1)
8

US - Sum

find diff = min diff ~ diff2, diff,, Xlefl - x

V)

0(«)
il ((y,-i-s)-X%,) = diff andx, —Xgeft(/) <Oj
where 770 =
0 otherwise
update Sum = Sum + diff 1™ 1diff (/)
O(h)
xt = +difffor all xiat diff
10 }
11 else ifUS —» decision=optimal o)
12 }
13 else if diff <0 { o)
14 Ifnot LS{ o)

73

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

15
find diff=min diff-diff, Xleft =, > 0"
Iwo
where (Uand>*>,->X,,//)) 0]
[O otherwise
16 update Sum - Sum + diff - ™ 1diff (i)
xt = xt + difffor all xt at diff
17 }
18 else iIfLS —» decision=optimal
19 }
20 }
21 else ifall xt = Xlefl(i) {
22 if LS < Sum < US ->mdecision”optimal
23 else -» decision=infeasible
24 '}

o(n)

0o(n)

0(1)

Each while loop is O(n) since each command is worst case O(n) and all commands are executed

in serial.

In Worst Case line 8 will be executed n+3 times

1 for diff -diff
1 for diff

n fir xleft —x, >(n+ 3) = O(N)
Us - Sum
1 for
=-

ieNdIff

In Worst Case line 15 will be executed n+2 times

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

74

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

1 for diffx-diff2
n forXleft —x, >[n+2) =0(n)

Ls - Sum

ieNdIff

Finally lines 11, 18, 22 and 23 will be executed no more than once (since after their execution

causes the termination of the algorithm).Thus the while loop is 0O{n), and the algorithm worst

case complexity is O(n2).

Note: No sorting is needed for computing the maximum values, but we need to calculate diffi

and diff2 at each iteration.

4.4 General Form

4.4.1. General Form Formulation
Table 4.1 presents the correspondence ofthe general form and the special case introduced in

Section 3.6.2 and Table 4.2 utilizes the transformations needed to transfer between these

forms.
Special Case General Form
Mm z=zi((r, —i-s)—Xx,)? Min Z=i7(x, N
s.t. ZXAU-S 8 =
| U>L :%:v<t/ u=L
Table 4.1 Transformation between general form and special case

75
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Correspondence
0<x, < X,efl(i) = <
xi XU'=(N-1-N-*1
z*
i i i i
o b,=(y,-i-s)
LS)
I
u-s E=Y (y—Is)-us
I
Table 4.2 Term correspondence between general form and special case

It is obvious that the solution xi's obtained by solving the general form problem can be used

to render the solution to our specialized problem thus

T, —xi = Xi '+i-s

4.4.2 Optimality Theorem

Theorem 4.2 (Characterization of the optimal solution ofthe Problem).

A feasible solution x* =(x*)is optimal solution of the problem if and only if there exist

A, Aj e9C :4 -/~ =0 such as for A = At-A2 the following hold:

76
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

X]=Dbt , ieNf ={ieN:X>= 2Db]
x* =] ,ieNA={/e N :2ai <A< 2b:}
Xt =g , 1€ Ny —{je NLA< ZQ,}

4.4.3 Solution Algorithm

We present the form ofthe algorithm in the general case

1 Sum =y xi ='Jjbj x.=fyVieN

2 decision = not final
3 While decision = not final{
4 Ifnot all x, =at {

5 Find diff* = Max{x. where /e ,/V. X, —a, >0}

X; where ie N:x(-at>0
and x. ¢ diffi

and diff2 = Max |X;
and all x,. at diff*

6 If diffi >0 {

7 Ifnot L{

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

77

10

1

12

13

14

15

16

17

18

19

20

21

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

find diff = min diffx-diff2tdiffXixt-an

fl x.=diff, 1

where 7~ (0 =

[0 otherwise\

update Sum = Sum - diff1 ™ 1diff (O

x. = xt — diff for all xtat diff

}

else if L ->decision=optimal

}

else if diff <0 {

Ifnot U{

Sum-L

>7~(o

. . . Sum-U
find diff = min diff -diff,x,-a,,
2VO
[I *=diff |

where Idiff (i) =
10 otherwise

update Sum = Sum - diff1 Idjff (i)

>= x| — diff for all xiat diff

}

else ifU — decision=optimal

}

else ifall xt = at {

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

78

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

22 if L<Sum<U —» decision=optimal
23 else —»decision=infeasible
24 '}

4.5 Modifying Existing Solution Techniques to fit our needs

Looking into the characterization theorem in more detail one can see that in every case

the optimal solution satisfies one or more ofthe following Knapsack constraints.

>x1=u representing the U-Line or
|

= ting the L-li
,ZX Z representing the L-line or

Z*; :ZG.' representing the Xleft-line or
i [

>y = Z ai representing the Zero-line.
i <
It is obvious that our problem can be separated in four different Quadratic Knapsack
Problems of the traditional formulation. Solving these problems separately using O(n)
algorithm already proposed by P. Brucker [3] or Pardalos and N. Kovoor [13] and then
choosing the best optimal solution of the four yields the desirable optimal solution to the

problem we study.

Examining all possible orderings of the constraints we can summarize on the
following results.
79

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Casel Zero--»L— Xleft U Optimal Solution L

Case2 L—» Zero— Xleft- U Optimal Solution Zero-Line
Case3 L— Xleft— Zero- U Optimal Solution Xleft
Case4 L— Xleft— U-» Zero Optimal Solution Xleft
Caseb Zero—»L—» U— Xleft Optimal Solution L

Caseb L—» Zero— u— Xleft Optimal Solution Zero
Case7? L—» U— Zero- Xleft Optimal Solution U

Case8 L— Xleft Zero Optimal Solution U

Table 4.3 All possible orderings ofthe constraints

We can easily see that the optimal solution always lies on the second-ordered
constraint met that is on the constraint with the second largest value. Thus there is no need to
solve four different Quadratic problems but only one after doing a simple ordering of the
constraints’ target values. (We hereby note that in the special case the second-ordered
constraint is met on the constraint with the second smallest value). Thus by applying Pardalos

and Kovoor [13] algorithm we get a O(n) solution algorithm. In fact the algorithm uses binary
search combined with a 0{n) median search implementation which yields 0{n logn).
However in terms of computational time we have O(h). Since Q(n)is an obvious lower

bound for the problem complexity our proposed algorithm is ®(n) and thus is optimal.

80
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Although our first method has worst-case performance of ©(n2) it is of interest

because ofits efficiency in practice and its simplicity and ease of implementation. One feature
of our algorithm is that it requires no sorting to be performed, nor does it require either
randomized or exact ordinal statistics to be computed. Cases that consist of many variables

can be met with the modified 0{n) algorithm which gives optimal results in terms of

computational time.

4.6 Conclusions

In this chapter we have focused on the special case of Quadratic Knapsack Problems,
where deviations from the target value are allowed for the Knapsack constraint. We have used
the KKT Conditions in order to characterize the optimal solution to the problem. After that we
have proven global optimality of the solution. We then introduced a new algorithm for the

solution ofthe problem and focused on optimality and complexity issues.

Throughout the chapter we followed the formulation of the Aircraft-Maintenance
Problem presented in Section 3.6 which gave rise to investigating this special kind of
Quadratic Knapsack Problem. Later on we gave the more general form of this special type of
Problem and supplied both the optimal solution characterization theorem and the solution
algorithm suited for the general case. In the end of the chapter we showed how known
techniques for the standard Quadratic Knapsack formulation can be directly applied in case

the number ofvariables grows too large.

81

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

Chapter5 Computational experience and numerical examples.
5.1 Introduction

In this chapter, we present results of some numerical experiments obtained by
applying the algorithms suggested in the previous chapter to problems under consideration.
The algorithms have been implemented in the C programming language and one can find this
implementation in Appendix A. AMPL can also be used for solving the problem and thus
computational times are supplied for comparison. AMPL modeling code can be found in
Appendix B We also present some numerical examples so that the approach of the previous

chapter can be made clear.

5.2 Computational Results

The computations were performed on an Intel Celeron 335 Prescott Processor
2.8Ghz/IGB DDR SDRAM IBM PC compatible. Each Problem was run 30 times. Parameters
were randomly generated between regions that have physical meaning. Notation used is taken
from Section 3.6.Parameters L and U were randomly chosen in each running so that the

Algorithm randomly chooses the binding constraint. We first comment on the results of the

(9 (A2) algorithm.

When A <400 the run time of the algorithm is so small, that the timer does not
recognize the corresponding value from its computer zero. In such cases the timer displays 0

seconds. As we can observe the (average number of iterations) is nearly equal to the number

82
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

of variables for large N. Computational time is proportional to N2 besides the algorithm’s

complexity is O"N2).

*«=300
Number of
variables
Average
Number of
Iterations
Average run
time
(seconds)

X =3000

Number of
variables
Average
Number of
Iterations
Average run
time
(seconds)

* << =30000

Number of
variables
Average
Number of
Iterations
Average run
time
(seconds)

Table 5.1 Computational Results for different values of Xnm

400

415

0.015

400

512

0.015

400

537

0

2000

2106

0.125

2000

2556

0.092

2000

2753

0.074

5=0,75-~
4000

4176

0.468

S=0,75-X,,
4000

5160

0.381

5=0,75-"n
4000

5559

0.279

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

20000

20899

115

20000

25517

9.294

20000

27669

6.991

40000

41876

45.75

40000

51151

37.186

40000

55196

27.6

83

Chapter 5 Computational Experience and numerical examples

Different values of------- do not seem to alter results thus we can conclude that the algorithms

efficiency is independent of ------- .L,U were on purpose randomly selected because we

wanted the selection ofthe tight constraint to be made randomly.

*«=300 5=0,75-n

Number of 400 2000 4000 20000 40000
variables

Average 415 2106 4176 20899 41876
Number of

Iterations

Average run 0.015 0.343 1.359 34.265 137.75
time

(seconds)

*T™M=300 5 =*T™M

Number of 400 2000 4000 20000 40000
variables

Average 415 2106 4176 20899 41875
Number of

Iterations

Average run 0.015 0.343 1.359 34.265 137.765
time

(seconds)

N=300 5=125"n

Number of 400 2000 4000 20000 40000
variables

Average 415 2106 4176 20899 41876
Number of

Iterations

Average run 0.015 0.343 1.359 34.265 137.703
time

(seconds)

Table 5.2 Computational Results for different values of

84
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

We now compare the

modified algorithm and AMPL package.

Number of 400

variables

SWEEP 0.016

PARDALOS 0

AMPL 0.24

Number of 400

variables

SWEEP 415

PARDALOS 11

AMPL 10

2000

0.112

0.52

2000

2106

13

11

Table 5.3

Average run time (seconds)

Average Number of Iterations

Algorithms Comparison Results

sweep algorithm versus O(«) Pardalos and Kovoor

80000

145.744

0.047

8.51

80000

81982

17

17

The 6{n) Pardalos and Kovoor modified algorithm is completely dominant in terms

of execution time. AMPL also produces excellent results. The

sweep algorithm has the

worst of the three execution times, especially when the number of the variables grows large.

However all running times are fairly sensible meaning that in spite of being the slowest

solution technique it can still be used in many real-life problems with satisfactory results.

Institutional Repository - Library & Information Centre - University of Thessaly

20/05/2024 23:17:47 EEST - 3.144.101.80

85

Chapter 5 Computational Experience and numerical examples

5.3 Numerical Examples

We provide below the solution of two simple particular problems obtained by using
the solution approach suggested in this thesis. We revise the model formulation ofthe Aircraft

maintenance application.

5.3.1 Numerical Example 1

Parameter values:

S =200 : required total flight time during planning horizon

y. : residual flight time of aircraft i at the beginning of planning horizon,
"max =300 : maximum time an aircraft can fly during planning horizon,

Ymin = 0-1 : minimum residual flight time of an available aircraft,

L=0,95, U=1,05 :real numbers denoting the maximum deviation from the value of S

that can be tolerated (U > L),

s = =37,5 . the slope ofthe deviation line where

max = 300 - maximum residual flight time of an available aircraft,

N - 8 : total numbers of aircrafts available for flight

Results
yi =90 s=375
yi= 100 2s=175

86
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

Y3= 133 3s= 1125
th= _3° 4s = 150
y5 =218 55 = 1875
y6 =250 6s = 225
Yi= 263 7s =262.5
yg= 300 8s = 300
Ilteration 1:

diffl - diff2 =22
diffl - line ==52.5
Xmax - Xi = 50

Ls->x1 =210

xi = 22 - 68
i) = DO
x = © th= 3
x O y4= 150
x§ o y5 =218
X6=0 y6 = 250
X7=10 y7 =263
Xg= 0 y8 = 300
>xi=22

Ilteration 2:

diffl - diff2 - 5.5
diffl - line = 30.5
Xmax - Xi — 28

(Ls - =xi)/2 = (210 - 22)12 = 188/2 - 94

Xi=27.5 yi = 62.5
x2=0 y2= 100
X3=0 y3 =133
x4=0 y4 - 150
X5=5.5 y5 = 2125
X6=0 y6 = 250
x7=0 y7 =263
x8=10 y8 = 300
X =33

Iteration 3:

diffl - diff2 =4.5

diffl - line =25

Xmax - xi =22.5

(Ls - ZXi)/4 = (210 - 33)/4 = 177/4 = 44.25

Xi = 32 yi = 58
xX2=4.5 y2=95.5
X3=0 y3 = 133

Institutional Repository - Library & Information Centre - University of Thessaly

20/05/2024 23:17:47 EEST - 3.144.101.80

87

Chapter 5 Computational Experience and numerical examples

X4=10 y4=150
x5=10 y5 = 208
6= 4.5 y6 = 245.5
X1=0 y7 =263
xg=0 yg = 300
>xi=51

Iteration 4:

diffl - diff2 = 20

diffl - line = 20.5

Xmax - xi = 18

(Ls - Zxi)/5 = (210 - 51)/5 = 159/5 = 31.8

xi = 50 yi =40
xX2=225 y2=77.5
x3= 18 y3 =115
X4=0 y4 = 150
X5=28 y5 = 190
x6=22.5 y6 = 227.5
X71=0 y7 =263
x8=0 yg = 300
Ixi= 141

Iteration 5:

diffl - diffi =2

diffl - line =25
Xmax - xi = 22
(Ls - ZX1)/4 = (210 - 141)/4 = 69/4 =17.25

Xi =50 yi =40
X2=245 y2=75.5
x3=20 y3 =113
x4=0 y4 = 150
X5=30 y5 = 188
X6= 24.5 y6 = 2255
X1=0 y1 =263
x§=0 y8 = 300
>xi=149

Iteration 6:

diffl - diff2 = 0.5

diffl - line=0.5

Xmax - xi =20

(Ls — ZX1)/5 = (210 - 149)/5 = 61/5 = 12.2

xi = 50 yi =40
x2=25 y2=175
x3=20.5 y3=1125

88
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

xa=0

x5 = 30.5
X06=25
x7— 0.5
X8=0
>xi= 1515

Iteration 7:

y4 = 150
y5 = 187.5
Y = 225
y7 - 262.5
Y8 =300

diffl - diff2 =0 - (-00) = +00
Xmax -Xi = 19.5
(Us - 2xi)/7 = (190 - 151.5)/7 = 38.5/7 - 5.5

Xi =50
x2= 30.5
X3=26
X4=55
X5 = 36
X6=30.5
X =6
x8= 5.5

> xi= 190

optimal

yi =40
y2=69.5
y3-107
y4 = 1445
y5 = 182
y6 = 219.5
yy = 257
y8 =294.5

Chapter 5 Computational Experience and numerical examples

5.3.2 Numerical Example 2

Parameter values:

5=200

X, =300

Y., =0.1

min

L=0,45, U=1,05

' required total

. residual flight

Cmaximum tim

© minimum resi

that can be tolerated (U > L),

flight time during planning horizon

time of aircraft i at the beginning of planning horizon,

e an aircraft can fly during planning horizon ,

dual flight time of an available aircraft,

: real numbers denoting the maximum deviation from the value of S

89

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

, = "max = 300 375

N o : the slope ofthe deviation line where

max = : maximum residual flight time of an available aircratft,

N =8 : total numbers of aircrafts available for flight

Results

y, =90 s=375
y2= 100 2s =175
y3= 133 3s = 1125
y4= 150 4s = 150
y5 =218 5s = 187.5
y6 = 250 6s = 225
y7 =263 7s =262.5
y8 =300 8s = 300
Iteration 1:

diffl - diff2 = 22
diffl - line =525
Xmax - xi = 50

Ls - Zxi =90

Xi =22 yi = 68
x2=0 y2= 100
X3=0 y3 = 133
X4=0 y4 =150
X5=0 y5 =218
X6=0 y6 =250
X1=0 yl =263
x8=0 y8 = 300
>xi=22

Iteration 2:

diffl - diff2 =55

diffl - line = 30.5

Xmax - xi =28

(Ls - Zx1)/2 = (210 - 22)12 = 188/2 = 34

Xi =27.5 yi =62.5

x2=0 y2= 100
X3=0 y3 =133
X4=10 y4 = 150
X5=5.5 y5 = 212.5

90
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

X6=0 y6 =250
xX7=0 yl =263
xs=0 ye =300
>xi=33

Iteration 3:

diffl - diff2 = 4.5

diffl - line =25

Xmax - xi = 22.5
(Ls - =xi)/4 = (210 - 33)/4 - 177/4 - 14.25

Xi =32 yi = 58
X2=4.5 y2=95.5
x3~0 y3 = 133
xX4=0 y4 = 150
x5=10 y5 = 208
x6=4.5 y6 = 245.5
X71=0 y7 =263
x8=0 y8 = 300
Ixi=51

Iteration 4:

diffl - diff2 = 20

diffl - line = 20.5

Xmax - xi = 18

(Ls - Zxi)/5 = (210 - 51)/5 = 159/5 = 7.8

xi =39.8 yi =50.2
x2=12.3 y2=87.7
xX3=17.8 y3 = 125.2
x4=0 y4=150
X5=17.8 y5 = 200.2
x6=12.3 y6 = 237.7

X7=0 y7 = 263
x8=0 ys = 300
>xi=90

Iteration 5:

diffl - diff2 = 12
diffl - line = 12.7
Xmax - xi = 10.2
(US - 2xi)/5 = (210 - 90)/5 = 120/5 = 24

x = O = <
x2=225 y2=77.5
x3= 18 g =

x = © y4= 150
x5 = 28 y5 = 190

91

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

X6 = 22.5 y6 = 227.5

X7=0 y7 =263
xs=10 y8 = 300
X1 - 141

Iteration 6:

diffl - diff2 =2

diffl - line=25
Xmax — Xi = 22
(Ls - Zx0)/5 = (210 - 141)/4 = 69/5 = 17.25

xi =50 yi =40
x2=245 y2=175.5
X3- 20 y3 = 113
X4=0 y4 = 150
x5=30 y5 = 188
x6=24.5 y6 = 225.5
X7=0 y7 =263
xs=0 y8 = 300
Xl = 149

Iteration 7:

diffl - diff2 = 0.5

diffl - line=0.5

Xmax - xi =20

(Us — 2xi)/7 = (210 - 149)/5 = 61/5 = 12.2

X o TR S
x2= 25 y2=175
X3-20.5 y3 = 1125
X4=0 w PO
X5=30.5 y5 = 187.5
x6=25 y6 = 225
x7=0.5 y7 = 262.5
X8=0 y8 = 300
2Xi= 1515

optimal

5.4 Conclusions

In this chapter, we presented results of some numerical experiments obtained by

applying the algorithm suggested in the previous chapter to problems under consideration.

Although the algorithm has complexity instances of 40000 variables have been solved

92
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

in a relatively sensible computational time. Its easy implementation makes it suitable for
relatively small number of variables. Useful remarks have been made regarding sensitivity
analysis. The C programming language implementation can be found in Appendix A. The
AMPL modeling file can be found in Appendix B. The numerical examples presented at the

end ofthe Chapter help so as the approach ofthe previous chapter can be made clear.

93

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 6 Concluding Remarks

Chapter 6 Concluding Remarks

In this thesis, we studied Quadratic Knapsack problems where bound constraints are
directly imposed on the continuous decision variables. These problems belong to the family of
Quadratic Programming which is a major subsection of Nonlinear Optimization. The addition
of Knapsack constraint on Quadratic Programming problems is shown to have numerous
applications, including the least distance problem, Quadratic Programming defined on the

convex hull of a set of points, and the maximum clique problem.

Moreover important fields of study that use Quadratic Knapsack as core formulation
have been being presented. These include the Optimal Portfolio Selection, Quadratic
Transportation, Multi-commodity Network Flows, Matrix Balancing problems and Aircraft

Maintenance

Traditional approaches for accommodating such Quadratic Knapsack constraints have
been proposed and analyzed for the case of a single tight-bounded Knapsack constraint. We
have introduced the case where deviation from the target value of the Knapsack constraint is

allowed.

The main contribution of the research reported in this work is that we have developed
a new exact algorithm for a special class of Continuous Quadratic Knapsack Problems having
reasonable solution times for nearly all instances encountered in practice, despite having
Quadratic time bounds for a number of highly contrived problem instances.We have given
proofofthe optimality of the algorithm, implemented it in C programming language and gave
numerical results. We also described a Quadratic Knapsack framework for the formulation,

analysis and computation of solutions to a specific problem of military-aircraft maintenance.

94
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 6 Concluding Remarks

We have also proposed modifications of existing algorithms so as they can deal with our

specialized problem. Computational results on a variety of test problems have been presented

showing that in spite of being ©[n2) the algorithm remains appealing for problems with a

reasonable number of variables.

Since Q(71) is the lower bound for the complexity of every optimal solution algorithm

and we have already presented an O[n-\ogn) implementation that takes O(n)computational

time, it is of great interest whether a straightforward approach can be used to render an 0O{n)

algorithm. Besides, application ofthe results ofthis research on integer programming can also
be a topic of further research. In detail the exact algorithms thoroughly presented in this thesis
could be used to solve continuous relaxations of the integer programming problem, and then

use rounding schemes or branch-and-bound techniques to find the optimal integral solution.

95
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

Appendix A C Implementation of the Algorithms.

/*
Comparison of Quadratic Knapsack Exact Solution algorithms
Gavranis Andreas <agavranis@gmail.com> March 2007
This code is part of an implementation for the purposes
of a postgraduate research.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define N 30000

#define LIMIT le-6

#define MAXFLOW |e38

#defme SWAP(a,b) { float temp=(a);(a)=(b);(b)=temp; }
#defme MAXLIMIT le32

struct node
{
int index;
int datal;
int data2;
struct node *link;

[F e Functions: ANSI C prototypes */

float gmedian(float a[], int n);

void swap(float *x,float *y);

void bsortl (float list[], int n);

void pardalos(float x[], float a[], float b[],float d,int n);

float choose_bound(float x[],float b[], float L, float U,int n);

struct node *insert(struct node *p, int valuel,int value2, int count);
void erase (struct node *p);

void fprintnode list (struct node *p);

96

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

mailto:agavranis@gmail.com

Appendix A C Implementation ofthe Algorithms

void printnode_list (struct node *p);

float minimum(float xI , float x2);

void bsort2(float list[][2], int n);

void readlist(float list[],int n);

float positive_minlist(float list[],struct node *front,int count,int n);

float positive_mindist(float list[][2], struct node *front,int count, int n);

void printlist(float list[],int n);

void printlist2(float list[][2],int nl,int n2);

int xlefl_empty(float list[],int n);

int dist_empty(float dist[][2],float list[],int n);

struct node * next_dist(float xleft[],float dist[][2],int n, struct node *p, int *count, float *diff);
void update (float x[],float xleft[],float dist[][2] ,int n,struct node *front,int count,float xopt);

void print_compare(char *name, intj, float diff, float dist[][2],float Xlefl[],struct node
front,int count,int n, float L,char lim);

void print_updated(char *name, float X[],float Xleft[],float Y[],float sum,int n);

void print_fmal(char *name,int n,float Y[],float s);

void print_iterations(char *name,intj);

void solve(float Y[],float Xleft[],int n,float s,float L,float U);

void print_ampl(char *name,int n,float Y[],float Xleft[],float s,float L,float U);

void print_original(char *name,int n,float Y[],float Xleft[],float s,float L,float U,float Xmax);
void print_duration(char *name,long double duration);

float choose_bound(float x[],float a[], float L, float U,int n);

void bsort(float list[], int n);

void pardalos(float Xx[], float a[], float b[],float d,int n);

float gmedian(float a[], int n);

97

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

u main() */

main()
{
long double start,stop,duration;
inti;
float s,Ymax,Xmax,target,alpha;
float L,U;
float *a;
float *b;
float *x;
float Xleft[N],Xleft_ COPY[N];
float Y[N],Y_COPY[NJ;

I*floatXleft[]={50,50,50,50,50,50,50,50}:
float Y[]={90,100,133,150,218,250,263,300};*/

Xmax=300;

Ymax=(float)0.5*Xmax;

alpha=0.25;

s=Xmax/N;

L=(l-alpha)*Ymax;

U=(1+alpha)*Ymax;

for (i=0;i<N;i++) Y[i]=300*((float)rand())/(float) RAND MAX;
for (i=0;i<N;i++) Y_COPYIi]=Y]i];

for (i=0;i<N;i++) Xleft[i]=s*((float)rand())/(float) RAND_MAX;

for (i=0;i<N;i++) Xleft COPY[i]=XIeff[il;

print_ampl("sweep.dat",N,Y,Xleft,s,L,U);

print_original("num_sweep.txt",N,Y,Xleft,s,L,U,Xmax);

98

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

start=clock();
solve(Y,Xleft,N,s,L,U);
stop=clock();

duration = (long double) (stop-start)/ CLOCKS_PER_SEC;

print_duration("num_sweep.txt",duration);

printf ("\nSweep Total execution time=%f\n",duration);

for (i=0;i<N;i++) Y[i]=Y_COPYJil;
for (i=0;i<N;i++) Xleft[i]=Xleft. COPYTil;

print_original("num_pardalos.txt",N,Y,Xleft,s,L,U,Xmax);

[xex*xCONVERTING TO GENERAL FORM®*#skssss/

b=(float *) malloc (N*sizeof(float));
for (i=0;i<N;i++) b[i]=Y[i]-(i+D*s;

a=(float *) malloc (N*sizeof(float));
for (i=0;i<N;i++) a[i]=Y[i]-(i+)*s-Xleft][i];

x=(float *) malloc (N*sizeof(float));
for (i=0;i<N;i++) X[i]=0;

SWAP(L,U);
L=-L;

99

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A CImplementation ofthe Algorithms

U=-U;

for (i=0;i<N;i++) {
L+=(Y[i]-(i+])*s);
U+=(Y[i]-(i+1)*s);

rrwsxssxsasixk COUNT EXECUTION TIME *askrsiorkirink |
target=choose_bound(x,a, L,U,N);

start=clock();

pardalos(x,a,b,target,N);

stop=clock();

duration = (long double) (stop-start)/ CLOCKS_PER_SEC;

[¥****CONVERTING SOLUTION TO PROPER FORM****#kxxik/

for (i=0:i<N;i++) Y[i]=x[i]+(i+)*s:

Z************** PRINT FINAL DATA *****************/
print_final("num_pardalos.txt",N,Y,s);
print_duration("numj3ardalos.txt",duration);

printf ("\nPardalos Total execution time=%fVn",duration);

/**/

return O;

}

struct node *insert(struct node *p, int valuel,int value2, int count)

if(p=NULL)
{

p=(struct node *)malloc(sizeof(struct node));

100

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A CImplementation ofthe Algorithms

if(p==NULL)

{
printf("Error\n");
exit(0);

p-> datal = value;
p-> data2 = value2;
p-> index = count;
p-> link = NULL;
}
else
p->link = insert(p->link,valuel,value2,count);/* the while loop replaced by
recursive call */
return (p);

}

void erase (struct node *p)
{
struct node *temp=p;
while(p '=NULL)

{
temp = p;
p = p->link;
free(temp);
}
p=NULL,;

void fprintnode_list (struct node *p)
{ FILE * fp;
fp=fopen("num_sweep.txt","a");
fprintf(fp,"\nActing on variables with indexes:");
while (p!'= NULL)

{
fprintf(ip,"\n%5d",(p-> datal)+I);

p = p-> link;
}
fprintf(ip,"\n");
fclose(fp);
}

void printnode_list (struct node *p)

101

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A CImplementation ofthe Algorithms

{
printf("The data values in the list are");

while (p!= NULL)

{
printf("\n%d\t",(p-> data1)+1);
p = p-> link;

}

float minimum(float xI , float x2)
{float value;

value= (xl<x2) ? x| : x2;

return value;

}

void bsort2(float list[][2], int n)
{

int i,j;
for(i=0;i<(n-I);i++)
for(j=0;j<(n-(i+1));j++)
if(list[j][0] < list[j+[0])

swap(&list[j][0] ,&Iist[j+i] [OD);
swap(&list[j][1], &list[j+I][1]);

}

void readlist(float list[],int n)

t
int i;
printf("Enter the elements\n");
for(i=0;i<n;i++)
scanf("%f',&list[i]);
}

float positive_minlist(float list[],struct node *front,int count,int n)
float minl=MAXFLOW,
struct node *temp2=front;
while (temp2!= NULL)

if (listftemp2->datal]>0) mini = min(minl,listftemp2->datal]);
temp2 = temp2-> link;

}

return mini;

102

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

}

float positive_mindist(float list[][2], struct node *front,int count, int n)

float mMind=MAXFLOW,
struct node *temp2=front;

while (temp2!= NULL)

{
if (listftemp2->data2][0]>0) mind = min(mind,listltemp2->data2][0]);

temp2 = temp2-> link;
}

return mind;

}

void printlist(float list[],int n)
t
inti;
for(i=0;i<n;i++)
printf("%3d %f\n",i+l,list[i]);
printf("\n");

}

void printlist2(float list[][2],int nl,int n2)
S

intij;

for(i=0;i<nl;i++)

{
printf("%3d ”,i+l);
for(j=0;j<n2;j++) printf("%f\t", list[i][j]);
printf("\n");
}
}

int xleft_empty(float list[],int n)
{int i,result=0;

for (i=0;(i<n)&&(list[i]=0);i++);
result=(i=n)?1:0;

return result;

}

int dist_empty(float dist[][2],float list[],int n)
{int i,result=0;

for (i=0;(i<n)&&((dist[i][0]<=0)||(list[(int)(dist[i][]]-)]==0));i++);

result=(i=n)?1:0;
return result;

}

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

103

Appendix A C Implementation ofthe Algorithms

struct node * next_dist(float xleft[],float dist[][2],int n, struct node *p, int *count, float *diff)

{

int i,counter=0;
float val;
p=NULL;

for (i=0;(xleft[(int)(dist[i][]]-1)]==0)&& (i<n);i++);
p=insert(p,((int)dist[i][1]-1),i,counter+1);

val=dist[i] [0];

counter=l;

for (i=i+l; ((i<n) && ((dist[ij[0]==val) || (xleft[(int)(dist[i][]]-D]=0))) ;i++)

if ((dist[i][0]=val)&&(xleft[(int)(dist[i][1]-1)]>0))
{

p=insert(p,((int)dist[i][1]-1),i,counter+1);

counter++;

b
*diff=(i==n)? MAXFLOW : (val-dist[i][0]);

*count=counter;
return p;

}

void update (float x[],float xleft[],float dist[][2] ,int n,struct node *front,int count,float xopt)

{

struct node *temp2=front;
while (temp2!= NULL)
{
x[temp2->datal |=x[temp2->datal]+xopt;

xleftftemp2->datal]=xleft[temp2->datal]-xopt;

dist[temp2->data2?][0]=dist[temp2->data2][0]-xopt;
temp2 = temp2-> link;
|3

}

void print_compare(char *name, intj, float diff, float dist[][2],float Xleft[],struct node
front,int count,int n, float L,char lim)

FILE *fp;

104

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

fp=fopen(name,"al);
fprintf(fp,"Iteration %d\n",));

if (diff>MAXLIMIT) fprintf(fp,"diffl -diff2=+oo\n");
else fprintf(fp,"diffl-diff2=9%10.5f:\n", diff);

if (positive_mindist(dist,front,count,n)>MAXLIMIT) fprintf(ip,"diffl-line=+oo\n");

else fprintf(fp,"diffl-
line=%10.5f;\n",positive_mindist(dist,front,count,n));

fprintf(fp,"Xleft(i)-Xi=%10.5f\n", positive_minlist(Xleft, front,count, n));

Qrinii(e,"(");

fprintf(fp,lim);

fprintf(fp,"-Sxi)/count=%10.5f;\n",L/count);

fprintf(fp,"\n");

fclose(fp);
iprintnode_ list(front);

}

void print_updated(char *name, float X[],float Xleft[],float Y[],float sum,int n)
{

FILE *fp;
inti;

fp=fopen(name,"a");

iprintf(fp,"\n");

for (i=0;i<N;i++)
iprintf(fp,"x%5d=%10.2f\txleft%o5d=%10.2\ty%5d=%10.2\n",i+l, X[i],i+|, Xleft[i],i

+1,Y[il-X[iD;

iprintf(ip,"\n");

iprintf(fp,"Sxi=%f;\n",sum);
fprintf(fp,"\n");

fclose(fp);
}

void print_fmal(char *name,int n,float Y[],float s)

{

105

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

FILE *fp;

inti;

float z=0;

fp=fopen(name,"a");
fprintf(fp,"Optimal solution:\n");

for (i=0;i<n;i++) fprintf(fp,"y%5d=%10.5A\n",i+l, Y[i]);

fprintf(fp,"\n");

for (i=0;i<n;i++) z=z+(Y[i]-(i+D*s)*(Y[i]-(i+D*s);

fprintf(fp,"N=%5d\n0bjective optimum = %10.5f\n",N,z);

fclose(fp);
}
void print_iterations(char *name,intj)
{
FILE *fp;
fp=fopen(name,"a");
fprintf(fp,"Total iterations=%5d\n",j);
fclose(fp);
}

void solve(float Y[],float Xleft[],int n,float s,float L,float U)
long double z=0;

int i,j=l,count=0;

float xopt,diff,sum=0;

float X[N];

float dist[N][2];

struct node *front=NULL,*rear=NULL;

for (i =0; i <n; i++) X[i]=0;

for (i=0;i<n;i++)

{

106
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

dist[i][0]=Y[i]-(i+])*s;
dist[i][l]=i+];

}

bsort2 (dist,n);

for (;!((xleft_empty(Xleft,n))||(dist_empty(dist, Xlefit,n))||(L<LIMIT));)
{

front = next_dist(Xleft, dist,n,front, &count ,&diff);

xopt =
min(min((diff),positive_minlist(Xleft,front,count,n)),min((positive_mindist(dist,front,count,n)
),(L/count)));

update (X,Xleft,dist,n,front,count,xopt);
erase(front);

U=U-count*xopt;
L=L-count*xopt;

sum-+=count*xopt;

j++;

}

if (dist_empty(dist,Xleft,n)) for (;!((xleft_empty(Xleft,n))||(L<LIMIT));)
{

{

front=NULL;

front = next_dist(Xlefit, dist,n,front, &count ,&diff);

xopt =
min(min((diff),positive_minlist(Xleft,front,count,n)),min((positive_mindist(dist,front,count,n)
).(L/count)));

update (X,Xleft,dist,n,front,count,xopt);

erase(front);

U=U-count*xopt;
L=L-count*xopt;
sum+=:count*xopt;

107
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

j++;

>
if (xleft_empty(Xleft,n)) printf("\nNo feasible solution.\n");

}

else if (L<LIMIT) for
(G'((xleft_empty(Xleft,n))||[(U<LIMIT)||(dist_empty(dist,Xleft,n)));)

{

front=NULL;

front = next_dist(Xleft, dist,n,front, &count ,&diff);

xopt =
min(min((diff),positive_minlist(Xleft,front,count,n)),min((positive_mindist(dist,front,count,n)
),(U/count)));

update (X,Xleft,dist,n,front,count,xopt);
erase(front);
U=U-count*xopt;

L=L-count*xopt;
sum-+-count*xopt;

j*+;
}

else printf("\nNo feasible solution.\n");

for (i=0;i<N;i++) Y[i]=Y[i]-X[i];

/* B R T R e e e *F)J NAL* * k kkkhkkikkhkikkhkiixkk */

print_final("num_sweep.txt",N,Y,s);
print_iterations("num_sweep.txt",j);

}

void print_ampl(char *name,int n,float Y[],float Xleft[],float s,float L,float U)

{

108

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

FILE *fp;
inti;

fp=fopen(name,"w");

fprintf(fp,"param N:=%d;\n\n",N);

fprintf(fp,"param yl:=\n");

for(i=0;i<N;i++) fprintf(fp,"%d %f\n",i+1,YTi]);
fprintf(fp,";\n");

fprintf(fp,"param xleft:=\n");

for (i=0;i<N;i++) fprintf(fp,"%d %Rn",i+l,Xleft[i]);

fprintf(fp,";\n");
fprintf(fp,"param s:=%f;\n",s);
iprintf(fp,"param L:=%f;\n",L);
iprintf(fp,"param U:=%f;\n",U);
fclose(fp);
void print_original(char *name,int n,float Y[],float Xleft[],float s,float L,float U,float Xmax)

FILE *fp;

inti;

fp=fopen(name,"w");
fprintf(fp,"Xmax=%f;\n",Xmax);
fprintf(fj3,"LS=%f;\n",L);

fprintf(f]),"LfS=%f;\n",U);
fprintf(fp,"\n");

for (i=0;i<n;i++)

fprintf(fp,"y%5d=%10.5M\txleft%5d=%10.5At%5ds=%10.5An",i+l, Y[i],i+|, Xleft[i],i+
L,(i+1)*s);

fprintf(fp,"\n");

fclose(fp);

109

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

}
void print_duration(char *name,long double duration)
{
FILE *fp;
fp=fopen(name,"a");
iprintf(ip,"Total Execution Time=%10.5f\n",duration);
fclose(fp);
}

float choose_bound(float x[],float a[], float L, float U,int n)
{inti;

float bound[4];

bound[0]=L;

bound[l]=U;

bound[2]=0;

for (i=0;i<n;i++) bound[2]+=a]i];
bound[3]=0;

for (i=0;i<n;i++) bound[3]+=max(a[i],0);
bsortl(bound,4);

return bound[2];

}

void swap(float *x,float *y)
{

float temp;

temp = *x;

*X e *y1

*y = temp;
}

void bsortl (float list[], int n)
-
intij;
for(i=0;i<(n-I);i++)
for(j=0;j<(n-(i+1));j++)
if(list[j] > list[j+I])
swap(&list[j], &list|j+]);

}

void pardalos(float x[], float a[], float b[],float d,int n)
{

110

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A CImplementation ofthe Algorithms

int *unsetyv;

float *intervalpts;

float *tempil;

int *temp2;

float min=-(float)MAXFLOW,
max=(float)MAXFLOW;

float tightsum=0,
slackweight=0,
testsum=0;

int i,j-l,counter;

float mid;

int ptssize;

int unsetv_size;

unsetv= (int *) malloc(n*sizeof(int));

intervalpts= (float *) malloc((2*n+2)*sizeof(float));
pts_size=2*n+2;

unsetv_size=n;

for (i=0;i<n;i++) unsetv[i]=(i+);

for (i=0;i<n;i++) intervalptsl[i]=a[i];

for (i=n;i<2*n;i++) intervalpts[i]=bl[i-n];
intervalpts[2*n]=-(float) MAXFLOW;
intervalpts[2*n+1]=(float)MAXFLOW,

for (;(unsetv_size!=0);){

tempi = (float *)malloc(pts_size*sizeof(float));
memcpy(templ,intervalpts,pts_size*sizeof(float));

mid=gmedian(temp,pts_size);
free (tempi);

testsum=0;
for (i=0;i<unsetv_size;i++) if (b[unsetv[i]-l]l<mid) testsum-+=b[unsetv[i]-I];
else if (a[unsetv[i]-I]>mid)
testsum+=afunsetv[i]-1];
else testsum+=mid;

testsum=testsum-+tightsum-+slackweight*mid;

111
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

/****** **k * *h khkkkikkikhkkkkhkikkikiXx %% */

update

if (testsum<=d) min=mid;
if (testsum>=d) max=mid;

tempi = (float *)malloc(pts_size*sizeof(float));
counter=0;

for (i=0;i<pts_size;i++) if ((intervalpts[i]>=min) && (intervalpts[i]l<=max)) {
tempi [counter]=intervalpts]i];

counter++;

pts_size=counter;

free (intervalpts);

intervalpts = (float *)malloc(pts_size*sizeof(float));
memcpy(intervalpts,tempi,pts_size*sizeof(float));
free (tempi);

temp2 = (int *)malloc(unsetv_size*sizeof(float));
counter=0;

for (i=0;i<unsetv_size;i++) if (b[unsetv][i]-l]J<=min) tightsum+=b[unsetv[i]-1];
else if (a[unsetv[i]-l]>=max)
tightsum+=afunsetv[i]-11];
else if ((a[unsetvl[i]-
l[]l<=min)&&(b[unsetv]i]-[][>=max)) slackweight++;
else {
temp2[counter]=unsetv][i];
counter++;

b

unsetv_size=counter;

free(unsetv);

unsetv- (int *)malloc(unsetv_size*sizeof(float));
memcpy(unsetv,temp2,unsetv_size*sizeof(float));
free(temp?2);

jt++

}

for (i=0;i<N:i++) if (blil<=min) x[i]=bl[il;

112
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

else if (ai]>=max) x[i]=a[i];
else if ((a[il<=min)&&(b[i]>=max))
x[i]=(d-tightsum)/slackweight;

*hk kkhkkhkkhkkikkikkik khkkhkkikiiihiik *FJ NAL* R =k ok R R I R AR R */

print_iterations("num_pardalos.txt",j);

/** /

float gmedian(float a[], int n)
{

int low, high ;

int median;

int middle, 11, hh;

low =0 ; high = n-1 ; median = (low + high) / 2;
for ;) {
if (high <= low) /* One element only */
return a[median] ;

if (high = low + 1) { /* Two elements only */
if (a[low] > a[high])
SWAP(a[low], a[high]);
return afmedian] ;

}

/* Find median of low, middle and high items; swap into position low */
middle = (low + high) / 2;
if (a[middle] > a[high]) SWAP(a[middle], a[high]);
if (a[low] > alhigh]) SWAP(a[low], a[high]);
if (a[middle] > a[low]) SWAP(a[middle], a[low]) ;

/* Swap low item (now in position middle) into position (low+1) */
SWAP(a[middle], a[low-+l]);

/* Nibble from each end towards middle, swapping items when stuck */

11 =low+ 1;
hh = high;
for (3;) {

do 11++; while (a[low] > a[ll]);
do hh—; while (a[hh] > a[low]);

113
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation ofthe Algorithms

if (hh < 1))

break;

SWAP(@[ll], a[hh]):
}

/* Swap middle item (in position low) back into correct position */
SWAP(a[low], a[hh]);

/* Re-set active partition */
if (hh <= median)

low =11
if (hh >= median)
high = hh - 1;
}
}
#undef SWAP

114

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix B AMPL Modeling

Appendix B AMPL Modeling

Parameters
param N;
param yl {1..N}; # initial values ofy

param xleft {1..N}; # initial values of Xleft

param L; # lower limit on plan
param U; # upper limit on plan
param s # slope

Decision variables

var x {1..N} >=0; # flight time of aircraft

vary {1..N} ; # residual flight time of aircraft
minimize convex! :sum {nin 1..N} (y[n]-n*s)A2;

subject to flight_hrs {nin 1..N}:
y[n] =yl[n] - x[n] ; # residual flight time

subject to progr hrs :
L <=sum {nin 1..N} x[n] <= U; # observe program

subject to upper_x {n in 1..N}:
X[n] <= xleft[n]; # maximum flight time

115

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

References

References

[l]. AIi A, Helgason, R, Kennington, J., and Lal, H.: ‘Computational comparison among three

multicommodity network flow algorithms’, Oper. Res.28, no. 4 (1980), 995-1000.

[2] . Bitran, G.R., and Hax, A.C.: ‘Disaggregation and resource allocation using convex

Knapsack problems with bounded variables’, Managem. Sci.27, no. 4 (1981), 431-441.

[8] . Brucker, P ‘An O(n) algorithm for Quadratic Knapsack problems’, Oper. Res. Lett.3,

no. 3 (1984), 163-166.

[4] ' Fioudas, C.A, and Visweswaran, V.: ‘Quadratic optimization’, Handbook Global Optim.:

Nonconvex Optim. Appl., 2 Kluwer Acad. Publ. 1995, pp. 217-269.

[5] . Goldfarb, D., and Liu, S ‘An O(n3L) primal interior point algorithm for convex

Quadratic Programming’, Math. Program. A49, no. 3 (1990/1), 325-340.

[6] . Horst, R., and Tuy, H.: Global optimization: Deterministic approaches, second Springer
1993.

[7] , Kojima, M., Mizuno, S., and Yoshise, A.: ‘An {OlAJnLA iteration pOtentiaI reduction

algorithm for linear complementarity problems’, Math. Program. A50, no. 3 (1991),

331-342.

[8] . Kozlov, M.K., Tarasov, SP, and Khachiyan, LG.: ‘POIynomial SOIVability of convex

Quadratic Programming’, Dokl. Akad. Nauk SSSR248, no. 5 (1979), 1049-1051.

[9] . Lin, Y.Y., ana Pang, J.-S: ‘lterative methods for large convex Quadratic programs: A

survey’, SIAM J. Control Optim.25, no. 2 (1987), 383-411.
[10],Markowitz, H.M.: ‘Portfolio selection’, Finance7 (1952), 77-91.

[1 13.Monteiro, R.D.C., Adler, |, Resende, M.G.C.: ‘A polynomial-time primal-dual affine scaling
algorithm for linear and convex Quadratic Programming and its power series extension’,

Math. Oper. Res.15, no. 2 (1990), 191-214.

[12].Murty, K.G., and Kabadi, S.N.: ‘Some NP-complete problems in Quadratic and nonlinear

programming’, Math. Program.39, no. 2 (1987), 117-129.

116

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

References

[13] .Pardalos, P.M., and Kovoor, N.: ‘An algorithm for a singly constrained class of Quadratic
programs subject to upper and lower bounds’, Math. Program. A46, no. 3 (1990), 321-
328.

[14] .Pardalos, P.M., and Rosen, J.B.. ‘Constrained global optimization: Algorithms and

applications’, Vol. 268 of Lecture Notes Computer Sci., Springer 1987.

[15] .Pardalos, P.M., Ye, Y., and Han, Chi-Geun: ‘Algorithms for the solution of Quadratic

Knapsack problems’, Linear Alg. & Its Appl.152 (1991), 69-91.
[16] .sanni, s.: ‘Computationally related problems’, SIAM J. Comput.3 (1974), 262-279.

[17] .vavasis, S.A.: ‘Approximation algorithms for indefinite Quadratic Programming’, Math.

Program. B57, no. 2 (1992), 279-311.

[18] .vavasis, s.A: ‘Local minima for indefinite Quadratic Knapsack problems’, Math.

Program. A54, no. 2 (1992), 127-153.

[19] 'w. karush, ‘Minima of Functions of Several Variables with Inequalities as Side

Conditions,” M.S. thesis, Department of Mathematics, University of Chicago, 1939.

[20] H. W. Kuhn ana A. W. Tucker, ‘Nonlinear Programming,” in Jerzy Neyman (ed.),
Proceedings of the Second Berkeley Symposium, University of California Press,

Berkeley, 1951, pp. 481-492.

[21] O.T.Mangasarian, ‘Nonlinear Programming’, McGraw-Hill, New York, 1969

[22] A. M. Geofrrion, ‘Duality in Nonlinear Programming: A Simplified Applications-Oriented

Development,” SIAM Review, 13: 1-37, 1971.

[23] P. worre, ‘The Simplex Method for Quadratic Programming,” Econometrics, 27: 382-

398, 1959.

[24] D. Bertsimas, C. Darnell, and R. Soucy. ‘Portfolio construction through mixed-integer
programming’ at Grantham, Mayo, Van Otterloo and Company. Interfaces, 29(f):49-66,

1999.

[25] A. Cadeniltlas and S. R. Pliska. Optimal trading of a security when there are taxes and

transaction costs’. Finance and Stochastics, 3:137-165, 1999.

117
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

References

[26] H. Mmarkowitz. ‘Portfolio selection: efficient diversification of investments.” Blackwell,

New York, 2nd edition, 1991.

[27] J. Niehans. ‘Arbitrage equilibrium with transaction costs’. Journal of Money, Credit, and

Banking, 26(2):249-270, 1994.

[28] M. H. schneider and S. A. Zenios. ‘A comparative study of algorithms for matrix balancing’,

Operations Research, 38: 439-455, 1990.

[29] Y. Censor and S. A. Zenios. ‘Interval-constrained matrix balancing’, Linear Algebra and its
Applications, 150, 393-421, 1991.
[30] M. L. Balinski and G. Demange. ‘Algorithms for proportional matrices in reals and integers’,

Mathematical Programming, 45, 193-210, 1989.

[31] J.KRARUP AND T.lites (1993), ‘Maximum Q-free bipartite graphs and Knapsack-type

programs’, DIKU, University of Copenhagen, Denmark, Report 93/28.

[32] G.Laporte (1992), ‘The Vehicle Routing Problem: An overview of exact and

approximate algorithms’, European Journal of Operational Research, 59, 345 358.

[33] S.Martello AND P.TOTH (1984), ‘A mixture of dynamic programming and branch-and-

bound for the subset-sum problem’, Management Science, 30, 765 771.

[34] G.B.MATHEWS (1897), On the Partition of Numbers’, Proceedings of the London

Mathematical Society, 28, 486-490.

[35] R. M. NAUSS (1978),"The 0-1 Knapsack problem with multiple choice constraint’, European

Journal of Operational Research, 2, 125-131.

[36] W.DIFFE AND M.E.HELLMAN (1976), ‘New directions in cryptography’, IEEE Trans. Inf.

Theory, IT-36, 644-654.

[37] A. SINHA AND A. A. ZOLTNERS (1979), ‘The multiple-choice Knapsack problem’, Operations

Research, 27, 503-515.

[38] R. K. Ahuja, T. L. Magnanti, AND J. B. ORLIN. Network Flows:’Theory, Algorithms, and

Applications’. Prentice Hall, Englewood Cliffs, NJ, 1993.

[39] Z. Sinuany-Stern AND I.Winer (1994), ‘The one dimensional cutting stock problem using

two objectives’, Journal of the Operational Research Society, 45, 231-236.

118

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

References

[40] HILLIER ,LIEBERMANN, ‘Introduction to Operations Research’, McGraw Hill 7th Ed..

[41] CHRISTODOULOS A. FLOUDAS And PANOS M. PARDALOS, ‘Encyclopedia of Optimization.’

Kluwer Academic Publishers 2001.

[42] D.PISINGER, ‘Algorithms for Knapsack Problems’. Ph.D. Thesis Feb 1995 , Dept.of

Comp.Science, University of Copenhagen.

[43] ANEUMAIER, ‘An Optimality Criterion for Global Quadratic Optimization’. Journal of

Global Optimization 2:201-208,1992, Kluwer Academic Publishers.

119

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

MANEMIZTHMIO
OEZ>XANIAZ

004000085872

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

