
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

Μεταπτυχιακή Εργασία

ΕΝΑΣ ΑΚΡΙΒΗΣ ΑΛΓΟΡΙΘΜΟΣ ΓΙΑ ΜΙΑ ΟΜΑΔΑ

ΤΕΤΡΑΓΩΝΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΣΑΚΙΔΙΟΥ

ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΕΥΡΟΥΣ ΚΑΙ ΑΝΩ ΟΡΙΩΝ

υπό

ΑΝΔΡΕΑ ΓΑΒΡΑΝΗ

Μηχανικού Τηλεπικοινωνιών και Ηλεκτρονικών Σχολής Ικάρων, 2003

Υπεβλήθη για την εκπλήρωση μέρους των

απαιτήσεων για την απόκτηση του

Μεταπτυχιακού Διπλώματος Ειδίκευσης

2007

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

© 2007 Ανδρέας Γαβράνης

Η έγκριση της μεταπτυχιακής εργασίας από το Τμήμα Μηχανολόγων Μηχανικών

Βιομηχανίας της Πολυτεχνικής Σχολής του Πανεπιστημίου Θεσσαλίας δεν υποδηλώνει

αποδοχή των απόψεων του συγγραφέα (Ν. 5343/32 αρ. 202 παρ. 2).

Η
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Εγκρίθηκε από τα Μέλη της Πενταμελούς Εξεταστικής Επιτροπής:

Πρώτος Εξεταστής
(Επιβλέπων)

Δεύτερος Εξεταστής

Τρίτος Εξεταστής

Τέταρτος Εξεταστής

Πέμπτος Εξεταστής

Δρ. Γεώργιος Κοζανίδης
Λέκτορας, Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας,
Πανεπιστήμιο Θεσσαλίας

Δρ. Γεώργιος Λυμπερόπουλος
Αναπληρωτής Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών
Βιομηχανίας, Πανεπιστήμιο Θεσσαλίας

Δρ. Αθανάσιος Ζηλιασκόπουλος
Αναπληρωτής Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών
Βιομηχανίας, Πανεπιστήμιο Θεσσαλίας

Δρ. Δημήτριος Παντελής
Διδάσκων ΠΔ 407/80, Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας,
Πανεπιστήμιο Θεσσαλίας

Δρ. Παπαδημητρίου Κωνσταντίνος
Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας,
Πανεπιστήμιο Θεσσαλίας

111
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Ευχαριστίες

Πρώτα απ’ όλα, θέλω να ευχαριστήσω τον επιβλέποντα της μεταπτυχιακής εργασίας

μου, Λέκτορα Γεώργιο Κοζανίδη, για την πολύτιμη βοήθεια και καθοδήγησή του κατά τη

διάρκεια της μελέτης μου. Επίσης, είμαι ευγνώμων στα υπόλοιπα μέλη της εξεταστικής

επιτροπής της μεταπτυχιακής εργασίας μου, Καθηγητές κκ Γεώργιο Λυμπερόπουλο,

Αθανάσιο Ζηλιασκόπουλο, Δημήτριο Παντελή και Κωνσταντίνο Παπαδημητρίου για την

προσεκτική ανάγνωση της εργασίας μου και για τις πολύτιμες γνώσεις που μου προσέφεραν

κατά τη διάρκεια των σπουδών μου. Οφείλω ευχαριστίες σε όλους τους κατά καιρούς

καθηγητές μου, οι οποίοι συνετέλεσαν καθοριστικά στην απόκτηση του θεωρητικού μου

υποβάθρου, το οποίο αποδείχτηκε απαραίτητο για την ολοκλήρωση μιας ιδιαίτερα

απαιτητικής εργασίας. Ευχαριστώ τη Μαρία Ζαβού για την κατανόησή της, ιδιαίτερα κατά τη

διάρκεια των τελευταίων μηνών της προσπάθειάς μου και όλους τους φίλους μου για την

ηθική τους συμπαράσταση. Πάνω απ’ όλα, είμαι ευγνώμων στους γονείς μου, Θανάση και

Μένη, και στην αδερφή μου Ασπελίνα για την ολόψυχη αγάπη και διαρκή υποστήριξή τους,

στους οποίους και αφιερώνω την μεταπτυχιακή εργασία.

Ανδρέας Γαβράνης

ΐν
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

ΕΝΑΣ ΑΚΡΙΒΗΣ ΑΛΓΟΡΙΘΜΟΣ ΓΙΑ ΜΙΑ ΟΜΑΔΑ

ΤΕΤΡΑΓΩΝΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΣΑΚΙΔΙΟΥ

ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΕΥΡΟΥΣ ΚΑΙ ΑΝΩ ΟΡΙΩΝ

ΑΝΔΡΕΑΣ ΓΑΒΡΑΝΗΣ

Πανεπιστήμιο Θεσσαλίας, Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας, 2007

Επιβλέπων Καθηγητής: Δρ. Γεώργιος Κοζανίδης, Λέκτορας Βελτιστοποίησης Συστημάτων

Παραγωγής / Υπηρεσιών

Περίληψη

Αυτή η μελέτη αφορά συνεχή προβλήματα Quadratic Knapsack με περιορισμούς άνω
ορίων. Τα προβλήματα αυτά αποτελούν ειδικές περιπτώσεις Quadratic Programming και
γενικότερα Μη Γραμμικού Προγραμματισμού. Η επιβολή περιορισμών τύπου Knapsack σε
τέτοιου είδους προβλήματα έχει αρκετές ενδιαφέρουσες θεωρητικές εφαρμογές.

Επιπρόσθετα παρουσιάζονται εφαρμογές σε σημαντικούς τομείς που χρησιμοποιούν
τη μορφοποίηση αυτή ως βάση για την επίλυση προβλημάτων, όπως για παράδειγμα η
Βέλτιστη Επιλογή και Αναπροσαρμογή Χαρτοφυλακίου στον Οικονομικό Κλάδο,
Προβλήματα Μεταφοράς και Ροών σε Δίκτυα στην Επιχειρησιακή Έρευνα, ο Ισοσκελισμός
Πινάκων στο Μαθηματικό Κλάδο καθώς και εφαρμογές στον Τομέα της Συντήρησης
Αεροσκαφών.

Οι μελέτες που έχουν γίνει μέχρι τώρα αφορούν την κλασσική μορφοποίηση όπου ο
περιορισμός τύπου Knapsack ικανοποιείται σαν ισότητα. Σε αυτή την μεταπτυχιακή εργασία
ερευνάται η περίπτωση όπου επιτρέπονται αποκλίσεις γύρω από μια κεντρική τιμή.
Προτείνουμε και αναλύουμε έναν καινούριο αλγόριθμο και τροποποιούμε έναν ήδη
υπάρχοντα για να καλύψουμε αυτή τη διαφοροποίηση. Τέλος παρουσιάζουμε αποτελέσματα
που προκύπτουν από την υλοποίηση και εφαρμογή του αλγορίθμου σε διάφορα αριθμητικά
προβλήματα.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL & INDUSTRIAL ENGINEERING

Postgraduate Work

AN EXACT ALGORITHM FOR A BOX CONSTRAINED CLASS OF

QUADRATIC PROGRAMS SUBJECT TO UPPER BOUNDS

by

ANDREAS GAVRANIS

Electronics and Telecommunications Engineer of Hellenic Air Force Academy, 2003

Submitted in partial fulfillment

requirements for

Postgraduate Specialization Diploma

2007

vi
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

© 2007 Andreas Gavranis

The approval of this postgraduate work by the Department of Mechanical and Industrial

Engineering of the School of Engineering of the University of Thessaly does not imply

acceptance of the writer’s opinions (Law 5343/32 article 202 par.2).

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Approved by:

First Examiner
(Supervisor)

Dr. George Kozanidis
Lecturer, Department of Mechanical & Industrial Engineering,
University of Thessaly

Second Examiner Dr. George Liberopoulos
Associate Professor, Department of Mechanical & Industrial
Engineering, University of Thessaly

Third Examiner Dr. Athanasios Ziliaskopoulos
Associate Professor, Department of Mechanical & Industrial
Engineering, University of Thessaly

Fourth Examiner Dr. Dimitrios Pandelis
Instructor (P.D. 407/80), Department of Mechanical & Industrial
Engineering, University of Thessaly

Fifth Examiner Dr. Constantinos Papadimitriou
Professor, Department of Mechanical & Industrial Engineering,
University of Thessaly

viii
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Acknowledgements

First and foremost, I want to thank my postgraduate work supervisor. Lecturer Dr.

George Kozanidis, for his valuable help and guidance throughout this work. I am also grateful

to the other members of the examining committee of my postgraduate work Dr. Athanasios

Ziliaskopoulos, Dr George Liberopoulos, Dr. Dimitrios Pandelis and Dr. Costas

Papadimitriou for the close examination of my work and for the valuable knowledge I was

given during my post-graduate studies. I owe grateful thanks to all the teachers I learned from,

so as to obtain the essential theoretical background for the completion of a demanding study. I

thank Maria Zavou for her understanding, especially through the last months of my effort as

well as all my friends for their ethical support. Above all, I am grateful to my parents,

Thanasis and Meni, and my sister Aspelina for their wholehearted love and constant support,

to whom I dedicate this postgraduate work.

Andreas Gavranis

ix
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

AN EXACT ALGORITHM FOR A BOX CONSTRAINED CLASS OF

QUADRATIC PROGRAMS SUBJECT TO UPPER BOUNDS

ANDREAS GAVRANIS

University of Thessaly, Department of Mechanical & Industrial Engineering, 2007

Supervising Professor: Dr. George Kozanidis, Lecturer in Optimization Methods of

Production/Service Systems

Abstract

This thesis considers continuous Quadratic Knapsack problems with bound
constraints. These problems belong to the family of Quadratic Programming which is a major
subdivision of Nonlinear Optimization. The addition of Knapsack constraints on Quadratic
Programming problems is shown to have numerous applications, including Quadratic
Programming defined on the convex hull of a set of points and the maximum clique problem.

Moreover important fields of study that use Quadratic Knapsack as core formulation
are being presented. These include the Optimal Portfolio Selection, Quadratic Transportation,
Multi-commodity Network Flows, Matrix Balancing problems and Aircraft Maintenance.

Traditional approaches for accommodating such Quadratic Knapsack constraints have
been proposed and analyzed for the case of a single tight-bounded Knapsack constraint.
Instead we introduce the case where deviation from the target value of the Knapsack
constraint is allowed. In order to deal with our problem needs we modify an existing
algorithm, and we propose and analyze a new one. Computational results on a variety of test
problems are presented.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Contents

Contents

Chapter 1.. Introduction.. 1

1.1 Motivation and Background.. 1

1.2 Quadratic Knapsack... 2

1.3 Literature Review.. 3

1.4 Structure of Postgraduate Work... 6

Chapter 2.. Knapsack Problems and Nonlinear Programming...8

2.1 Introduction.. 8

2.2 The Family of Knapsack Problems.. 8

2.2.1 Knapsack Problem Formulation... 8

2.2.2 Knapsack Applications..14

2.3 Nonlinear Programming...15

2.4 Types of Nonlinear Programming Problems...16

2.4.1 Linearly Constrained Optimization.. 17

2.4.2 Quadratic Programming... 17

2.5 The Karush-Kuhn-Tucker (KKT) Conditions for Constrained Optimization.......................... 18

2.6 Quadratic Programming..22

2.6.1 The KKT Conditions for Quadratic Programming.. 25

2.6.2 The Modified Simplex Method.. 26

2.7 Conclusions... 30

Chapter 3 Quadratic Knapsack Applications... 31

3.1 Introduction.. 31

3.2 Portfolio Selection Problem..31

3.3 Quadratic Transportation Problems... 35

3.4 Multi-commodity Network Flows.. 38

3.5 Matrix Balancing.. 41

3.5.1 A brief review of matrix balancing.. 42

3.6 Aircraft Maintenance..44

xi
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Contents

3.6.1 Problem Formulation..47

3.6.2 General Form transformation... 49

3.7 Conclusions..51

Chapter 4.. Box Constrained Quadratic Knapsack Problem with Upper Bounds.......... 52

4.1 Introduction.. 52

4.2 Applying the KKT Conditions..52

4.3 Solution Algorithm... 63

4.3.1 Proof of optimality..66

4.3.2 Algorithm Complexity...73

4.4 General Form... 75

4.4.1. General Form Formulation..75

4.4.2 Optimality Theorem...76

4.4.3 Solution Algorithm...77

4.5 Modifying Existing Solution Techniques to fit our needs... 79

4.6 Conclusions... 81

Chapter 5.. Computational experience and numerical examples.. 82

5.1 Introduction.. 82

5.2 Computational Results... 82

5.3 Numerical Examples.. 86

5.3.1 Numerical Example 1...86

5.3.2 Numerical Example 2...89

5.4 Conclusions... 92

Chapter 6.. Concluding Remarks.. 94

Appendix A C Implementation of the Algorithms...96

Appendix B AMPL Modeling.. 115

References... 116

xii
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Contents

List of Tables

Table 2.1 Necessary and sufficient conditions for optimality.. 19

Table 2.2 Application of the modified Simplex to the Quadratic Programming Example.. .29

Table 4.1 Transformation between general form and special case... 75

Table 4.2 Term correspondence between general form and special case...............................76

Table 4.3 All possible orderings of the constraints...80

Table 5.1 Computational Results for different values of .. 83

$
Table 5.2 Computational Results for different values of........ ... 84

Table 5.3 Algorithms Comparison Results 85

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Contents

List of Figures

Figure 3.1 Linear Transportation Problem..36

Figure 3.2 A matrix and its associated transportation network... 43

Figure 3.3 Visual representation of aircraft residual flight times.. 46

Figure 4.1 Constraints ordering in Case 1... 67

Figure 4.2 Constraints ordering in Case 2... 68

Figure 4.3 Constraints ordering in Case 3... 70

Figure 4.4 Constraints ordering in Case 4... 71

XIV
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

Chapter 1 Introduction

Before progressing into the mathematical content of this thesis, it is important to first

provide some context and motivation. This thesis grew out of research in the area of

optimization. As the name suggests, optimization deals with the application or development

of mathematical programming techniques for decision-making. Evidence of vigorous research

activity within this field is easy to document.

This introduction gives an overview of the optimization concept showing major

subfields and describing the way mathematical programming techniques are applied to

problems so as to render solutions. The introduction is closed with an overview of the

complete work, placing it in relation to the rest of the literature.

1.1 Motivation and Background

This thesis presents an application of mathematical programming, specifically

Quadratic Programming, which provides useful information to aid decision-makers. It is the

work of subsequent sections and chapters to show exactly how a topic such as Quadratic

Programming can be productively applied to many types of decisions. In detail, we focus on a

specific application in Aircraft Maintenance which introduces a new formulation of the

original Continuous Quadratic Knapsack formulation.

The main contribution of the research reported in this work is that we develop a new

exact algorithm for a special class of Continuous Quadratic Knapsack Problems having

reasonable solution times for nearly all instances encountered in practice, despite having

Quadratic time bounds for a number of highly contrived problem instances. We give proof of

1
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

the optimality of the algorithm, implement it in C programming language and give numerical

results. We also describe a Quadratic Knapsack framework for the formulation, analysis and

computation of solutions to a specific problem of military-aircraft maintenance. Last we

present a modification of an exact algorithm presented by Pardalos and Kovoor [13], in order

to cope with the specific formulation of the problem in case the large number of variables

poses long execution time problem.

1.2 Quadratic Knapsack

The Quadratic Knapsack problem (QKP) is one of the simplest Quadratic Programming

problems defined as follows:

n

subject to

The continuous bounded Quadratic Knapsack problem is defined as follows

subject to

n

Σάίχι=ά o

2
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

ai<xi<bi, i =

where xeiR" is a variable vector, Q e 9Γχη, c e 9Γ and d0 is a scalar.

1.3 Literature Review

The Quadratic Knapsack problems are mainly classified by the nature of matrix Q.

When the matrix Q is positive semidefinite, i.e., the objective function z(x) is convex,

problem can be solved in polynomial time by the ellipsoid algorithm [8], and several kinds of

interior point algorithms (e.g. [7], [11], [5], which solve general convex Quadratic problems

including (QKP) as a special case). Also, P.M. Pardalos, Y. Ye and C.G. Han [15] show a

potential reduction algorithm for a special case of (QKP) defined below,

min / (x) = xrQx

n

s.t]Tx,=l,x>0
i'=l

where Q is a nxn symmetric matrix.

In particular, when (QKP) has a diagonal matrix Q with positive elements, an 0{n)

algorithm has been proposed by P. Brucker [3]. The algorithm generates the corresponding

KKT condition using binary search. Pardalos and N. Kovoor [13] also propose an 0{n)

randomized method.

3
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

The convex case is important because of its frequent appearance as a subproblem in

many application areas. Among those are general convex Quadratic Programming [9],

multicommodity network flow problems [1], resource management [2], and portfolio

selection problems [10],

The problem becomes extremely difficult if z(x) is not convex. S. Sahni [16) shows

that problems with negative diagonal matrix Q are Np - hard, which implies that the general

indefinite case is also Np - hard .

Let points in whose convex hull is P. The least distance problem is that

of finding the point of P having the smallest Euclidean norm. This problem can be stated as

min xT\

n

s.t x = YJzivi
i=1

n

Σ*, = 1 ,z(. >0,/' = 1,...,«
1=1

The above problem can be formulated as in [15] with Q = VrV and V = (υ,,...,υπ).

As we see in the above, the indefinite case arises in several combinatorial optimization

problems. For example, given a graph G(V,E) where V = {l,...,«} is a set of vertices and

£cf2 is a set of edges, a clique is a complete subgraph of G . The maximum clique problem

is the problem of finding the maximum complete subgraph of G .For each vertex ui, introduce

a variable xt,i =.This problem can be formulated in the following way:

4
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

Maxf(x) = Σ xixj
(',./>£

n

s-t- Σχί =1 >0,/ = l,...,n
1=1

il-il
V kj

We can also formulate the maximum independent set problem and the node covering problem

in a similar fashion.

One can also formulate any Quadratic minimization problem over a convex hull by the

Quadratic Knapsack problem. Consider the problem of the form:

min q(z)= zTMz (1)
zeP

where z,r e W ,M e ${m*m and P e 9?“is the polytope described as the convex hull

of a given set of points {v,,...,vn}. It can be verified easily that the above general Quadratic

problem has the following equivalent formulation

global min i{x)=xTQx (2)

s.t jc e D = jx: ^ xt = 1, x > 0

with Q = VTMV and V = {v,,...,vn}.

Let z* and x* be optimum solutions of (I) and (2), respectively. Then we have

If G has a maximum clique of size k, then the global maximum is / (x*) = —

5
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

q{z) = min q(z)= f(V) = min f(x) and moreover z = Vx* .
zeP xeD

There exist only a few algorithms for obtaining a global optimum solution for the case

of the general indefinite Q. See [15] for a partitioning approach as well as an interior point

method, while [4[surveys algorithms for general nonconvex Quadratic problems.

The case when the objective function is separable has also been well investigated by

several authors. Some practical algorithms to obtain an exact solution are reported in [14], [6].

S.A. Vavasis [18] shows an o[n(\ognf jalgorithm for finding a local minimum of the

problem, while K.G. Murty and S.N. Kabadi [12] show that verifying a local minimum for an

indefinite Quadratic problem with general constraints is Np-hard. Also, Vavasis [17] gives

an ε-approximation algorithm which is weakly polynomial in the problem size if the number

of negative diagonal elements is fixed.

1.4 Structure of Postgraduate Work

The rest of this postgraduate work is divided into five chapters. More specifically:

In Chapter 2, we consider first a family of combinatorial problems known under the

name Knapsack Problems and we present some important applications. Next, we study the

foundations of nonlinear programming and focus on one of its major subsectors, namely

Quadratic Programming .We introduce the Karush-Kuhn-Tucker (KKT) conditions for

optimality and then use these conditions to provide a linear transformation of the Quadratic

Programming Problem which can be dealt with the modified-SIMPLEX method.

6
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 1 Introduction

In Chapter 3, we present some major applications of the Quadratic Knapsack

formulation, which denote its major role in real-life applications. More precisely we begin

with the Portfolio Selection and the Portfolio Rebalancing Problems. We continue with the

Quadratic Transportation Problem and present the advantages of a Quadratic Programming

formulation for Spatial Interaction Patterns over a linear one. We then specialize on Multi-

commodity Network Flow Problems. Matrix balancing problems are being introduced next

and we finish our application reference by introducing a special military-aircraft maintenance

problem with a slight differentiation from the classical formulation of the Quadratic Knapsack

Problem, in that a box Knapsack constraint is imposed

In Chapter 4, we focus on this special case of Box Constrained Quadratic Knapsack

Problem with upper Bounds. After formulating the Problem we use the KKT Conditions of

optimality applied on our specific problem in order to characterize the optimal solution.

Global optimality is proven next. We then present an algorithm for the solution of the

problem also dealing with algorithm optimality and complexity. In the last part of the chapter,

we present the modification of an existing algorithm in order to make it applicable to our

specific case.

In Chapter 5, we consider some theoretical and numerical aspects of the algorithms

implementation comparing results with other known solution tools (i.e. AMPL) and present

results of some numerical experiments so as to make clear the way the algorithm works.

In Chapter 6, this postgraduate work is summarized and directions for further research

are given.

Appendix A contains the C Programming Language code of the algorithms

implementation. Appendix B contains the AMPL modeling file.

7
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Chapter 2 Knapsack Problems and Nonlinear Programming

2.1 Introduction

We begin this chapter by giving an overview of the family of Knapsack Problems, and

by showing several applications of theoretical as well as of practical interest. We then

introduce the basic concepts of Nonlinear Programming, and describe some basic

application examples which make the difference with Linear Programming clear. Following

this we state the Karush-Kuhn-Tucker conditions for Constrained Optimization. Quadratic

programming is analyzed next and a transformation to a linear formulation is given by

applying the KKT Conditions. One solution technique that can be used on the transformed

Quadratic Problem, namely modified-SIMPLEX, is analyzed last.

2.2 The Family of Knapsack Problems

2.2.1 Knapsack Problem Formulation

This section considers several problems from the family of Knapsack Problems. In all

variants of the problem we have a collection of items, each with a profit Pj and weight w .,

which are packed into one or more Knapsacks of capacity c. We will assume that all

coefficients pj ,Wj, c are positive numbers although weaker assumptions sometimes may be

handled in the individual problems.

The 0-1 Knapsack Problem is the problem of choosing a subset of the n items such

that the corresponding profit sum is maximized but the knapsack capacity is not exceeded.

This may be formulated as the following maximization problem:

8
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Maximize Σ Pjxi
7=i

Subject to
n

TwjXj^c
7=1

Xj € {0,1} ,7 =!,...,«

where x. is a binary variable equal to 1 if item j is included in the Knapsack and 0 otherwise.

If we have a maximum quantity m j for each item type j, then the Bounded Knapsack

Problem arises, formulated as:

Maximize ί>Λ·
7=1

Subject to
n

Zw.x.<c
7=1

Xj € {0,l,...,my}

Here, x. is the number of items of each type to be included in the Knapsack, in order to obtain

the largest objective value.

The Unbounded Knapsack Problem is a generalization of the Bounded Knapsack

Problem, where an unlimited number of items for each type is available:

9
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Maximize Σρλ
7=1

Subject to
n

ZW7*7-C
7=1

Xj > 0 integer, j = 1,...,n

In general there is no advantage by transforming an Unbounded Knapsack Problem to

the bounded version.

Another generalization of the 0-1 Knapsack problem is to choose exactly one item j

from each of k classesAj, i = \,...,k such that the profit sum is maximized. This gives the

Multiple-choice Knapsack Problem which is defined as

Maximize Σ Σ Puxvi=l jeNj

Subject to ΣΣ wuxu^ci=l jeNj

X xu =1, i = l,...,k
jeN'

e {0,1} , i'= jeN,

Here the binary variable xy = 1 states that item j was chosen from class i. The

constraint ^ xy = 1, i = 1 ensures that exactly one item is chosen from each class.
jeN,

10
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

If the profit p; equals the weight w . for each item in a 0-1 Knapsack Problem we

obtain the Subset-sum Problem, which may be formulated as:

Maximize ί>Α
7=1

Subject to
n

7=1

Xj e {0,1} , j =

The name indicates that it can also be seen as the problem of choosing a subset of the

values w,,..., wn such that the sum is as large as possible without exceeding c.

Now, imagine a cashier who has to give back an amount of money c by using the

smallest possible amount of the coins νν,,...,ννπ. The Change-making Problem is then defined

as:

Minimize
n

Σν
7=1

Subject to
n

Hwjxj=c
7=1

Xj > 0 integer , j = 1,..., n

where w. is the face value of coin j, and we assume that an unlimited amount of each coin is
J J

available. The optimal number of each coin j that should be used is then expressed by Xj.

11
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

This problem may be considered as a minimization variant of the Unbounded Knapsack

Problem, where p; = 1 for j = 1,...,« and where equality must hold in the capacity constraint.

If we have to choose n items to pack in m Knapsacks of possibly different capacities

ci such that the total profit is maximized we obtain the Multiple Knapsack Problem

m n

Maximize ΣΣρλ
i=1 j=1

Subject to ^ WjXy < Cj i = 1
7=1

m

Σ-1» J' = l>->n
i=l

e{0,l} , i = , j = l,...,n

Here xi} = 1 indicates that item j should be packed into Knapsack i, while the constraint

^ WjXVj < ci ensures that the capacity constraint of Knapsack i is satisfied. The constraint
7=1

yj xu < 1 ensures that each item is chosen at most once.

A very useful model is the Bin-packing Problem where all n items should be packed in

a number of equally sized bins, such that the number of bins actually used is as small as

possible. Thus we have

n

ΣλMinimize

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

n

Subject to Σ wjX‘j - cyi
7=1

m

i = l,-,«

II j = !,···,«

T,e{o,i}, i = l,...,n

xy e {o?i} ,

where yi indicates whether bin i is used, and xtj states that item j should be packed in bin i.

m

The constraint = 1 ensures that every item is packed exactly once, while inequality
1=1

n

WjXy < cyt ensures that the capacity constraint holds for all bins actually used.
;=i

The most general form of a Knapsack Problem is the Multi-constrained Knapsack

Problem, which basically is a general Integer Programming Problem where all coefficients,

Pj, Wy and c,. are nonnegative integers. Thus it may be formulated as

Maximize ^ P jxj

7=1

Subject to WyXj < ci, i = 1,...,/«
7=1

Xj >0integer, j =!,...,«

13
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

2.2.2 Knapsack Applications

Knapsack Problems have numerous applications in theory as well as in practice. From

a theoretical point of view, the simple structure pleads for exploitation of numerous

interesting properties, that can make the problems easier to solve. Knapsack Problems also

arise as subproblems in several algorithms for more complex combinatorial optimization

problems, and these algorithms will benefit from any improvement in the field of Knapsack

Problems.

Despite its name, practical applications of Knapsack Problems are not limited to

packing problems: Assume that n projects are available to an investor, and that the profit

obtained from the jth project is pj,j = 1. It costs w.to invest in project j, and only c

dollars are available. An optimal investment plan may be found by solving a 0-1 Knapsack

Problem.

Another application appears in a restaurant, where a person has to choose k courses,

without surpassing the amount of c calories, his diet prescribes. Assuming that there are Nt

dishes to choose among for each course / = 1,...,k, and wtj is the nutritive value while p{j is a

rating saying how well each dish tastes. Then an optimal meal may be found by solving the

Multiple-choice Knapsack Problem (37).

The Bin-packing Problem has been applied for cutting iron bars in a kibbutz [39], in

order to minimize the number of bars used each day. Here w. is the length of each piece

demanded, while c is the length of each bar, as delivered from the factory.

Apart from these simple illustrations we should mention the following major

applications: Problems in cargo loading, cutting stock, budget control, and financial

14
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

management may be formulated as Knapsack Problems, where the specific model depends on

the side constraints present. Sinha and Zoltners [37] proposed to use Multiple-choice

Knapsack Problems to select which components should be linked in series in order to

maximize fault tolerance. Diffe and Heilman [36] designed a public cryptography scheme

whose security relies on the difficulty of solving the Subset-sum Problem. Martello and Toth

[37] mention that two-processor scheduling problems may be solved as a Subset-sum

Problem. Finally the Bin-packing Problem may be used for packing envelopes with a fixed

weight limit.

The more theoretical applications either appear where a general problem is

transformed to a Knapsack Problem, or where the Knapsack Problem appears as subproblem,

e.g. for deriving bounds in a branch-and-bound algorithm designed to solve more complex

problems. In the first category G. B. Mathews back in 1897 [34] showed how several

constraints may be aggregated to one single Knapsack constraint, making it possible to solve

any IP Problem as a 0-1 Knapsack Problem. Moreover Nauss [35] proposed to transform

nonlinear Knapsack Problems to Multiple-choice Knapsack Problems. In the second category

we should mention that the 0-1 Knapsack Problem appears as a sub problem when solving the

Generalized Assignment Problem, which again is heavily used when solving Vehicle Routing

Problems [32], Also Krarup and Illes [31] apply a Knapsack type relaxation in connection

with finite projective planes.

2.3 Nonlinear Programming

A key assumption of linear programming is that all its functions (objective function

and constraints) are linear. Although this assumption essentially holds for numerous practical

15
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

problems, it frequently does not hold. In fact, many economists have found that some degree of

nonlinearity is the rule and not the exception in economic planning problems. Therefore, it is

often necessary to deal directly with nonlinear programming problems, so we turn our

attention to this important area.

In one general form, the nonlinear programming problem is to find x = (x,,x2,...,xn)

so as to

Maximize / (x)

Subject to g(.(x) ^ i = 1,2

x > 0

where /(x) and the g, (x) are given functions of the n decision variables.

No general algorithm that will solve every specific problem fitting this format is

available. However, substantial progress has been made for some important special cases of

this problem by making various assumptions about these functions, and research is

continuing very actively. This area is quite extensive, and there is not enough space to survey

it completely. Besides, that is beyond the scope of this research.

2.4 Types of Nonlinear Programming Problems

Nonlinear programming problems come in many different shapes and forms. Unlike

the simplex method for linear programming, no single algorithm can solve all these different

16
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

types of problems. Instead, algorithms have been developed for various individual classes (special

types) of nonlinear programming problems. The class which is of great interest in this research is

introduced briefly in the following section.

2.4.1 Linearly Constrained Optimization

Linearly constrained optimization problems are characterized by constraints that

completely fit linear programming, so that all the g, (x) constraint functions are linear, but the

objective function f(x) is nonlinear. The problem is considerably simplified by having just

one nonlinear function to take into account, along with a linear programming feasible region.

A number of special algorithms based upon extending the simplex method to consider the

nonlinear objective function have been developed. One important special case, which we

consider next, is Quadratic Programming.

2.4.2 Quadratic Programming

Quadratic programming problems again have linear constraints, but now the objective

function /(x) must be Quadratic. Thus, the only difference between such a problem and a

linear programming problem is that some of the terms in the objective function involve the

square of a variable or the product of two variables.

Quadratic programming is very important, partially because such formulations arise

naturally in many applications. For example, the problem of portfolio selection with risky

securities described fits into this format. However, another major reason for its importance

is that a common approach to solving general linearly constrained optimization problems is to

solve a sequence of Quadratic Programming approximations.

17
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

2.5 The Karush-Kuhn-Tucker (KKT) Conditions for Constrained

Optimization

We now focus on the question of how to recognize an optimal solution for a nonlinear

programming problem (with differentiable functions).More precisely we focus on the

necessary and under certain requirements sufficient conditions for an optimal solution.

In the preceding sections we already noted these conditions for unconstrained opti­

mization, as summarized in the first two rows of Table 2.1. In the third row of Table 2.1 the

conditions for the slight extension of unconstrained optimization where the only constraints are

nonnegativity constraints are shown. As indicated in the last row of the table, the conditions for the

general case are called the Karush-Kuhn-Tucker conditions (or KKT conditions), because they

were derived independently by Karush [19] and by Kuhn and Tucker [20]. Their basic result is

embodied in the following theorem.

Theorem 2.1 Assume that /(x), g,(x),g2(x),...,gm(x)are differentiable functions

satisfying certain regularity conditions. Then x‘ = (χ,*,χ2*,.··,*„*) can be an optimal solution

for the nonlinear problem only if there exist m numbers ul,u2,...,um such that all the

following KKT conditions are satisfied:

>atx = x* for j = \,2,...,n

18
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

3. g(.(x*)-6,.< O'

4. w,(g;(x)-Z),) = 0
for i = 1,2

5.x] >0 for j = \,2,...,n

6. uj > 0 for i = 1,2, ...,m

Problem Necessary Conditions for Optimality Also Sufficient if:

One-variable unconstrained
oII f(x) concave

Multivariable unconstrained f-0 (;=l,2,-,n)
OXj

f(x) concave

Constrained, f = 0 (y = 1,2,...,/?)
OXj

nonnegativity constraints f(x) concave

only
(or <0ifx; =0)

f(x) concave and g((x) convex
General constrained problem Karush-Kuhn-Tucker conditions

(i = 1,2,..., w)

Table 2.1 Necessary and sufficient conditions for optimality

Note that both conditions 2 and 4 require that the product of two quantities be zero.

Therefore, each of these conditions is really saying that at least one of the two quantities must

be zero. Consequently, condition 4 can be combined with condition 3 to express them in another

equivalent form as

19
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

(3,4)*,(χ*)-*,=0

(or <0ifw,=0) for i = 1,2,..., m

Similarly, condition 2 can be combined with condition 1 as

(1,2) 0

(or < 0 if x* = O) for j = l,2,...,n

When m = 0 (no functional constraints), this summation drops out and the combined

condition (1, 2) reduces to the condition given in the third row of Table 2.1. Thus, for m > 0,

each term in the summation modifies the m = 0 condition to incorporate the effect of the

corresponding functional constraint.

In conditions 1, 2, 4, and 6, theu,., correspond to the dual variables of linear

programming (we expand on this correspondence at the end of the section), and they have a

comparable economic interpretation. However, the w(., actually arose in the mathematical derivation

as Lagrange multipliers. Conditions 3 and 5 do nothing more than ensure the feasibility of the

solution. The other conditions eliminate most of the feasible solutions as possible candidates for

an optimal solution.

However, note that satisfying these conditions does not guarantee that the solution is

optimal. As summarized in the rightmost column of Table 13.3, certain additional convexity

assumptions are needed to obtain this guarantee. These assumptions are spelled out in the

following extension of the Theorem 2.1.

20
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Corollary. Assume that /(x)is a concave function and thatg,(x),g2(x),...,gm(x) are convex

functions (i.e., this problem is a convex programming problem), where all these functions satisfy

the regularity conditions. Then x* = [x‘ ,χ* ,...,x^ j is an optimal solution, if and only if all the

conditions of the theorem are satisfied.

For many complicated problems, it may be difficult, if not essentially impossible, to

derive an optimal solution directly from the KKT conditions. Nevertheless, these conditions still

provide valuable clues as to the identity of an optimal solution, and they also permit us to

check whether a proposed solution may be optimal.

There also are many valuable indirect applications of the KKT conditions. One of these

applications arises in the duality theory that has been developed for nonlinear programming to

parallel the duality theory for linear programming. In particular, for any given constrained

maximization problem (call it the primal problem), the KKT conditions can be used to define a

closely associated dual problem that is a constrained minimization problem. The variables in

the dual problem consist of both the Lagrange multipliers ut (/ = l,2,...,m) and the primal

variables x . (y = 1,2,..., n). (For details on this formulation, see Chapter 8 of [21]. For a unified

survey of various approaches to duality in nonlinear programming, see [22].)In the special case

where the primal problem is a linear programming problem, the Xj variables drop out of the dual

problem and it becomes the familiar dual problem of linear programming. When the primal

problem is a convex programming problem, it is possible to establish relationships between the

primal problem and the dual problem that are similar to those for linear programming. For

example, the strong duality property, which states that the optimal objective function values of

the two problems are equal, also holds here. Furthermore, the values of the ui variables in an

21
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

optimal solution for the dual problem can again be interpreted as shadow prices ;i.e., they give

the rate at which the optimal objective function value for the primal problem could be increased

by (slightly) increasing the right-hand side of the corresponding constraint. We will see another

indirect application of the KKT conditions in the next section.

2.6 Quadratic Programming

As already indicated in previous section, the Quadratic Programming problem differs

from the linear programming problem only in that the objective function also includes

xf and XjXj,i Φ j terms. Thus, if we use matrix notation like that introduced at the beginning

of Sec. 5.2, the problem is to find x so as to

Maximize /(x) = cx-^xTQx

Subject to Ax < b and x > 0

where c is a row vector, x and b are column vectors, Q and A are matrices, and the

superscript T denotes the transpose of a matrix. The qy (elements ofQ) are given constants

such that qy = qji (which is the reason for the factor of in the objective function). By

performing the indicated vector and matrix multiplications, the objective function then is

expressed in terms of these qiy, the Cj (elements of c), and the variables as follows:

/ M=cx - \ *TQx=Σ cjxj - \■ Σ Σ
7=1 Z 1=1 >1

22
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

product of xi and x}.

To illustrate this notation, consider the following example of a Quadratic

Programming problem.

Maximize/(x, x2) = 15x, + 30x2 + 4x,x2 - 2x\ - \x\ ,

subject to

x, +2x2 < 30 and

x, > 0, x2 > 0.

In this case

c = [15 30] x =
x.
X,

A = [l 2] b = [30]

xTQx = [x, x2]
4 -4 x,

-4 8 x-

23
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

= [(4x,-4x2) (-4x,+8x2)]

= 4x,2 - 4x2x, - 4x,x2 + 8x22

4, Λ ^ ^ ^22^2

Multiplying through by — gives

—xTQx = -2x,2 +4x,x2 -4x2 2

which is the nonlinear portion of the objective function for this example. Since^u=4

1
a.ndq22 = 8, the example illustrates that —is the coefficient of x; in the objective function.

The fact that qn = qn = -4 illustrates that both -qx) and -qji give the total coefficient of the

product of x(. and x..

Several algorithms have been developed for the special case of the Quadratic

Programming problem where the objective function is a concave function. (A way to verify

that the objective function is concave is to verify the equivalent condition that

xTQx > 0

for all x, that is, Q is a positive semidefinite matrix.) One of these algorithms [23], the

modified simplex method, has been quite popular because it requires using only the simplex

method with a slight modification. The key to this approach is to construct the KKT

24
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

conditions from the preceding section and then to re-express these conditions in a convenient

form that closely resembles linear programming. Therefore, before describing the algorithm,

we shall develop this convenient form.

2.6.1 The KKT Conditions for Quadratic Programming

For any Quadratic Programming problem, its KKT conditions can be reduced to a

convenient form containing just linear programming constraints plus one complementarity

constraint. In matrix notation again, this general form is

Qx +Aru-y = -cr

Ax + v = b

x > 0 u > 0 y > 0 v > 0

xry + urv = 0

where the elements of the column vector u are the ui, of the preceding section and the elements of

the column vectors y and v are slack variables.

Because the objective function of the original problem is assumed to be concave and

because the constraint functions are linear and therefore convex, the corollary to the Theorem

2.1 applies. Thus, x is optimal if and only if there exist values of y, u, and v such that all four

vectors together satisfy all these conditions. The original problem is thereby reduced to the

equivalent problem of finding a feasible solution to these constraints.

25
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

It is of interest to note that this equivalent problem is one example of the linear

complementarity problem, and that a key constraint for the linear complementarity problem is

its complementarity constraint.

2.6.2 The Modified Simplex Method

The modified simplex method exploits the key fact that, with the exception of the

complementarity constraint, the KKT conditions in the convenient form obtained above are

nothing more than linear programming constraints. Furthermore, the complementarity constraint

simply implies that it is not permissible for both complementary variables of any pair to be

(nondegenerate) basic variables (the only variables > 0) when (nondegenerate) BF solutions are

considered. Therefore, the problem reduces to finding an initial BF solution to any linear

programming problem that has these constraints, subject to this additional restriction on the

identity of the basic variables. (This initial BF solution may be the only feasible solution in this

case.)

As we discussed in Sec. 4.6, finding such an initial BF solution is relatively

straightforward. In the simple case where cr < 0 (unlikely) and b > 0, the initial basic

variables are the elements of y and v (multiply through the first set of equations by -1), so that

the desired solution is x = 0, u = 0, y = -cr, v = b. Otherwise, you need to revise the problem

by introducing an artificial variable into each of the equations where Cj > 0 (add the variable on

the left) or bt < 0 (subtract the variable on the left and then multiply through by -1) in order to

use these artificial variables (call them z,, z2, and so on) as initial basic variables for the revised

problem. (Note that this choice of initial basic variables satisfies the complementarity constraint,

because as nonbasic variables x = 0 and u = 0 automatically.)

26
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

Next, use phase 1 of the two-phase method to find a BF solution for the real problem;

i.e., apply the simplex method (with one modification) to the following linear programming

problem

Minimize Z = ^zy. »
j

subject to the linear programming constraints obtained from the KKT conditions, but with

these artificial variables included.

The one modification in the simplex method is the following change in the procedure

for selecting an entering basic variable.

Restricted-Entry Rule: When you are choosing an entering basic variable, exclude from

consideration any nonbasic variable whose complementary variable already is a basic

variable; the choice should be made from the other nonbasic variables according to the usual

criterion for the simplex method.

This rule keeps the complementarity constraint satisfied throughout the course of the

algorithm. When an optimal solution x*, u*, y*, v*, z\= 0,.. .,z„ = 0 is obtained for the phase 1

problem, x* is the desired optimal solution for the original Quadratic Programming problem.

Phase 2 of the two-phase method is not needed.

Example. We shall now illustrate this approach on the example given at the beginning of the

section.

Q = is positive definite, so the algorithm can be applied.

27
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

The starting point for solving this example is its KKT conditions in the convenient

form obtained earlier in the section. After the needed artificial variables are introduced, the

linear programming problem to be addressed explicitly by the modified simplex method then

is

Minimize Z = z, + z2 ,

subject to

4χ, -4x2 +«, -y] +z, =15

-4.x, +8x2 +2 w, -y2 +z2 =30

x] +2x2 +v, =30

and x] > 0 x2 > 0 w, > 0 yi > 0 y2 > 0 v, > 0

z, > 0 z2 > 0

The additional complementarity constraint x,y, +x2y2 +m,v, = 0 is not included

explicitly, because the algorithm automatically enforces this constraint because of the

restricted-entry rule. In particular, for each of the three pairs of complementary variables

(x,,^1),(x2,^2),(w1,v1) whenever one of the two variables already is a basic variable, the

other variable is excluded as a candidate for the entering basic variable. Remember that the

only nonzero variables are basic variables. Because the initial set of basic variables for the

linear programming problemz,,z2,v,, gives an initial BF solution that satisfies the

28
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

complementarity constraint, there is no way that this constraint can be violated by any

subsequent BF solution.

Table 2.2 shows the results of applying the modified simplex method to this problem.

The first simplex tableau exhibits the initial system of equations after converting from

minimizing Z to maximizing -Z and algebraically eliminating the initial basic variables from

Eq. (0). The three iterations proceed just as for the regular simplex method, except for

eliminating certain candidates for the entering basic variable because of the restricted-entry

rule. In the first tableau, w, is eliminated as a candidate because it’s complementary variable

(v,) already is a basic variable (but x2 would have been chosen anyway because-4 < -3).

Iteration
Bask

Variable Eq. *1 *2 «1 ri V2 V, 2i 22 Side

0 -4 -3 1 1 0 0 0 -45
4 -4 1 -1 0 0 1 0 15

1 -4 8 2 0 -1 0 0 1 30
1 2 0 0 0 1 0 0 30

Right

Z (0)
(1)
(2)
(3)

Z

i\

x2

(0)

(1)
(2)

(3)

-2

2

0 -2

1 t

1
2
1

'2
1
8
1
4 o -4

-30

30

4
22-J

*2

*1

Z

u,

*2

(0)

(1)
(2)

(3)

(0)
0)
(2)

(3)

0 1
1 0

-1 --

8

_4

0
1

0
0

0
0

0
_2

5
J_
20

"10

X
16

8

0
3

"10
X

"40

20

1
4
J_
2

0
_2

5
J_
10

2
5

1
2
5

X
'20

10

0 16
» -1

1
3
10
X
40
X

'20

-4
ή
n

o
3

9

12

Table 2.2 Application of the modified Simplex to the Quadratic Programming Example

29
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 2 Knapsack problems and Nonlinear programming

In the second tableau, both m, and y2 are eliminated as candidates (because v, and x2

are basic variables), so x, automatically is chosen as the only candidate with a negative

coefficient in row 0 (whereas the regular simplex method would have permitted choosing either

x, or Μ, because they are tied for having the largest negative coefficient). In the third tableau, both

y, and y2 are eliminated (because x, and x2 are basic variables). However, w, is not eliminated

because v, no longer is a basic variable, so w, is chosen as the entering basic variable in the usual

way.

The resulting optimal solution for this phase 1 problem isx, =12, x2 =9andw, =3,

with the rest of the variables zero. Therefore, the optimal solution for the Quadratic

Programming problem (which includes only the x, and x2 variables) is (x,, x2) = (l 2,9).

2.7 Conclusions

In this chapter, we have considered a family of combinatorial problems known under

the name of Knapsack Problems and. We have also studied the foundations of nonlinear

programming and focused on one of its major subsectors namely Quadratic Programming .We

have introduce the Karush-Kuhn-Tucker (KKT) conditions and showed an indirect

application of these conditions to provide a linear transformation of the Quadratic

Programming Problem which can be dealt with the modified SIMPLEX method.

Applications for both Knapsack Problems and Quadratic Programming have been

presented, denoting why both are of great research interest. As we can easily see the

combination of these two major subjects of interest, leads to the Quadratic Knapsack Problem

which is the key concept of this thesis.

30
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Chapter 3 Quadratic Knapsack Applications

3.1 Introduction

This chapter consists of the analysis of Quadratic Knapsack Applications. In detail we

will study Problems of Portfolio Selection, Quadratic Transportation, Multi-Commodity

Network Flow and Matrix Balancing. We supply brief introduction of the problem concepts

as well as references of past work. We also consider their Quadratic Knapsack formulations.

In the last section of the chapter we present a new formulation, where deviations from the

target value are allowed for the Knapsack Constraint applied to an Aircraft-Maintenance

Problem.

3.2 Portfolio Selection Problem

Constructing a portfolio of investments is one of the most significant financial

decisions facing individuals and institutions. A decision-making process must be

developed which identifies the appropriate weight each investment should have within the

portfolio. The portfolio must strike what the investor believes to be an acceptable

balance between risk and reward. In addition, the costs incurred when setting up a new

portfolio or rebalancing an existing portfolio must be included in any realistic analysis.

Convex transaction costs, including linear (proportional) transaction costs, piecewise

linear transaction costs, and Quadratic transaction costs can be considered. In order to

properly reflect the effect of transaction costs, we suggest rescaling the risk term by the

funds available after paying the transaction costs.

31
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Essentially, the standard portfolio optimization problem is to identify the optimal

allocation of limited resources among a limited set of investments. Optimality is measured

using a trade-off between perceived risk and expected return. Expected future returns

are based on historical data. Risk is measured by the variance of those historical returns.

When more then one investment is involved, the covariance among individual

investments becomes important. In fact, any deviation from perfect positive correlation allows

a beneficial diversified portfolio to be constructed. Efficient portfolios are allocations that

achieve the highest possible return for a given level of risk. Alternatively, efficient

portfolios can be said to minimize the risk for a given level of return. These ideas

earned their inventor a Nobel Prize and have gained such wide acceptance that countless

references could be cited. The model of portfolio selection is originally presented in

Markowitz [10] and is as follows. Assume:

(a) n securities

(b) an initial sum of money to be invested

(c) the beginning of a holding period

(d) the end of the holding period

Let χλ,...,χη be investment proportion weights. The xt are the proportions of the

initial sum invested in the n securities to form a portfolio at the beginning of the holding

period. Unless restricted to the contrary, an xt can take on any value. Nevertheless, all xt

must sum to one. An xt < 0 means that security i is sold short with the cash generated then

providing additional money to be invested in the other securities. An x(>1 is possible.

32
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Assume a two-stock portfolio and an initial sum of $100. If security 1 is sold short to the

extent of $40, then because all weights must sum to one, the $40 plus the initial sum are

invested in security 2 in which case x{ = -0.4 and jc, =1.4.

Let η be the random variable for the percent return realized on security i between the

beginning of the holding period and the end of the holding period. Let rp be the random

variable for the percent return realized on a portfolio between the beginning of the holding

period and the end of the holding period, where

n
rp=HriXi

1=1

In this way, rp is a function of both the r and the xt. Since the r are not known until

the end of the holding period, but the xt must be chosen at the beginning of the period,

attempting to maximize rp via the above equation is a stochastic optimization problem. With

solutions of a stochastic optimization problems not well defined, a decision is required on

how to proceed.

Since an investor can never know at the beginning of the holding period the value of

rp to be realized at the end of the holding period, the investor is in a quandary. Ideally, an

investor would like to position his initial sum to maximize his chances of reaping a high value

of rp while at the same time minimizing his exposure to disconcertingly low values of rp.

Assuming that all η are from distributions whose means μ{, variances au and covariances

cr. are known, Markowitz's mean-variance solution procedure, which has come to form the

33
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

foundation of what we know of today as "modem portfolio analysis”, is to proceed with the

bi-criterion program

min I LLxi(Tijxj^(TP
l'=l »

max = **p
. 1=1

5.t. X^,=l
i=l

< xt < ut where σ2ρ is the variance of rp and μρ is expected value. Let E0

be the minimum expected portfolio return. The problem can take the following form

mm- |xTQ Χ = ΣΣχίσϋχ]=σ2ρ

n

μΓχ=Σ/νο· -Eoi=l

s.t. X^,=l
1=1

/,. < X,. < «,

By varying the parameter E0 and solving multiple instances of the problem, the set of

efficient portfolios can be generated. This set, visualized in a risk/retum plot, is called the

34
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

efficient frontier. An investor may decide where along the efficient frontier (s)he finds an

acceptable balance between risk and reward.

3.3 Quadratic Transportation Problems

The Linear Transportation Problem (L.T.P.) can be described as a minimum-cost

flow problem over a network depicted in Fig 3.2 .This network includes I supply and J

demand nodes connected by direct links. Hitchcock's formulation of the transportation

problem is

Mwz(x) = ZZcr*i,·
M 7-1

J

subject to Z xu = 0(
7=1

Σλ=£, Y/ = l,2,...,7
1=1

Xj>0 / Vi,j

Assume further that the total supply equals the total demand, that is

l j

where xy is the amount of movement from place i to j, cy is the given transport cost and O

and D are the supplies and demands.

35
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

SUPPLY DEMAND
NODES NODES

Figure 3.1 Linear T ransportation Problem

In addition to the known marginal totals 0: and Ζλ, the transport cost quantities ctj are also

given. The Quadratic Transportation Problem (Q.T.P.) is an optimization problem defined

as follows :

Minz{x) =]-YYjcl]{xIJ) +XIXW

j
subject to

j=i
Vi = 1,2,

Σχυ=dji=l
Vj = 1,2,

xs>0 Vi,j

M II M

i j

36
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

where

Xy is the amount of movement from place i to j

Cj is the per unit transport cost

dy is the per unit depreciation cost (wear and tear or damage cost)

and O and D are the supplies and demands.

Properties that distinguish the solution to the Q.T.P. from that of the L.T.P. are that

(a) The Xy are on average smaller numbers. This is forced by the Quadratic term in the

objective function.

(b) The number of non-zero xiy will exceed I+ D +1 and will approach ID.

(c) The Xy are generally not integers.

Properties (a) and b) are more in accord with empirical spatial interaction tables than

are the solutions to the L.T.P. This is expected because commodity flows are rendered more

reliable by a diversity of sources, urban traffic is diverted to avoid congestion, and migration

patterns are rendered diffuse due to information inadequacies. Spatial allocation models that

use the L.T.P. thus yield results that are less realistic than can be obtained through the use of

the Q.T.P. solution. Property c) of the L.T.P. is desirable, however, and suggests investigation

of an Integer Q.T.P.

37
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

3.4 Multi-commodity Network Flows

In the classical transportation problem the cost of transportation is directly

proportional to the number of units of the commodity transported. But in real world situations

when a commodity is transported, a fixed cost is incurred in the objective function. The fixed

cost may represent the cost of renting a vehicle, landing fees in an airport, set up costs for

machines in a manufacturing environment etc.

The three dimensional fixed charge bi-criterion indefinite Quadratic transportation

problem, can be used to formulate the real-world problem.

Suppose i = 1,2are the origins

j = 1,2,...,n are the destinations and

k = 1,2,...,/» are the various types of commodities to be transported in a three dimensional

transportation problem. Let

xijk = the amount of kth type of commodity transported form the ith origin to the jth destination

Cp - the variable cost per unit amount of kth type of commodity transported form the ith

origin to the jth destination, which is independent of the amount of the commodity

transported, so long as xiJk > 0.

dijk = the per unit depreciation cost (wear and tear or damaged cost) of kth type of commodity

transported form the ith origin to the jth destination, which is independent of the amount

of the commodity transported, so long as xijk > 0

38
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

A* = the total quantity of kth type of the commodity received by jth destination from all the

sources.

Bki = the total quantity of kth type of the commodity available at the ith origin to be supplied to

all destinations.

Ey = the total quantity of all types of commodities to be supplied from the ith origin to the jth

destination.

Fik = the fixed cost associated with origin i and the kth type of commodity. We define Fik

according to the amount supplied as

n

Fik =Σ^Λ*’ = k = \,2,...,p
M

Γ 1 if xijk > 0
where djk = \ i = \,2,...,m, j = l,2,...,n,k = \,2,...,p

lJ xjk = 0

Then the three dimensional indefinite Quadratic transportation problem is defined as

m n p \ f m n p

Min z(x) = ΣΣΣ°Λ ΣΣΣ^λ +ΣΣ^*
^ ι*1 7=1 k=1 /=1 7=1 k=\ y /=! k=1

m p

subject to

m

Σν =Ajk J = l2,...,n,k = l,2,...,p
1=1

39
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

n

Σχβ* =Bk‘ ,k = l,2,...,p,i = \,2,...,m,
7=1

P

Xijk ^ij ’Ϊ 1,2,...,7M , j 1,2,...,72
7=1

Xijk ,i = l,2,...,m, j = 1,2,...,«,k = 1,2,..,,p

Also

ίΧ=ΣΧ.*=1>2.···..ρ 0)
7=1 k=1

Σ5*< =Σ£//’/ = 1’2’···’™ (ϋ)A:=l y=l

m p
Σ^Σ^’^1’2’···’" 0^)
1=1 *=1

m p p m m n

ΣΣα*=ΣΣ =ΣΣΕυ (iv)
7=1 7=1 7=1 i=l i=l 7=1

Here, there are m origins, n destinations and p types of commodities to be transported.

(i) implies kth type of commodity received by all destinations = kth type of commodity

supplied from all origins,

(ii) implies different types of commodities supplied by the ith source = amount of

commodities received by all destinations from the ith source

40
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

(iii) implies amount of commodities supplied from all sources to jth destination = different

types of commodities received by the jth destination,

(iv) implies amount of commodities received by all destinations of different types of

commodities = amount of commodities supplied from all origins to all destinations =

amount of different types of commodities supplied from all origins.

Note: (i) to (iv) indicates that the transportation problem considered is a balanced

transportation problem.

3.5 Matrix Balancing

The problem of adjusting the elements of a matrix so that they satisfy certain

consistency requirements but still remain 'close' to the original matrix is generically referred

to as matrix balancing. Matrix balancing problems arise in a wide range of practical contexts

that include accounting, transportation, and demographics. These and several other

applications are reviewed in an excellent overview by Schneider and Zenios [28].

In a typical matrix balancing problem, we have a matrix that estimates certain

quantities of interest, but these estimates do not satisfy consistency requirements that the

actual values are known to satisfy. An example might be estimating the elements of a

transition probability matrix which we know to be doubly stochastic. Consistency with the

doubly stochastic property requires that the rows and columns sum to one. The doubly

stochastic matrix is an example of one of two types of matrix balancing problems discussed

by Schneider and Zenios [28]. They are adjusting the elements of a matrix so that the row and

41
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

column sums equal certain prescribed values; adjusting the elements of a square matrix so that

its row and column sums are equal to each other, but not necessarily to any prescribed values.

The conditions imposed on the row and column sums are called balance conditions,

and a matrix that satisfies the balance conditions is said to be balanced. In the applications

considered by Schneider and Zenios [28], the balance conditions relate only to row and

column sums. More generally, the balance conditions can be restrictions on the sums of

various combinations of matrix elements. (See, for example, Censor and Zenios [29].) The

fair representation problem considered by Balinski and Demange [30] is one example. In the

most general case, the balance conditions can be any set of linear restrictions on the matrix

entries.

For a particular set of balance conditions there may be a large number of balanced

matrices, but in matrix balancing, we seek a balanced matrix that is close to the original

matrix.

3.5.1 A brief review of matrix balancing

We present a standard matrix balancing formulation for producing matrices with prescribed

row and column sums. This formulation appears in [28[. Suppose that we are given an nxn

nonnegative matrix M and positive vectors s and d, both in 91", that provide target row and

column sums. The associated matrix balancing problem can be written

/ j

Min z (x) = Σ Σ f‘jxv

j
subject to

42
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Yxa=dj Y/ = 1,2,...,J
1=1

xij - o Vi, 7

xy > 0 only if nij > 0

The constraints in this model can be viewed as the flow-balance equations in an associated

transportation problem.

r:

0 12 3
4 0 6 7

6 10 7
1 i 2 0_

5: 6 17 18 4

6

17
18
4

Figure 3.2

ROWS COLUMNS

A matrix and it’s associated transportation network

Figure 3.3 provides an example of a small matrix and its representation as a

transportation network. There is one left-hand node associated with each row of M and one

right-hand node associated with each column of M. There is a link from left-hand node i to

right-hand node j whenever the corresponding matrix element my of M is nonzero. Left-hand

node i has supplysn while right-hand node i has demandd,.. To complete the network flow

description of the problem, we associate a cost fy of sending xiy units of flow on the link

43
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

from i to j and try to minimize the total cost of satisfying demands. The optimal flows xtj

provide the new balanced matrix.

The objective function employed in matrix balancing is typically separable, nonlinear,

and convex. The role of the objective is clearly to penalize deviations from the original

matrix. Nonlinear objectives are attractive because they promote balance among the

deviations by penalizing large deviations disproportionately more. Schneider and Zenios [28]

note that Quadratic and entropy penalty functions are the ones that are typically used in

practice.

Quadratic objective functions that minimize the (weighted) sum of squared deviations

from the target matrix have been more widely studied. For problem [MB], we obtain the

Quadratic penalty objective by letting

where the w{j ’s are nonnegative weights. The resulting problem has a separable Quadratic

objective and transportation constraints, whence we can see that the problem simplifies to the

Quadratic Transportation Problem already referenced.

3.6 Aircraft Maintenance

The problem that we present here arises as part of an operations management problem

in a typical Combat Wing of Military Aircrafts.

At the beginning of each planning horizon, the wing command issues the flight

requirements for each period. These requirements determine the total time that all the aircraft

44
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

should fly during each time period. Separate requirements are issued for each type of aircraft,

because different aircraft types have different flight capabilities and maintenance needs. For

this reason, the model introduced in this section can be applied repeatedly until all plans have

been issued, if more than one aircraft types are involved. The requirements issued by the wing

command contain target values from which only small deviations are permitted.

For each specific aircraft, we define its residual flight time as the total remaining time

that the aircraft can fly until it has to undergo a maintenance check. The residual flight time of

an aircraft is positive if and only if this aircraft is available to fly. The total residual flight time

of the wing is equal to the sum of the residual flight times of all squadrons. Clearly, there

exist many possible combinations of individual aircraft residual flight times that can result in

the same total squadron or wing residual flight time. Similarly, we define the residual

maintenance time of an aircraft as the total remaining time that the aircraft needs in order to

complete its maintenance check before it can be available to fly again.

For the maintenance needs of the wing, there exists a maintenance station that is

responsible for providing maintenance services to the aircraft of the wing. This station has

certain space and time capacity capabilities. Given the flight requirements for each squadron

and the physical constraints that stem from the capacity of the maintenance station, the

objective is to issue a flight and maintenance plan for each individual aircraft so that some

appropriate measure of effectiveness is optimized.

Consider the 2-dimensional graph shown in Fig 3.4. The vertical axis represents

residual flight time measured in some appropriate units, and the horizontal axis represents the

indices of the aircraft in increasing order of their residual flight times, 1 being the index of the

45
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

aircraft with the smallest and N being the index of the aircraft with the largest residual time

(N is the total number of aircraft).

Consider also the line segment connecting the origin and the residual flight times point

with coordinates (jV,_ymax), where ynm is the maximum time that an aircraft can fly between

two consecutive maintenance checks. By mapping each aircraft on this graph, we can have a

picture of the total availability of the squadron or the wing, whichever of the two the graph

refers to.

residual

Figure 3.3 Visual representation of aircraft residual flight times

To describe the smoothness of the distribution of the total residual flight time of all

aircraft we use a "total deviation index". This index is equal to the sum of the vertical

distances (deviations) of each point mapping a single aircraft from the line segment that

connects the origin with point (N,ymax). The smaller this sum is, the smoother the

distribution of the total residual flight time. Ideally, the total deviation index is equal to zero,

46
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

in which case all points lie on the line segment. When issuing the individual aircraft plans, the

intention is to keep each point as close to the line segment as possible, so that these deviations

remain small.

The intuition behind the utilization of the graph described above is straightforward. By

providing a wide range of different residual aircraft flight times, we can establish a smooth

sequence that determines the order in which the aircraft should visit the maintenance station.

This in turn prevents bottlenecks in the maintenance station and ensures a smooth utilization

of the maintenance station. More importantly, it ensures a fairly constant level of aircraft

availability.

As already noted, the flight time availability is equal to the sum of all aircraft residual

flight times, but there are many residual flight time combinations that can result in the same

total availability. To comprehend this better, consider a problem with four aircraft, each of

which can fly a maximum of 120 hours between two consecutive maintenance checks. For a

total flight time availability of 300 hours, a possible combination of the residual flight times is

30-30-120-120. Another one is 30-60-90-120. For the technique described above, the second

distribution is preferable, because it ensures a smooth rotation of the aircraft, i.e. a smooth

utilization of the maintenance center and a fairly constant level of aircraft availability. From

the maintenance point of view smoothing the rotation of the aircraft is the most appropriate

measure of effectiveness.

3.6.1 Problem Formulation

In this section, we present the mathematical model that we developed for the problem

described above. We use the following notation:

47
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Decision Variables:

Xj : flight time of aircraft i during planning horizon,

Parameters:

S : required total flight time during planning horizon

y(: residual flight time of aircraft i at the beginning of planning horizon,

A”max : maximum time an aircraft can fly during planning horizon ,

Tmin : minimum residual flight time of an available aircraft,

L, U : real numbers denoting the maximum deviation from the value of S that can be

tolerated (U > L),

s = y,max : the slope of the deviation line where
N

.Vmax : maximum residual flight time of an available aircraft,

N : total number of aircrafts available for flight

Then, the referenced problem can be formulated as follows:

s.t. L-S <Σχι ^U-S

48
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

yt-Xt=y't*Ynin « + T, i £ N = {1,2,...,#}

and can take the following form

Μη ζ=Σ(^,-ΐ·ή-Χ,)2
i

s.t. L S < <U-S
i

0 ^ *i * Xleft (0 = min(^max » X - K»n)

U>L,ieN = {\,2,...,N}

The objective function minimizes the sum of squares of all deviations from the line.

The first constraint set (Knapsack constraint) ensures that the flight requirements are

met. Variables L and U define an interval [L ■ S,U -5], in which the actual flight time for the

planning horizon should lie. For example whenL = 0.95 and U = 1.05 a 5% deviation from

the flight requirements is permitted.

The second constraint set (box constraints) ensures that the residual flight time of an

aircraft cannot exceed the maximum value neither the upper bound of the maximum time it

can fly during the planning horizon.

3.6.2 General Form transformation

Let (yt - i ■ s) - x,. = xt' <=> x, = (yt - i ■ s)- x,■'

49
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

Then Σ*/=ΣΟ'/-*'·5)-Σχ<'
i i i

We make the necessary transformations.

ζ=Σ((^·*)-*,)2=Σ(ν)2

Then
Yjxi-U-S<0

i
L-S~Yx,< 0

i i
LS-Yi(y,^i-s) + '£xl'<0

i i

Σ,χι'-Έ(?ι~ΐ!)-18

Σν^1'
i

Σχ^υ
U'> V where

i'=ZU-;·

υ' = Σ(γ,-ί·

Last 0<x, <XkJI(i)oO<(yt-i-s)-x,'<Xkt(i)

<=> (y,-< ■ ή - x<x,'<(y,-is)na,Zxl'<bl where
-is)

*,=u-

The problem takes the following form

Min z=Y(x,)
2

s.t.
Yxi>L

Σχ^υ
\U > L

s)-U-S

s)-LS

i-s)

50
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 3 Quadratic Knapsack Applications

ai - xi - b,

Which is the general case of the box constrained Quadratic Knapsack with upper bounds.

3.7 Conclusions

In this chapter, we studied Quadratic Knapsack Applications including Problems of

Portfolio Selection and Rebalancing, Quadratic Transportation, Multi-Commodity Network

Flow and Matrix Balancing. All these problems can be formulated in accordance with the

standard Quadratic Knapsack Formulation. All formulations have in common that there exists

one or more tight Knapsack constraint.

We find interest in investigating the case where deviations from the target value are

allowed for the Knapsack Constraint, which is exactly what we have seen in the Aircraft-

Maintenance Application.

51
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Chapter 4 Box Constrained Quadratic Knapsack Problem with
Upper Bounds

4.1 Introduction

In this chapter we focus on the special case of Quadratic Knapsack Problems, where

deviations from the target value are allowed for the Knapsack constraint. Because of this

deviation allowance algorithms and known techniques for the standard Quadratic Knapsack

formulation cannot be directly applied. That is why we use the KKT Conditions in order to

characterize the optimal solution to the problem. After that we prove global optimality of the

solution. We introduce an algorithm for the solution of the problem and then focus on

optimality and complexity issues.

The formulation used in this chapter is fitted for the need of the Aircraft maintenance

application, but in the end of the chapter we generalize the concept.

4.2 Applying the KKT Conditions.

As we can see from Section 3.6 the Aircraft-Maintenance problem can be formulated as

Min z=Yj((yl-i-s)-x,)2

s.t.
Σχ,-υ·Ξ< 0
i

L-S-^Xi< 0
U>L

0<x,.< Xleft (i) = min(Amax , yt - 7min)

52
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

The Lagrangian for the problem is

Ζ(χ,^,ϊ/,ν)=Σ((χ-/ *)-*,)2+v
f λ i Λ

M 1 c: +Λ ■ L-S-Σχ,
V i V / /

Σν, ’(*, -X,efi(i))

The necessary and sufficient Karush-Kuhn Tucker (KKT) conditions are:

-2((y,-i-s)-x,) + ^-l2+vi >0

V,-(*4-^(0) = 0 V,.6^

-US = 0 4 e9T

V X, = 0 \ e3t

L-S-Xxii0
i

0<Xi<XHt(i)

53
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Theorem 4.1 (Characterization of the optimal solution of the Problem).

A feasible solution x* = (x*)is optimal solution for the problem if and only if there exist

/l1,/l2€9?+:/ll-A2=0 such that for λ = λι-λ2 the following hold:

x* = 0 , i e Nq = {/e N: λ > 2(yi -/· j)}

=(.V<-*'·*)" » ={/eN:2[(yi-i-s)-Xlefi(i))<A<2(yi-i-s)}

x;=Xlefl(i) , ieN}* ={/EA:A<2((y(.-ri5)-^(0)}

Proof

Necessity

Let x* = (x*) be the optimal solution.

Let A, > 0 and A, > 0

From the KKT conditions we have

Yjxi-U-S = 6
i

L-S~Yjxi =0
><=>(/ = L Not feasible because U > L

We conclude that an optimal solution of the problem exists if and only if \ ^ = 0

54
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

We have the following cases:

Case 1. y1*,. =LS
i

so Aj - 0 and > 0 that is λ -

The KKT conditions take the following form

-2(O’,-'·*)-*,)-Λ+ν, iO

v,SM*

i

^x,=LS
i

0<Xi<Xlefl(i)

a) For jc* = 0 we have that vi = 0

So -2(yi-i-s)>A2 = -λ

<=> λ > 2 (>v - i · 5·)

b) For x] = Xlefl(i) we have that v(. > 0

So -2((>v -1 · j) - 2f/e/((0)-λ1-νί<λ7=-λ

55
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

c) For 0 < x] < X,eft{i) we have that v(. = 0

So -2((yl-i-s)-x*) = \ =-λ <=> yi-i-s-x‘
λ
2

λ
<=>*/ =y.-i-s-~

However 0 < x* < X,eft(i)

λ
<=> 0 < y, - i ■ s-—< Xtef (/)

» y, - i ■ s - Xlefi (i) < | < yt - i -s

Xleft (i))<A<2(y,-i-s)

Case 2. ^x; = U S

So \ > 0 and = 0 that is λ = \

The KKT conditions take the following form

-2(0',-*'·ί)-*,) + Λ+ν,

ν(·(χ,-*,)=0 ν,€«*

56
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Σχι^υ-s
i

Σ*<>Ls
i

0<Xi<X,eft(i)

a) For x* = 0 we have that v(. = 0

So —2(y. -i s) > -A, = -A

<=> A > 2(>>(-/ s)

b) For x* = X,efl{i) we have that v. > 0

So -2((y, - s)- jrw(0) = -A - v, < -Λ, = -Λ

<=> Ί S 2((j>, — / · j)—

c) For 0 < x- < Xleft(i) we have that v(. = 0

So -2((^, - i ■ s) - x*) = -A, = -A <=> yt - i ■ s - x*
A
2

»x. =y.-i-s--

However 0 < x* < X,eft{i)

57
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

λ
»0 <y,-i-s--<Xlefl(i)

v ... λ^yi-i-s-Xleft{i)<-<y,-i-s

«2 (y,-i-s- Xleft (/')) <λ< 2(yi-i-s)

Case 3. L S <^x,. <[/·5
i

So λ, = 0 and = 0 that is λ = 0

The KKT conditions take the following form

-2((y,-i s)-xl) + v, >0

v,e9i*

Y,Xi^Us
i

I

0 < x,. < Xleft (i)

a) For x* = 0 we have that v(. = 0

So -2 (_y. - / · s) > 0 = -λ

58
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

<=> λ > 2(y,. -i-s)

b) For x* = X,eft{i) we have that v,. > 0

So -2((y, -i-s)-X,efl(0) = -v, <0 = -λ

ο λ <2((y,-i-s)-Xlefl(i))

c) For 0 < x* < Xleft(i) we have that v(. = 0

So -2((yj-i-s)-x*) = 0 = -λ o yt -i-s-x*
λ
2

λ
ox,. = y.-i-s--

However 0 < x* < Xkft{i)

λ
<*0<yi-i-s--<Xleft(i)

oyi-i-s-Xlef{i)<-<yi-i-s

<=> 2 (yt ~ i ■ s - Xlefl (/)) < A < 2 (y, - i ■ s)

59
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Sufficiency

On the contrary let x* satisfy the following

x* = 0 , i € Nq = {/ 6 N: A > 2(yi-i-s)}

x* =(y,-/-5)-y , ieN* ={ieN:2((yi-i-s)-Xlefl(i))<A<2(yi-i-sj}

xj = X*(0 ’ ie ΝχΙφ = {/ e W: A < 2((y, - i-s)-Xleft(/))}

where A = A, -A^with:λι·λ2=0

We have the following cases

Case 1. A, = 0 and > 0 Then A = -Aj < 0

Moreover for i e Νλ 2 (y,· - / · s) - x* = A < 0

Let

(a) A = 2(y,--i-s)-x* taken from the solution of the equation

60
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

(b) U{ = v, = 0 για i e Νλ

(c) ut = 2(yi-i-s)-X>0 vi = Ο για i e N(

(d) u. = 0 V(= 2 ((y, -i-s)- Xleft (i))-A>0 για i e

We can see that the KKT conditions are satisfied.

Case 2. A] > 0 and A2 =0 Then λ - λ, > 0

Moreover for ie Νλ 2 (y,- i ■ s) - x* = λ > 0

Let

(a) λ = 2(y: - i-s)-x* taken from the solution of the equation

(b) m. = v, = 0 για i e Νλ

(c) u,: = 2(yi -is)-A>0 v; =0 για i e N*

(d) m. =0 v, =2 ((y, -i-s)- Xlefl (ί))-λ> 0 για i e

We can see that the KKT conditions are satisfied.

61
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Case 3. Λ, = 0 and ^ = 0 Then λ = 0

Moreover for i e Νλ=0 2(yi-i-s)-x* = λ = 0

Let

(a) λ = 2 (y, -/'· s)-x* = 0

(b) II II o για i € Νλ

(c) m, = 2(y(-i s)-λ > 0 v,=0 για i e N*'

(d) _S II 0 II to ST 1 -Χ„,(ί))-λ>0 για i e Νί:1 Al

The KKT conditions are satisfied once again.

Remarks

Global optimality is proven by convexity. In detail we can see that the

Hessian V2 (/(*)) of our objective function is positive semidefmite, thus our objective

function is convex and by [43] our optimal solution is global minimum..

We can see that the Lagrange multipliers \ and/L, take zero value only if the

Knapsack constraint ^x. equals the value U -S or L S respectively. In all other cases we
i

shall have λ]=λ2 = 0 and as a result/l = 0. This remark leads to the conclusion that if an

optimal solution exists between the limits ^ xt =L ■ S and ^ =i/ S then λ = 0.

62
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

x* — 0 ,ie Nt=0 ={ieN: 0 > 2(y;-i-s)}

χ! =(η~ί·ή , /6^=0 = {/e ^:2((^-/·ί)-^Μ(θ)<0<2(^-ι··ί)}

=xkf,(t) . /e^={/eJV:0£2((j.,-/-j)-jrw(i))}

By noting that (>».-/·j) is the original deviation from the line, it follows that for

VieN having original deviation (yi-i · s)> Xleft(i)we shall have an optimal value

x* = X,eft(i) For the rest we shall have an optimal value xj = (y, - i-s) equal to the original

deviation from the line or optimal value x* = 0 for Vi e N having negative original deviation

from the line. As a result, if the solution lies between L ■ S and U ■ S then it must either be on

the line or at the point where all** = Xkf,{i), if this happens before reaching the line.

4.3 Solution Algorithm

We present the following algorithm for the solution of the problem. 1 2 3

1 Sum = xt - 0 *(. = 0Vie N
i

2 decision = not final

3 While decision = not final {

63
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

4

5

6

7

8

9

10

11

12

13

14

15

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

If not all x =X,efl(i) {

Find diff = Max{(y: - is-x,) where ie N :x:-Xleft(/) < 0j

Γ / . where i e N: x, - X.ft (/) < Ol
diff2 = Maxj(y, -/·s-*,) ^ j

and all x. at diff

If diff>0{

If not US{

find diff = min diff ~ diff2, diff,\, Xlefl - x,,
US - Sum

where 7^(0 =
J1 (U -i-s)-xi) = diff andx, -Xlefl(/) < o]

otherwise

update Sum = Sum + diff ■ ^ Idiff (i)

xi = xt + diff for all x; at diff

}

else if US -> decision=optimal

else if diff < 0 {

If not LS{

find diff = min diff -diff2,Xleft -x„
LS - Sum

where 7^(0 =
_ f 1 ((>>, - i ■ ή ~ x,) = diff and x, - Xleft (/) < o]

otherwise

64
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

16 update Sum = Sum + diff · Id.ff (/)

X; = xi + diff for all xt at diff

17

18

19

20

21

22

23

24 }

else if LS —» decision=optimal

else if all xt = Xleft(i) {

if LS < Sum < US —> decision=optimal

else ->decision=infeasible

The way this algorithm takes action is similar to the way we use the sweep. In detail

the algorithm acts on those points only that have not yet met the limit xt < Xleft (;).

We begin from the point with the maximum deviation from the line and keep going

down like sweeping until we reach the one having the second maximum deviation from the

line, concurrently increasing the value of by the amount of the difference of those two
i

deviations. At this point we must note that in case two or more points have the same

maximum deviation then the algorithm acts on these points as a group by altering the

correspondent xt ’s by the same amount equal to the difference between the two largest

deviations and by increasing the value of^x, by the amount of this multiplied by the number
i

of points on which the algorithm takes action. At the end of each iteration we update both

65
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

then’s and the Σx. and calculate from scratch the difference between the two largest
i

deviations, always ensuring that no basic restriction of the problem is being violated.

As a result the algorithm sets zero value to the points it has not yet reached when

terminated because of some constraint violation, value Xkft{i) to the points that have already

reached their limit value and value x] = (y, - i-s)-d to the rest points where d is the final

distance from the line of the algorithm terminating point. This distance may be either positive

when the algorithm stops above the line or negative when the algorithm stops below the line.

The algorithm terminates either at the optimum solution if one exists or with no feasible

solution.

We use the following notation

Zero-Line The /(z) = i■ s Line where x, = (y\ -i-s)

L-Line The parallel to the Zero-Line where ^x(. =L · S

U-Line

Xleft-Line

The parallel to the Zero-Line where ^x; =U ■ S
i

The parallel to the Zero-Line where

=ΣΧ^(0 aIld Xi = Xleft (0

4.3.1 Proof of optimality
Corollary: The algorithm terminates at the optimum solution if one exists.

Proof

Given that a feasible solution exists we have that L S < ^ Xleft

66
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

if Σχ» <U S then L S <^Xleft <U S and we examine all possible orderings of
i I

the constraints.

Casel Zero —>L—► Xleft —>U Optimal Solution L

Figure 4.1 Constraints ordering in Case 1

λ
Let — = Distance between L and the line. This distance is negative because L-Line is

below the Zero-Line .We also have that \ =0and X, >0 because the algorithm has stopped

on L-Line so λ = λι-λ2= -λ^ < 0

We have variables of three kinds

(a) x* = 0 For the points that have not been reached

λ— >-i-s) is valid, since the points have not been reached that means their initial

deviation is lower than the algorithm terminating point.

67
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

λ
(b) x* =(y.-i-s)For the points that lie on L.

λ
{{yl-i-s)-Xiefi{i))<-<{yl -i s) is valid since the points lie on L that is between

Xleft and their initial deviation.

(c) x* = X,eM) For the points we left behind because they have reached their upper

bound.

λ
— < ((_y, - / · s) -Xleft (/')) is valid because the algorithm has continued downwards and

has terminated at L.

Since λΛ·λ1=0 our solution fulfils the requirements of the Theorem 4.1 thus is

optimal.

Case2 L—► Zero -^Xleft —>U Optimal Solution Zero-Line

Figure 4.2 Constraints ordering in Case 2

68
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

We have that \ - 0 and ^ = 0 because the algorithm terminates between L-Line and

U-Line so λ = 0

We have variables of three kinds

(a) x] = 0 For the points that have not been reached

0>(_yi. -i-s) is valid, since the points have not been reached that means their initial

deviation is lower than the Zero-Line.

(b) x] = (y, - i-s) For the points that lie on the Zero-Line.

(^ι-ί·ή-χι<Α 0)<o <(_y(- i-s) is valid since the points lie on the Zero-Line that

is between Xleft and their initial deviation.

(c) x] = X,M) For the points we left behind because they have reached their upper

bound.

0<((>v -i■ s)-Xleft{i)) is valid because the algorithm has continued downwards and

has terminated at the Zero-Line.

Since λ,-λ2 =0 our solution fulfills the requirements of the Theorem 4.1 thus is

optimal.

69
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Case3 L—» Xleft —> Zero —>U Optimal Solution Xleft

Figure 4.3 Constraints ordering in Case 3

We have that \ = 0 and =0 because the algorithm terminates between L-Line and

U-Line so λ - 0

We have only one kind of variables

x* = Xleft(i) Because all points have reached their upper bound since the Algorithm

has terminated on Xleft.

0<((y, - is valid since the Algorithm has terminated on Xleft before

reaching the Zero-Line.

Since λι·λ2= 0 our solution fulfills the requirements of the Theorem 4.1 thus is

optimal.

70
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Case4 L—> Xleft —>U—>· Zero Optimal Solution Xleft

Figure 4.4 Constraints ordering in Case 4

We have that \ =0and/l2 =0 because the algorithm terminates between L-Line and U-

Line so λ - 0

We have only one kind of variables

x] = Xleft (i) Because all points have reached their upper bound since the Algorithm

has terminated on Xleft.

0<-i-s)-X,e/i(i)) is valid since the Algorithm has terminated on Xleft before

reaching the Zero-Line.

Since λι·λ2 = 0 our solution fulfills the requirements of the Theorem 4.1 thus is

optimal.

λ
Let — = Distance between U-Line and the Zero-Line. This distance is positive because U-

Line is above the Zero-Line. We also have that \ > 0 and = 0 because the algorithm has

stopped on U-Line soZ = /l1-/l2=/l1>0

71
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

We have variables of three kinds

(a) x* = 0 For the points that have not been reached

λ / \
— > {y;-i-s) is valid, since the points have not been reached that means their initial

deviation is lower than the algorithm terminating point.

λ
(b) x] = (y, - / · s) -— For the points that lie on U.

b-*w(9)<f <(y: - i-s) is valid since the points lie on U, that is between

Xleft and their initial deviation.

(c) x* = Xlefi(i) For the points we left behind because they have reached their upper

bound.

?)-X,efl(i)) is valid because the algorithm has continued downwards and

has terminated at U.

Since \ = 0 our solution fulfills the requirements of the Theorem 4.1 thus is

optimal.

2) If ΣΧ,φ^υ-S then L S<U S < ^ Xlefi and we examine all possible orderings of
i i

the constraints.

Zero —>L —»U—> Xleft Optimal Solution L

L—> Zero —>U—>Xleft Optimal Solution Zero

L —>U —>Zero —> Xleft Optimal Solution U

L —>U—> Xleft—> Zero Optimal Solution U

The proof can be done with the same reasoning.

72
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

4.3.2 Algorithm Complexity

1 Sum = Σχί “ 0 xt=0\/ieN
i

2 decision = not final

3 While decision = not final {

4 If not all xi = Xleft (i) {

6

7

8

Find cliffy = Mxc{(y, - is-x,) where ieN:xi- Xleft (i) < 0 j

i where ieN:xi-Xl f (i) < Ol
and diff = Max -j (y, - is-x;)

and all xt at diff

If diff> 0 {

If not US{

and (yi-i-s-xi)*diff

find diff = min diff ~ diff2, diff,, Xlefl - x,,
US - Sum

0(1)

0(n)

0{n)

0(1)

0(1)

where 7^(0 =

Σ V')
i

i1 ((y,-i-s)-x,) = diff andx, -X,eft(/) <0j

0(«)

0 otherwise

update Sum = Sum + diff ■ ^ Idiff (/)

xt = + diff for all xi at diff

0(h)

10 }

11 else if US —» decision=optimal 0(1)

12 }

13 else if diff < 0 { 0(1)

14 If not LS{ 0(1)

73
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

15

find diff = min diff-diff, Xleft -x„
LS - Sum

Iwo

16

17

18

19

20

21

22

23

24 }

where (Uand*,-X,,//)<oj
[0 otherwise

update Sum - Sum + diff · ^ Idiff (i)
i

xt = xt + diff for all xt at diff

}

else if LS —» decision=optimal

}

}

else if all xt = Xlefl(i) {

if LS < Sum < US ->■ decision^optimal

else -» decision=infeasible

0(n)

0(n)

0(1)

0(n)

0(1)

0(1)

Each while loop is 0(n) since each command is worst case 0(n) and all commands are executed

in serial.

In Worst Case line 8 will be executed n+3 times

1
1
n

1

for diff -diff

for diff

fir Xleft ~x,

Us - Sum
for

Σ'
ieNdlff

>(n + 3) = 0(n)

In Worst Case line 15 will be executed n+2 times

74
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

1 for diffx-diff2

n for Xleft - x,
Ls - Sum

ieNdlff

>{n + 2) = 0(n)

Finally lines 11, 18, 22 and 23 will be executed no more than once (since after their execution

causes the termination of the algorithm).Thus the while loop is 0{n), and the algorithm worst

case complexity is 0(n2).

Note: No sorting is needed for computing the maximum values, but we need to calculate diffx

and diff2 at each iteration.

4.4 General Form

4.4.1. General Form Formulation

Table 4.1 presents the correspondence of the general form and the special case introduced in

Section 3.6.2 and Table 4.2 utilizes the transformations needed to transfer between these

forms.

Special Case General Form

Mm Ζ=Σ((τ, - i·s)~x,)2
i

Min z=7(x, ')2
i

s.t. Σχ^υ-S
i

C
o IV

U > L
i

£v<t/ u>L
i

Table 4.1 Transformation between general form and special case

75
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Correspondence

0<x, < X,efl(i) ΙΛ ΙΛ

xi χι'=(η-ΐ·ή-*ι

Σ*.
i i i i

0 b,=(y,-i-s)

LS
i

U-S £=Y(y~ls)-us
i

Table 4.2 Term correspondence between general form and special case

It is obvious that the solution xi' s obtained by solving the general form problem can be used

to render the solution to our specialized problem thus

T; -xi = xi '+i-s

4.4.2 Optimality Theorem

Theorem 4.2 (Characterization of the optimal solution of the Problem).

A feasible solution x* =(x*)is optimal solution of the problem if and only if there exist

Λ,, Aj e 9C : 4 · /^ = 0 such as for λ = λι-λ2 the following hold:

76
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

x]=bt , ieNf ={ieN:X> 2b]

x* = | , i e Νλ = {/ e N :2ai < λ < 2b:}

x- = a, , i e Ni -{i e N: λ< 2b,}l l Alefl l l)

4.4.3 Solution Algorithm

We present the form of the algorithm in the general case

1 Sum = y xi = 'J'jbj x,. = fyVi e N
i i

2 decision = not final

3 While decision = not final {

4 If not all x(. = at {

5 Find diff^ = Max { x.

and diff2 = Max |x;

and all x,. at diff^

6 If diffx > 0 {

7 If not L{

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

where / e ,/V: x, - a, > 0}

x; where i e N: x(- at > 0
and x. Φ diffx

77
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

find diff = min diffx-diff2tdiffXixt-an
Sum-L

Σ7^(ο

where 7^(0 =
f 1 x,. = diff, 1
[0 otherwise \

update Sum = Sum - diff ■ ^ I diff (0

x. = xt - diff for all xt at diff

}

else if L -> decision=optimal

}

else if diff < 0 {

If not U {

find diff = min diff -diff ,x,-a„
Sum-U

Σνο

where Idiff (i) = [1 *= diff 1
10 otherwise

update Sum = Sum - diff ■ Idjff (i)

x= x(. - diff for all xi at diff

}

else if U —> decision=optimal

}

}

else if all xt = at {

78
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

22 if L<Sum<U —» decision=optimal

23 else —»decision=infeasible

24 }

4.5 Modifying Existing Solution Techniques to fit our needs

Looking into the characterization theorem in more detail one can see that in every case

the optimal solution satisfies one or more of the following Knapsack constraints.

Σχι=υ
i

representing the U-Line or

Σχ.=ζ
i

representing the L-line or

Σ*;=Σα.·i i
representing the Xleft-line or

Σχι = Σ ai
i <:a,>0

representing the Zero-line.

It is obvious that our problem can be separated in four different Quadratic Knapsack

Problems of the traditional formulation. Solving these problems separately using 0(n)

algorithm already proposed by P. Brucker [3] or Pardalos and N. Kovoor [13] and then

choosing the best optimal solution of the four yields the desirable optimal solution to the

problem we study.

Examining all possible orderings of the constraints we can summarize on the

following results.

79
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Casel Zero--»L—> Xleft·

Case2 L—» Zero—» Xleft-

Case3 L—» Xleft—» Zero-

Case4 L—» Xleft—» U-»

Case5 Zero—»L—» U—»

Case6 L—» Zero—» U—>

Case7 L—» U—» Zero-

Case8 L—» Xleft

U Optimal Solution L

U Optimal Solution Zero-Line

U Optimal Solution Xleft

Zero Optimal Solution Xleft

Xleft Optimal Solution L

Xleft Optimal Solution Zero

Xleft Optimal Solution U

Zero Optimal Solution U

Table 4.3 All possible orderings of the constraints

We can easily see that the optimal solution always lies on the second-ordered

constraint met that is on the constraint with the second largest value. Thus there is no need to

solve four different Quadratic problems but only one after doing a simple ordering of the

constraints’ target values. (We hereby note that in the special case the second-ordered

constraint is met on the constraint with the second smallest value). Thus by applying Pardalos

and Kovoor [13] algorithm we get a O(n) solution algorithm. In fact the algorithm uses binary

search combined with a 0{n) median search implementation which yields 0{n log n).

However in terms of computational time we have 0(h). Since Ω(η) is an obvious lower

bound for the problem complexity our proposed algorithm is Θ(η) and thus is optimal.

80
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 4 Box Constrained Quadratic Knapsack Problem with Upper Bounds

Although our first method has worst-case performance of θ(η2) it is of interest

because of its efficiency in practice and its simplicity and ease of implementation. One feature

of our algorithm is that it requires no sorting to be performed, nor does it require either

randomized or exact ordinal statistics to be computed. Cases that consist of many variables

can be met with the modified 0{n) algorithm which gives optimal results in terms of

computational time.

4.6 Conclusions

In this chapter we have focused on the special case of Quadratic Knapsack Problems,

where deviations from the target value are allowed for the Knapsack constraint. We have used

the KKT Conditions in order to characterize the optimal solution to the problem. After that we

have proven global optimality of the solution. We then introduced a new algorithm for the

solution of the problem and focused on optimality and complexity issues.

Throughout the chapter we followed the formulation of the Aircraft-Maintenance

Problem presented in Section 3.6 which gave rise to investigating this special kind of

Quadratic Knapsack Problem. Later on we gave the more general form of this special type of

Problem and supplied both the optimal solution characterization theorem and the solution

algorithm suited for the general case. In the end of the chapter we showed how known

techniques for the standard Quadratic Knapsack formulation can be directly applied in case

the number of variables grows too large.

81
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

Chapter 5 Computational experience and numerical examples.

5.1 Introduction

In this chapter, we present results of some numerical experiments obtained by

applying the algorithms suggested in the previous chapter to problems under consideration.

The algorithms have been implemented in the C programming language and one can find this

implementation in Appendix A. AMPL can also be used for solving the problem and thus

computational times are supplied for comparison. AMPL modeling code can be found in

Appendix B We also present some numerical examples so that the approach of the previous

chapter can be made clear.

5.2 Computational Results

The computations were performed on an Intel Celeron 335 Prescott Processor

2.8Ghz/lGB DDR SDRAM IBM PC compatible. Each Problem was run 30 times. Parameters

were randomly generated between regions that have physical meaning. Notation used is taken

from Section 3.6.Parameters L and U were randomly chosen in each running so that the

Algorithm randomly chooses the binding constraint. We first comment on the results of the

(9 (A2) algorithm.

When A <400 the run time of the algorithm is so small, that the timer does not

recognize the corresponding value from its computer zero. In such cases the timer displays 0

seconds. As we can observe the (average number of iterations) is nearly equal to the number

82
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

of variables for large N. Computational time is proportional to N2 besides the algorithm’s

complexity is O^N2).

*«=300 5 = 0,75·^
Number of
variables

400 2000 4000 20000 40000

Average
Number of
Iterations

415 2106 4176 20899 41876

Average run
time
(seconds)

0.015 0.125 0.468 11.5 45.75

X = 3000max S = 0,75-X„
Number of
variables

400 2000 4000 20000 40000

Average
Number of
Iterations

512 2556 5160 25517 51151

Average run
time
(seconds)

0.015 0.092 0.381 9.294 37.186

*« =30000 5 = 0,75·^
Number of
variables

400 2000 4000 20000 40000

Average
Number of
Iterations

537 2753 5559 27669 55196

Average run
time
(seconds)

0 0.074 0.279 6.991 27.6

Table 5.1 Computational Results for different values of Xnm

83
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

Different values of-------do not seem to alter results thus we can conclude that the algorithms
max

efficiency is independent of -------. L, U were on purpose randomly selected because we
...

wanted the selection of the tight constraint to be made randomly.

*«=300 5 = 0,75·^
Number of
variables

400 2000 4000 20000 40000

Average
Number of
Iterations

415 2106 4176 20899 41876

Average run
time
(seconds)

0.015 0.343 1.359 34.265 137.75

*™=300 5 = *™
Number of
variables

400 2000 4000 20000 40000

Average
Number of
Iterations

415 2106 4176 20899 41875

Average run
time
(seconds)

0.015 0.343 1.359 34.265 137.765

^=300 5 = 125^
Number of
variables

400 2000 4000 20000 40000

Average
Number of
Iterations

415 2106 4176 20899 41876

Average run
time
(seconds)

0.015 0.343 1.359 34.265 137.703

Table 5.2 Computational Results for different values of
S

y
max

84
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

We now compare the sweep algorithm versus 0(«) Pardalos and Kovoor

modified algorithm and AMPL package.

Average run time (seconds)

Number of

variables

400 2000 4000 20000 40000 80000

SWEEP 0.016 0.112 0.397 8.728 37.186 145.744

PARDALOS 0 0 0 0.015 0.032 0.047

AMPL 0.24 0.52 1.07 2.14 4,29 8.51

Average Number of Iterations

Number of

variables

400 2000 4000 20000 40000 80000

SWEEP 415 2106 4176 20899 41875 81982

PARDALOS 11 13 14 17 17 17

AMPL 10 11 12 14 15 17

Table 5.3 Algorithms Comparison Results

The θ{η) Pardalos and Kovoor modified algorithm is completely dominant in terms

of execution time. AMPL also produces excellent results. The sweep algorithm has the

worst of the three execution times, especially when the number of the variables grows large.

However all running times are fairly sensible meaning that in spite of being the slowest

solution technique it can still be used in many real-life problems with satisfactory results.

85
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

5.3 Numerical Examples

We provide below the solution of two simple particular problems obtained by using

the solution approach suggested in this thesis. We revise the model formulation of the Aircraft

maintenance application.

5.3.1 Numerical Example 1

Parameter values:

S = 200 : required total flight time during planning horizon

y. : residual flight time of aircraft i at the beginning of planning horizon,

^max =300 : maximum time an aircraft can fly during planning horizon ,

Ymin = 0· 1 : minimum residual flight time of an available aircraft,

L = 0,95 , U = 1,05 : real numbers denoting the maximum deviation from the value of S

that can be tolerated (U > L),

s = = 37,5 : the slope of the deviation line where
N 8

^max = 300 · maximum residual flight time of an available aircraft,

N - 8 : total numbers of aircrafts available for flight

Results

yi = 90 s = 37.5
yi = 100 2s = 75

86
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

Y3= 133 3s = 112.5oIT)
r iII£ 4s = 150

y5 = 218 5s = 187.5
y6 = 250 6s = 225
Yi = 263 7s = 262.5
yg= 300 8s = 300

Iteration 1:
diffl - diff2 = 22
diffl - line == 52.5
Xmax - xi = 50
Ls-Σχϊ = 210

xi = 22 II O
N oo

X K> II o ooII£

oIIX mII£

X II o y4= 150

X Ln II o y5 = 218
X6=0 y6 = 250
x7= 0 y7 = 263
Xg= 0

Σχΐ = 22
y8 = 300

Iteration 2:
diffl - diff2 - 5.5
diffl - line = 30.5
Xmax - xi - 28
(Ls - Σχΐ)/2 = (210 - 22)12 = 188/2 - 94

Xi = 27.5 yi = 62.5
x2 = 0 y2= 100
X3 = 0 y3 = 133
x4 = 0 y4 - 150
X5=5.5 y5 = 212.5
X6 = 0 y6 = 250
x7 = 0 y7 = 263
x8 = 0 y8 = 300
Σχϊ = 33

Iteration 3:
diffl - diff2 = 4.5
diffl - line = 25
Xmax - xi = 22.5
(Ls - Σχϊ)/4 = (210 - 33)/4 = 177/4 = 44.25

xi = 32 yi = 58
x2 = 4.5 y2= 95.5
X3 = 0 y3 = 133

87
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

X4 = 0 y4=150
x5=10 y5 = 208
x6 = 4.5 y6 = 245.5
X7 = 0 y7 = 263
xg=0 yg = 300
Σχί = 51

Iteration 4:
diffl - diff2 = 20
diffl - line = 20.5
Xmax - xi = 18
(Ls - Σχΐ)/5 = (210 - 51)/5 = 159/5 = 31.8

xi = 50 yi = 40
x2 = 22.5 y2= 77.5
x3= 18 y3 = 115
X4 = 0 y4 = 150
X5 = 28 y5 = 190
x6= 22.5 y6 = 227.5
x7 = 0 y 7 = 263
x8=0 yg = 300
Σχί = 141

Iteration 5:
diffl - diffi = 2
diffl - line = 2.5
Xmax - xi = 22
(Ls - Σχϊ)/4 = (210 - 141)/4 = 69/4 =17.25

xi = 50 yi = 40
x2 = 24.5 y2= 75.5
x3 = 20 y3 = 113
x4 = 0 y4 = 150
X5=30 y5 = 188
x6= 24.5 y6 = 225.5
X7 = 0 y7 = 263
x8 = 0 y8 = 300
Σχί=149

Iteration 6:
diffl - diff2 = 0.5
diffl - line = 0.5
Xmax - xi = 20
(Ls - Σχϊ)/5 = (210 - 149)/5 = 61/5 = 12.2

xi = 50 yi = 40
x2 = 25 y2= 75
x3 = 20.5 y3 = 112.5

88
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

X4= 0
X5 = 30.5
Χό=25
X7 — 0.5
X8=0

Σχΐ = 151.5

Iteration 7:

y4 = 150
y5 = 187.5
y6 = 225
y7 - 262.5
y8 = 300

diffl - diff2 = 0 - (-00) = +00
Xmax -xi = 19.5
(Us - Σχΐ)/7 = (190 - 151.5)/7 = 38.5/7 - 5.5

Xi = 50
x2= 30.5
X3 = 26
X4= 5.5
x5 = 36
X6 = 30.5
x7 = 6
x8= 5.5
Σχΐ= 190

optimal

yi = 40
y2= 69.5
y3 -107
y4 = 144.5
y5 = 182
y6 = 219.5
yy = 257
y8 = 294.5

5.3.2 Numerical Example 2

Parameter values:

5 = 200 : required total flight time during planning horizon

yt : residual flight time of aircraft i at the beginning of planning horizon,

X =300max : maximum time an aircraft can fly during planning horizon ,

Y =0.1min : minimum residual flight time of an available aircraft,

L = 0,45, U = 1,05 : real numbers denoting the maximum deviation from the value of S

that can be tolerated (U > L),

89
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

, = ^max = 300
N 8

37,5 : the slope of the deviation line where

^max = : maximum residual flight time of an available aircraft,

N = 8 : total numbers of aircrafts available for flight

Results

y, = 90 s = 37.5
y2 = 100 2s = 75
y3= 133 3s = 112.5
y4 = 150 4s = 150
y5 = 218 5s = 187.5
y6 = 250 6s = 225
y7 = 263 7s = 262.5
y8 = 300 8s = 300

Iteration 1:
diffl - dif£2 = 22
diffl - line == 52.5
Xmax - xi = 50
Ls - Σχΐ = 90

xi = 22 yi = 68
x2 = 0 y2= 100
X3=0 y3 = 133
X4=0 y4 = 150
X5 = 0 y5 = 218
X6 = 0 y6 = 250
X7 = 0 y7 = 263
x8=0 y8 = 300
Σχΐ = 22

Iteration 2:
diffl - diff2 = 5.5
diffl - line = 30.5
Xmax - xi = 28
(Ls - Σχϊ)/2 = (210 - 22)12 = 188/2 = 34

xi = 27.5 yi = 62.5
x2 = 0 y 2= 100
X3 = 0 y3 = 133
X4 = 0 y4 = 150
X5=5.5 y5 = 212.5

90
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

X6=0 y6 = 250
x7= 0 y7 = 263
xs = 0 ye = 300
Σχΐ = 33

Iteration 3:
diffl - diff2 = 4.5
diffl - line = 25
Xmax - xi = 22.5
(Ls - Σχΐ)/4 = (210 - 33)/4 - 177/4 - 14.25

xi = 32 yi = 58
x2 = 4.5 y2=95.5
x3~ 0 y3 = 133
x4 = 0 y4 = 150
x5=10 y5 = 208
x6 = 4.5 y6 = 245.5
x7 = 0 y7 = 263
x8=0 y8 = 300
Σχΐ = 51

Iteration 4:
diffl - diff2 = 20
diffl - line = 20.5
Xmax - xi = 18
(Ls - Σχΐ)/5 = (210 - 51)/5 = 159/5 = 7.8

xi = 39.8 yi = 50.2
x2 = 12.3 y2= 87.7
x3 = 7.8 y3 = 125.2
x4 = 0 y4=150
X5= 17.8 y5 = 200.2
x6=12.3 y6 = 237.7
x7 = 0 y7 = 263
x8=0 ys = 300
Σχΐ = 90

Iteration 5:
diffl - diff2 = 12
diffl - line = 12.7
Xmax - xi = 10.2
(US - Σχΐ)/5 = (210 - 90)/5 = 120/5 = 24

oIIX o·**II

x2 = 22.5 y2= 77.5
x3= 18 IIC

*·»oIIX y4= 150
X5 = 28 y5 = 190

91
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

x6 = 22.5 y6 = 227.5
x7= 0 y7 = 263
xs = 0 y8 = 300
Σχϊ - 141

Iteration 6:
diffl - diff2 = 2
diffl - line = 2.5
Xmax - xi = 22
(Ls - Σχΐ)/5 = (210 - 141)/4 = 69/5 = 17.25

xi = 50 yi = 40
x2 = 24.5 y2= 75.5
X3- 20 y3 = 113
X4 = 0 y4 = 150
x5=30 y5 = 188
x6 = 24.5 y6 = 225.5
x7 = 0 y7 = 263
xs = 0 y8 = 300
Σχϊ = 149

Iteration 7:
diffl - diff2 = 0.5
diffl - line = 0.5
Xmax - xi = 20
(Us - Σχΐ)/7 = (210 - 149)/5 = 61/5 = 12.2

X 11 o 0̂4-11>Z

x2= 25 y2= 75
X3-20.5 y3 = 112.5
X4= 0 £ 11 C

/ϊ O

X5 = 30.5 y5 = 187.5
x6 = 25 y6 = 225
x7 = 0.5 y7 = 262.5
X8=0 y8 = 300
Σχϊ = 151.5

optimal

5.4 Conclusions

In this chapter, we presented results of some numerical experiments obtained by

applying the algorithm suggested in the previous chapter to problems under consideration.

Although the algorithm has complexity instances of 40000 variables have been solved

92
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 5 Computational Experience and numerical examples

in a relatively sensible computational time. Its easy implementation makes it suitable for

relatively small number of variables. Useful remarks have been made regarding sensitivity

analysis. The C programming language implementation can be found in Appendix A. The

AMPL modeling file can be found in Appendix B. The numerical examples presented at the

end of the Chapter help so as the approach of the previous chapter can be made clear.

93
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 6 Concluding Remarks

Chapter 6 Concluding Remarks

In this thesis, we studied Quadratic Knapsack problems where bound constraints are

directly imposed on the continuous decision variables. These problems belong to the family of

Quadratic Programming which is a major subsection of Nonlinear Optimization. The addition

of Knapsack constraint on Quadratic Programming problems is shown to have numerous

applications, including the least distance problem, Quadratic Programming defined on the

convex hull of a set of points, and the maximum clique problem.

Moreover important fields of study that use Quadratic Knapsack as core formulation

have been being presented. These include the Optimal Portfolio Selection, Quadratic

Transportation, Multi-commodity Network Flows, Matrix Balancing problems and Aircraft

Maintenance

Traditional approaches for accommodating such Quadratic Knapsack constraints have

been proposed and analyzed for the case of a single tight-bounded Knapsack constraint. We

have introduced the case where deviation from the target value of the Knapsack constraint is

allowed.

The main contribution of the research reported in this work is that we have developed

a new exact algorithm for a special class of Continuous Quadratic Knapsack Problems having

reasonable solution times for nearly all instances encountered in practice, despite having

Quadratic time bounds for a number of highly contrived problem instances.We have given

proof of the optimality of the algorithm, implemented it in C programming language and gave

numerical results. We also described a Quadratic Knapsack framework for the formulation,

analysis and computation of solutions to a specific problem of military-aircraft maintenance.

94
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Chapter 6 Concluding Remarks

We have also proposed modifications of existing algorithms so as they can deal with our

specialized problem. Computational results on a variety of test problems have been presented

showing that in spite of being θ[η2) the algorithm remains appealing for problems with a

reasonable number of variables.

Since Ω(π) is the lower bound for the complexity of every optimal solution algorithm

and we have already presented an 0[n-\ogn) implementation that takes O(n)computational

time, it is of great interest whether a straightforward approach can be used to render an 0{n)

algorithm. Besides, application of the results of this research on integer programming can also

be a topic of further research. In detail the exact algorithms thoroughly presented in this thesis

could be used to solve continuous relaxations of the integer programming problem, and then

use rounding schemes or branch-and-bound techniques to find the optimal integral solution.

95
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

Appendix A C Implementation of the Algorithms.

/*---
Comparison of Quadratic Knapsack Exact Solution algorithms
Gavranis Andreas <agavranis@gmail.com> March 2007
This code is part of an implementation for the purposes
of a postgraduate research.

---------------------------------- ----------------------------------- ----------------*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define N 30000
#define LIMIT le-6
#define MAXFLOW le38
#defme SWAP(a,b) { float temp=(a);(a)=(b);(b)=temp; }
#defme MAXLIMIT le32

struct node
{

int index;
int datal;
int data2;
struct node *link;

};

/*--------------------- Functions: ANSI C prototypes------- --------------------- */

float qmedian(float a[], int n);

void swap(float *x,float *y);

void bsortl (float list[], int n);

void pardalos(float x[], float a[], float b[],float d,int n);

float choose_bound(float x[],float b[], float L, float U,int n);

struct node *insert(struct node *p, int valuel,int value2, int count);

void erase (struct node *p);

void fprintnode list (struct node *p);

96
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

mailto:agavranis@gmail.com

Appendix A C Implementation of the Algorithms

void printnode_list (struct node *p);

float minimum(float xl , float x2);

void bsort2(float list[][2], int n);

void readlist(float list[],int n);

float positive_minlist(float list[],struct node *front,int count,int n);

float positive_mindist(float list[][2], struct node *front,int count, int n);

void printlist(float list[],int n);

void printlist2(float list[][2],int nl,int n2);

int xlefl_empty(float list[],int n);

int dist_empty(float dist[][2],float list[],int n);

struct node * next_dist(float xleft[],float dist[][2],int n, struct node *p, int *count, float *diff);

void update (float x[],float xleft[],float dist[][2] ,int n,struct node *front,int count,float xopt);

void print_compare(char *name, int j, float diff, float dist[][2],float Xlefl[],struct node
* front,int count,int n, float L,char* lim);

void print_updated(char *name, float X[],float Xleft[],float Y[],float sum,int n);

void print_fmal(char *name,int n,float Y[],float s);

void print_iterations(char *name,int j);

void solve(float Y[],float Xleft[],int n,float s,float L,float U);

void print_ampl(char *name,int n,float Y[],float Xleft[],float s,float L,float U);

void print_original(char *name,int n,float Y[],float Xleft[],float s,float L,float U,float Xmax);

void print_duration(char *name,long double duration);

float choose_bound(float x[],float a[], float L, float U,int n);

void bsort(float list[], int n);

void pardalos(float x[], float a[], float b[],float d,int n);

float qmedian(float a[], int n);

97
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

/*■ main() */

main()
{

long double start,stop,duration;
int i;
float s,Ymax,Xmax,target,alpha;
float L,U;
float *a;
float *b;
float *x;
float Xleft[N],Xleft_COPY[N];

float Y[N],Y_COPY[N];

/*floatXleft[]={50,50,50,50,50,50,50,50};
float Y[]={90,100,133,150,218,250,263,300};*/

Xmax=300;
Ymax=(float)0.5*Xmax;
alpha=0.25;
s=Xmax/N;
L=(1 -alpha)* Y max;
U=(1+alpha) * Ymax;

for (i=0;i<N;i++) Y[i]=300*((float)rand())/(float) RAND MAX;

for (i=0;i<N;i++) Y_COPY[i]=Y[i];

for (i=0;i<N;i++) Xleft[i]=s*((float)rand())/(float) RAND_MAX;

for (i=0;i<N;i++) Xleft_COPY[i]=Xleff[i];

/************** ppjNp DATA FOR AMPL *****************/

print_ampl("sweep.dat",N,Y,Xleft,s,L,U);

/************** ppjfsj'p ORIGINAL DATA *****************/

print_original("num_sweep.txt",N,Y,Xleft,s,L,U,Xmax);

98
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

j ******* Η****** COUNT EXECUTION TIME *****************/

start=clock();

solve(Y,Xleft,N,s,L,U);

stop=clock();

duration = (long double) (stop-start)/CLOCKS_PER_SEC;

/************** ρρρΝχ FINAL DATA *****************/

print_duration("num_sweep.txt",duration);

printf ("\nSweep Total execution time=%f\n",duration);

for (i=0;i<N;i++) Y[i]=Y_COPY[i];
for (i=0;i<N;i++) Xleft[i]=Xleft_COPY[i];

/************** pRjfsjx ORIGINAL DATA ***** ****** ******/

print_original("num_pardalos.txt",N,Y,Xleft,s,L,U,Xmax);

/******CONVERTING TO GENERAL FORM**********/

b=(float *) malloc (N*sizeof(float));
for (i=0;i<N;i++) b[i]=Y[i]-(i+l)*s;

a=(float *) malloc (N*sizeof(float));
for (i=0;i<N;i++) a[i]=Y[i]-(i+l)*s-Xleft[i];

x=(float *) malloc (N*sizeof(float));
for (i=0;i<N;i++) x[i]=0;

SWAP(L,U);
L=-L;

99
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

U=-U;
for (i=0;i<N;i++) {

L+=(Y[i]-(i+l)*s);
U+=(Y[i]-(i+l)*s);

}

/************* COUNT EXECUTION TIME *****************/

target=choose_bound(x,a, L,U,N);

start=clock();

pardalos(x,a,b,target,N);

stop=clock();

duration = (long double) (stop-start)/CLOCKS_PER_SEC;

/******CONVERTING SOLUTION TO PROPER FORM**********/

for (i=0;i<N;i++) Y[i]=x[i]+(i+l)*s;

Ζ************** PRINT FINAL DATA *****************/

print_final("num_pardalos.txt",N,Y,s);

print_duration("numj3ardalos.txt",duration);

printf ("\nPardalos Total execution time=%f Vn",duration);

/**/

return 0;
}

struct node *insert(struct node *p, int valuel,int value2, int count)
{
if(p=NULL)
{

p=(struct node *)malloc(sizeof(struct node));

100
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

if(p==NULL)
{

printf("Error\n");
exit(O);

}
p-> datal = value 1;
p-> data2 = value2;
p-> index = count;
p-> link = NULL;

}
else

p->link = insert(p->link,valuel,value2,count);/* the while loop replaced by
recursive call */

return (p);
}

void erase (struct node *p)
{

struct node *temp=p;
while(p !=NULL)
{

temp = p;
p = p->link;
free(temp);

}
p=NULL;

}

void fprintnode_list (struct node *p)
{ FILE * fp;

fp=fopen("num_sweep. txt"," a");
fprintf(fp,"\nActing on variables with indexes:");

while (p!= NULL)
{

fprintf(ip,"\n%5d",(p-> datal)+l);

p = p-> link;
}

fprintf(ip,"\n");
fclose(fp);
}

void printnode_list (struct node *p)

101
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

{
printf("The data values in the list are");
while (p!= NULL)
{

printf("\n%d\t",(p-> data 1)+1);
p = p-> link;

}

float minimum(float xl , float x2)
{float value;
value= (xl<x2) ? xl : x2;
return value;
}

void bsort2(float list[][2], int n)
{

int i,j;
for(i=0;i<(n-l);i++)

for(j =0;j <(n-(i+1)) ;j++)
if(list[j][0] < list[j+l][0])

{
swap(&list[j][0],&list[j+l][0]);

swap(&list[j][1],&list[j+l] [1]);
}

void readlist(float list[],int n)
{

int i;
printf("Enter the elements\n");
for(i=0;i<n;i++)

scanf("%f',&list[i]);
}

float positive_minlist(float list[],struct node * front,int count,int n)
{

float minl=M AXFLO W;

struct node *temp2=front;

while (temp2!= NULL)
{
if (list[temp2->datal]>0) mini = min(minl,list[temp2->datal]);
temp2 = temp2-> link;

}
return mini;

102
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

}

float positive_mindist(float list[][2], struct node *front,int count, int n)
{

float mind=M AXFLO W;
struct node *temp2=front;

while (temp2!= NULL)
{
if (Iist[temp2->data2][0]>0) mind = min(mind,list[temp2->data2][0]);

temp2 = temp2-> link;
}

return mind;
}

void printlist(float list[],int n)
{

int i;
for(i=0;i<n;i++)

printf("%3d %f\n",i+l,list[i]);
printf("\n");
}

void printlist2(float list[][2],int nl,int n2)
{

int ij;
for(i=0;i<nl;i++)

{
printf("%3d ”,i+l);
for(j=0;j<n2;j ++) printf("%f\t",list[i][j]);
printf("\n");

}
}

int xleft_empty(float list[],int n)
{int i,result=0;
for (i=0;(i<n)&&(list[i]=0);i++);
result = (i=n) ? 1 : 0 ;
return result;
}

int dist_empty(float dist[][2],float list[],int n)
{int i,result=0;
for (i=0;(i<n)&&((dist[i][0]<=0)||(list[(int)(dist[i][l]-l)]==0));i++);
result = (i=n) ? 1 : 0 ;
return result;
}

103
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

struct node * next_dist(float xleft[],float dist[][2],int n, struct node *p, int *count, float *diff)
{

int i,counter=0;
float val;
p=NULL;

for (i=0;(xleft[(int)(dist[i][l]-l)]==0)&& (i<n);i++);
p=insert(p,((int)dist[i] [1]-1),i,counter+1);
val=dist[i] [0];
counter=l;

for (i=i+l; ((i<n) && ((dist[i][0]==val) || (xleft[(int)(dist[i][l]-l)]=0))) ;i++)
if ((dist[i][0]=val)&&(xleft[(int)(dist[i][1]-1)]>0))
{

p=insert(p,((int)dist[i] [1]-1),i,counter+1);

counter++;
};

*diff=(i==n)? MAXFLOW : (val-dist[i][0]);

*count=counter;
return p;
}

void update (float x[],float xleft[],float dist[][2] ,int n,struct node *front,int count,float xopt)

{
struct node *temp2=front;

while (temp2!= NULL)
{

x[temp2->datal]=x[temp2->datal]+xopt;

xleft[temp2->datal]=xleft[temp2->datal]-xopt;

dist[temp2->data2][0]=dist[temp2->data2][0]-xopt;
temp2 = temp2-> link;
};

}

void print_compare(char *name, int j, float diff, float dist[][2],float Xleft[],struct node
* front,int count,int n, float L,char* lim)
{

FILE *fp;

104
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

fp=fopen(name,"aM);
fprintf(fp,"Iteration %d\n",j);

if (diff>MAXLIMIT) fprintf(fp,"diffl -diff2=+oo\n");
else fprintf(fp,"diffl-diff2=%10.5f;\n",diff);

if (positive_mindist(dist,front,count,n)>MAXLIMIT) fprintf(ip,"diffl-line=+oo\n");
else fprintf(fp,"diffl-

line=%10.5f;\n",positive_mindist(dist,front,count,n));
fprintf(fp,"Xleft(i)-Xi=%10.5f;\n",positive_minlist(Xleft, front, count, n));
φΓίηίί(φ,"(");
fprintf(fp,lim);
fprintf(fp,"-Sxi)/count=%10.5f;\n",L/count);
fprintf(fp,"\n");

fclose(fp);

iprintnode_list(front);

}

void print_updated(char *name, float X[],float Xleft[],float Y[],float sum,int n)
{

FILE *fp;
int i;

fp=fopen(name,"a");

iprintf(fp,"\n");

for (i=0;i<N;i++)
iprintf(fp,"x%5d=%10.2f\txleft%5d=%10.2f\ty%5d=%10.2f\n",i+l,X[i],i+l,Xleft[i],i

+l,Y[i]-X[i]);

iprintf(ip,"\n");

iprintf(fp,"Sxi=%f;\n",sum);

fprintf(fp,"\n");

fclose(fp);
}

void print_fmal(char *name,int n,float Y[],float s)
{

105
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

FILE *fp;
int i;
float z=0;

fp=fopen(name,"a");

fprintf(fp,"Optimal solution:\n");

for (i=0;i<n;i++) fprintf(fp,"y%5d=%10.5f\n",i+l,Y[i]);

fprintf(fp,"\n");

for (i=0;i<n;i++) z=z+(Y[i]-(i+l)*s)*(Y[i]-(i+l)*s);

fprintf(fp,"N=%5d\n0bjective optimum = %10.5f \n",N,z);

fclose(fp);

}

void print_iterations(char *name,int j)
{

FILE *fp;

fp=fopen(name,"a");

fprintf(fp,"Total iterations=%5d\n",j);

fclose(fp);

}

void solve(float Y[],float Xleft[],int n,float s,float L,float U)
{
long double z=0;

int i,j=l,count=0;
float xopt,diff,sum=0;
float X[N];
float dist[N][2];
struct node *front=NULL,*rear=NULL;

for (i = 0; i < n; i++) X[i]=0;

for (i = 0; i < n; i++)
{

106
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

dist[i][0]=Y[i]-(i+l)*s;
dist[i][l]=i+l;
}

bsort2 (dist,n);

for (;!((xleft_empty(Xleft,n))||(dist_empty(dist,Xlefit,n))||(L<LIMIT));)
{

front = next_dist(Xleft, dist,n,front, &count ,&diff);

xopt =
min(min((diff),positive_minlist(Xleft,front,count,n)),min((positive_mindist(dist,front,count,n)
),(L/count)));

update (X,Xleft,dist,n,front,count,xopt);

erase(front);

U=U-count*xopt;
L=L-count*xopt;

sum+=count*xopt;

j++;

}

if (dist_empty(dist,Xleft,n)) for (;!((xleft_empty(Xleft,n))||(L<LIMIT));)
{
{
front=NULL;

front = next_dist(Xlefit, dist,n,front, &count ,&diff);

xopt =
min(min((diff),positive_minlist(Xleft,front,count,n)),min((positive_mindist(dist,front,count,n)
),(L/count)));

update (X,Xleft,dist,n,front,count,xopt);

erase(front);

U=U-count*xopt;
L=L-count*xopt;
sum+=:count*xopt;

107
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

j++;
>
if (xleft_empty(Xleft,n)) printf("\nNo feasible solution.\n");
}

else if (L<LIMIT) for
(;!((xleft_empty(Xleft,n))||(U<LIMIT)||(dist_empty(dist,Xleft,n)));)

{

front=NULL;

front = next_dist(Xleft, dist,n,front, &count ,&diff);

xopt =
min(min((diff),positive_minlist(Xleft,front,count,n)),min((positive_mindist(dist,front,count,n)
),(U/count)));

update (X,Xleft,dist,n,front,count,xopt);

erase(front);

U=U-count*xopt;
L=L-count*xopt;
sum+-count*xopt;

j++;
}

else printf("\nNo feasible solution.\n");

for (i=0;i<N;i++) Y[i]=Y[i]-X[i];

/* ************* *PJNAL* * * ******** ***** */

print_final("num_sweep.txt",N,Y,s);
print_iterations("num_sweep.txt",j);

}

void print_ampl(char *name,int n,float Y[],float Xleft[],float s,float L,float U)
{

108
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

FILE *fp;
int i;

fp=fopen(name,"w");

fprintf(fp,"param N:=%d;\n\n",N);

fprintf(fp,"param yl:=\n");

for(i=0;i<N;i++) fprintf(fp,"%d %f\n",i+l,Y[i]);

fprintf(fp,";\n");

fprintf(fp,"param xleft:=\n");

for (i=0;i<N;i++) fprintf(fp,"%d %f\n",i+l,Xleft[i]);

fprintf(fp,";\n");

fprintf(fp,"param s:=%f;\n",s);

iprintf(fp,"param L:=%f;\n",L);

iprintf(fp,"param U:=%f;\n",U);

fclose(fp);
}
void print_original(char *name,int n,float Y[],float Xleft[],float s,float L,float U,float Xmax)
{

FILE *fp;
int i;

fp=fopen(name,"w");

fprintf(fp,"Xmax=%f;\n",Xmax);
fprintf(fj3,"LS=%f;\n",L);
fprintf(f|),"LfS=%f;\n",U);
fprintf(fp,"\n");

for (i=0;i<n;i++)
fprintf(fp,"y%5d=%10.5f\txleft%5d=%10.5f\t%5ds=%10.5f\n",i+l,Y[i],i+l,Xleft[i],i+

l,(i+l)*s);

fprintf(fp,"\n");

fclose(fp);

109
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

}

void print_duration(char *name,long double duration)
{

FILE *fp;

fp=fopen(name,"a");

iprintf(ip,"Total Execution Time=%10.5f\n",duration);

fclose(fp);

}

float choose_bound(float x[],float a[], float L, float U,int n)
{int i;
float bound[4];
bound[0]=L;
bound[l]=U;
bound[2]=0;
for (i=0;i<n;i++) bound[2]+=a[i];
bound[3]=0;
for (i=0;i<n;i++) bound[3]+=max(a[i],0);
bsortl(bound,4);
return bound[2];

}

void swap(float *x,float *y)
{

float temp;
temp = *x;
*x = *y;
*y = temp;

}

void bsortl (float list[], int n)
{

int ij;
for(i=0;i<(n-l);i++)

for(j =0;j <(n-(i+1)) ;j++)
if(list[j] > list[j+l])

swap(&list[j],&list|j+l]);
}

void pardalos(float x[], float a[], float b[],float d,int n)
{

110
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

int *unsetv;
float *intervalpts;
float *templ;
int *temp2;
float min=-(float)MAXFLOW,

max=(float)MAXFLOW;
float tightsum=0,

slackweight=0,
testsum=0;

int i,j-l,counter;
float mid;
int ptssize;
int unsetv_size;

unsetv= (int *) malloc(n*sizeof(int));

intervalpts= (float *) malloc((2*n+2)*sizeof(float));

pts_size=2*n+2;
unsetv_size=n;

for (i=0;i<n;i++) unsetv[i]=(i+l);

for (i=0;i<n;i++) intervalpts[i]=a[i];
for (i=n;i<2*n;i++) intervalpts[i]=b[i-n];
intervalpts[2*n]=-(float)MAXFLOW;
intervalpts[2*n+1]=(float)M AXFLOW;

for (;(unsetv_size!=0);){

tempi = (float *)malloc(pts_size*sizeof(float));
memcpy(templ,intervalpts,pts_size*sizeof(float));

mid=qmedian(temp 1 ,pts_size);

free (tempi);

testsum=0;
for (i=0;i<unsetv_size;i++) if (b[unsetv[i]-l]<mid) testsum+=b[unsetv[i]-l];

else if (a[unsetv[i]-l]>mid)
testsum+=a[unsetv[i] -1];

else testsum+=mid;

testsum=testsum+tightsum+slackweight*mid;

111
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

/****** ** *upda.te** ************* * * * */

if (testsum<=d) min=mid;
if (testsum>=d) max=mid;

tempi = (float *)malloc(pts_size*sizeof(float));
counter=0;

for (i=0;i<pts_size;i++) if ((intervalpts[i]>=min) && (intervalpts[i]<=max)) {

tempi [counter]=intervalpts[i];

counter++;

};
pts_size=counter;
free (intervalpts);
intervalpts = (float *)malloc(pts_size*sizeof(float));
memcpy(intervalpts,tempi,pts_size*sizeof(float));
free (tempi);

temp2 = (int *)malloc(unsetv_size*sizeof(float));
counter=0;

for (i=0;i<unsetv_size;i++) if (b[unsetv[i]-l]<=min) tightsum+=b[unsetv[i]-l];
else if (a[unsetv[i]-l]>=max)

tightsum+=a[unsetv[i] -1];
else if ((a[unsetv[i]-

l]<=min)&&(b[unsetv[i]-l]>=max)) slackweight++;
else {

temp2[counter]=unsetv[i];
counter++;
};

unsetv_size=counter;

free(unsetv);
unsetv- (int *)malloc(unsetv_size*sizeof(float));
memcpy(unsetv,temp2,unsetv_size*sizeof(float));
free(temp2);

j++;

}

for (i=0;i<N;i++) if (b[i]<=min) x[i]=b[i];

112
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

x[i]=(d-tightsum)/slackweight;

else if (a[i]>=max) x[i]=a[i];
else if ((a[i]<=min)&&(b[i]>=max))

*** ******** ********* *FJNAL* ***** * * * * * ********* */

print_iterations("num_pardalos.txt",j);

/**/

}

float qmedian(float a[], int n)
{

int low, high ;
int median;
int middle, 11, hh;

low = 0 ; high = n-1 ; median = (low + high) / 2;
for (;;) {

if (high <= low) /* One element only */
return a[median] ;

if (high = low + 1) { /* Two elements only */
if (a[low] > a[high])

SWAP(a[low], a[high]);
return afmedian] ;

}

/* Find median of low, middle and high items; swap into position low */
middle = (low + high) / 2;
if (a[middle] > a[high]) SWAP(a[middle], a[high]);
if (a[low] > a[high]) SWAP(a[low], a[high]);
if (a[middle] > a[low]) SWAP(a[middle], a[low]) ;

/* Swap low item (now in position middle) into position (low+1) */
SWAP(a[middle], a[low+l]);

/* Nibble from each end towards middle, swapping items when stuck */
11 = low + 1;
hh = high;
for (;;) {

do 11++; while (a[low] > a[ll]);
do hh—; while (a[hh] > a[low]);

113
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix A C Implementation of the Algorithms

if (hh < 11)
break;

SWAP(a[ll], a[hh]);
}

/* Swap middle item (in position low) back into correct position */
SWAP(a[low], a[hh]);

/* Re-set active partition */
if (hh <= median)

low = 11;
if (hh >= median)

high = hh - 1;
}

}
#undef SWAP

114
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Appendix B AMPL Modeling

Appendix B AMPL Modeling

Parameters

param N;

param yl {1..N}; # initial values of y

param xleft {1..N}; # initial values of Xleft

param L;
param U;

lower limit on plan
upper limit on plan

param s

Decision variables

slope

var x {1..N} >=0;
var y {1..N} ;

flight time of aircraft
residual flight time of aircraft

minimize convex 1 : sum {n in 1..N} (y[n]-n*s)A2;

subject to flight_hrs {n in 1..N}:
y[n] = yl [n] - x[n] ; # residual flight time

subject to progr hrs :
L <= sum {n in 1..N} x[n] <= U; # observe program

subject to upper_x {n in 1..N}:
x[n] <= xleft[n]; # maximum flight time

115
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

References

References

[1]. Ali, A., Helgason, R., Kennington, J., and Lall, H.: ‘Computational comparison among three

multicommodity network flow algorithms’, Oper. Res.28, no. 4 (1980), 995-1000.

[2] , Bitran, G.R., and Hax, A.C.: ‘Disaggregation and resource allocation using convex

Knapsack problems with bounded variables’, Managem. Sci.27, no. 4 (1981), 431-441.

[3] . Brucker, P.: ‘An O(n) algorithm for Quadratic Knapsack problems’, Oper. Res. Lett.3,

no. 3 (1984), 163-166.

[4] · Floudas, C.A., and Visweswaran, V.: ‘Quadratic optimization’, Handbook Global Optim.:

Nonconvex Optim. Appl., 2 Kluwer Acad. Publ. 1995, pp. 217-269.

[5] . Goldfarb, D., and Liu, S.: ‘An 0(n3L) primal interior point algorithm for convex

Quadratic Programming’, Math. Program. A49, no. 3 (1990/1), 325-340.

[6] , Horst, R., and Tuy, H.: Global optimization: Deterministic approaches, second Springer

1993.

[7] , Kojima, M., Mizuno, S., and Yoshise, A.: ‘An {oi^JnL^ iteration potential reduction

algorithm for linear complementarity problems’, Math. Program. A50, no. 3 (1991),

331-342.

[8] . Kozlov, M.K., Tarasov, S.P., and Khachiyan, LG.: ‘Polynomial solvability of convex

Quadratic Programming’, Dokl. Akad. Nauk SSSR248, no. 5 (1979), 1049-1051.

[9] . Lin, Y.Y., and Pang, J.-S: ‘Iterative methods for large convex Quadratic programs: A

survey’, SIAM J. Control Optim.25, no. 2 (1987), 383-411.

[10],Markowitz, H.M.: ‘Portfolio selection’, Finance7 (1952), 77-91.

[1 IJ.Monteiro, R.D.C., Adler, I., Resende, M.G.C.: ‘A polynomial-time primal-dual affine scaling

algorithm for linear and convex Quadratic Programming and its power series extension’,

Math. Oper. Res.15, no. 2 (1990), 191-214.

[12].Murty, K.G., and Kabadi, S.N.: ‘Some NP-complete problems in Quadratic and nonlinear

programming’, Math. Program.39, no. 2 (1987), 117-129.

116
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

References

[13] .Pardalos, P.M., and Kovoor, N.: ‘An algorithm for a singly constrained class of Quadratic

programs subject to upper and lower bounds’, Math. Program. A46, no. 3 (1990), 321—

328.

[14] .Pardalos, P.M., and Rosen, J.B.: ‘Constrained global optimization: Algorithms and

applications’, Vol. 268 of Lecture Notes Computer Sci., Springer 1987.

[15] .Pardalos, P.M., Ye, Y., and Han, Chi-Geun: ‘Algorithms for the solution of Quadratic

Knapsack problems’, Linear Alg. & Its Appl.152 (1991), 69-91.

[16] .Sahni, S.: ‘Computationally related problems’, SIAM J. Comput.3 (1974), 262-279.

[17] .Vavasis, S.A.: ‘Approximation algorithms for indefinite Quadratic Programming’, Math.

Program. B57, no. 2 (1992), 279-311.

[18] .Vavasis, S.A.: ‘Local minima for indefinite Quadratic Knapsack problems’, Math.

Program. A54, no. 2 (1992), 127-153.

[19] 'W. Karush, ‘Minima of Functions of Several Variables with Inequalities as Side

Conditions,’ M.S. thesis, Department of Mathematics, University of Chicago, 1939.

[20] H. W. Kuhn and A. W. Tucker, ‘Nonlinear Programming,’ in Jerzy Neyman (ed.),

Proceedings of the Second Berkeley Symposium, University of California Press,

Berkeley, 1951, pp. 481-492.

[21] Ο. T. Mangasarian, ‘Nonlinear Programming’, McGraw-Hill, New York, 1969

[22] A. M. Geoffrion, ‘Duality in Nonlinear Programming: A Simplified Applications-Oriented

Development,’ SIAM Review, 13: 1-37, 1971.

[23] P. Wolfe, ‘The Simplex Method for Quadratic Programming,’ Econometrics, 27: 382-

398, 1959.

[24] D. Bertsimas, C. Darnell, and R. Soucy. ‘Portfolio construction through mixed-integer

programming’ at Grantham, Mayo, Van Otterloo and Company. Interfaces, 29(f):49-66,

1999.

[25] A. Cadenillas and S. R. Pliska. Optimal trading of a security when there are taxes and

transaction costs’. Finance and Stochastics, 3:137-165, 1999.

117
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

References

[26] H. Markowitz. ‘Portfolio selection: efficient diversification of investments.’ Blackwell,

New York, 2nd edition, 1991.

[27] J. Niehans. ‘Arbitrage equilibrium with transaction costs’. Journal of Money, Credit, and

Banking, 26(2):249-270, 1994.

[28] Μ. H. Schneider and S. A. Zenios. ‘A comparative study of algorithms for matrix balancing’,

Operations Research, 38: 439-455, 1990.

[29] Y. Censor and S. A. Zenios. ‘Interval-constrained matrix balancing’, Linear Algebra and its

Applications, 150, 393-421, 1991.

[30] M. L. Balinski and G. Demange. ‘Algorithms for proportional matrices in reals and integers’,

Mathematical Programming, 45, 193-210, 1989.

[31] J.KRARUP AND T.Illes (1993), ‘Maximum Q-free bipartite graphs and Knapsack-type

programs’, DIKU, University of Copenhagen, Denmark, Report 93/28.

[32] G.Laporte (1992), ‘The Vehicle Routing Problem: An overview of exact and

approximate algorithms’, European Journal of Operational Research, 59, 345 358.

[33] S.Martello AND Ρ.ΤΟΤΗ (1984), ‘A mixture of dynamic programming and branch-and-

bound for the subset-sum problem’, Management Science, 30, 765 771.

[34] G.B.MATHEWS (1897), On the Partition of Numbers’, Proceedings of the London

Mathematical Society, 28, 486-490.

[35] R. M. NAUSS (1978),‘The 0-1 Knapsack problem with multiple choice constraint’, European

Journal of Operational Research, 2, 125-131.

[36] W.DlFFE AND M.E.HELLMAN (1976), ‘New directions in cryptography’, IEEE Trans. Inf.

Theory, IT-36, 644-654.

[37] A. SlNHA AND A. A. ZOLTNERS (1979), ‘The multiple-choice Knapsack problem’, Operations

Research, 27, 503-515.

[38] R. K. Ahuja, T. L. Magnanti, AND J. B. ORLIN. Network Flows:’Theory, Algorithms, and

Applications’. Prentice Hall, Englewood Cliffs, NJ, 1993.

[39] Z. Sinuany-Stern AND I.Winer (1994), ‘The one dimensional cutting stock problem using

two objectives’, Journal of the Operational Research Society, 45, 231-236.

118
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

References

[40] HlLLIER ,LlEBERMANN, ‘Introduction to Operations Research’, McGraw Hill 7th Ed..

[41] CHRISTODOULOS A. FLOUDAS And PANOS M. PARDALOS, ‘Encyclopedia of Optimization.’

Kluwer Academic Publishers 2001.

[42] D.PlSINGER, ‘Algorithms for Knapsack Problems’. Ph.D. Thesis Feb 1995 , Dept.of

Comp.Science, University of Copenhagen.

[43] A.NEUMAIER, ‘An Optimality Criterion for Global Quadratic Optimization’. Journal of

Global Optimization 2:201-208,1992, Kluwer Academic Publishers.

119
Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

ΠΑΝΕΠΙΣΤΗΜΙΟ
ΘΕΣΣΑΛΙΑΣ

004000085872

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 23:17:47 EEST - 3.144.101.80

