Student
Muhsen Owaida

Advisor
Prof. George Stamulis

VOLQOS, 25 APRIL 2007

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

NMavemotTtnuo OscocaAiiacg
BIBAIOOHKH & KENTPO MNMAHPO®OPHZIHX
Eicikn Zuaroyn «IMkpiZa BipAaloypapio»

ApB. Elo.: 5266/1
Huep. Elo.: 27-09-2007
Awped: Zuyypagéa
Ta&BeTIKOC KwdIKOG: A
005.1

OWA

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Acknowledgment

The Author would like to thank the PhD Graduates Students Lab members in
the Communication & Computer Engineering Department of Thessaly
University for their Help and Support of this project. Special Thanks for Ms.
Maria Koziri and Mr. Dimitrios Karampatzakis for their Interest and support.
And Special Thanks for My advisor; Prof George Stamulis, for his concepts
and encouragement.

I would like also to thank myfamily andfriends, allfor their encouragement,

and good atmosphere that they savedfor me.

!

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Abstract

Efficient digital video coding techniques are increasingly gaining
importance due to the widespread of low bit rate video streaming applications
(like videotelephony and videoconferencing). This raises the need for an
industry standard for compressed video representation with substantially
increased coding efficiency and enhanced robustness to network environments.

In 2001, the Joint Video Team (JVT) was formed to represent the
cooperation between the ITU-T Video Coding Expert Group (VCEG) and the
ISO/IEC Moving Picture Expert Group (MPEG) aiming for the development of
a new Standard. The JVT aim was to finalize the H.26L proposal and convert it
into an international standard (H.264/MPEG-4 Part 10) published by both
ISO/IEC and ITU-T.

H.264 provides similar functionality to earlier standards such as
H.263+and MPEG-4 Visual (Simple Profile) but with significantly better
compression performance and improved support for reliable transmission. It
does not use the traditional 88 DCT transform as the basic transform, instead
it suggests 4x4 DCT-based transform that can be implemented only using
integer addition and shift units and avoids use of multiplication.

In this project, a hardware prototype is designed for the H.264 supported
quantization and variant types of supported transforms (core transform, 2x2
and 4x4 hadmard transforms). Also the inverse transform and quantization path
is considered. The architecture is prototyped and simulated using ModelSim

6.1®. It is synthesized using Synopsys Design Compiler®.

1
Institutional Repository - Library & Information Centre - University of Thessaly

24/04/2024 23:09:40 EEST - 3.145.162.204

Contents

ACKNOWIEAGMENT......oiiiiiiiiic e e e e e e e e e e s e e nanes i
YA o 1= 1 = Vo SRR i
(@] 0113 01 = 7SR RPPRPR iii
1o [=TS T E SRR \%
B2 o1 (=TS T PP PPPPRRROt viii
SUMMANY 1N GEEEK.....eiiii ittt e et e e e ane e e e s e snnbeeae s 1
METAOXNUOATIOHOCG KAl KBAVTOTIOINGN OTOH.264.........ccoooiiiiieeeeeee e 1

2xediaon oe eminmedo RTL TWVOAyopiOuwv UPETACXNUOTICHMOU Kal

KBAVTOTIOINGONG TOU H.264ttt e 4
Z0vOeon KOl YTIOAOYIGHOG IGXDOG . eiieiiiieiiiiee ettt et iee e seeeeeneee e 6
PN o] o 1T o To |1 QA NPT 8
([l o Te U Tox i To] o FAURRRR PP PPRRUTPRRR 9
1.1. Video Format and ENCOAING........cc.uouiiiiiiiiiiiiiiiiiie e 9
I VA To Yo I e ¢ 0 = | AU 9
1.1.2. VideO CODERC ...ttt a e 12
1.1.3. Video Encoding Standards............cccciviiiiiiiieeei e 17
1.2. H.264 Video Encoding Standard...............cccccciviiiiiiiiiec e 18
1.2.1. H.264 STIUCTUIE.....eiiiiiiieie ettt e e e e e ee e 18
1.2.2. H.264 CODERC ...ttt ettt eeee e 18
1.3. Transformation and QuantizationofH.264 standard....................c........ 22
1.3.1. TransfOrMatioN.........ccuuiiiiiii e 22
1.3.2. QUANLIZALION. ..o e e e 24
1.3.3. Reforming Quantization ProCEeSS..........cccccvuiiiiieeeee i eee e 27
1.4, Previous WOTKttt a e 33
2. RTL Level Design of H.264 Transformand Quantization........................... 35
b R I = 1 1] o] 1 o o TP RRP U PPURTRUPRIN 35
2.1.1. Core TranSTOrML. ... 36
2.1.2. Hadmard 4*4/2X2 TransfOrm. ... 39
2.1.3. CONFIQUIALON . ..ottt e e e rnaeeea e 43
2.1.4. Faster Implementation of 44 Hadmard Transform.................... 44
2.2. Standard Quantization Implementation............c.ccoccociiiiiiiiiniiiiee s 49
2.2.1. Quantization Parameters.........cccccceeeeeiiiiiiiiiiieeeeeee e 49
2.2.2. QuaNtization PRASE.........cccoiiiiiiiieee e —————— 50

iii

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

2.3. Quantization using”™Modification method....................ccoeviiiininennnnen. 59

2.3.1. "MoOdIficatioN StAgE........uuieiiiieieii i 60
2.3.2. AdAItiON STAQE.....cuiiiiiiiee it —————————— 61
2.4. Inverse Transfonn and Quantization...................cccccovviiiiiiiiiiiiicccccen, 62
2.4.1. Inverse 4x4 & 2x2 Hadmard Transforms...........cccceeiviiiineeniiiineenn. 63
2.4.2. V-Factors CalCulation..........cccoouiiiiiiiiiiii e 64
2.4.3. RESCAIE UNIt.ciiiiiiiiiiiii et 64
2.4.4. Inverse Core TransSfOrmM. ... 65
2.4.5. ROUNAING UNIt..iiiiiiiiiiii et 67
3.0ptimization and SYNthESIS...........cco i 69
3.1. Design OPtiMIZAatiON........c..ciiiiiiiiiiie i 69
3.1.1. Modeling of Optimization problem............cccccciiiiiini e, 69
3.1.2. Optimization LeVeIS. ... 70
3.2, DeSigN SYNTNESIS....ccoiiiiiiiii it 73
3.2.1. SYNINESIS SEIUP...iiiiiiiiii i e e aaa e 73
3.2.2. SYNINESIS PrOCESS......uutiiiiiiiiiii et a e e e 76
3.3. Transformation and Quantization Synthesis...........c.cccccccviviiivirinnneenn. 77
3.3.1. Transform Synthesis ReSUItS..........cccccoiiiiiiiiii e 81
3.3.2. Quantization Synthesis ReSUItS...........cccoiiiiiii e 87
3.3.3. Transform and Quantization Integration...............ccccccvccvveeieeeneennins 95
3.3.4. Inverse Transform and QuantizationSynthesis..........ccccccccceeeiinnn, 99
3.4 Conclusion and Final RESUILS. ... 100
Appendix B: Synopsys Design COMPIler........coiiiiiiiiiiiiiee e 103
RETEIENCES. ..ottt et e e s rane e e e e sraeas 115
\Y)

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figures List

EIKOVA 1: EVOG H.264 KWOIKOTIOTIG cveeeuveeireerreesteeereeasreesseeesseesssesssseessnessseeenes 1
Eikova 2: Aldypopua ToL oTadiou TOU METAGXNUOATICHOU........ccoveerieereenneen, 4
Eikova 3: Aldypapua 1o MetaoxnuoatiogoV Hadmard...........c.coceeeeveeiveenn.e, 4
EiKOva 4: Aldypopua TOU «TTUPAVO» TOU METAOXNUOTIOHOD......cccveeveecereeeee. 5
EiKOva 5: Aldypopua TOU KUKAWUOTOC UTTOAOYIOHOU TWV TIOPAUETPWV........ 5

EikOova 6: AlQypaupo TOU KUKAWUOTOG TIOU XPnolgoTtolei tTnv pébodo f-

Modification yia tTnv LAOTIOINGN TNG KBOAVTOTIONONG, - veeevveeeiiireesiieeennieeeseeeanns 6
Figurel.l: Video signal StrUuCtUre.............cccciiiiiiiiiee e 9
Figurel.2: 4:2:0, 4:2:2 and 4:4:4 sampling patterns (progressive).................. 12
Figurel.3: Video transmission SYSIeM........ccuiiiiiiiiiiiiiie e 13
Figurel.4: Video Processing SYSIEM......cc.uiiii it 13
Figurel.5: Close-up of4x4 block; DCT coefficients.........ccoccoceiiiiiiiennnen. 15
Figurel.6: Scalar quantizer: linear; nonlinear with dead zone...................... 16
Figure 1.7: Zigzag scan order (frame bIOCK)..........ccccvveeeiiiieiiieic e, 17
Figurel.8: H.264 CODEC ...t 19
Figurel.9: presented architecture in [L]......cccccooeiiiiiiiiiii e 34
Figure2.1: Transform Stage Block Diagram..........cccccciiiiiiiiiiiniiiie e 35
Figure2.2: First stage of core transform butterfly analysis..........c.cccccooiii. 37
Figure2.3: second stage core transform butterfly analysis.........cccccccccceiiinns 37
Figure2.4: Core Transform StrUuCtUr...........c..oooieiiiiiiiiieeie e 37
Figure2.5: structure of butterfly block used in core transform...................... 38
Figure2.6: first stage butterfly of 4x4 hadmard transform analysis............... 40
Figure2.7: second stage butterfly of 4x4 hadmard transform analysis......... 40
Figure2.8: butterfly block used for 2x2 Hadmard transform......................... 41

Figure2.9: Implementation of hadmard transforms without configurator41
Figure2.10: Implementation of hadmard transforms using configurator....... 41
Figure2.11: 2x2 and 4x4 hadmard transforms block with configurator........ 42

Figure2.12: Inputs order to 2x2 and 4x4 Hadmard transforms..................... 43
Figure2.13: Configurator SIrUCTUIe............ccooiiiiiii e 44
Figure2.14: Butterfly]l TN ... 46
Figure2.15: BUtterflyl 2N 46
Figure2.16: First Term of equation (2.12) implementation.............................. 47
Figure2.17: Butterfly 1_1N used for Third term calculation............................ 47
Figure2.18: Third Term in equation (2.12) implementation...............ccc.coc...... 48
Figure2.19: Blocks used to add the last three terms in equation (2.12)......... 48

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figure2.20: Quantization parameters calculation structure..................ccc.vue..... 50

Figure2.21: Standard quantization data flow...............ccccovi e, 51
Figure2.22: absolute value implementation.............cccccceeeeeviiiiiiiiiiiieiee e, 51
Figure2.23: Absolute value UnNit..........ccccceeoiiiiiieeee e 52
Figure2.24: Multiplication Unit StruCtUre.............cccoceiiiiiiiiie e 53
Figure2.25: Array MUIIPHEr.........coooi e 53
Figure2.26: Tree MUIPIIEr.........ooo e 54
Figure2.27: 14x15 Tree multiplier architecture..............ccccoccvvieeiveii e, 54
Figure2.28: Carry-save multiplier architecture...........cccccccceeeiiiiiicciiiiiniiecceeeen, 55
Figure2.29:/"modification StrUCIUre..............ccccviiiirieiiee e 55
Figure2.30: Addition UnNit StrUCLUIE.........cccviviiii e 57
Figure2.31: 4-bits funnel shifter............ccco e, 57
Figure2.32: Shift UNit StFUCKUIE.........cuviiiiiieiee e 58
Figure2.33: resign fuNCtion StrUCTUIe...........cooiiiiiiiiiiii e 58
Figure2.34: Resigning Unit StrUCTUIe............cooiiiiiiiiiiiie e 59
Figure2.35: Quantization using/Modification Method structure.................. 60
Figure2.36: F-Modification Stage StruCture...............ccoeeccviiiiieeiiee e, 60
Figure2.37: Addition UNit STHUCIUIE.........c.ueiiiiiiiii e 62
Figure2.38: Inverse transfonn and quantization structure.............cc.cccvevvveenne. 63
Figure3.39: Inverse Hadmard transform unit............ccccoooiiiiiiiiniiie e 63
Figure2.40: V-Factors calculation...........ccccccveeeiii i 64
Figure2.41: Rescale UnNit StrUCLUIE..........ccuvvviiiiee e 64
Figure2.42: 5x19 tree multiplier used in rescale unit...........cccccccoovviiiiiiinnn... 65
Figure2.43: Butterfly's block structure used in inverse core transform........ 66
Figure2.44: First level butterfly block used in inverse core transform.......... 66

Figure2.45: second level butterfly block used in inverse core transform. ...67

Figure2.46: Division by 64 and round implementation............c.ccocccceeervnnennn. 68
FIigure3.1: ShariNg FESOUICES.......ccicuuiiii ettt ettt e e sebbee e e e sbaeeeeeaes 71
Figure3.2: FactoriziNng @XPreSSIONS.ciii it eiieie ettt eeaeee s 71
Figure3.3: Parallel ProCeSSING........cccui it 72
Figure3.4: logic level optimizatioNsS...........cooooiiiiiiiiiiiiii e 72
Figure3.5: minimizations using Demorgan's [aws...........ccocceiiiiiiiniiiicieenene 73
Figure3.6: Design files HierarChy...........coooiiiiii e, 74
Figure3.7: Design environment Parameters..........oceeveriieeeeeeiiiieeee s 75
Figure3.8: TransformCONF design files hierarchy structure..................... 78
Figure3.9: Transform_No_CONF design files hierarchy structure................ 78
Figure3.10: 4x4 hadmard transfonn implementation subdesign.................... 78
Figure3.11: Quantization_FM_TRM design files hierarchy structure.......... 79

Vi
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figure3.12:
Figure3.13:
Figure3.14:
Figure3.15:
Figure3.16:
Figure3.17:
Figure3.18:
Figure3.19:
Figure3.20:
Figure3.21:
Figure3.22:
Figure3.23:
Figure3.24:
Figure3.25:
Figure3.26:
Figure3.27:
Figure3.28:
Figure3.29:
Figure3.30:
Figure3.31:
Figure3.32:

QuantizationsTM_TRM design files hierarchy structure........ 79

CSMull_Unit design files hierarchy structure...........cc............... 79
Transform implementation with configurator schematic............ 81
full path slack histogram (Transform_CONF)........c.cccccevviiieeeene 82
Transform implementation without configurator schematic...... 83
full path slack histogram (Transform_No_ CONF)...........ccccec..... 84
Transfonn_N_ITAD schematiCs.............ccocccviviiieiiieie e, 85
full path slack histogram (Transfonn_N_HAD)........c..ccccoeee.n. 85
Quantization STM TRM schematiC........ccccooeeeeiiieieiienn 87

full path delay slack histogram (Quantization_STM_TRM).... 88
full path delay slack histogram (Quantization_STM_CSM)......89

Quantization_FM_TRM schematicC............cccccccvveeveeeeee i, 91
full path delay slack histogram (Quantization_FM_TRM)........ 91
Quantization_FM_CSM schematiC...........ccccceeiiiieiiiiiiiiiieeee, 93
full path delay slack histogram (Quantization_FM_CSM)........ 93
Tr_QUFTRM_Phases schematiC........cccccoocueiieiiiiiiiieiieee e 95
Full path delay histogram (Tr_ QUFTRM_Phases)...................... 89
full path delay slack histogram (TrQUSTRMPhases)............. 98
Inverse TR Qu schematiC...........ccccciiiiiiiii e, 99
full path delay slack histogram (Inverse_TR_QU)..................... 100
Forward and reverse paths inputs and outputs.............cccceeeenne 101
Vii

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Tables List

Mivakag 1: ATmodoon Twv APXITEKTIOVIKWY Yyl To OTAdlo TOou
\Y/Eo8 e (@ 3" T U 1o ¢ 1 Uo7 Lo 16 T SRR 6

Mivakag 2: ATmodocn Twv OpPXITEKTOVIKWV Yyiad TO OTAadlo 1Nn¢

[1C 10 4V (o) 2 (o] 19T 2 o TSRS 7
Mivakag 3: ATTOS00T] TEAIKWV KUKAWMBTUOV. .eceeiieeiniiieesiiieesiieesseeeeesneeeesneeens 7
Tablel.l: MPEG-4 VISUAL and H.264 standards comparison................ 21
Tablel.2: QP values and corresponding QStEPS.......ccccvveeeeeiiiiiiiciiiiieieeeeeenn. 25
Tablel.3: PF ValUES.......... e 25
Tablel.4: MF multiplication facCtor...........cccoiiiii e 26
Tablel.5: V scaling facCtor...........ooiiii e 26
Table2.1: funnel shifter map table............ccccoi e, 57
Table3.1: Created top-level design files........cccccccoiiiiiiiii e, 77
Table3.2: Wire [oad Model...........oooiiiii e 80
Table3.3: critical path (Transform CONF)......ccccoooiiiiiiii e 81
Table3.4: deSigN ArEa.........coo i 82
Table3.5: Total coNSUMEd POWETcuuiiiiiiiiiie e 82
Table3.6: cells’ internal consumMed POWET...........cccuviiiiiieieie e 82
Table3.7: critical path (Transform_NoO _CONF)............cccoiiiiiiieee s 83
Table3.8: deSIgN Ar€a........c.uuveeiiiiiiie i e e 84
Table3.9: Total coNSUMEd POWETcuueiiiiiiiiiie e 84
Table3.10: cells’ internal consumed POWETccooiiiiiiaiiniiiiiee e 84
Table3.11: critical path (Transform N HAD).....ccccooiiiiiiiiiiieee e 85
Table3.12: deSIgN Ar€a.......ccccciiiiiiiiiieeie e aaaeea s 86
Table3.13: Total coNSUMEd POWETcccuuiiiiiiiiiiee e 86
Table3.14: cells’ internal consumMed POWETcccoiiiiiiiieiiiiiiiee e 86
Table3.15: critical path (Quantization STM TRM).....ccooovvieiiiiiiiiiinns 87
Table3.16: deSIgN Ar€a.........cocuuiiiiiiiiiiee et 88
Table3.17: Total coNSUMEd POWETcoiiiiiiiiiiei ittt 88
Table3.18: cells’ internal consumed POWETcooiiiiiiiiiiiiiieie e 88
Table3.19: critical path (Quantization_STM_CSM).......cccceviiiiiiieeeeinneneen. 89
Table3.20: deSIgN ArEa.........cccoiiiiiiciiieiee e a e e e 90
Table3.21: Total cONSUMEd POWEToeii ittt 90
Table3.22: cells’ internal consumed POWET...........coooiiiiiiiiiiiiiiiie e 90
Table3.23: critical path (Quantization_ FM_TRM).......cccccccceeiiiiiiiiiiiiiineenen. 90
Table3.24: deSIgN ArEa.......c.couuiiiiiiiiiie et 92
vViii

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Table3.25:
Table3.26:
Table3.27:
Table3.28:
Table3.29:
Table3.30:
Table3.31:
Table3.32:
Table3.33:
Table3.34:
Table3.35:
Table3.36:
Table3.37:
Table3.38:
Table3.39:
Table3.40:
Table3.41:
Table3.42:

Total coNSUMEd POWETuuevivieeeeeii it 92
cells’ internal consumed POWETcooiiiiieiiiiiiii e 92
critical path (Quantization_FM_CSM)........ccccccoiiiiiiiiiiienens 92
(o [T o | = 1 (=T VRSP 93
Total coNSUMEd POWETcccoi it 94
cells’ internal consumed POWEc.coovviiiiiiiiiiiiieee e, 94
critical path (TR QUFTRM)...cccoiiiiiiiii e 96
design area (TR_QUFTRM)....cooiiiiiiiiiiee e 96
Total consumed power (TR_QUFTRM)......cooooiiiiiiiiieieene, 97

cells’ internal consumed power (TR_QUFTRM)..................... 97

critical path (TR_QUSTRM)...c.coiiiiiiiiiiiie e 97
design area (TRQUSTRM)....oviiiiiiiiiiiee e 97
Total consumed power (TR_QUSTRM).........cooovcviiiiiieieeeeeeen, 98
cells’ internal consumed power (TR QUSTRM)..................... 98
critical path (Inverse Path)...........cccccoiiiiiiiii e 99
design area (Inverse Path)..........ccccciiiiiiiiiiiiii e 99
Total consumed power (Inverse Path)...........cocooiiiiiiiin 100
cells’ internal consumed power (Inverse Path)............c.cccc.e.... 100

IX

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

1 Metaoxnuatiopyog Kal KBavtoroinon oto H.264

O1 1eXVIKEC KwAIKoTIoINoNG video €ival OA0 KOl TIEPICTOTEPO CNUAVTIKEG,
egaitiog ¢ paydaioag EUPAVIONG EQOPUOY®V TIOU ATIAITOUV POoEG video XaunAoL bit -
rate, OTw¢ n video — Ae@wvia Kal n video - cuvedpia. To yeyovog autd KAVEl
aropaitntn TNV 0mapén evog PBlounxavikol standard yia avamopdcTaon
KWOIKOTIOINKEVOL video pe LWNAR OTTOd0CN CUMTIIEGNG KOl €VIOXUUEVN OvIoX o€
OIKTLOKA TePIBAAAOVTa. To o TIPOo@ato standard oTnv TIEPIOXN] TNG KWAIKOTIOINONG
video eival 10 H.264, 10 ormoio dnuiovpyndnke amo tnv Joint Video Team (JVT), uia
ouvepyoaoio peTagd twv ITU-T Video Coding Expert Group (VCEG) kai ISO/IEC
Moving Picture Expert Group (MPEG).

To H.264 mapéxel TTapouola AEITOLPYIKOTNTA UE TA TIponyovueva standards,
ETUTUYXAVOVTOG OPWG ONUOVTIKA PBeEATiwon OtV CuJTIieon Kol BEATIWMEVN
UTTOOTAPIEN VIO A&IOTIIOTN PETAdooNn. TNV EKova | TTapouoiddetal To oXEDIAYPOUUO
€vog H.264 kwdIkoTIoINTH.

Eikova 1. 'Evag H.264 KwdIKOTIOoINTAG

‘Evacg amd toug Adyoug Tou 1o H.264 eTtituyxdvel TOoN LPNAN atédocn aTtnv
KwOAIKOTIOINGN €ival ol aAAayEC TIOU £X0ULV YiVEL GTOUG OAYOPIBUOLC YETAGXNUATIOHOU
Kal KBavtotoinong, o€ Gx€orn HE autoUC TIOU XPNOIUOTIOIoUVTOV OTa TIPOnyoUueva
standard. ZTnv epyacia autr TapouacidleTal N GXediOON KOl N UAOTIOINGN HIOC
KavoUupylag OPXITEKTOVIKAG Yio TOUC OAyopiBuoug HETOOXNUOTIOPOU KOl
KBavtoroinong tov H.264, n omoia auv&Avel GnNUAVTIKA TNV aT0d00N VW TOULTOXPOVA
MEIWVEL TNV KaTavAaAwan 1oX00o¢ TIoU aTtaltei éva TETolo oLoTNa.

Mpv TIPOXWPNOOLUE OUWC OTNV TIAPOULCIOCN TNC OPXITEKTOVIKNG, 0¢ OOUUE
TIEPIANTITIKA TOUG OAyOpiBuoLC PETACXNUOTIONOU Kol KPavroroinong tou H.264
KOBw¢ Kal TIG BEATIOTOTIOINONG TIOV £yIvav OTA TIAQICIO AUTHG TNG Epyaaiac.

210 TIponyovpeva standards nTav eupéwg diadedouévn n xprion touv DCT
peTOOXNUATIOPOV. To H.264 avtikaBiotd Tov DCT pe Evav akEPAIO PETAOXNUATIOUO,
0 OTT0i0G aTTaITEl JOVO TIPOCBETEIC KOl OAICONOEIC, ATIOAEIPOVTAC PE AUTOV TOV TPOTIO
TO KOOTOG TOU TIOAAOTIAOCIOCMOU TIou aTtalteital amé tov DCT. O aképalog
METOOXNUOTIOUOC TOL H.264 diveTal amoé TNV TApoKATw cuvapTNoN:

-1 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

U B
« .
Mt 1t v "1 2 | ! b bl ab b
R R I e (1)
=4C r =

I -1-1 | -1 -1 2 o @ oa

Ly ~ 1 -2 1 -1 2 2

v g 8) —! b m ab

2 4 2 4

Orov, ci-—, b=J— «kal —. ZTNV TOpPOTAvVw ouvapTnon To GUUPBoAO

onuaivel OTI €XOUUE TIOAAATIAQCIACOUO HETOED OVTIOTOIXWV OTOIXEiWwV KOl Oxl
TIOAAOTIAOCIOONO TUVAKWY. AUTO OTIAOTIOIEL TIOAU TOV OAyOpIBUo TOU
METACXNUOTIOPOU, a@OU 0 TIOAAATIAQCIACOUOG OUTOC HTIOPEl va evowpatwOei oTo
otadio TN¢ KBavtormoinong. Mg autov TOV TPOTIO 0 «TTUPHVAC» TOU PETACXNUOTIOHOU
pTTopEl va BewpnBei o011 eival amAdd o CXC .

Z€ avTioTolXia Pe Ta TTopattdvw, UTIAPXElL KOl 0 AVTIOTPOMOC HETOOXNUATIOHOC,
0 oTtoiog divetal o6 TN CUVAPTNON:

al ab a ab
ab b ab bl « (2)
al ah a? ab
ab b2 ab bl

Y = C[(Z®Ei)Ci

Kal gg autiv TNV TEPITITWAON 0 TIOAAJTIAOCIOCNOC HE TOV TTivaka E, yttopei va
EVOWUOTWOEl 0TO OTAdIO TNC ATIOKAIMAKWONG (re-scaling), oToTe KAl 0 «TTUPIVAC» TOU
QVTIOTOIXOUL PETACXNMOTIOMOU PTTopPEi va BewpnBei 0TI gival amAd o CTZC.

2€ OUO TIEPITITWOEIG, OE AUTHV TOU 16x16 Intra mode Kal g QUTHV TIOU €XOUUE
Chroma otoixeia, 10 H.264, Tépav TOUL OKEPAIOU METOCXNMUOTIOHMOU TIOU HOAIC
TIEPIYPAWPOUE, XPNOIUOTIOIEL KOl TOV HeTOoXNUOTIONO Hadmard. Mo v mpen
TEPITTTwon, onAadn otav €xouue 16x16 Intra mode o Hadmard peETOACXNUOATIOUOC
divetal amo Tnv €&€ng ouvaptnon:

3)

L T B L4 0 i
T N T R L1111
Wo -
[-1 -1 | [-1 -1 !
{ -1 1 -1 { -1 1 -1

2NV TIEPITITWAON TIOU OEV €XOUUE OTOIXEIO PWTEIVOTNTAC OAAG €xouue Chroma
Components , 0 Hadmard petacxnuatiopog divetal amo tnv €&€N¢ ouvAaptnaon:

-2-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

w t (5)

To emoduevo OTAdI0O MPETA TOV HETOOXNUOTIONO €ival n KPBavrormoinon. H
dlodikaoia TN¢ KPBavtoToinong JTopPEl va avattapacTtadel omo TNV akOAoubn
ouvaptnon:

round Qstep (6)

OT1ou 10 YN €ival 0 CUVTEAECTAG TIOU TIPOKUTITEL ATIO TOV PETACXNUOATICUO, Kol Qstep
gival o oguvteAeot¢ KBavtiopov. To H.264 opilel v KPBavtormoinon Pe tnv €ENC

dladikaaia:
¢ mrd
=rounde,] r"gbits (7)
Otou
MF__ PF_
27" ~ Qstep
Kal

gbits = 15 + fl'oon”V/i’l

ErumAéov o mapdyovtag PF eival eite a2 n ab/2 R bglA, avOAOYwC TN B€on Tou
Bpioketal 0 CLVTEAECTNAC.
Z€ akEpala apldunTikn n egiowan (7) Pmopei va amodobei wg e€nC:

(Ki= + /) > <lbits ®)
sign(Zj) = sign(Wj)
H diadikaaiag ¢ amoKAIUAKwWaONG, N oToia €ival N avtioTpo@n oo auTr TOU
KBavtiopoU PTtopei va Tieplypd@el oo T cuvapTnon:

Wtj = Zy * Qstep * PF * 64)

1 avtioTolxa amd) ocuvapTnon
N/ 2. *Vr *2.00 "M (10)

‘Eva onuavtikd pépog TN OOULAEIAG auTAG €ival N BeATIOTOTIOINCN TIOU €XEL
yivel ot Jdladikacia g KBaviormoinong, Kol CUYKEKPIUEVO N TPOTIOTOINCN TOUu
mapdyovia f. H Ttpomomoinon avut) Pacidetal oTov JIOQOPETIKO TPOTIO TIOU
XPNOIPOTIOIEITAN YIO TNV CGTPOYYUAOTIOINGN TWV aPIBUWVY KAl OVOAUETAL AETITOPEPWC
OTO TIAPAPTNUO TIOU OIKOAOUBEI.

-3 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

2 2xediaon o€ eTtitedo RTL twv aAyopiBuwv
METOOXNUOTIOWOU Kal KBavtoTtoinong tov H.264.

210 onueio autd nPbe n wWPA va TIAPOLCIACOUVUE TNV OPXITEKTOVIKI] TIOU
QVOTITUXONKE yia TNV ULAOTIOINON TWV OAyopiBuwv TOL TTEPIYPA@ONKaY OTNV
TIponyouuevn evotnta. Xtnv Eikéva 2 mapouoiddetal 1o didypappo Tou oTadiou Tou
METAOXNUATIOUO.

Eikova 2. Aldypappa Tou otadiov Touv Metaoxnpatiopon

To KOKAWWMO TIOU UAOTIOIEI TOV METACGXNMOTIOHO OEXETAlI W €100O0ULE TOV
diavAo X, pYéow TOUL OTIoIOL €pXovTal Ta deDOPEVA TOU TIpoG eTeéepyaaia 4x4 block,
Kal évav 2-bit apiBud, tov P_Inf, 0 omoio¢ PETAPEPEL KWAIKOTIOINUEVN TIANPO@OpPIa
ylo Ta oTOolXEia TIpo¢ emegepyaaia KaBwg Kal Tov T0To TIPORAeYnC. H £€€000¢ Tou eival
0 diavAog Y.

H vAottoinon tou «TuprAva» TOU PETOCXNMUOTICUOU YIVETAl AT TO KUKAWUO
TOU OTIoioL TO JIAYPAUMO TIAPOULCIALETAl OTNV EIKOVA 4, evw TO OJIAYPOUUA TOU
KUKAWMOTOC TTou LAOTIOIEI Tov Hadmard petaoxXnuatiouo @aivetal atny eikova 3.

Eikova 3. Aldypapua tov Metaoxnuatiopov Hadmard

A&icel va onueiwdei oto onueio auvtd OTI N APXITEKTOVIKI] TOU KUKAWMOTOC
TIOU UAOTIOIEl TOV peTOoXNUOTIONO Hadmard eival TPWTOTUTIN Kol TTOPOUGIALEL
ONUOVTIKA BEATIWPEVA ATIOTEAECUATA GE GXECT ME TIPONYOUUEVEG APXITEKTOVIKEC TIOU
£€X0ouv Ttapouaiaotei atn BiBAloypagia.

-4-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Eikova 4. Aldypappa Tou «TIuprvo» Tou METaoXNUATICHOU

To otddlo TnNg KPavrtomoinong umopei va Bewpnbei 0TI armoteAsital amd duo
MEPN. 2TO €va uTtoAoyidovtal OAol Ol TIOPAPETPOL Ol OTtoiol gival amapaitnTol yia va
UTTOAOYIOTEI N CLVAPTNOT 8 KAl OTO AAAO OTASIO LAOTIOIEITAL N CUVAPTNON AUTH. XTI
Eikoveg 5 kal 6 @aivovtal ta dIaypAPUaTO TWV KUKAWUATWY TI0U LTToAoYi{ouv TIC
TIOPAMETPOULC KAl TN cuvaApTNOoN 8, avTtioToIxa.

Eikéva 5. Aldypappo TOU KUKAWPOTOC UTIOAOYIGHOU TWV TIOPAUETPWY

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Eikéva 6. Aldypaupa T0U KUKAWUOTOG TIOU XPNolJoTIolEl TNV pébodo f-Madification yia tnv
vAoTtoinon g KPavtoToinong,

Mpwv TIPOXWPNOOUUE CTNV TIOPOUCIOCT MEPIKWY OTIOTEAECUATWY aTIO TIC
UAOTIOINCEIC TWV dlO@OPWV OPXITEKTOVIKWY TIOU TIEPIYPAPOVTIAl OVAAUTIKA OTO
TIAPAPTNUO, MEPIKEC OTIO TIC OTIOIEC EiVOIl OUTEC OTIC OTIOIEC HOAIC AVOEEPONKOUE,
TIPETIEL VO TOVIOCOUPE OTI TIEPOV TWV OPXITEKTOVIKWVY OUTWV €£X0UV OXEOIOOTEI Kal
VAOTIOINBEI OAEC Ol AVTIOTOIXEC APXITEKTOVIKEG VIO TOV QVTIOTPOPO HETOCOXNUOTIOUO
KOl TNV OTTOKAIUAKWOT.

3 ZU0vBeon Kal YTIOAOYIoMOC loxvoc

O1 JIAPOPEC OPXITEKTOVIKEG TIOU OXEDIACTNKAV YIO TOUC OAyopiBuoug Tou
METAOXNUOTIOPOU Kal TN¢ KPRavtoroinong, Teplypa@dnkav Kal TPocouolwbnkav ue
NV Xprion touv ModelSim®. Ta KUKAWUATA TIou dnuioupynenkav amo tn dladikaoia
OUTH oLVTEBNKaV PE TN XPron tou Synopsys Design Compiler® evw n katavadilwaon
I0X00¢ ULTIOAOYioTNKeE He TN Ponbeia tou Synopsys PrimePower®. Xt ouvéxela
TtIapouciddovial PEPIKA OTIO TA OTIOTEAECUOTA TIOU TIPOEKUYOV OTIO TNV TIAPATIAV®
dladIKaaia.

MNa 1oV PJETOOXNUOATIOPO LAOTIOINONKAV TPEIC JIOPOPETIKEG OPXITEKTOVIKEG KOl N

01100001 TouC cuvoyiletal otov Mivaka 1.

Mivokag . ATGd00N Twv APXITEKTOVIKOI yia TO0 0TAdI0 Tov MeTaoXnUATIoUOU

Delay (ns) 6.82 6.57 5.3
Area 178937.859375 179554.750000 186347.515625
Cells# 11818 14137 13369
Dynamic 31.7733 mW 37.9148 mW 46.7057 mW
power
Leakage 323.9445 uW 278.0365 UW 303.4926 UW
power
-6-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

MNa v kBavtoroinon vAoToINBNKAY OUO0 JIOPOPETIKEC OPXITEKTOVIKEG KOl N

01100001 ToUC cuvoWileTal otov Mivaka 2.

Mivakag 2. ATt0d00T1 TWV OPXITEKTOVIKWVY Yo To aTtddio tng KRavtoroinong

Standard Method /-Modification Method
Tree Carry-save - Carry-save
Multiplier Multiplier ~ 7ee Multiplier) inlier
Delay (ns) 8.63065 9.21604 6.3815 6.98
Area 412912.500 336792.375 418205.375 326448.562
Cells# 33881 23058 32247 22178

Dynamic Power. 40.9392 mW 51.5387 mW 37.4036 mW 47.8006 mw
Leakage Power. 409.9400 uW 584.6456 uwW 349.1045 uw 555.1185 uw

H epyacia oaut] OAOKANPWVETOI PE TNV €VOTIOINGN Twv OU0 OAyopiBUwv,
METACXNMOTIOUOU Kal KPBavToToinong, o€ éva KUKAWMA, KOBW Kal PE TNV €VOTIoinan
TwV dUO AVTIOTOIXWV, OVTICTPOPWV aAYyOopPiBUwY, TOL AVTICTPOEOU HUETACXNHATICHOU
KOl TNG OTIOKAIMAKWONG, Ot &va Oe0TEPO KUKAwMO. H amddoon twv U0 auTwv,

TEAIKWV, KUKAWUATWY Ttapouaidletal otov Mivaka 3.

MiV'okog 3- ATt0d00N TEAIKIV KUKAWUATWV

" [*1 ' |.

. Forward Path Inverse Path
Delay (ns) 8.78 8.8
Dynamic power (mW) 56.6784 37.4244
Leakage power (uW) 1030.2 799.2933
Area 788451 560350
Cells# 56524 39985

Edv KATTOI0G ETTIXEIPNOEI VO KAVEL YO GUYKPIOT METOED TWV OTIOTEAECUATWY TIOU
mapovoidlovtal otov [livoka 3, kKAl outwv TIou LTIdpxovv dlaBETIPa aTn
BiBAloypogia, TOTE Ba dIATIOTWOEl OTI Ol OPXITEKTOVIKEG TIOU QVOTITUXONKav oTa
TIAGicI0 OUTAC TNG €pyoaciag €ivar TOAD To oOTtodoTiKEC. Mo Tapddelyya o
OTIITOVEVOC XPOvOoC TIou Trapouciddetal otnv [1] eival 28.3 ns, evw auTOC TOU
Ttapovaoiadetal otny [2] gival 23.38 ns. Kal OTIC dUO TIEPITITWOEIC EiVal QaveEPO OTI N
IO poVCO UAOTIOINGN MEIWVEL TO XPOVO KaTA £va Ttapdyovta PeTagd 2 Kal 3.

210 Mopdptnuo Touv OKOAOUBEI PBpioKeTal AETITOPEPNC OVAALGN OAWV OCWV

avaeEpBnKav TapaTavw.

-7-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Appendix A

-8 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

1 Introduction

1.1 Video Format and Encoding

Digital video is a representation of a natural (real-world) visual scene, sampled
spatially and temporally. A scene is sampled at a point in time to produce a frame (a
representation of the complete visual scene at that point in time) or a field (consisting
of odd- or even-numbered lines of spatial samples). Sampling is repeated at intervals
(e.g. 1/25 or 1/30 second intervals) to produce a moving video signal. Three sets of

samples (components) are typically required to represent a scene in color.

1.1.1 Video Format

A typical ‘real world’ or ‘natural’ video scene is composed of multiple objects
each with their own characteristic shape, depth, texture and illumination. The color
and brightness of a natural video scene changes with varying degrees of smoothness
throughout the scene (‘continuous tone’). Characteristics of a typical natural video
scene that are relevant for video processing and compression include spatial and

temporal characteristics.

Temporal Samples

Fiurel. 1: Video signal structure.

A natural visual scene is spatially and temporally continuous. Representing a
visual scene in digital form involves sampling the real scene spatially (usually on a
rectangular grid in the video image plane) and temporally (as a series of still frames or
components of frames sampled at regular intervals in time). Digital video is the
representation of a sampled video scene in digital form. Each spatial-temporal sample
(picture element or pixel) is represented as a number or set of numbers that describes
the brightness (luminance) and color ofthe sample.

Generation ofvideo signal

To obtain a 2D sampled image, a camera focuses a 2D projection of the video

scene onto a sensor, such as an array of Charge Coupled Devices (CCD array). In the
-O-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

case of color image capture, each color component is separately filtered and projected
onto a CCD array.

The output of a CCD array is an analogue video signal, a varying electrical signal
that represents a video image. Sampling the signal at a point in time produces a
sampled image or frame that has defined values at a set of sampling points. The most
common format for a sampled image is a rectangle with the sampling points
positioned on a square or rectangular grid. The visual quality of the image is
influenced by the number of sampling points. Choosing a ‘coarse’ sampling grid
produces a low-resolution sampled image, whilst increasing the number of sampling
points slightly increases the resolution of the sampled image.

A moving video image is captured by taking a rectangular ‘snapshot’ of the
signal at periodic time intervals. Playing back the series of frames produces the
appearance of motion. A higher temporal sampling rate (frame rate) gives apparently
smoother motion in the video scene but requires more samples to be captured and
stored. Frame rates below 10 frames per second are sometimes used for very low bit-
rate video communications (because the amount of data is relatively small) but motion
is clearly jerky and unnatural at this rate. Between 10 and 20 frames per second is
more typical for low bit-rate video communications; the image is smoother but jerky
motion may be visible in fast-moving parts of the sequence. Sampling at 25 or 30
complete frames per second is standard for television pictures (with interlacing to
improve the appearance of motion); 50 or 60 frames per second produces smooth
apparent motion (at the expense of a very high data rate).

A video signal may be sampled as a series of complete frames {progressive
sampling) or as a sequence of interlaced fields {interlaced sampling). In an interlaced
video sequence, half of the data in a frame (one field) is sampled at each temporal
sampling interval. A field consists of either the odd-numbered or even-numbered lines
within a complete video frame and an interlaced video sequence contains a series of
fields, each representing half of the information in a complete video frame. The
advantage of this sampling method is that it is possible to send twice as many fields
per second as the number of frames in an equivalent progressive sequence with the
same data rate, giving the appearance of smoother motion.

Colored Video

Most digital video applications rely on the display of color video and so need a
mechanism to capture and represent color information. A monochrome image requires
just one number to indicate the brightness or luminance of each spatial sample.
Colored images, on the other hand, require at least three numbers per pixel position to
represent color accurately. The method chosen to represent brightness (luminance or
luma) and color is described as a color space.

Early known color space is the RGB one. In the RGB color space, a color image

sample is represented with three numbers that indicate the relative proportions of Red,

- 10-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Green and Blue (the three additive primary colors of light). Any color can be created
by combining red, green and blue in varying proportions. The red component consists
of all the red samples, the green component contains all the green samples and the
blue component contains the blue samples.

The RGB color space is well-suited to capture and display of color images.
Capturing an RGB image involves filtering out the red, green and blue components of
the scene and capturing each with a separate sensor array. Color Cathode Ray Tubes
(CRTs) and Liquid Crystal Displays (LCDs) display an RGB image by separately
iluminating the red, green and blue components of each pixel according to the
intensity of each component. From a normal viewing distance, the separate
components merge to give the appearance of‘true’ color.

The human visual system (HVS) is less sensitive to color than to luminance
(brightness). In the RGB color space the three colors are equally important and so are
usually all stored at the same resolution but it is possible to represent a color image
more efficiently by separating the Iluminance from the color information and
representing luma with a higher resolution than color.

The YCbCr color space and its variations (sometimes referred to as YUV) is a
popular way of efficiently representing color images. Y is the luminance (luma)
component and can be calculated as a weighted average of R, G and B:

Y=kr*R + kg*G + kh*B D
Where kr, kg, kb are weighting factors.

The color information can be represented as color difference (chrominance or
chroma) components, where each chrominance component is the difference between
R, G or B and the luminance Y:

Cb~B-Y
Cr=R-Y (1.2)
Cg=G-T

The complete description of a color image is given by Y (the luminance
component) and three color differences Q, Cr and Cg that represent the difference
between the color intensity and the mean luminance of each image sample. In the
YCbCr color space, only the luma (T) and blue and red chroma (Q,, Cr) are
transmitted. YCbCr has an important advantage over RGB that is the Cr and Q,
components may be represented with a lower resolution than Y because the HVS is
less sensitive to color than luminance. This reduces the amount of data required to
represent the chrominance components without having an obvious effect on visual
quality.

YCbCr color space representation can be sampled in various formats. 4:4:4
sampling means that the three components (Y, Cbh and Cr) have the same resolution

and hence a sample of each component exists at every pixel position. The numbers

-1 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

indicate the relative sampling rate of each component in the horizontal direction, i.e.
for every four luminance samples there are four Cb and four Cr samples. 4:4:4
sampling preserves the full fidelity ofthe chrominance components.

ol o o o o

‘ o
| © | © o
. Y sample
| ° o | o o o o O Cr sample
@ Cb sample
(0] o (0] (0] (0] (o)
© © ©
(o) o (o] (0} (o] (o]
(0} (o] (o] (0} o (0}
© ©
(o] (o] (o] (0] (o] (0}
4:2:0 sampling
% O 0 O ‘ %
% O 9% O | % %\ <% %
% O % O % % % %
% O 9% O
4:2:2 sampling 4:4:4sampling

Figure 1.2: 4:2:0, 4:2:2 and 4:4:4 sampling patterns (progressive).

In 4:2:2 sampling (sometimes referred to as YUYZ2), the chrominance
components have the same vertical resolution as the luma but half the horizontal
resolution (the numbers 4:2:2 mean that for every four luminance samples in the
horizontal direction there are two Cb and two Cr samples). 4:2:2 video is used for
high-quality color reproduction.

In the popular 4:2:0 sampling format (‘YV12’), C* and Cr each have half the
horizontal and vertical resolution of Y. The term ‘4:2:0' is rather confusing because
the numbers do not actually have a logical interpretation and appear to have been
chosen historically as a ‘code’ to identify this particular sampling pattern and to
differentiate it from 4:4:4 and 4:2:2. 4:2:0 sampling is widely used for consumer
applications such as video conferencing, digital television and digital versatile disk
(DVD) storage. Because each color difference component contains one quarter of the
number of samples in the Y component, 4:2:0 YCbCr video requires exactly half as
many samples as 4:4:4 (or R:G:B) video.

1.1.2 Video CODEC

Video compression (video coding) is the process of compacting or condensing a
digital video sequence into a smaller number of bits. ‘Raw’ or uncompressed digital
video typically requires a large bitrate (approximately 216 Mbits for | second of
uncompressed TV-quality video) and compression is necessary for practical storage

and transmission of digital video. Compression involves a complementary pair of

- 12-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

systems, a compressor (encoder) and a decompressor (decoder). The encoder converts
the source data into a compressed form (occupying a reduced number of bits) prior to
transmission or storage and the decoder converts the compressed form back into a
representation of the original video data. The encoder/decoder pair is often described
as a CODEC (enCOder/ DECoder)

Video Source
Figure 1.3: Video transmission system.

A video CODEC encodes a source image or video sequence into a compressed
form and decodes this to produce a copy or approximation of the source sequence. If
the decoded video sequence is identical to the original, then the coding process is
lossless; ifthe decoded sequence differs from the original, the process is lossy.

A video encoder consists of three main functional units: a temporal model, a

spatial model and an entropy encoder.

Video
input

encoded
output

Figurel.4: Video Processing system.

The input to the temporal model is an uncompressed video sequence. The
temporal model attempts to reduce temporal redundancy by exploiting the similarities
between neighboring video frames, usually by constructing a prediction of the current
video frame.

Motion compensation is an example of prediction encoding in which an temporal
model creates a prediction of a region of the current frame based on a previous (or
future) frame and subtracts this prediction from the current region to form a residual.
If the prediction is successful, the energy in the residual is lower than in the original
frame and the residual can be represented with fewer bits.

In a similar way, a prediction of an image sample or region may be formed from
previously-transmitted samples in the same image or frame and this is called spatial
prediction. Prediction encoding was used as the basis for early image compression
algorithms. Spatial prediction is sometimes described as ‘Differential Pulse Code
Modulation’ (DPCM), a term borrowed from a method of differentially encoding

PCM samples in telecommunication systems.

- 13 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

The residual frame resulted from the temporal model forms the input to the
spatial model which makes use of similarities between neighboring samples in the
residual frame to reduce spatial redundancy. This is achieved by applying a transform
to the residual samples and quantizing the results. The output of the spatial model is a
set of quantised transform coefficients.

The parameters of the temporal model (typically motion vectors) and the spatial
model (coefficients) are compressed by the entropy encoder. This removes statistical
redundancy in the data (for example, representing commonly-occurring vectors and
coefficients by short binary codes) and produces a compressed bit stream or file that
may be transmitted and/or stored. A compressed sequence consists of coded motion
vector parameters, coded residual coefficients and header information.

The purpose of the transform stage in spatial model is to convert motion-
compensated residual data into another domain (the transform domain). The type of
transform depends on a number of criteria:

1. Data in the transform domain should be decorrelated (separated into
components minimal inter-dependence) and compact (most of the energy in
the transformed data be concentrated into a small number of values).

2. The transform should be reversible.

3. The transform should be computationally tractable (low memory requirement,
achievable using limited-precision arithmetic, low number of arithmetic
operations, etc.).

Many transforms have been proposed for image and video compression and the
most popular transforms tend to fall into two categories: block-based and image-
based. Examples of block-based transforms include the Karhunen-Loeve Transform
(KLT), Singular Value Decomposition (SVD) and the ever-popular Discrete Cosine
Transform (DCT). Each of these operates on blocks of NxN image or residual
samples and hence the image is processed in units of a block. Block transforms have
low memory requirements and are well-suited to compression of block-based motion
compensation residuals but tend to suffer from artifacts at block edges (‘blockiness’).
Image-based transforms operate on an entire image or frame (or a large section of the
image known as a ‘tile’). The most popular image transform is the Discrete Wavelet
Transform (DWT or just ‘wavelet’). Image transforms such as the DWT have been
shown to out-perform block transforms for still image compression but they tend to
have higher memory requirements (because the whole image or tile is processed as a
unit) and do not ‘fit" well with block-based motion compensation.

DCT

The Discrete Cosine Transfonn (DCT) operates on X, a block of NxN samples

(typically image samples or residual values after prediction) and creates Y, an NxN

block of coefficients. The action of the DCT (and its inverse, the IDCT) can be

- 14-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

described in terms of a transform matrix A. The forward DCT (FDCT) of an N*N
sample block is given by:
Y = AXAT (1.3)
And the inverse DCT (IDCT) by:
X = ALYA (1.4)
Where X is a matrix of samples, Y is a matrix of coefficients and A is an N*N
transform matrix. The elements of A are:
A, =C, cosfe:! Where C'.' =J— (i=0), C: =1~ (i> O)
2N VAR \N v
The DCT transform compacts the block energy in a smaller number of
coefficients rather than being spreaded in all the block coefficients. This is clear in the

figure below.

5372 -780 -64.8
.1001 36.0 -127 44
427 4&S 103 98

202 129 39 «06
Original block DCT Coefficients

Figurel.5: Close-up of4x4 block; DCT coefficients.

The next step after image transformation is usually, the quantization process. A
gquantizer maps a signal with a range of values A to a quantized signal with a reduced
range of values Y. It should be possible to represent the quantized signal with fewer
bits than the original since the range of possible values is smaller. A scalar quantizer
maps one sample of the input signal to one quantized output value and a vector
quantizer maps a group of input samples (a ‘vector’) to a group of quantized values.

A simple example of scalar quantization is the process of rounding a fractional
number to the nearest integer, i.e. the mapping is from R (real numbers) to Z (integer
numbers). The process is lossy (not reversible) since it is not possible to determine the
exact value ofthe original fractional number from the rounded integer.

A more general example of a uniform quantizer is:

FQ =round
W (1.5)
Y = FQ*QP
Where QP is a quantization ‘step size’. The quantized output levels are spaced at
uniform intervals of QP (as shown in the following example).

Figure 1.6 shows two examples of scalar quantizer, a linear quantizer (with a

linear mapping between input and output values) and a nonlinear quantizer that has a

‘dead zone’ about zero (in which small-valued inputs are mapped to zero).

- 15 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Output Output

Input Input

Linear nonlinear
Figurel.6: Scalar quantizer: linear; nonlinear with dead zone.

Quantization may be used to reduce the precision of image data after applying a
transform such as the DCT or wavelet transform removing remove insignificant
values such as near-zero DCT or wavelet coefficients. The forward quantizer in an
image or video encoder is designed to map insignificant coefficient values to zero
whilst retaining a reduced number of significant, nonzero coefficients. The output ofa
forward quantizer is typically a ‘sparse’ array of quantized coefficients, mainly
containing zeros.

A vector quantizer maps a set of input data (such as a block of image samples) to
a single value (codeword) and, at the decoder, each codeword maps to an
approximation to the original set of input data (a ‘vector’). The set of vectors are
stored at the encoder and decoder in a codebook.

A typical application of vector quantization in image compression is as follows:

1. Part the original image into regions (e.g. M x A pixel blocks).

2. Select a vector from the codebook that matches the current region as closely

as possible.

3. Transmit an index that identifies the chosen vector to the decoder.

At the decoder, reconstruct an approximate copy of the region using the
selected vector.

The last step before transmitting video is reordering and entropy encoding.
Quantized transform coefficients are required to be encoded as compactly as possible
prior to storage and transmission. In a transform-based image or video encoder, the
output of the quantizer is a sparse array containing a few nonzero coefficients and a
large number of zero-valued coefficients. Reordering (to group together nonzero
coefficients) and efficient representation of zero coefficients are applied prior to
entropy encoding. Reordering process is a scanning operation performed on the
quantized transform output blocks. One of the widely used scanning techniques is

Zigzag scan order applied for DCT transformed data blocks as shown in figure 1.7.

- 16-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Most nonzero elements of quantized DCT transform coefficient are placed

around the (0, 0) position, so zigzag scan order groups those nonzero elements.

Figure 1.7: Zigzag scan order (frame block).

The entropy encoder converts a series of symbols representing elements of the
video sequence into a compressed bitstream suitable for transmission or storage. Input
symbols may include quantized transform coefficients, motion vectors, markers
(codes that indicate a resynchronization point in the sequence), headers and
supplementary information (‘side’ information that is not essential for correct
decoding).

Entropy encoding techniques depend highly on two data characteristics;

e Data elements correlation. Where some data elements have too many
similarities with the neighboring ones, so a sophisticated predictive coding
technique can be used to reduce data size.

» Statistical properties of data elements can be effectively used to reduce the
data code size. A variable length coding technique can effectively use data
probabilities to encode highly probable elements with small number of bits,
and rare elements with larger code size, which give a code with small average

code length. Such a technique, widely used, is Huffman coding method.

1.1.3 Video Encoding standards

Video encoding is implemented according to international standards. Standards
are created by international groups of scientists and researchers like MPEG and
VCEG groups. An MPEG (Moving Picture Experts Group) group is responsible of
creating, maintaining and updating the ISO/IEC 14496 (‘MPEG-4’) set of standards.
MPEG developed the highly successful MPEG-1 and MPEG-2 standards for coding
video and audio, now widely used for communication and storage of digital video,
and is also responsible for the MPEG-7 standard and the MPEG-21 standardization
effort. VCEG was responsible for the first widely-used videotelephony standard
(H.261) and its successor, H.263, and initiated the early development of the H.26L

project. The two groups set-up the collaborative Joint Video Team (JVT) to finalize

-17-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

the H.26L proposal and convert it into an international standard (H.264/MPEG-4 Part
10) published by both ISO/IEC and ITU-T.

The Video Coding Experts Group is a working group of the International
Telecommunication Union Telecommunication Standardization Sector (ITU-T). ITU-

T develops standards (or ‘Recommendations’) for telecommunication field.

1.2 H.264 Video Encoding Standard

H.264 Standard was developed by the Moving Picture Experts Group and the
Video Coding Experts Group (MPEG and VCEG) to provide better compression of
video images. The H.264 is entitled ‘Advanced Video Coding’ (AVC) and is
published jointly as Part 10 of MPEG-4 and ITU-T Recommendation H.264.

1.2.1 H.264 Structure

The standard includes the following three sets of capabilities, which are referred
to as profiles, targeting specific classes of applications:

» Baseline Profile (BP): Primarily for lower-cost applications with limited
computing resources, this profile is used widely in videoconferencing and
mobile applications.

* Main Profile (MP): Originally intended as the mainstream consumer profile
for broadcast and storage applications, the importance of this profile faded
when the High profile was developed for those applications.

* Extended Profde (XP): Intended as the streaming video profile, this profile
has relatively high compression capability and some extra tricks for robustness
to data losses and server stream switching.

H.264 supports coding and decoding of 4:2:0 progressive or interlaced video. In
the default sampling format, chroma (Cb and Cr) samples are aligned horizontally
with every 2nd luma sample and are located vertically between two luma samples. An
interlaced frame consists of two fields (a top field and a bottom field) separated in
time and with the default sampling format.

A coded picture consists of a number of macroblocks, each containing 16x16
luma samples and associated chroma samples (8x8 Cb and 8x8 Cr samples in the
current standard). Within each picture, macroblocks are arranged in slices, where a
slice is a set of macroblocks in raster scan order. An | slice may contain only /
macroblock types, a P slice may contain P and | macroblock types, and a B slice may

contain B and | macroblock types.

1.2.2 H.264 CODEC

H.264 standard defines the CODEC structure shown in figurel.8. The H.264
CODEC can be divided into three main parts as in figurel.4: a temporal model, a

spatial model and an entropy encoder.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

The temporal model includes two dataflow paths, a ‘forward’ path (left to right)
and a ‘reconstruction’ path (right to left). An input frame or field F, is processed in
units of a macroblock. Each macroblock is encoded in intra or inter mode and, for
each block in the macroblock, a prediction PRED (marked ‘P’) is formed based on
reconstructed picture samples. In Intra mode, PRED is formed from samples in the
current slice that have been previously encoded, decoded and reconstructed (uF ,, in
the figures; note that unfiltered samples are used to form PRED). In Inter mode,
PRED is formed by motion-compensated prediction from one or more reference
picture(s).

The reconstruction path in the temporal model, decodes (reconstructs) encoded
blocks to provide a reference for further predictions. The coefficients X are scaled
(Q-1) and inverse transformed (T_I) to produce a difference block D ,. The prediction
block PRED is added to D ,, to create a reconstructed block uF , (a decoded version of
the original block; u indicates that it is unfiltered). A filter is applied to reduce the
effects of blocking distortion and the reconstructed reference picture is created from a

series of blocks F ,,

S'’pntinl IVIoilei

Figure 1.8: H.264 CODEC.

The prediction PRED is subtracted from the current block to produce a residual
(difference) block D, that enters the spatial model. In spatial model, Dn blocks are
transformed (using a block transform) and quantised to give X, a set of quantized
transform coefficients which are reordered and entropy encoded. The entropy-
encoded coefficients, together with side information required to decode each block
within the macroblock (prediction modes, quantizer parameter, motion vector
information, etc.) form the compressed bitstream which is passed to a Network
Abstraction Layer (NAL) for transmission or storage.

Two prediction types are used in the H.264 standard; Inter prediction and Intra

prediction modes.

- 19-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Inter prediction

Inter prediction creates a prediction model from one or more previously encoded
video frames or fields using block-based motion compensation. Important differences
from earlier standards include the support for a range of block sizes (from 16x16
down to 4x4) and fine subsample motion vectors (quarter-sample resolution in the
luma component).

The luminance component of each macroblock (16x16 samples) may be split up
in four ways and motion compensated either as one 16x16 macroblock partition, two
16x8 partitions, two 8x16 partitions or four 8x8 partitions. Ifthe 8x8 mode is chosen,
each of the four 8x8 sub-macroblocks within the macroblock may be split in other 4
ways, either as one 8x8 sub-macroblock partition, two 8x4 sub-macroblock partitions,
two 4x8 sub-macroblock partitions or four 4x4 sub-macroblock partitions. These
partitions and sub-macroblocks give to a large number of possible combinations
within each macroblock. This method of partitioning macroblocks into motion
compensated sub-blocks of varying size is known as variable block size or tree
structured motion compensation.

A separate motion vector is required for each partition or sub-macroblock. Each
motion vector must be coded and transmitted and the choice of partition(s) must be
encoded in the compressed bitstream. Choosing a large partition size (16x16, 16x8,
8x16) means that a small number of bits are required to signal the choice of motion
vector(s) and the type of partition but the motion compensated residual may contain a
significant amount of energy in frame areas with high detail. Choosing a small
partition size (8x4, 4x4, etc.) may give a lower-energy residual after motion
compensation but requires a larger number of bits to signal the motion vectors and
choice of partition(s). The choice of partition size therefore has a significant impact
on compression performance. In general, a large partition size is appropriate for
homogeneous areas of the frame and a small partition size may be beneficial for
detailed areas.

Each chroma component in a macroblock (Cb and Cr) has halfthe horizontal and
vertical resolution of the Iluminance (luma) component. Each chroma block is
partitioned in the same way as the luma component, except that the partition sizes
have exactly half the horizontal and vertical resolution (an 816 partition in luma
corresponds to a 4x8 partition in chroma; an 8x4 partition in luma corresponds to 4x2
in chroma and so on). The horizontal and vertical components of each motion vector
(one per partition) are halved when applied to the chroma blocks.

Each partition or sub-macroblock partition in an inter-coded macroblock is
predicted from an area of the same size in a reference picture. The offset between the
two areas (the motion vector) has quarter-sample resolution for the luma component

and one-eighth-sample resolution for the chroma components. The luma and chroma

-20-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

samples at sub-sample positions do not exist in the reference picture and so it is
necessary to create them using interpolation from nearby coded samples.
Infra Prediction

In intra mode a prediction block P is formed based on previously encoded and
reconstructed blocks of the same frame and is subtracted from the current block prior
to encoding. For the luma samples, P is fonned for each 4x4 block or for a 16x16
macroblock. There are a total of nine optional prediction modes for each 4x4 luma
block, four modes for a 16x16 luma block and four modes for the chroma
components. The encoder typically selects the prediction mode for each block that
minimizes the difference between P and the block to be encoded.

The spatial model of H.264 consists of the transform and quantization successive

operations. Section 1.3 describes in details the transformation and quantization used

in H.264
Table1.1: MPEG-4 VISUAL and H.264 standards comparison.
Comparison MPEG-4 Visual H.264
Rectangular video frames and fields,
arbitrary-shaped video objects, still Rectangular
Supported data types texture fand sprites, synthgtic or . videq frames
synthetic-natural hybrid video and fields
objects,
2D and 3D mesh objects
Number of profiles 19 3
Compression efficiency Medium High
Support for video streaming Scalable coding quchlng
slices
Mqtlpn compensaﬁlon 8x8 axd
minimum block size
Motion vector accuracy Half or quarter-pixel Quarter-pixel
Transform 8x8 DCT 4X4.DCT
approximation
Built-in deblocking filter No Yes

H.264 has a narrower scope than MPEG-4 Visual and is designed primarily to
support efficient and robust coding and transport of rectangular video frames. Its
original aim was to provide similar functionality to earlier standards such as
H.263+and MPEG-4 Visual (Simple Profile) but with significantly better compression
performance and improved support for reliable transmission.

Target applications include two-way video communication (videoconferencing or
videotelephony), coding for broadcast and high quality video and video streaming
over packet networks. Support for robust transmission over networks is built in and
the standard is designed to facilitate implementation on as wide a range of processor
platforms as possible.

Table 1.1 summarizes some of the main differences among the MPEG-4 VISUAL and
H.264 standards.

21 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

1.3 Transformation and Quantization of H.264 Standard

1.3.1 Transformation
The transformation process applied on predicted residual data includes three different
types depending on data components and prediction type as follow:

1. A DCT-based transform for all other 4x4 blocks in the residual data.

2. A Hadamard transform for the 4x4 array of luma DC coefficients in intra

macro blocks predicted in 16x 16 mode.
3. A Hadamard transform for the 2x2 array of chroma DC coefficients (in any

macro block).

1.3.1.1 4x4 Residual Transform

This transfonn operates on 4x4 blocks of residual data after motion-compensated
prediction or Intra prediction. This transform is based on the DCT but with some
differences; mainly, it can be implemented by integer addition and shifting, while
multiplication is integrated in the quantization process which reduces the number of
multiplication units needed.

Let’s see how the derivation of this transform from the DCT is:

The 4x4 DCT is given by:

a a a a n a b a c
b ¢ -c¢c -b ., «a ¢ -a -b
Y = AXAT = X (1.6)
a -a a a a -c -a b
c -b b -¢c -~ a -b a -c¢
Where
1 It T 3
a=—, b =J—cos T c= — cos(a.7)
2 V2 v0o/ 8

This matrix multiplication can be factorized to the following equivalent form

fT 1 1 I "1 1 1 d’ al ab a ab

1 d -d -1 1 d -1 -1 b b bl 1.8

Z[CXCT * X * ab bl al ()
1 -1 -1 | 1 —d -1 1 al ab al ab
d -1 ! -d 1 -1 1 -d y ab bl ab b2

CXCr is a ‘core’ 2D transform. E is a matrix of scaling factors and the symbol ®
indicates that each element of (CXCT) is multiplied by the scaling factor in the same
position in matrix E (scalar multiplication rather than matrix multiplication). The
constants a and b are as before, and d = c¢/b (approximately 0.414).

To simplify the implementation of the transform, d is approximated by 0.5. In
order to ensure that the transform remains orthogonal, b also needs to be modified so
that:

-22-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

d= (1.9)

2

The 2nd and 4th rows of matrix C and the 2nd and 4lh columns of matrix CT are
scaled by a factor of two and the post-scaling matrix E is scaled down to compensate,
avoiding multiplications by half in the ‘core’ transform CXCr which could result in

loss of accuracy using integer arithmetic. The final forward transform becomes:

ab 2
r 1 1] '\ 7) 7
Plas Hhas wied
= = i) * * _) ’ y i Y
Y = [CfXC])® Ef 1 -1 X 1-1-1 2 o B F >
(-2 2 -1 b-2 1 -1 . ;
ab bx ab bt

2 4 2 4
This transform is an approximation to the 4x4 DCT but because of the change to
factors d and b, the result ofthe new transform will not be identical to the 4x4 DCT.

The inverse transform is given below:

2 0 1AL
al ab a2 ab] N :) ()
S ! -1 1.11
Y = C[(Z®E,)Ci = 2 o 3 bl ab bl 5
[—— | al ab a’ ab 1-1-1 |
2 1 -1 1 -1
ab b2 ab b? 3 5

This time, Y is pre-scaled by multiplying each coefficient by the appropriate
weighting factor from matrix E,. Note the factors +1/2 in the matrices C, and Qr
which can be implemented by a right-shift without a significant loss of accuracy
because the coefficients Y are pre-scaled.

Example: Compare the output ofthe 4 x 4 approximate transform with the output
ofa ‘true’ 4x4 DCT, for input block X:

7 13 10
6 19
3 1
22 16 | 18
DCT output
39.000 132900 10.000 -8.5870
2.6350 -4.5668 -6.161 2.23240
Y=AXAT
10.000 9.51100 -1.000 -3.1670
-7.392 -0.4762 -7.712 0.18430
Approximate transform output:
39.000 -3.4785 10.000 -5.6580
. -2.5298 -6.4000 -6.957 3.8000
Y'=(cXCT)X)E/
10.0000 9.1706 -1.000 -2.5298
-7.5895 -1.2000 -8.2219 0.4000

The difference between the two output blocks is

-23 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

0 4.8075 0 0.2674
5.1648 1.8332 0.7960 -1.5676
0 0.3404 0 -0.6372
0.1975 0.7238 0.5099 -0.2157

1.3.1.2 4x4 Luma DC Coefficient Transform (16x16 Intra-mode only)

If the macro block is encoded in 16x16 Intra prediction mode (i.e. the entire
16x16 luma component is predicted from neighboring samples), each 4x4 residual
block is first transformed using the ‘core’ transform described above (C/XCI/). The
DC coefficient of each 4x4 block is then transformed again using a 4x4 Hadamard

transform:

It 1 1 g T 1+ 1 1)
1 -1 -1% «1 1 -1 -1
_ /2 (1.12)
o= 4 9 ¢ WMo g
B R G| Gl 1y

WD is the block ofthe 4x4 DC coefficients and Yo is the block after transformation.
At the decoder, an inverse Hadamard transform is applied followed by rescaling

(note that the order is not reversed as might be expected):

(¢ T 1 1 1" I 1 1 1" A
1 1 -1 -1 1 1 -1 -1
* *
W, = (1.13)
1 -1 -1 1 1 -1 -1 1
1 -1 1 -1 1 -1 1 -1)

1.3.1.3 2x2 Chroma DC Coefficient Transform

Each 4x4 block in the chroma components is transformed as described in Section
1.3.1.1, then the DC coefficients of each 4x4 block of chroma coefficients are

grouped in a 2x2 block (W/fi and are further transformed prior to quantization:

Wop = Whn (1.14)

As with the Intra luma DC coefficients, the extra transform helps to de-correlate

the 2x2 chroma DC coefficients and improves compression performance.

1.3.2 Quantization
As H.264 standard support different transformations, a corresponding
quantization process for each type exists. However the quantization process is
completed one level, and is performed on the final result of the transformation
process, using different process for each of the transformation categories described in
the previous section.
-24-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

1.3.2.1 4x4 Residual Quantization

All the 4x4 Residual data blocks which do not undergo another transformation
type after DCT based one, will be quantized as follow:

- Y”
Zj = round Qstep (1.15)

Where YUl is a coefficient of the transform described above, Qstep is a quantizer
step size and Zy is a quantized coefficient. The rounding operation here (and
throughout this section) need not round to the nearest integer; for example, biasing the
‘round’ operation towards smaller integers can give perceptual quality improvements.

A total of 52 values of Qstep are supported by the standard, indexed by a
Quantization Parameter, QP (Table 1.2). Qstep doubles in size for every increment of
6 in QP. The wide range of quantizer step sizes makes it possible for an encoder to
control the tradeoff between bit rate and quality accurately and flexibly. The values of
QP can be different for luma and chroma. Both parameters are in the range 0-51 and
the default is that the chroma parameter.

Tablet.2: QP values and corresponding Qsteps.

QP 0 1 2 3 4 5 6 7 8 9 10 11 12
Qstep 0625 06875 0.8125 0.875 1 1.125 1.25 1375 1.625 1.75 2 2.25 25

QP 18 24 30 36 42 48 51
Qstep 5 10 20 40 80 160 224

The post-scaling factor a2, ab/2 or bA/A, is incorporated into the forward
quantizer. First, the input block X is transformed to give a block of unsealed
coefficients W=CXCT. Then, each coefficient Wy is quantized and scaled in a single

operation:
PF
Zy =round | . (1.16)
Qstep
.2 2
PFis a, ab/2 or b /A depending on the position (/,/) as in the table 1.3 below:

Tablet.3: PF values

Position PF
(0,0), (2,0), (0,2) or (2,2) a2
(1,1), (1,3), (3,1) or (3,3) b*/4
Others ab/2

In order to simplify the arithmetic, the factor (PF/Qstep) is implemented as a

multiplication by a factor MF and a right-shift, avoiding any division operations:

MF
vV o2
Where
MF _ PF
(1.18)
~ Qstep
And
gbits = 15 + floor (1.19)
-25 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

In integer arithmetic, Equation 1.12 can be implemented as follows:
\zu =\W\MF + f)»gbUs

(1.20)
sig’KZj) = sign(Wy)
2 gbits
Where >> indicates a binary shift right, and, ¥ is 3 for Intra blocks or
gbits
for Inter blocks. The values are given in table 1.4 below:
Tablel.4: MF multiplication factor.
QP Positions Positions Other positions
(0,0), (2,0), (0,2) or (2,2) (1,1), (1,3), (3,Hor(3,3)
0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4559

For QP values > 6, we find the result of (QP mod which will be in the range
(0-5) and look in the corresponding row in the table 1.4 to get MF values.
The rescaling or inverse quantization process is applied by the following
equation:
YJ§=Zij*Qstep (1.22)
The pre-scaling factor for the inverse transform is incorporated in this operation,
together with a constant scaling factor of 64 to avoid rounding errors:
Wy = Zy * Qstep *PF* 64 (1.22)

Wy Is a scaled coefficient which is transformed by the inverse transforming core

C jWC,; (Equation 1.6). The values at the output of the inverse transform are divided
by 64 to remove the scaling factor (this can be implemented using only an addition
and a right shift).

The H.264 standard does not specify Qstep or PF directly. Instead, the parameter
V=(Qstep.PF.64) is defined for 0 <QP < 5 and for each coefficient positiopso the
scaling operation becomes

fp = 2. *y.. * 2/00'(i?plp) (23)

The values of V defined in the standard for 0 <QP < 5 are shown in Tablel.5

Tablet.5: V scaling factor.

QP Positions Positions Other positions
(0,0), (2,0), (0,2) or (2,2) (1,1), (D3), (3,1) or (3,3)
0 10 16 13
! 1 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 26 23
-26-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

1.3.2.2 4x4 Luma DC Coefficient Quantization
What was described in the previous section for the 4x4 Luma DC Coefficients
with a simple modification

\ZD(i)\ = \YDVIN-MF(0,0) + 2/) >> {gbits +1) (1.24)

si8n(ZDUJ)) = SiSniYD(i,j))
MF(0,0) is the multiplication factor for position(O.0) in Tablel.2 and/, gbits are
defined as before.

The inverse quantization operation is

w — 11/ *V * 'y flom-(OP/6)-2
WG — WoDi) oo 4 QP > 12 (1.25)
WD(iJ) = [wQD(iJ) * V(m + 2*--*°°")> (2 - floor{QP/6)) QP< 12

V(0,00 is the scaling factor V for position (0,0) in Tablel.3. Because F(0,0) is
constant throughout the block, rescaling and inverse transformation can be applied in
any order. The specified order (inverse transform first, then scaling) is designed to
maximize the dynamic range ofthe inverse transform.

The rescaled DC coefficients WD are inserted into their respective 4x4 blocks and
each 4x4 blocks of coefficients is inverse transformed using the DCT-based inverse
transform core (C , W C/). In a 16x16 intra-coded macro block, much ofthe energy is
concentrated in the DC coefficients of each 4x4 block which tend to be highly
correlated. After this extra transform, the energy is concentrated further into a small

number of significant coefficients.

1.3.2.3 2x2 Chroma DC Coefficient Quantization

The Quantization operation is performed by

1"o(ij)| ~ (Po(ly) \MF(m + 2/)>> (qbits +1)
sign{ZdUJ)) = sign{YD(jj))

(1.26)

The rescaling process is done before inverse transform core according to the

equations below:

Wow) =Wap@) *Vog *3" "7 QP > 6 (1.27)
Woap ~Woouy Yoo IR | QP<6

1.3.3 Reforming Quantization process

H.264 standard suggests equations (1.20), (1.24) and (1.26) as an implementation
ofthe quantization process as stated in equation (1.13). It is clear from these equations

that the quantization process is performed as follow:

-27-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

1. Take the absolute value of W matrix elements (Wj).

2. Multiply by the MF factors.

3. Add/value which is necessary for correct rounding.

4. Applying right shift with gbits digits.

5. Resign the elements to obtain the correct values of Z matrix.

The absolute and resigning stages add an overhead on the quantization process,
which can be avoided with clever selection of / values according to the sign of

rounded value.

1.3.3.1 Integer division implementation

The output of integer division process is an integer number rounded from a
floating point result. In this section we will deal with division on numbers ofthe form
2n,

Division with integer number of the form 2n can be implemented simply by right
shift operation with n digits. The right shift process always works as floor function
(i.e. round to the nearest smallest integer), see the example below:

Example:
(7 1 4) -* shift right (111) by 2 digits -» result (001) -> (1).

(7/4)-» 14: -*1.75

In this example we see that the % are ignored and the result is rounded to 1. This
is done because by right shifting 2 bits; we discard those bits which represent the
value on the numerator (which is for our example (11)-» 3).

So, how we can round to the nearest largest integer if we want? As for example
when we want to round numbers which their decimal digit is larger than or equal to
(0.5)?

A simple way is to multiply the divisor by (1 - 0.5) and add the result to the
number before performing the right shift operation. Why this way? See below

1-0.5=05->05*4 =2 (10) ->7 + 2 =9 (1001)

Shr (1001) by 2 digits -> 0010 -> 2

Rounding occurred here because by adding 2 the floating point result is: 2Z which is

larger than 2 and by shifting, the (1/4) will be ignored.

Generally, if we want to round to the nearest largest integer for numbers which
their decimal digit is larger than or equal to 0.x we just replace 0.5 above by 0.x and
go forward. Adding this value will result a floating point number which is equal to or
greater than the nearest integer, if the decimal digit is larger than or equal to 0.x, so
when performing shifting we will go down to the new nearest smallest integer which

is actually the nearest largest integer we want.

28 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

For Positive Integers
(floor((1-0.x) * 2k) + N) >k
What happens in the case of negative numbers?
Example:
(-5/4) -* Shift right (1011) by 2 bits -*(1110)-* -2
(-7/4) -* Shift right (1001) by 2 bits -*(1110)-* -2

-5/4) -* % .1.25
(-5/4) A

(-714) -

The rounding here is also produces the nearest smallest integer (-2 less than -1),
even for very small decimal digits.

Now what we should do ifwe want to round value such -1.25 to -1 and not to -2 ,
or in other words; how can we make rounding to the nearest largest integer, for
example, when the decimal digit is smaller or equal to (0.5).

There are two ways:

1. Take the absolute value, work on it as for positive integers, and finally do

resigning.
2. Multiply the divisor by (0.x), add the result to the number, and finally perform
right shifting.
Let us check the two ways for (-5/4) and (-7/4):
Waqy#l:

(-5/4):

(1-05=05)-*05*4=2)-*(2+ abs (-5) =7)-*(7/4) -* Shr (0111) 2bits
-*(0001) -* (1111) -* (-1).

(-7/4):

(1-05=05)-*05*4=2)-*(2+ abs (-7) =9) -* (9/4) -* Shr (1001) 2bits
-*(0010)-*(1110)-*(-2).

Way#2:

(-5/4):

(05*4=2-*(2+ (-5)=-3)-*(-3/4) -* Shr (101) 2bits -* (111) -* (-1).

(-7/4):

(05*4=2-*2+ (-7) =-5) -* (-5/4) -* Shr (1011) 2bits -* (1110) -* (-2).

The first way works as the case of positive integers. It rounds to the nearest
integer according to (0.x).

The second way works as follow: by adding (0.5 * 4) to (-5) the value goes to
(-3) which is less than 4 or, the floating point result is (-0.75) which by right shifting
goes to (-1). However, for (-7) the value is still over 4, or the floating point result is (-

-20-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

1.25) which by right shift goes to (-2). It is clear that values with decimal digit small
than 0.5 are rounded to the nearest largest integer, and values with decimal digits
larger than 0.5 are rounded to the nearest smallest integer.

The problem with way#2 is when the decimal digit is exactly 0.5 the result will
be error. See below for (-6/4):
Way#:

(1 -05=05)-*05*4=2)-*(2 + abs (-6) = 8) -* (8/4) -* Shr (1000) 2bits
-> (0010) -*(1110) -*(-2).

Way#2:

(05 *4=2)-*(2 + (-6) = -4) -* (-4/4) -* Shr (1100) 2bits -* (1111) — (-1).

In general, way#2 does not work when the decimal digit is exactly (0.x).
However, for our case as you will see below we will ensure that the case of 0.x will

never occur.

N
—f- = Nn.X
2k

For Negative Integers
way#! (floor((I-]0.x])*2k) + N]) >> k
way#2:(floor((|0.x|)*2K) + N)>> k

1.3.3.2 Modification of ffor negative Numbers

The rounding process in (1.17) is implemented by adding the/value after taking
the absolute values of W coefficients. Remember that / takes the values (2qblts)/3 for
intra mode prediction and (2gblts)/6 for inter mode prediction. Let us consider Wy*MFy
as a whole signed integer equal to K. This integer needs to be divided by 2gblls.
Performing right shift of K by gbits places, will always round to the nearest smallest
integer as we’ve seen previously. In order to see more clearly how we use some
examples:

Example 1. w = 54, MF = 1, gbits = 5, Intra mode.
54/32= 1— = 1.6875
32

/= 25/3 = 10 (always floor for/).
54 * 1 + 10 =64 (64/32) -* Shr (1000000) 5bits -* (0000010) — 2.

Example 2: w = 53, MF = 1, gbits = 5, Intra mode.
53 /32= 1— = 1.65625
32

/= 25/3 = 10 (always floor for /).
53 * 1 + 10 = 63 -* (63/32) -> Shr (01111 II)5bits-> (0000001)-* 1.
The addition of/before right shifting allows us to round to the nearest largest

integer as appears in example 1. If we look carefully to the value of/we could know

-30-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

the decimal point above it the standard prefers to round to the nearest largest integer.
Look to the back calculations of the addend value /below.

7 = ((20hi5)/3)=(1-0.x)*(2qbis)

£, .. hits
(2qbilsy*0.x = 20— ~auhis

So, if the decimal point is larger than or equal to 0.666 we should round to the
nearest smallest integer as the standard prefer.

For the case of inter mode prediction, the value of/is (2qblts/6), which means we
round to the nearest largest integer when the decimal digit is equal to or larger than
0.8333 (or 5/6). Let us see the example below:

Example 3: w =59, MF = 1, gbits = 5, Inter mode.

59/32 = 1— = 1.84375
32

/= 25/6 =5 (always floor forf).
59 * 1 + 5 =64 -* (64/32) Shr (1000000) 5bits — (0000010) -* 2.

Example 4: w = 58, MF = 1, gbits = 5, Inter mode.
I f
58/32= 1— = 1.8125
32

/= 25/6 =5 (always floor forf).
58 * 1 + 5 =63 -» (63/32) Shr(0111111) 5bits -» (0000001) -> 1.
Now let us see how the standard deals with negative numbers.
Example 5: w = -54, MF = 1, gbits = 5, Intra mode.
-54/32= -1— =-1.6875
32

/= 25/3 = 10 (always floor forf).
abs (-54) * 1 + 10 = 64 -> (64/32) -> Shr (1000000) 5bits -* (0000010) ~2 -* -2
Example 6: w = -53, MF = 1, gbits = 5, Intra mode.

-53 /32= -1— =-1.65625
32

/= 25/3 = 10 (always floor forf).

abs (-53) * 1 + 10 = 63 ™ (63/32) »« Shr (0111111) 5bits-* (0000001) -> | -1.
At first, it is clear that the standard adapted the way#l which presented in the

previous section for the case of negative integers. Secondly, we can see clearly the

rounding to the nearest largest integer (-1 here) is done when the decimal digit is less

than 0.6666 (or 2/3) so the value of/is (1/3) the divisor (2gblts). The same thing can be

seen for inter mode, where rounding to the nearest largest integer occurs when the

decimal digit is less than 0.8333 (or 5/6).

Example 7: w =-59, MF = 1, gbits = 5, Inter mode.

-59/32= —13—2 =-1.84375

-31 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

/= 25/6 = 5 (always floor forf).
abs (-59) * | +5 =64 — (64/32) -* Shr (1000000) 5bits -> (0000010) -* 2 -*
Example 8: w = -58, MF = 1, gbits = 5, Inter mode.

-58 /32 = -1— =-1.8125
32

/= 25/6 =5 (always floor for/).
abs (-58)* | +5 =63 ™ (63/32) -* Shr (0111111) 5bits -* (0000001) -* 1 -*

The change we propose here is to use way#2 for the case of negative integers, so

we can remove two stages from the quantization process: absolute operation stage,

and resigning stage.

Again, Way#2 works as follow:

Multiply the divisor by (0.x), then add the result to the number, and perform right

shifting. Here 0.x = (2/3) for Intra mode, and 0.x = (5/6) for Inter mode.
Let us check this for our examples:

Example 9: w = -54, MF = 1, gbits = 5, Intra mode.
-54/32 = —1— =-1.6875
32

/= 2*(25/3) = 21 (2/3 ofthe divisor 25).
-54 * | +21 =-33 ->(-33/32) Shr(1011111) 5bits -*(1111110)-» -2
Example 10: w = -53, MF = 1, gbits = 5, Intra mode.

-53 /32= -1— =-1.65625
32

/= 2*(25/3) = 21 (2/3 ofthe divisor 25).
-53 * { +21 =-32 -* (-32/32) -> Shr (100000) 5bi ts-*(111111)-* -1.
Example 11: w =-59, MF = 1, gbits = 5, Inter mode.

-59/32= —15 =-1.84375

/= 5*(25/6) = 26 (5/6 of the divisor 25).
.59 * | + 26 = -33 -* (-33/32) Shr(1011111) 5bits -*(1111110)-* -2
Example 12: w = -58, MF = 1, gbits = 5, Inter mode.
-58 /32 = —1—f =-1.8125
32
/= 5*(25/6) = 26 (5/6 ofthe divisor 25).
-58 * 1 + 26 = -32 -» (-32/32) -* Shr (100000) 5bits -*(111111)-» -1.

So from the previous discussion we can say again that: for the case of Intra mode

prediction 0.x = 2/3 while for Inter mode 0.x = 5/6

Now, what about the problem ofway#2 for decimal digits exactly equal (0.x)?

Since we deal with integer numbers and with divisor of the form 2n, the case 0.x = 2/3

and 0.x = 5/6 will never occur.

-32-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Simply the values ((2/3) * 2n) and ((5/6) * 2n) are not integer values, and since we
deal only with integer values (i.e. Wy* MFY is always integer number) there will be
no errors. Nevertheless, if it is necessary we should take the floor result of those
values.

From the above discussion, equation (1.15) can be rewritten as follow:

Z, = (iff . MF + /) >> gbits (1.28)
Where/here take the following values:
1. For Positive values of Wy predicted in Intra mode,/takes the value A
N gbits

2. For Negative values of Wy predicted in Intra mode,/takes the value 2.

\ gbits
3. For Positive values of Wy predicted in Inter mode,/takes the value -

)qbits
4. For Negative values of Wy predicted in Inter mode,/takes the value 5.

For the case of Chroma and luma Intral6 mode data blocks, the difference in
gquantization process is just by adding 2F and right shifting with (gbits+1) digits.

The same model used above can be used here but by considering the divisor as
2<qbits+) (sjnce we jnake right shift of (gbits+1)), also we multiply previous/values by
2 s0; 2(gbltsV3 -> 2 (gbllstl) @ and 2(gbltsVe -* 2 (gblts+l) /6, which means we perform
rounding here exactly as previously. So equations (1.20) and (1.22) can be rewritten
as follow:

zm.j) = KurMFtm + 2/)>> (/bits +1) (1.29)

Where/takes the same values mentioned above.

1.4 Previous Work

Core transform-quantization chip architecture synthesis is presented in [1], The
architecture is developed to be used in high-resolution applications such as Fligh
Definition Television (HDTV) and Digital Cinema. The developed architecture is
prototyped and simulated using ModelSiin 5.4®. It is synthesized using Leonardo
Spectrum®.

Two levels of butterfly-adder blocks are used to implement the core transform.
The butterfly structure represents the best way to minimize area as it processes an
entire 4x4 block at the same time, and eliminates the need for memory units or any
pipeline hardware.

The synthesis result was a chip of 359 ports and with critical path of 28.3 ns, i.e.
a clock frequency of 34.8MPIz is used. The authors concluded that the speed of the
proposed architecture speed is redundant for the current video rates; this means that
taking the input serially may provide the necessary speed with less area and power, or

-33 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

integrating other functions and processes on the chip will make use of the speed

redundancy.

Xm K K *<i? biti,
k
%
X» r wB il
-&
e ft .
/
\,i KV i kK S
/ Ppilsmnt .V
K a> I
> - LI
i (mn@)mw
ro* o -~ Q. —)
—
CLK

Figure 1.9: presented architecture in [1].

In [2], architecture of 2x2 hadmard transform and quantization is presented. The
architecture is prototyped and simulated using ModelSim 5.4®. It is synthesized using
Leonardo Spectrum®. Again the butterfly-adder block is used to build the transform
on the 2x2 DC coefficients block. The proposed architecture is designed to perform
pipelined operations on the 4x4 DC coefficients block coming out from the core
transform process. The target technology is the FPGA device (2Vv3000fg676) from the
Virtex-Il family ofXilinx®.

The critical path is estimated be 23.68 ns, which is equivalent to a maximum
operating frequency of 42.4 MHz. The chip outputs a whole 2x2 coded block with

each clock pulse (except for the first block).

-34-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

2 RTL Level Design of Transform and Quantization

Digital system design flow starts from a mathematical model of the system
problem. The mathematical equations and representations can be partitioned into
simpler expressions, which can be represented in simple functional units. This design
flow is called hierarchical design flow. Partitioning of the mathematical model
continues until representing the whole process as a structure of basic operators’
functional units, (like addition, subtraction, shifting...). This level of system
representation using basic operators’ functional units is called RTL level system
design. Afterwards, a second level of logic and gate design follows the RTL level. At
the end, a layout and transistor level design is performed to get the fabricatable
system chip.

A design on register level components (adders, multiplexers, shifters ...) is done
in this chapter. All possible optimizations for delay and area are considered, with the
priority of delay optimization. Power consumption optimization in this level can be
considered as proportional for area and delay optimization since the above
optimizations in this level are based on minimizing the logic circuits and computation
levels rather than gates and wiring sizing, which will be considered in the next chapter

when gate level design is considered.

2.1 Transform
e The entire transform process in H.264 can be represented in a block diagram
as the one shown in figure2.1. Transform process can be implemented on a

single chip or can be integrated with quantization phase.

Figure2.1: Transform Stage Block Diagram

The block diagram shows that two input and one output busses are required. A

detailed list ofthe inputs and outputs of the transform circuit is shown below:

-35 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

e Input Busses:

1. X buss: X is a 4x4 residual block data, with each entry being a 9-bits
signed integer (the most left bit is the sign bit). So a bus of 144 lines is
needed.

2. P_Inf bus: P_Inf carry the information about component (chroma or
luma) and Prediction types. It consists of two bits as follow:

Chroma component (regardless of prediction type): this case
represented by the string “00” on the PInfbus.
Luma component (Intra 16x16 prediction mode only): this case
represented by the string “01” on the P Infbus.
Other modes of prediction for Luma Components: this case
represented by the string ““11” on the P_Infbus.

3. Output Buss Y: This is a 4x4 block transformed data with each entry
being a 15-bit signed integer (the most left bit is the sign bit). A buss of
240 lines is needed.

The transform process has two forward flows. The result of one of them will be
taken at the output. The first flow passes through core transform CXCr (1.5) and
directly to the output through the multiplexer. The second forward flow passes from
the core transform through Hadmard transform (1.12 or 1.14) and then to the output
buss through the multiplexer. The selection of the taken path depends on the data
block type as described by PInf.

2.1.1 Core Transform

The core transform process shown in equation (1.10) can be written as below:

L R R SRR

wefehel)= 2 LT 2w NoXD B L1112 2.0
R R B I B R B
U202 o e 12 11

The first two matrix multiplication can be re-written in the following way:
(X00 +X10 +X2 +X30) (X0 +XU +X2A +X3l) (X02 +X2 +X2+X32) (X03 XB+X23 X33)
(2x00+XI0 X0 2x30) (2x01+XIL X2 2x3l) (2x02+X12 X2 2x3c) (2x3+X13 23 2xB) (2.2)
(X00_X10~X20+X30) (X0 _XU X2 +X3l) (X022 X2 X2 X32) (X03 ~XI3 ““X23 +X3j)
(X 2xi0 2x 0 (X -2xu +2x201) (x -2XN +2x221 32) (X ¥3 #33

This can be renamed as

700

720

"3

-2 703
(2.3)

722

32

A Butterfly block arrangement can be used to implement this first matrix

multiplication as shown in the figure2.2:

-36-

Institutional Repository - Library & Information Centre - University of Thessaly

24/04/2024 23:09:40 EEST - 3.145.162.204

S00 foO+H*0+*»+*»)

S20 fao—=<i <>+:*30)

S10 (2Xoo+x10—x"o —Z"0)
S30 fcoo —Nio ™N20°“-"0)

Figure2.2: first stage of core transform butterfly.
The matrix multiplication of the result matrix S with CT will result in the
following matrix:

(*00 +*01 + *02 +*03) (2500+0a\—502—2508) (*00 _ &1 _ 802 +Spo) (*00 — 250, #2502 — 508)

GlO+Sn+i,2+i13) (2x10 +*11 — 512~ 2i13) (xj0_*11 *12+*13) (6,0-25,, +25,2 -5,3) (2_4)
(*20 +S2| + 22 +i23) (2*20 +52, — 522 — 2523) o ' + (*20 — 2%21 + 2822 — 523)
.(*30 +~31+132+*33) (2i30 + 831 -532 - 253j) 030 *31 +533) (*30 __ 2*3| + 2532 — 533)_

Which can be also realized using the upper structure of butterfly as shown below:
W0° ko+Soi+"+Src)

-WO02 (soo—su-Sk. +sJ

mW0L (2S00 +s0I-s02

1 WO3 (si0 - 2sl,, +2sM - s03)

Figure2.3: second stage core transform butterfly.

Figure2.4: Core Transform Structure.

-37-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

From the above two stages of butterflies, we can construct the core transform for
4x4 residual data blocks. Figure2.4 shows the structure of core transform stage.

It is clear from the figures that we have two types of Butterfly; one with 9-bits
per input line and second with 12-bits per input line. The multiply by 2 operation
which is necessary in the butterfly block can be implemented using left shift by 1-bit

operation.

Butterfly Til:

Butterfly type | has 4 input buses each with 9-bits, and 4 output buses each with
12-bits. So it uses four 9-bits signed adders, and four 11-bits signed adders.
Furthermore, Butterfly block uses a left shift by 1-bit block to perform multiplication
by 2. Left shift block takes 10-bits as input and outputs 11 bits for the 11-bits signed
adder.

Notes: Lines with no SL blocks, fed the eleventh line as sign extension. Minus
signs performed by a block ofinverters and afeed ofcarry one to the adder.

Optimization Hints: it is not necessary to use 11-bits adder for the first two
adders in the second level in the butterfly since there is no shift blocks on their inputs,
and sign extension is done laterfor the 12h bit on the output bus. So, a 10-bits adder
is better.

Butterfly T12:

Butterfly type 2 has 4 input buses each with 12-bits, and 4 output buses each with
15-bits. So it uses four 12-bits signed adders, and four 14-bits signed adders. As the
previous one, this Butterfly block uses left shift by 1-bit block to perform
multiplication by 2. Left shift block takes 13-bits as input and outputs 14 bits for the
14-bits signed adder.

Notes: Lines with no SL blocks, fed the fourteenth line as sign extension. Minus
signs performed by block ofinverters and afeed ofcarry one to the adder.

Optimization Hints: it is not necessary to use 14-bits adder for the first two

adders in the second level in the butterfly since there is no shift blocks on their inputs,

-38 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

and sign extension is done laterfor the 15lh bit on the output bus. So, a 13-bits adder

is better.

Estimation ofNecessary Hardware:

From previous description we can estimate the physical hardware which is

necessary as listed below:

1. 16 blocks of 9-bits signed adders.

8 blocks of 9-bits inversion.

© ® N o g bk~ 0w D

10. 4 blocks of 11-bits inversion.
11.4 blocks of 13-bits inversion.
12. 4 blocks of 14-bits inversion.

2.1.2 Hadmard 4*4/2*2 Transform

8 blocks of 12-bits inversion.

4 blocks of 10-bits inversion.

8 blocks of 10-bits signed adders.
8 blocks of 11-bits signed adders.
16 blocks of 12-bits signed adders.
8 blocks of 13-hits signed adders.
8 blocks of 14-bits signed adders.

Hadmard transform will work on DC coefficients which resulted from the

core transform process.

The first matrix multiplication in equation (1.12) can be decomposed into the

result below:

(woo+w10 + w20 +w30) (WOL+wv,i+w2,+w3i) (WO2+WI12+W22+wW32) (W03 + wi3-+w23+H-33)
(WOi+wn-w21—w3l) (w02-+wW12—W22-W32) (w03 + W|3-W23-VV3,)
(w0,-W|3-H"23+W,3)

(WOO+W10-W20-W3o

)
(WOO-WIO-W20+W30) (WO,-wi,-w2|+wsl) (WO02-W,2-W22+W32)
) (W0,-wu+w2I-w3l) (WO2-wi2 + W22-wW32) (W03 —wi3 + w23 —w33)_

(WOO-WL0+W20~W3o

This can be renamed as
00
:10
20

30

The same structure of butterfly used

without multiplication by 2.

Institutional Repository - Library & Information Centre - University of Thessaly

24/04/2024 23:09:40 EEST - 3.145.162.204

*01
*hi

s2)

*31

*02
*12
*22

*32

-30-

~03

S\3

S23

S33

(2.5)

(2.6)

in the core transform can be used here but

Wwoo S00 ('%+WIO+M?20 +W3o)

WIO S20 (u-00 - wi0 - w2n + w3Hl)
w20 SIO ("oe + Ww-Wjo-Wjo)
W30 S30 (x'oo—"No+N-"VW'm)

Figure2.6: first stage butterfly of 4x4 hadmard transform.

The same thing applies for the second matrix multiplication, where the second
butterfly structure used in core transform is used here but without the multiplication

by 2 operation.

(s00 +S01 + s<n + soj)

A (500 —sm ~ sta + S(b)

Y01l (Sm +sn -sn - s03)

Y03 S0+ 802 *"03)

Figure2.7: second stage butterfly of 4x4 hadmard transform.

Before viewing the whole structure for the 4x4 Hadmard transform lets see how

we can implement the 2x2 Hadmard transform.

The transform in equation (1.14) can be written for the whole 4x4 W matrix as

follow:

yo yi Lol ok wn we D] P2 Yoo bl % e e ¢ L]

_\];iO >V [-1 _wi1o WII ! -1 _y12 y,3 1 -1 w12 was. -1 (27)
yio AT e W2 e Y 22 T} 11 W wd o« 1|

A3z0 A1. 1 -1 W30 W3._ 1 '1 y3| F33. 1 -1 w32 wa33_ 1 -1

The result ofthe first matrix multiplication can be seen below:

Too Toi (96) + WI0 + WO1+WII) (2o)+=i0 "Wp =w] 28)
Tio Titd L(WOO-WI0 + WO1-Wl) (woo-wio-woi+w..)

A similar butterfly structure as the one used for the 4x4 Hadmard transform, can
be used here, with the only difference that in this case we need one stage and the
inputs’ order to the butterfly is different.

-40-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

W00 YOO (woo + Wjo + Mfoj+Mh)

WOl

W10

WII

Figure2.8: butterfly block used for 2x2 Hadmard transform.

Four blocks of this butterfly will be enough to implement the 2x2 Hadmard
transform.

From the above discussion of Hadmard transform implementation, we can see
that there are two different implementations of Hadmard transforms stage. This means
that we should implement two separated units for each of the 4x4 and 2x2 hadmard

transforms.

Figure2.9: Implementation of hadmard transforms using separated 2*2 and 4x4 blocks.

The drawback of this method is the duplicated hardware which increases the

design area and consumed power.

Figure2.10: Implementation of hadmard transforms using configurator.

41 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

One of the best solutions for small area and power is to use the first butterfly
level used for the 4x4 Hadmard transform to implement the 2x2 Hadmard transform.
However a Configurator before the Hadmard transform level is necessary to pass the
appropriate inputs according to data type (chroma or luma).

The only drawback of this implementation scheme is the delay overhead from the
configurator. However, this overhead can be minimized by a good synthesis.

The figure below show the Hadmard transform stage used for the 4x4 and 2x2
Hadmard transforms.

The used butterfly blocks are described as follow:

e Butterfly BlockT21: It has four 15-bit input busses, and four 16-bit output
busses. So we need four 15-bits signed adders, and four 16-bits signed
adders.

e Butterfly BlockT22: It has four 16-bit input busses, and four 16-bit output
busses. So we need four 16-bits signed adders, and four 17-bits signed
adders.

Note: The division operation by 2 (in the 4x4 Hadmard transform) is implemented in
the second level addition in butterfly block T22, where we ignore the least significant

bit of the adder output and take the remaining 16 bits.

Figure2.11: 2x2 and 4x4 hadmard transforms block used with configurator.

-42-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Estimation ofNecessary Hardware:

From the previous description we can estimate the physical hardware which is
necessary as listed below:

1. 64 15-bits signed adders.

2. 8 blocks of 15-bits inversion.

3. 16 blocks of 16-bits inversion.

4. 8 blocks of 17-bits inversion.

2.1.3 Configurator

As already mentioned, the first level in the 4x4 Hadmard transform Block can be
used to perform the 2x2 Hadmard transform of chroma components. The problem
with this solution is that the input DC coefficients in the case of 4x4 Hadmard
transform is different of that in the case of 2x2 Hadmard transform (see the figure

below) so, a Configurator is used here to solve this problem.

4x4 Hailmmd 2x2 Hn<bnnrd

Timsform Inputs Transform Inputs
. W00
WOO-------* XI Yij . Xl vl
W10-nmmmem » X2 Butterfly y? win X2 Butterfly y?
W20 » BlockTzI v3 wio *3 BlockT21 3
wn
W30--—---* x4 vl x4 24
W02
WO1------ » XI yl x| i
wo3 Y
V,V/ | E— » X2 Bultfrfly yl X2 Butterfly
BlockT21 y3 W12 23 BlockT21
(V1T p— y ke Blocklzly ockT2L o
. W13
W3J-------) X4 jrt x4 v
XI yl
w2li
x2 Butterfly y2 Butterfly y2
x3 BlockT21 ys3 W30 BlockT21
-4 y4 Wil “ y4
w22
W03 XI vl X yl
*
Wi 72 Butterfly y1 W23" , Butterfly y2
TO3—>» x3 W32 piockta1 i
W33
W33-------) X4 V4 K4 r*

Figure2.12: Order ofinputs to 2x2 Hadmard transform and 4x4 Hadmard transform

The structure ofthe Configurator is shown in figure2.13. It can be considered as a
2x1 Multiplexer, with the two inputs are the 4x4 DC coefficients block W, but each
input has different order of the 16-data elements of W. Two levels is necessary,
ANDiIng level, then ORIing level. The total number of necessary gates is around 420
2-input AND gates, and around 210 2-input OR gates. The selection signals are
generated just by three 2-input AND gates, as described at the beginning from P_INF,

(see Inputs description of Transform stage section 2.1).

43 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

2.1.4 Faster Implementation of 4x4 Hadmard Transform

From the above implementation, with the core transform and the 4x4 hadmard
transform being sequentially, we will get 8 levels of adders on the critical path. A
robust environment will enforce us to implement 4x4 hadmard transform
independently from core transform output. To investigate this possibility lets go back

to eq(uation (1.11) by embedding W from ec uation (2.1) as below:

T U S U A U T I SRS O B & AR R T

L1 11,21 12, .11 41-2,11-1-1 (2.9)
W=y 4201 1141 X a2 1-1-1 1?2

1111122 P2 1 a4 1-11-1,

This will be on the new form:

(. 5 -1 1 -1' .o 01 02 I%' "5 1 -1 —f
| 5 -1 -1 * %10 *11 *12 *13 * -1 5 -1 l /2 (2.10)
—1 —1 5 1 *20 *21 *22 *23 l _1 5 _1
|
e T P St Ixp s)

From the first look, the existence of 5 indicates difficulties and necessity for
multiplication, since shift left process will not be enough. Nevertheless, the existence
of 5 on the diagonal simplifies the implementation, and avoids multiplication or
complexity. The new transformation matrices on the left and right hands of X matrix
can be decomposed as follow:

-44-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

‘5-1 | -f " -1t -1t 4 0 0 o
l 5 -1 -1 1 1-1-14 0 4 0 O
+

-1 -1 5 1 -1-1 11 l 0 0 4 0

-1 1 -1 5 -11-31 0 0 0 4

and

'S5 1-12 - ' 1-12 -f 4 0 0 O

-15-11 -1 1 -1 ! 0 4 0 O

+
1A-15S-1 {1 -1 1 -1 0 0 4
-1-1 1 5 -1 -1 | | 0 0 4
By inserting the decomposed forms in equation (2.10) and
multiplications we get the following form for 2*Yi>
I -1 1 —Ff r - ™ 1 -1-2" 11 -1 1 -1" r - "4 0 0 o
1 A-a-a ., s —ALA -2 1 aA-a1-a , .0 4 00
-+
-1-1 3 1 aA-1131-1 -1-11 1 0 0 4 0
- 131-3131 J —a-aa 1 -1 1 -1 - 0 0 0 4
"4 0 0 Ol ¢ 11 -a-1 4 0 0 o "4 0 0 o
0 4 0 0, -1 -1t 0 4 0 0, L0 4 00
+ X + X

0 0 40 1 -1 1 00 4 0 0 0 40
000 4 - - -1 -1 1 0 0 0 4 0 0 0 4

From the above decomposition we can conclude that:

(2.11)

performing

(2.12)

1. The matrix which has only nonzero elements on the diagonal is Identity matrix

which can be ignored. So, the matrices with their diagonals have values of 4

can be replaced by a scalar value of4 only.

2. The second term on the right side is the same as the first part of the first term

so0, one implementation is necessary for the both.

3. Third term needs separate implementation, with similar structure to the second

part ofthe first term.

4. The last term is simply a multiplication of input data elements by 16, which

can be implemented by left shift of 4 places.

First Term
"Il 1 —F e
1 1 -1 -1, ¥0
-1 -1 | %20
101 -1

_X30

XOi
xn
X2\

X3l

X02

X12

X22

X32

X03

X13

X23

X33 _

1 1 -1 —F
-1 1 -1
1 -1 1 -1
-1 -1 1

The first two matrix multiplication can be written as below:

45 -

Institutional Repository - Library & Information Centre - University of Thessaly

24/04/2024 23:09:40 EEST - 3.145.162.204

(2.13)

(*00 _XI0 +*20 _X38) (01 ~XU +X2l ~*31) (X02 ~X\2 +X2 ~X32) (X03 “*XI3 +X23 —X33)

(%) +*10 _X20 _X30) (X0 3-2f| —x21 _X3i) (x02 +X]2 ~x2 Xx32) (X03 +X13 _XB X3) (2.14)
X00 ~X\0 +X20 +X30) (=X0 —*11 +X2\ +X31) (=X02 ~XI2 +X22 +XNn) (-X03 XI3 +XB +X33)

[~X00 +X10~X20 +X38) (A0l XU -2 +X3l) (—X02 +XI12 ~X22 +X32) (—X03 +X13 ~X23 +X33)._

This can be renamed as

00 501 502 *03
10 *11 *13
20 s21 S22 23
30 *31 w3 O

From the matrix we note that the third row is the minus of the second row, and
the forth row is the minus of the first row, which will simplify the size of the butterfly

adders block and reduce it to the halfas shown in the figure below:

Figure2.14: Butterflyl_IN
In the same way the second matrix multiplication can be done as

(500 —501 +502 —503) (SO0 + 50] —"02 ~-X03) (—500 — A01 + S02+503) (~S00 + SO0l _ ™~ +9%6)
(510 =511 +i12 *<96) (510 +ilI-S12 —S\i) (MO —S\1 +512 + (M0+5U=52 +i13) (5 1E)
w20 ~s21 ts2 ~s2) (ro iz ~s2 ~s23) (—vao—vatsutsii) (~vaotsa ~sz2 o)
30 "31 +x32 3) (S30+val 532 X33) (%) SL +VE2 +V33) (S3IO+SI V32 +733)
This can also be built using the same structure of butterfly adders’ block as
shown in figure below:

Figure2.15: Butterflyl 2N

So, the first term implementation can be done using two levels of butterflies with
the structures and connections discussed above. This results to the structure shown in
figure2.16

-46-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figure2.16: First Term of equation (2.12) implementation.
Third Term
Third term can be calculated using the same structure of butterfly used described
above with different inputs. The decomposition of the matrix multiplication in third

term is
(*oo -*01 +*02 *03) (*00+*01 *02 *03) (QO *01 +*02 +*03) (-
(*10 "*11 +*12 -*13) (*10+*11 —*i2-*n) (“*10 *11 +*12 +*13) (- (2.16)
(20 21 +%22 *23) (20 +*21 * "o0p) (-ex> *21 +*22 +*23) (XM FX) Xv> +Xr
O w31 +F2 -*33) (*30 +*31 _*32 —*13) (_*30 *31 +*32+F3y
This can be renamed as
~0o0 My M@p A
M, My
M2 My My a2
30 M 31 M 32 M 33

This can be implemented using the following butterfly structure:

Figure2.17: Butterfly 1_1N used for Third term calculation.

This stage runs in parallel with the first stage of butterflies of first term

calculation.

-47-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

X00_ MOO X20- M20

X03-] X23-)
x01 - Butterfly 11N (-M03) X21. Butterfly 11N (-M23)
X02- _ Mo1L 855 - M21
(-M02) (M22)
g e @
|1- Butterfly 11N (Mil) X31: Butterflyl_IN (-I\I\jllgf)
X12- oMz X3 e

Figure2.18: Third Term in equation (2.12) implementation.

Second, Third, and Fourth Terms Addition

The previous analysis showed that the calculation of S matrix elements and M
matrix elements occur in parallel with each calculation having two stages of adders.
Moreover, for second term calculation what is only needed is a multiplication of
matrix S by 4 (left shift by 2 places). Also, the fourth tenn is the input data elements
multiplied by 16 (left shift by 4 places). So, the three terms are ready after the first
level of butterfly blocks, and we can run a block of two addition stages to add the
three terms while the second level of butterfly block, used for first term calculation is
running. Figure2.19 shows how three types of blocks are used to perform addition of

the last three terms:

F2 Blv F2_BK

Figure2.19: Blocks structures used to add the last three terms in equation (2.12).

These three different instances are obligatory since for some elements, we have
the negative value ofthem, as we stated above (the output S00 is also -S30), so, when
one of the two added M and S elements is negative we use F2_BK structure. If both
are negative we use F3 BK, else (all positive) we use the normal structure F1_BK.
The figure gives some examples of inputs of each block type to give a hint how
connections are done.

The stage of addition of the last three terms finishes simultaneously with the
second level of butterfly blocks used for first term since each has two stages of
adders.

-48-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

The last step, before the 44 hadmard transform output is ready, is the addition of
W (output of first term calculation) matrix with F (output of addition of last three
terms) which cost a stage of adders, and a shift right one place to realize the division
by 2.

In total, 5-stages of adders will result in the 4x4 hadmard transform and save
three stages of adders. However the 2x2 hadmard transfonn needs 2 stages of adders
after the core transform, which result in 6-stages of adders on the critical path. This
means that 2-stages of adders of 15-bit size are saved by implementing 4x4 hadmard
transform on the described structure above.

Hardware Estimation:

1. 16 9-bit signed adders.
2. 28 10-bit signed adders.
3. 24 11-bit signed adders.
4. 12 12-bit signed adders.
5. 8 13-bit signed adders.
6. 8 15-bit signed adders.
7. 16 9-bit inverting blocks.
8. 16 10-bit inverting blocks.
9. 8 11-bitinverting blocks.
10. 8 12-bit inverting blocks.
11.8 15-bit inverting blocks.

2.2 Standard Quantization Implementation

Quantization phase can be implemented in two main structures; the first one
calculates the quantization parameters which include value ofF multiplication factors
MF and gbits, which is necessary for shift operation. The second one will implement

equation (1.20) using the calculated parameters.
2.2.1 Quantization parameters

Quantization parameters include / value, multiplication factors which differ
according to the location of the data element in the data block, and the gbits value
which decides how much shift will be done. The calculation of all these parameters
depends on the value of QP (other factors will be compensated in the second
structure) which may be different for each data block. Figure2.20 shows the block
diagram ofthe quantization parameters calculation structure.

The calculation process can be separated into three independent paths (not for the

case of F value calculation).

-49-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figure2.20: Quantization parameters calculation structure.
Multiplication Factors:

The multiplication factors MI, M2, and M3 are those that appear in the three
columns oftable 1.2 respectively. The values in the table are calculated for QP values
from 0 to 5. For greater values of QP we calculate (QP mod 6) and map the result to
the table. So what is done in this structure is to calculate QP mod 6 and then use the
result to generate the corresponding number on each multiplication factor buss. Each
multiplication factor buss consists of 14 lines.

Note: The effective information in the multiplication factors M2, and M3 needs 12
lines-bus since M2 has 2-bits with value ‘O' always, and M3 has1-bit with value ‘O’
always and the second with value ‘I

Obits Calculation:

Qbits value is calculated as in equation (1.19), where firstly the result of the
division of QP by 6 is calculated, with floor process, and then it is increased by 15
using a simple adder.

Since maximum value of QP is 51 the max division result is 8, hence the max
value ofgbits is 23 which needs only 5-lines buss.

Calculation ofF:
qbits 2 gbits
F takes the values ———é—— for Intra blocks or ————é—— for Inter blocks. Furthermore, it

should be multiplied by 2, for the case of chroma and luma intral6><16 data blocks.
2 gbits

However, in this stage we will calculate only the base value ——, and then in the

second stage (second structure of the quantization implementation) it will be changed

according to the prediction type. A 22-bit buss is necessary.

2.2.2 Quantization phase

The second stage in quantization process goes in a forward flow from left to right

as shown in figure2.21. The first thing to perform is the calculation of the absolute

-50-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

values, then multiplication, addition, right shift, and at the end, resigning ofthe result
to the sign ofthe input number.

Figure2.21: Standard quantization data flow.
The details of the inputs and outputs ports of the Quantization block are described
below:
e W: 4x4 Transformed Coefficients, with each 15-bit signed integer, with the
most significant bit (bit 15) is the sign bit.
e MfO, Mfl, and Mf2: Multiplication factors for the three columns in table 1.4
respectively. Each is represented with 14-bits positive integer.
e P_Inf: Prediction information as described in Transform part.
e F: The Addend value, represented in 22-bit positive integer.
e Predm: a bit that indicated prediction type, Intra (takes the value ‘0’) or Inter
(takes the value “I").
e Qbits: The shift size to be done, it is represented using 5-bits positive integer.

2.2.2.1 Absolute Value

Absolute value process can be realized simply as 2’s complement process, which
can be implemented as an inverting stage followed by addition of 1. The inverting
process should be controlled by the sign bit since for positive number there is no
necessity to make 2’s complement.

-51 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Consequently the positive numbers pass this stage without any change.
Figure2.22 shows the implementation of absolute value operation for 5-bits signed
number where the MSB (a4) is the sign number.

The first XORs block works as controlled inverter by the sign bit; when a4 = |
XOR gates works as inverters, else pass the value. The second stage represents the
addition process, where the carry is calculated and passed to the second XORs block.
Note here that for a4 = 0 the AND gates result ‘O’ which pass the value in the second
XORs block, so positive values pass without any effect. It is clear that the critical path
passes through the last AND gate, the fan-in of which increases with the increase of

input size.

R33 R32 R31 R30 R23 R22 R21 R20 R13 R12 RII RIO R03 R02 RO1 R0OO

Figure2.23: Absolute value Unit.

To perform the absolute value of the entire 4x4 transformed block, 16 absolute

value units ofthe above structure are necessary.

2.2.2.2 Multiplication

Multiplication of 15-bit by 14-bit numbers is necessary here. A multiplexing
stage is necessary to select appropriate multiplication factor according to the data
element location as already mentioned.

In figure2.24, M is the multiplication factor of position (0,0). As shown we saw
in equations (1.24) and (1.26) MI is used for all positions of the matrix W, so a total
of 12 multiplexers are needed to pass MI if we have chroma or luma intral6x16
components, or pass Ml, M2,M3 according to the element position in the data block.

A variety of multiplier architectures can be used to implement multiplication
operation. In this section we will discuss three architectures of widely used

multipliers.

-52-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

R33 R32 R31 R30 R23 R22 R21 R20 R13 R12 RII RIO R03 R02 ROI ROO

Figure2.24: Multiplication Unit structure.

Array multiplier:
The array multiplier can be represented as in the ftgure2.25, where a 4*15 multiplier

is shown.

Critical path

Figure2.25: Array multiplier.

The outputs of the ANDs blocks are the partial products which can be summed
using 3 15-bit adders as shown in the figure.

In general, M*N array multiplier will need (M - 1) stages of N-bits adder, and M
blocks, each of N AND gates. Array multiplier is the slowest multiplier architecture.
The critical path delay can be calculated as

Imnil — -1) + {M = 2)}cany + tand +(M -1)tsum

Tree Multiplier:
In tree multiplier, the addition of the partial products is done in parallel.

Figure2.26 shows an example 4x15 multiplier.

-53 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Critical path

Flgure2.26: Tree Multiplier.
Tree multiplier decreases the number of levels necessary to sum the partial

products from (M - 1) to “ceil(logz2M)’\

Figure2.27: 14x15 Tree multiplier architecture.

However the size of adders increases as we go down in summation levels in the
form (N + L*2) where L is the level number. Despite this increase in size of the
adders, the overall critical path length is smaller. The overhead in this architecture is
the increase of multiplier area. Figure2.27 shows the architecture of 14x15 multiplier.

The critical path delay of the tree multiplier can be calculated as follow:

Lull = (3c«7(log2 M) + N- 3}carry + tand + (c«7(log2 M))tsum

Cany Save Multiplier:
Carry save multiplier has the same structure with the array multiplier, but carry-

save adders are used, instead, this implementation releases the carry propagate

-54-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

overhead in each addition stage. Only one ripple adder is necessary at the end to sum

the carry and sum outputs ofthe last carry save adder stage as shown in flgure2.28.

Critical path

Figure2.28: Carry-save multiplier architecture.

In M><N multiplier, the critical path delay can be calculated as follow:
Lull — {M- 1Ycarry + tand + (M = Dt.

2.2.2.3 f-Modification Stage

The value calculated in quantization parameters calculation phase is a base value
2 Qbits
which should be modified for inter-prediction mode, since we need the value to

be------- , or we need to multiply it by 2 for the case of chroma or luma intral6><16

components.

Figure2.29:/-modification structure.
2 ghits
The value---é--- can be obtained simply by division of/value by 2, which can be

easily implemented as a right shift by 1-digit. Figure2.29 shows the “modification

phase.

55 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Stage! performs the muiltiplication by 2 and the Mux selects, according to the
component type, to pass the original value or the multiplied one. Then at the division
by 2, according to the prediction signal we perform the division or pass the value.

Multiplication by 2 consists of two operations; at first left shift by one bit, then,
addition of value ‘I is done according to /-value. Addition by one is necessary for
compensating the loss occurred in the division by 3 and flooring process. To

understand this lets see examples for calculating/value:
(2"X)->0922f (2'9%)=2i844
(2%)=436980| (2'X)=*T™

From the examples it is clear that for odd powers (gbits = 15, 17, ...) there is a
decimal digit 0.6666 which ignored in division process , while for even powers (qgbits
= 16, 18, ...) the decimal digit is 0.3333, so the loss of 0.6666 when we make floor
process, should be covered by addition of | since when we multiply it by 2 the result
will be 1.3333, while this is not the case for decimal digits 0.3333 which by multiply
by 2 still below ! which again will be ignored.

The problem that arises, is when we know if the addition with 1 is necessary, and
how it will be implemented without using an adder??

We can note that the value of/has the following property: the values are even for
odd powers (10922, 43690, ...) and odd for even powers (21845, 87381, ...). By
checking the first bit of/we can understand if the corresponding number is even or
odd (‘O' means even and ‘1’ means odd). So the addition of | after left shift process is

implemented simply by passing ®’ on the first bit when addition is needed or ‘O’

when it is not necessary.

2.2.2.4 Addition of fand Left Shift process

The addition stage consists of a 29-bit adder. A carry lookahead adder is
implemented for this purpose. There are two reasons why we should implement
special adder:

1. One of the inputs is 22-bits size and extended with 8-bits of ‘O’ value. This
information can be used to remove the necessary AND gates needed to
calculate g values (generate carry), and save the XOR gates needed to
calculate p values (propagate carry).

2. Since the right shift process will be at least 15- digits, there is no necessity to
calculate the first 15-bits of sum, which reduces the output bus to 15 bits only.
Also the information of zero input carry can be used to remove necessity to

propagate ‘O’ value.

-56-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

R33 R32 R3t R30 R23 R22 R21 R20 R13 R12 R11 RIO RO3 RO2 RO1 ROO

Figure2.30: Addition Unit Structure.

Right shift process can be implemented using funnel shifter structure as shown in
figure2.31 for 4-bits input and output. ‘O’ extension is used here to fill the left output

bits. S bits are the select bits that decide the number of shift digits.

Y3

Y2

Yi

Figure2.31: 4-bits funnel shifter.

In our shifter the maximum number of shifts is 9 digits, since qgbils range is 15-23
and in the case of chroma and luma intral6x 16 components we add 1.
The table2.1 shows the shifter table.

Table2.1: funnel shifter map table.

dsns:tf; yl4d y13 y12 ~n Y10 y9 y8 y7 y6 y5 y4 y3 y2 yi Y0
15 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15
16 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16
17 0 0 29 28 27 26 25 24 23 22 21 20 19 18 17
18 0 0 0 29 28 27 26 25 24 23 22 21 20 19 18
19 0 0 0 0 29 28 27 26 25 24 23 22 21 20 19
20 0 0 0 0 0 29 28 27 26 25 24 23 22 21 20
21 0 0 0 0 0 0 29 28 27 26 25 24 23 22 21
22 0 0 0 0 0 0 0 29 28 27 26 25 24 23 22
23 0 0 0 0 0 0 0 0 29 28 27 26 25 24 23
24 0 0 0 0 0 0 0 29 28 27 26 25 24

-57-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

The first row is the 15-bit output row, note that we use in the table, index of the
30-bit adder output, to indicate bits locations and movements.

The shift digits (gbits) and an additional bit (pif), which indicates if chroma and
luma intral6><16 components or others is used to calculate the select bits used to
control the funnel shifter. In figure2.32 the enable block is responsible of calculating

the select bits that distributed to all the 16- shifting units.

R33 R32 R31 R30 R23 R22 R21 R20 R13 R12 RIl RIO RO3 R02 RO1 ROO

Figure2.32: Shift Unit structure.

2.2.2.5 Resigning Phase

Resigning phase can be implemented as absolute value process by applying 2’s

complement on the shifter output according to the sign bit of the original input value.

Figure2.33: resign function structure.

However, in resigning phase, the sign bit controls the inversion and carry
propagation process. The result size is 15-bits, like the input (15-bits shifter output)
where the last bit is ignored since it is always ‘O’. To prove this, let us see the
maximum number of shifter output:

- 215/ * (213 —1)-- (222 -1
()= () 8319

>15

The values represents, in order, the max values ofw,j, multiplication factor, andf-
value, and 215 represent the minimum number of shift digits. The result (8319) is
represented in 15-bits binary form as (010000001111111), so the last bit is always ‘O’

-58-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

and can be ignored. The sign bit of the result (b4) is calculated as shown in the figure

to avoid propagating the sign bit (for negative inputs) ifthe shift result equal zero.

133 132 131 130 123 122 121 120 113 112 111 110 103 102 101 100

R33 R32 R31 R30 R23 R22 R21 R20 RI13 R12 RIl R10 RO3 RO2 RO1 ROO

Figure2.34: Resigning Unit structure.

2.3 Quantization using /-Modification Method

Absolute value and resigning operations, as implemented in the previous section,
add an overhead on the computation process. The quantization process actually
consists of multiplication, addition which is necessary for correct rounding, and
finally a right shifting phase which performs the division process. The absolute value
and resigning phase are used to perform correct rounding for negative values with the
same value for/in case of positive numbers.

The new form of quantization which appears in equations (1.28) and (1.29) is
based on the modification of f-value according to the sign of data elements, so we can
perform quantization, while avoiding the absolute value and resigning stages. The
structure ofthe new suggested quantization process appears in figure2.35.

The suggested modification saves area and time, since two values for / are
calculated; one for the positive and another for the negative case. A multiplexer, at the
addition stage selects the appropriate value according to the sign bit.

The same quantization parameters calculating stage used for standard
quantization process can be used here.

The differences for this new quantization form are:
1. Using signed multipliers and adders.
2. /I-modification stage has some additional blocks.

Multiplexers’ stage is used before the addition unit.

-50-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figure2.35: Quantization using/Modification Method structure.

2.3.1 F-Modification Stage

Figure2.36 shows the block diagram ofthe/-modification stage. This stage gives
us 2 values of/; one for positive data elements and the other for negative data
elements. At the input of the adders a multiplexer selects which one will be used,

according to the sign ofthe multiplication result.

Figure2.36: F-Modification Stage structure.

The block takes the basic value of / (2gh"s/3) which was calculated in
quantization parameters calculation stage, and a set of modifications occur according
to the prediction mode (Intra or Inter: carried by signaled Pred input) and components
information (chroma or luma: signaled by Pinfinput).

I/0O Details:

1. Fin: 22bits buss carries the value of/(2qb,ts/3).

2. Pinf: Ibit line tells if chroma or luma intralé mode case (Pinf= *0’) or if other

modes (Pinf= “I").

-60-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

3. Pred: Ibit line tells if Intra mode prediction (Pred = ‘O’) or Inter mode

prediction (Pred = ‘'I").

4. Fp: 23bits buss carries the value of/for positive integers.

5. Fn: 25bits buss carries the value of/for negative integers.

Stase 1 & MUX:

Stage | performs multiplication by 2 on Fin so we have 2fin case that the 4x4
data block is chroma components or luma components predicted in the Intralb mode.
The MUX will select according to Pinf whether to pass / or 2f. In stage! we add !
after multiplication by 2 to recover the lost 1 by flooring of/as we discussed in
details in section (2.2.2.3).

DIVbv 2:

Div by 2 block gives 2qblsl6 simply by performing right shift with Ibit. However
it is controlled by Pred input, because for intra mode it should not perform division,
since we need value of/at the positive output to be 2gh"s/3 and not 2gb"sl6.

In case of Inter prediction, the result of “Div by 2” block will be necessary to

create the negative case value of/= 5*(2gh“s/6) as follow:

5*(2¢h"V6) = (4 + 1) * (2qhils/6) = 4* (29*"76) + (29h™/6) =2 * (2"\"73) + (Th™/6) (2.16)
Also we need 2 * (2gh"s/3) for the case of Intra mode.
Stase 2 & Adder:

Stage 2 performs multiplication by 2 on the incoming value of/(which can be
either/or 2f) since we need it as indicated in equation (2.1) and for Intra mode. Inside
stage2 an addition with | is done after multiplication in order to recover lost 1 from
flooring depending on Pred and Pinfvalues as follow:

1. In case of Pred = ‘1’ (means Inter mode) we always add 1.
2. In case of Pred = ‘0’ and Pinf= ‘CF we add ! when we don’t add ! in stage 1.
3. In case of Pred = ‘0O’ and Pinf= “1’ we add ! according the same conditions

ofadding ! in stage 1.

2.3.2 Addition Stage

As we mentioned above at each adder input a multiplexer should be used to select
f-value of positive integers or f-value of negative integers. This multiplexer is
controlled by the sign bit in the multiplication output value. One may claim that the
multiplexing process add an overhead on data flow path. However, the area overhead
from multiplexers is negligible compared with the area overhead of 16 absolute value
units and 16 resigning units.

As for the time overhead, this is also negligible, since each multiplexer adds only
ANDing level and ORing level, compared with the absolute value and resigning units
where each one contain the carry propagation hardware over 15-bits in addition to 2-
XORIing levels.

-61 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

133 132 131 130 123 122 121 120 113 112 11 110 103 102 101 100

R33 R32 R31 R30 R23 R22 R21 R20 R13 R12 RIl RIO RO3 R0O2 RO1 ROO
Figure2.37: Addition Unit structure.

Regardless of the above discussion, the time overhead of multiplexers can be
removed completely by forwarding the sign bits of all the data elements that enter the
multiplication unit and use them to control the multiplexers. This is possible since we
know that the sign of the muiltiplier output result is the same as the sign of the input
data element. In figure2.37, Ws is the sign bits buss (16-bits) which used to control

the 16-multiplexer.

2.4 Inverse Transform and Quantization

Inverse process can be described in four stages as follow:

1. Inverse 4”4 and 2x2 hadmard transforms are applied on the input 4x4 data
block. Then, a multiplexer selects to pass the input 4x4 data block or one of
the 4x4 data blocks resulting from inverse hadmard transforms units.

2. Rescale (quantization inverse) process is performed on the 4x4 data block
from the previous step. Equations (1.23), (1.25) and (1.27) describe the rescale
process for residual components, luma intral6x 16 mode components, and
chroma components respectively.

3. Inverse core transform process as described in equation (1.11).

4. Divide over 64 and rounding the result.

Inputs/Outputs Description:

e Z: 4x4 data block with each element is 15-bit size.

e P_INF: 2-bits bus carry information about the data components type, as
described in section 2.1

e QP: quantization parameter controls the quantization steps as appropriate. It
takes values from 0 up 51.

e X: 4x4 reconstructed data block with each element having 10-bit size. Since
the original data elements coming out from prediction phase, are 9-bits signed

integers, and the inverse process results in approximated values, we add

-62-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

additional bit represents the data elements resulting from inverse process by
10-bits signed integers. For example; -16 is represented by 5 bits while -17

needs 6 bits so to avoid errors we incur additional bit.

Figure2.38: Inverse transform and quantization structure.

2.4.1 Inverse 4x4 and 2x2 Hadmard Transforms

Equations (1.13) and (1.14) describe 4><4 and 2x2 inverse hadmard transforms

respectively. Figure2.39 shows the structure of first stage.

Figure3.39: Inverse Hadmard transform unit.

Inverse 4x4 hadmard transform matrices have the same form as the forward 4x4
hadmard transform since they are symmetric, so the same structure built for the
forward 4x4 hadmard transform can be used here by changing only the size of the
adders. On the first level of butterflies’ blocks we use 15-bit and 16-bit lookahead
adders, and on the second level of butterflies’ blocks we use 17-bit and 18-bit
lookahead adders.

As we stated in the implementation of forward 2x2 hadmard transform, the first
level of butterflies’ blocks used for the 4x4 inverse hadmard transfonn can be used to
implement the 2x2 inverse hadmard transform, so to avoid configurator here we
duplicate the first level of butterflies’ blocks in 4x4 inverse hadmard transfonn to

build 2x2 inverse hadmard transform.

-63 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Hardware Estimation: From the above description of used hardware we can state
estimation of the used cells:
1. 32 15-bit signed adders.
32 16-bit signed adders.
16 17-bit signed adders.
16 18-bit signed adders.
16 15-bit inverters’ blocks.
16 16-bit inverters’ blocks.

8 17-bit inverters”blocks.

© N o g ~ w0 D

8 18-bit inverters”blocks.

2.4.2 V/-Factors Calculation

Table 1.5 in section (1.3.2.1) lists the values of V-scaling factors used in equation
(1.23). The values occur in the range from 10 up to 26, so 5-bits are necessary to

represent the values of V-factors. V-factors depend on (QP mod 6) result.

Figure2.40: V-Factors calculation.

2.4.3 Rescale Unit

Rescale unit realizes the inverse quantization process. Rescaling process mainly

consist of multiplication and shifting stages.

Figure2.41: Rescale Unit Structure.

-64-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

A 5x19 tree multiplier is implemented. Only three levels of adders are necessary
in addition to the partial products calculation stage. 4 adders are used; two 19-bit
signed adders, one 21-bit signed adder, and the last one is 23-bit signed adder.

After multiplication stage, addition of | or 2 before shifting is necessary for special
cases as stated below:

1. Addition of “I" is necessary when 6 < Qp <12 and data components are of
luma type predicted in 16x16 mode. This is clear from equation (1.24) where
we have (+ 2! floor™p'e™) for Qp < 12, which give us ‘+2<M)
when 6 < Qp < 12.

2. Addition of ‘2’ is necessary when Qp < 6 since (+ 2I~ffood2/V6)) wjh give us
“+2(1'0) = 2

So Pinf, and Qp inputs control the value of Adl_2 bus running from shift arguments

unit to ADDI_2Unit, Adl_2 is 2-bit bus carries value ‘0O’, ‘'I" or ‘2.

R23 - 1 r0

Figure2.42: 5><19 tree multiplier used in rescale unit.

Shift arguments unit also calculates the shift type; left or right, and number of

shift bits which ranges from (0 - 8) for left shift, and (0 - 2) for right shift.

2.4.4 Inverse Core Transform

Inverse core transform is based on a butterfly block of adders which has the
structure shown in figure2.43. The SR blocks are shift right by 1-bit blocks to realize

the division by 2 as we will see below.

-65 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

The core transform process shown in equation (1.11) can be written as below:

2
I
X' =(cIWCI)= -
I — -1 1w
2

~0

-1 . =i

2

The first two matrix multiplication can be written as:

woo + VIO + w20 +m

MO)
2 woi+ w22]-ww3l
VI'n
This can be renamed as
5=

Figure2.44: First level butterfly adders’ block used in inverse core transform.

Institutional Repository - Library & Information Centre - University of Thessaly

24/04/2024 23:09:40 EEST - 3.145.162.204

W01

wu

W2l

w3l

Wo2+ =2

10

720

730

wWi2

w22

W22 W3

01

721

731

_66-

W33.

02

12

722

732

11 1 -i
2 2

1 -1 -1 1

1 -1 i :

2 ~2

wtB+-"--w23-w».

703

713

723

733 .

(2.17)

(2.18)

A Butterfly block arrangement can be used to implement this first matrix
multiplication as shown in figure2.44. The adders used are 17-bit look ahead signed
adders.

The matrix multiplication of the result matrix S with Q will result in the

following matrix:

00 +i0 w 't SmoSy 0w 2 soz+sss H00 SO1+i02
*10 4-ill +~i12 +" S\ + Sn S, 1S rSas | | 510 51 = it2 (219)
¥ S A2 S+ _ Sy S 2+23 SN 21+i22
%30 + S3; "asn “u 730+ 2 532 Si w0 5§ ssza-iss 930 s31-isz

Which can be also realized using the upper structure of butterfly as shown in
figure2.45. The adders used are 16-bit look ahead signed adders.
Estimated hardware: From the above description of used hardware we can estimate
the cells needed for this implementation:

1. 32 17-bit signed adders.

2. 32 16-bit signed adders

3. 8 17-bit inverters~”blocks.

4. 8 16-bit inverters~blocks.

2.4.5 Round Unit

The last step before getting the reconstructed 44 data block is a division by 64
and a rounding. The division by 64 is implemented by shift right of 6 places process.
Rounding is done after the shift process by adding ‘1’ to the shifter output according
to the least significant 6-bits of the shifter 16-bit input data. Round process is done as
follows:

. The round process is done if the decimal digit is larger than or equal to (0.5)
for positive numbers, and if the decimal digit is larger than or equal to (-0.5)

for negative numbers.

-67-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

. (0.5) and (-0.5) decimal digits mean that the least significant 6-bits of the
number represent (32) and (-32) for positive and negative numbers
respectively.

. From the above two conditions, a test ofthe sixth bit will tell us ifthe decimal
digit is larger that (0.5) and (-0.5) or not. If the sixth bitis “I" then we add “I”
since it indicated decimal digit larger than (0.5) or (-0.5), else addition of‘O’ is
done.

Figure2.46 shows the implementation of division and round process after inverse
core transform.

Division and Round
Implementation

Figure2.46: Division by 64 and round implementation.

-68 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

3 Optimization and Synthesis

The theoretical designs and paper written concepts will not be useful until their
realization and fabrication. A good written design must take care to the available
capabilities and real life degradations or constraints. To jump from paper written
design to a working fabricated design, you should pass two processes; optimization
and synthesis. The best possible design performance while meeting the design
constraints can be obtained by optimization process, while synthesis process can be
seen as implementing the design in gate level and getting a fabricatable design.
However, the two processes are not separated as appear, really they are mixed in some
level, and each depends on the other results.

An unsynthesizable design is that one can’t be realized with available
capabilities, or in other words, its synthesis result didn’t meet its constraints (i.e.
constraints violation). The designer should be aware that there are always limitations

and so its goals should be more real, so it can be realized.

3.1 Design Optimization

Design optimization means getting the best performance design while meeting
the design constraints. The design performance meter or optimization targets include
delay, consumed power, area, and design complexity; other targets like cost, life time,
flexibility, etc, also can be considered. However, the most critical optimization
parameters are the firstly mentioned three parameters; delay, power, and area.

Design with best performance is application related meter. Some applications are
interested more in minimizing consumed power rather than delay and area, like
battery based processors used in kids’ toys. Others are interested more in delay/power
product minimization, so get the minimum delay while consuming low power like
processors used in portable computing machines. In other applications a high speed
chips are very necessary like parallel processors desktops. In general area meter
works always as a constraint which can be violated, however, the minimum possible

area while meeting higher priority constraints can be calculated.

3.1.1 Modeling of optimization problem

An optimization problem can be mathematically formulated in the following
form:
minimize Z
according to the constraints
-69-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Ci < fiax i=0,1,...n.
Z is an expression which models the optimization target while satisfying the

constraints set Cj. Examples of optimizations problems are:

Example 1:
Minimize DxR
While
A < dax- (3.21)
tr ™ ifcin
Example2:
Minimize D
While
A < dax . (3.2)
P =< Rax

tr — itin
One of the widely used ways to model optimization problems is geometric
programming.
A geometric program (GP) is an optimization problem ofthe form
Minimize fo(x)
Subjectto f(x)< ! where i = |,...pi. (3.3)
a, ()=l where i = 1,...,p.
Where F are posynomial functions, g, are monomials functions, and x, are the
optimization variables (there is implicit constraint that x, variable are positive).
A posynomial function is the sum of one or more monomials functions, and

monomial function is the one ofthe form
f(X)=CcX?X?-X7? (3.4)
Wherec >0 and a, e R.

A mathematically modeled optimization problem can be solved, using

appropriate type of solver. One ofthe widely used solvers is the sparse solver.

3.1.2 Optimizations Levels

Design optimization process starts from the mathematical modeling of the design
problem, passing through the RTL level till reaching gates design level.

A good mathematical modeling of the design problem can enable avoiding
unnecessary steps in minimizing logic. Example of this, the DCT based
transformation supported by the H.264 standard, enables implementation of
transformation phase using integer hardware and avoids using of multipliers. Also,
good modeling ofthe design problem will make design partitioning easier, and makes

separated tasks appear clearly.

-70-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

RTL level optimization includes:
e Sharing resources.
» Factorizing expressions.
» Parallel processing.
Sharing resources can be done on a time spaced operations, where the same
block can perform all the operations ifthey are time spaced enough. Like in figure
below, since we take one addition result at a time, we can reorder the process so

we use one adder and select the appropriate inputs.
Unshared Resources Shared Resources

Figure3.1: Sharing resources.

Factorizing of expressions can be explained as follow:

Y = Xi*Z + X, *K + X2*Z + X2*K (3.5)
Can be rewritten as

Y = (XI + X2)*(Z + K) (3.6)
Figure3.2 shows how this factorization saves time and area; the original
expression requires 4 multipliers and 3 adders, and output the result after 3 levels of
calculation, while the factorization result requires 2 adders and ! multiplier, and

performs calculation in two levels.

Figure3.2: Factorizing expressions.

Parallel processing also can be used to obtain faster calculation of results, as
shown in the example shown in figure3.3, grouping of expressions show the

parallelism in the expressions.

71 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

X2 Xi

X6X5 X4X3 X2 Xl X3 (+)
U JJ li X4 (+)
(+) +) +)
X5W
~ =
Y
1
Y = (X1 + X2) + (X3 + X4)I + (X5 + X6) Y=XI+X2+X3+X4+X5+ X6

Figure3.3: Parallel processing.

Logic level optimization deals with implementation of RTL level components, like
registers, adders, comparators, sequential logic, etc.

This level creates a generic netlist that realize the function of each component.
Logic implementation of a function starts from truth table representation, from truth
table a minimization process can be ran and logical expressions that realize the
function are obtained. More over optimizations can be done by sharing logic
subexpressions, factorizing logic expressions, and using Demorgan’s laws. Sharing
and factorizing of logic expressions is the same as what we saw for RTL level, but

here we deal with logic operators than arithmetic operators. A factorization example

Figure3.4: logic level optimizations.

Demorgan’s laws also could enable us to minimize the expressions in some way.
As in the simple example shown below, F can be implemented using ! OR and !

NOT gates rather than I AND and 2 NOT gates.

-72-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figure3.5: minimizations using Demorgan’s laws.

In gate level optimization the created generic netlist in the logic level is realized,
where the gate implementation style is selected; static, or dynamic. Also transistors
sizing occurs in this level, nets layers and sizes also are decided. At this level actual
calculation of timing, area and power parameters occur, and the sizing and

implementation process is iterated until the constraints are met.

3.2 Design Synthesis

Implementation of digital design will be using digital gates and transistors, beside
the appropriate set of interconnections, resistors, capacitors, and power supply
resources. The process of creating gates netlist and deciding the sizes of all the
elements of design (gates, transistors, capacitors, resistors, interconnections, pins) and
creating design layout and meeting design constraints is called synthesis process.

Really, synthesis process is done by Computer Aided Design tool, since it is not
realistic to perform synthesis process of design with thousands of gates. Any synthesis
process will base on three main elements:

1. Design files.

2. Technology and Synthetic library.

3. Design constraints and environment.

3.2.1 Synthesis Setup

Designfiles

The system design should be written in a hardware description language (VHDL,
Verilog...), or any other appropriate language for the synthesis tool. Also the written
design should be organized in files according to the design hierarchy. It is better to
partition the design into separated subdesigns arranged in hierarchal way, which
simplify the synthesis process, and save effort.

The simple example of partitioning design is the simple calculator example
appears in figure 3.6, the partitioning process is better to continue until you reach the
arithmetic and logical operators design, and then any structure can be built from those

simple files.

-73 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figure3.6: Design files Hierarchy.
Technology and Synthetic library

Technology libraries contain information about the characteristics and functions
of each cell provided in a semiconductor vendor’s library. Semiconductor vendors
maintain and distribute the technology libraries.

Cell characteristics include information such as cell names, pin names, area,
delay arcs, and pin loading. The technology library also defines the conditions that
must be met for a functional design (for example, the maximum transition time for
nets). These conditions are called design rule constraints.

Examples of cells are those implements functions like AND, OR, XOR, NAND,
NOT, and many others. Each technology library supports only one semiconductor
technology like for example 180nm, or 250 nm technologies.

In addition to cell information and design rule constraints, technology libraries
specify the operating conditions and wire load models specific to that technology.

Synthetic library (or Design Ware library) is a collection of reusable circuit-
design building blocks (components) that implement many of the built-in HDL
operators. These operators include +, -, *, <, >, <=, >=, and the operations defined by
ifand case statements. Most of these operators’ implementations are provided by the
synthesis tools. For example, a variety of adders’ implementations can be found for
the addition operator in the synthetic library.

However, you can develop additional Design Ware components and provide them
to the synthesis tool.

Design Constraints and Environment

The real life will have no meaning without limitations.

Before a design can be optimized, you must define the environment in which the
design is expected to operate. You define the environment by specifying operating
conditions, wire load models, and system interface characteristics.

Operating conditions include temperature, voltage, and process variations. Wire
load models estimate the effect of wire length on design performance. System
interface characteristics include input drives, input and output loads, and Fanout

loads. The environment model directly affects design synthesis results.

-74-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

The design application for example may operate in a high temperature
environment, or in a very cold one. The environment can be considered also as the
around working chips and their effects of its input/output driving and loading, and

create a variable voltage level environment.
Operating conditions

Figure3.7: Design environment parameters.

So the designer should have a good understanding of the design application
environment, since the environment of the design may change also according to the
place of application.

In addition to specifying the design environment, you must set design constraints
before synthesizing the design. There are two categories of design constraints:

» Design rule constraints

» Design optimization constraints

Design rule constraints are supplied in the technology library you specify. They
are referred to as the implicit design rules. These rules are established by the library
vendor, and, for the proper functioning of the fabricated circuit, they must not be
violated. You can, however, specify stricter design rules if appropriate. The rules you
specify are referred to as the explicit design rules.

Design optimization constraints define timing and area optimization goals for
synthesis tool and they are user-specified. Synthesis tool optimizes the synthesis of
the design, in accordance with these constraints, but not at the expense of the design
rule constraints. That is, synthesis tool attempts never to violate the higher-priority
design rules.

Design rule constraints include:

» Transition time of a net, which is the time required for its driving pin to change

logic values.

* Maximum Fanout load for a net, which is the maximum number of loads the net

can drive.

+ Maximum Capacitance ofa net.

The design optimization constraints include the area constraints, power

constraints, and timing constraints. A maximum area of the design is specified by the

-75 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

designer. Also the consumed power can be restricted by the designer. The most
important constraints normally are the timing constraints. Timing constraints include:
e Clock period.
e Maximum clock skew.

e Propagation or not of clock skew.

Input and output delay relative to clock signal.

e Maximum path delay in combinational parts.

3.2.2 Synthesis process

After the designer set the synthesis setup elements, the synthesis tool can start
synthesis process. Synthesis process How includes two main steps; netlist creation,
netlist mapping.

RTL design files provided to the synthesis tool are implemented in logic level,
using generic gates. The RTL components are translated into Boolean equations
which implemented using generic gates (like AND, OR, XOR. NOT, NOR, XNOR,
NAND...). Before creating boolean equations, all possible RTL optimizations are
performed by the synthesis tool, after that, boolean equations are created. A second
level of optimizations is done on the boolean equations to obtain the minimal netlist,
the applied constraints by the designer affect highly the boolean optimizations.

The second step after all those optimizations and netlist creation is mapping
created generic gates to corresponding cells in the technology library.

As we discussed in optimization section, the last optimization step is sizing of
gates and gate implementation style, which selected to meet the design constraints.
However, an additional constraint on the design is that we don’t have the freedom to
select any sizes and implementation styles, a semiconductor vendor restrict the
designers with the set of cells and gates he can fabricate successfully, so the
semiconductor vendor, provides the designers with the set of all cells and gates he
fabricates in a technology library as we saw in section (3.2.1). So what synthesis tool
does is to map the netlist gates to corresponding ones in the technology library. For
example; NAND gate in the technology library is implemented in 10 different sizes in
static style and 5 different sizes in dynamic style, then the synthesis tool will map a
NAND gate in the netlist to one of the 15 NAND implementations in the technology
library, the selected implementation is affected by the design constraints and the
library defined implementation characteristics.

A first run mapping is done to check the violation amounts and then mapping
process is repeated to meet the constraints. If the first mapping process meets the
design constraints, the synthesis tool finishes and the design is ready, else the
mapping process is iterated around the critical paths, and repeated until constraints are
met. If after amount of time mapping process always violates design constraints, the
synthesis tool repeats optimization of RTL level and gates netlist, then restart

-76-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

mapping. The designer could control the synthesis tool behaviour and synthesis

process so he can get the best possible results.

3.3 Transform and Quantization Synthesis

In this section we will describe the synthesis flow and parameters we used in
synthesizing Transform and Quantization phases, also we present the synthesis results
and their analysis.

Synopsys design compiler is used to perform synthesis process. See appendix A
for details about Synopsys design compiler.

The synthesis process target was to investigate the best possible implementation
of the suggested ones as described in chapter2. A set of top-level design files are
created for each different implementation, table3.1 shows the different top-level
design file.

Design Files

Table3.1: Created top-level design files

Top-level File Description
Transform CONF.vhd Implementation oftransform unit using configurator.
TransformNoCONF.vhd Implementation oftransform stage using separate 2x2 and 4x4
hadmard transform units.
Transform N HAD Implementation of transform unit by implementing 4x4

hadmard transform independent from core transform, as
described in section 2.1.4

QuantizationFMTRM.vhd Implementation of quantization stage using /-modification
method and tree muiltiplier.

Quantization_FM_CSM.vhd Implementation of quantization stage using /-modification
method and carry-save multiplier.

QuantizationSTMTRM.vhd Implementation of quantization stage using standard method
and tree multiplier.

Quantization_STM_CSM.vhd Implementation of quantization stage using standard method

and carry-save multiplier.

The first three files are three different implementations of transform phase, the
target is to see how much are the trade off parameters between transform
implementation yying coyyyyurator and another transform iyyyymentation by
duplicating the first butterfly level of the 4x4 hadmard transform, and a third one with
implementing 4x4 hadmard transform independently from core transform.

Created design files hierarchy for the first two implementations are shown in the
figures3.8 and 3.9 respectively, for Third implementation we replace 4x4 hadmard
transform subdesign in figure 3.9 with the one described in figure 3.10. The main
difference between the two design files sets is the replacement of configurator

structure by the 2x2 hadmard transform structure.

-77-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figure3.8: Transform CONF design files hierarchy structure.

Figure3.9: TransformNoCONF design files hierarchy structure.

The numbers on the edges represent the number of modules of the child

component referenced in its parent. The design files are written in VTIDL format.

Figure3.10: 4><4 hadmard transform implementation in Transform N HAD subdesign.

The other 4 top-level files in table3.1 represent different implementations for the
quantization phase. Two of them implement the standard method formulation for two
different multiplier architectures (tree multiplier and carry-save multiplier), and the
other two implement the suggested /-modification method also for two different

multiplier architectures (tree multiplier and carry-save multiplier).

-78-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figures 3.11 and 3.12 show the created design files hierarchy for”~modification
and standard methods for the tree multiplier architecture respectively. The numbers on
the edges represent the number of modules of the child component referenced in its
parent. Take care that the adders used in standard method implementation are

unsigned adders, don’t let the name similarities disturb you.

Figure3.11: Quantization FM TRM design files hierarchy structure.
For implementations using carry-save multiplier, just we replace the
TRMull Unit subdesign file with the CSMull Unit subdesign file shown in
figure3.13

Figure3.12: Quantization STM TRM design files hierarchy structure.

Figure3.13: CSMull Unit design files hierarchy structure.

-79-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Libraries and design environment

We use the 0.13 pm semiconductor technology provided in the technology library
“umcel3h210t3_wc_108V_125C”. The worst operating conditions set is used; with
temperature up to 125C and at high voltage 1.08v. The used wire load model is
described in table3.2:

Suggested wire load model is “10K”.

Table3.2: Wire load model.

Fanout Length Capacitance Resistance Area
1 7.93 0.00 0.01 0.00
2 17.72 0.00 0.01 0.00
3 29.08 0.01 0.02 0.00
4 35.72 0.01 0.03 0.00
5 60.05 0.02 0.05 0.00
6 63.96 0.02 0.05 0.00
7 94.43 0.02 0.06 0.00
17 610.15 0.15 0.33 0.00
37 1062.47 0.26 0.55 0.00

Design Constraints

e Default design rules provided by the technology library are used.

e The maximum combinational paths delay for each of quantization and
transform units is set to Ons to enforce design compiler get the best
implementation.

e For area constraint 0 maximum area constraint is used to push design compiler
performs the best for area optimization.

e The consumed power is unconstrained, so the compiler will minimize it as

appropriate.

Compile strategy

For the forward path of transform and quantization processes, separate compile is
done for each transform and quantization design file to get an overview of the best
subdesigns combinations, and how much the costs variations will be. Three compiles
of the three different transform unit designs and four compiles for the four different
quantization unit designs. A top level file is created later from the best transform and
quantization designs in addition to the quantization parameters subdesign. The Top
level design is ungrouped and compiled in high effort with flatten effort high and
phase apply is true. This strategy will enforce design compiler to compile cross

hierarchy levels which will result in faster design.

-80-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

3.3.1 Transform synthesis results

3.3.1.1 Transform CONF :(Transform implementation using configurator).

Timing results:

The schematic shown in figure3.14 highlights the critical path. The maximum
delay of data arrival is 6.8192 ns. Table3.3 shows the details of the critical path main
parts.

Table3.3: critical path.

Functional Unit Input time (ns) Output time (ns)
Core Transform 0.00 2.2807
Configurator 2.2807 2.5586
Hadmard transform 2.5586 6.6664
Output Multiplexer 6.6664 6.8192

Figure3.14: Transform implementation with configurator schematic.

It is clear from the critical path that is the overhead of the configurator and
multiplexer together isn’t larger than 0.5 ns, while the most overhead (around 4 ns) is
in the hadmard transform unit where 4 stages of 15-bit adders are used.

From the slack histogram shown below we can note that most the paths have
6.818 ns delay which is the best obtained implementation.

Area results:

The total area of the design is (178937.859375 area units). Most of the area
overhead is in the Hadmard transform unit (42.78%) then in the core transform unit
(34.32%). Table3.4 shows the design area details. The total number of cell used in the

implementation is 11818 cells.

-81 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Slack | From 170 |

Path Slack -6.01910 XIN32rM) YD23El4]
-6.81916 XIN30E1] YD23El4]
-6.81900 XIN3ICI] YD22El4]
-6.81900 XIN3U11 Y022El4]
-6.81907 XIN22E1] YD23EI41

Figure3.15: full path slack histogram.

Table3.4: design area.

Subdesign Total Area Percent
Configurator 18473.859375 10.32%
Core Transform 61416.750000 34.32%
HadmardTransform 76555.451562 42.78%
Output MUX 22491.790938 12.58%
Total 178937.859375 100%

Power results:

Table3.5: Total consumed power

—m Cell Power Net Switching Power Total
Dynamic power 19.7657 mW 12.0076 mwW 31.7733 mwW
Leakage power 323.9445 uw - 323.9445 uw

Table3.5 shows the total dynamic and leakage power consumed in the design.

The most power is consumed in the hadmard unit and core unit.

Table3.6: cells’ internal consumed power.

Functional unit Power
Core unit 8.0346 mw
Configurator 2.0127 mw
Hadmard unit 7.0871 mw
Output multiplexer 2.6096 mw
Total 19.7657 mWwW
- 82 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

3.3.1.2 Transform_No CONF:. (Transform implementation without using

configurator)

Timing results:

The schematic shown in figure3.16 highlights the critical path. The maximum
delay of data arrival is 6.5677 ns. Table3.7 shows the details of the critical path main
parts.

Table3.7: critical path.

Functional Unit Input time (ns) Output time (ns)
Core Transform 0.00 2.6301
4x4 Hadmard Transform 2.6301 6.4361
Output Multiplexer 6.4361 6.5677

From the critical path we can notice the effect of removing the configurator,
which is around 0.25 ns. However still the overhead is on the 4x4 hadmard path

where we have again 4 stages of 15-bit adders which consume around 3.8 ns.

Figure3.16: Transform implementation without configurator schematic.

From the slack histogram shown in figure1.17 we can note that most the paths

have 6.566 ns delay which is the best obtained implementation.

Area results:

The total area of the design is (179554.750000 area units). Most of the area
overhead is in the 4x4 hadmard transform units (42.00%) then in the core transform
unit (32.56%). Table3.8 shows the design area details. The total humber of cell used

in the implementation is 14137 cells.

-83 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Table3.8: design area.

Subdesigns Total Area Percent
2x2 Hadmard Transform 25341.140625 14.11%
Core Transform 58454.812500 32.56%
4x4 Hadmard Transform 75408.179688 42.00%
OutputMUX 18722.830078 11.33%
Total 179554.750000 100%
Slack | Fran us.

-6.5677 XIN23[1] YD12114]

-6.56762 XINI2[1] 0 12[14;

-6.56758 XINI2M] YD32[14]

-6.56752 XINI2M] YD12l114]

-6.5675 XIN32[2] Y032114]

-6.56748 XIN3211] YDI2[14]

-6.56744 XIN32M YD32C14]

-6.56743 XINI211] YD32[14]

-6.56737 XINI2[1] YDI 2 [143

-6.56733 XIN22[2] YD20C14]

-6.56723 XIN32[1] YDI2 [14]

Figure3.17: full path slack histogram.
Power results:

Table3.9: Total consumed power.

b e Cell Power Net Switching Power Total
Dynamic power 20.7730 mW 17.1418 mW 37.9148 mWwW
Leakage power 278.0365 uwW - 278.0365 uw

Table3.9 shows the total dynamic and leakage power consumed in the design. Again
the most power is consumed in the hadmard units and core unit.

Table3.10: cells’ internal consumed power.
Functional unit Power
Core unit 7.5674 mW
2x2 Hadmard unit 2.1679 mW
4x4 Hadmard unit 8.8490 mW
Output multiplexer 2.1887 mw
Total 20.773 mW

3.3.1.3 Transform_N_HAD: (Transform implementation with 4x4 hadmard

transform implemented independently from core transform)

Timing results:

The schematic shown in figure3.18 highlights the critical path. The maximum
delay of data arrival is 5.30 ns. Table3.1! shows the details of the critical path main
parts.

-84-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Table3.11: critical path.

Functional Unit Input time (ns) Output time (ns)
Core Transform 0.00 3.06533
2x2 Hadmard Transform 3.06533 4.99024
Output Multiplexer 4.99024 5.30133

Figure3.18: Transform implementation 4x4 hadmard transform independently of core transform.
From the slack histogram shown in figure 1.19 we can note that most the paths

have 5.3 ns delay which is the best obtained implementation.

Path Slack Slack Fran To
-5.30133 XIN2011] YD12114]
-5.30127 XIN1310] YD12114]
-5.30123 XIN30[0] YD23C14]

Slack

Horst Best
-S.30133 | -5.29BS8

Figure3.19: full path slack histogram.

-85 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Area results:
The total area of the design is (186347.515625 area units). Most of the area
overhead is in the 4><4 hadmard transform units (42.61%) then in the core transform

unit (31.91%). Table3.12 shows the design area details. The total number of used cells

is 13369.

Table3.12: design area.
Subdesi™n Total Area Percent
2x2 Hadmard Transform 26133.90625 14.02%
Core Transform 59454.812500 31.91%
4x4 Hadmard Transform 79408.179688 42.61%
OutputMUX 19722.830078 11.46%

Total 186347.515625 100%

Power results:

Table3.13: Total consumed power.

~ Cell Power Net Switching Power Total
Dynamic power 27.7604 mW 18.9453 mw 46.7057 mW
Leakage power 303.4926 uw - 303.4926 uwW

Table3.13 shows the total dynamic and leakage power consumed in the design.
Again the most power is consumed in the hadmard units and core unit.

Table3.14; cells’ internal consumed power.
Functional unit Power
Core unit 9.9874 mW
2x2 Hadmard unit 3.1909 mw
4x4 Hadmard unit 11.3894 mW
Output multiplexer 3.1927 mw
Total 27.7604 mWwW

3.3.1.4 Comparison

As expected, the delay difference between Transform implementation with
configurator and transform implementation without it isn't large (0.25 ns). However,
the improvement with implementing 4x4 hadmard transform independently from core

transform result, we will save around 1.3 ns.
Transform CONF Transform No CONF Transform N HAD

Delay (ns) 6.82 6.57 53
Area 178937.859375 179554.750000 186347515625
Cells# 11818 14137 13369

Dynamic 31.7733 mW 37.9148 mW 46.7057 mW
power

Leakage 323.9445 uW 278.0365 uUW 303.4926 uW
power

The area ofthe configurator and the additional nets in the hadmard transform unit

is still less than duplication area of the first hadmard butterfly level. And as we

_86-
Institutional Repository - Library & Information Centre - University of Thessaly

24/04/2024 23:09:40 EEST - 3.145.162.204

expected, the area of implementation of Transform_N_HAD is larger even the

number of used cells is less.
3.3.2 Quantization Synthesis results

3.3.2.1 Quantization_STM_TRM: Quantization implementation in standard

method using tree multiplier.

Timing results:

The schematic shown in figure3.20 highlights the critical path. The maximum
delay of data arrival is 8.631 ns. Table3.15 shows the details of the critical path main
parts.

Table3.15: Critical path.

Functional Unit Input time (ns) Output time (ns)
Absolute value unit 0.00 0.66790
Multiplication unit 0.66790 6.08816
Addition unit 6.08816 7.21715
Shift unit 7.21715 7.78249
Resign unit 7.78249 8.63065

Figure3.20: Quantization implementation in standard method using tree multiplier schematic.

The most delay cost is in the multiplication unit which takes around 5.4 ns.
Where the critical path of the multiplication unit consists of multiplexer stage, partial
products stage, 15-bit adder, 17-bit adder, 19-bit adder, and 23-bit adder. Also, the use
of absolute and resign stages costs around 1.5 ns.

From the slack histogram shown in figure3.21 we can note that most the paths
have 8.628 ns delay which is the best obtained implementation.
Area results:

The total area of the design is (412912.500000 area units). Most of the area
overhead is in the multiplication unit (78.64%) then in the shift unit (8.51%).

Table3.16 shows the design area details. The total number of used cells is 33881.

-87-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Slack Fran To
Path Slack c

-8.63065 W30[1] Z30[14]
16 -8.63043 W33[1] 733[14]
-8.63036 w32[1] 732[14]
-8.63032 M31[1] 731[14]

14
12

10

1 v b, -f S
| ! [

-0.63 ,.1-0.628 1-8.626
Slock

Horst Best
=8.6306S] -8.6248S;

Figure3.21: full path delay slack histogram.

Table3.16: design area.

Subdesign Total Area Percent
ABS Unit 16424.640625 4%
ADDJJnityU 18302.197266 4.43%
Fs_Modif 832.895996 0.2%
Resign Unit 17421.695312 4.22%
SShift_Unit 35133.183594 8.51%
TRMullUnitU 320096.000000 78.64%

Total 412912.500000 100.0%

Power results:
Table3.17 shows the total dynamic and leakage power consumed in the design.

Again the most power is consumed in the multiplication unit.

—_— Cell Power Net Switching Power Total
Dynamic power 25.6178 mW 15.3214 mwW 40.9392 mW
Leakage power 409.9400 uwW - 409.9400 uW

The dynamic power consumed in cell units is distributed over the cells as below:

Table3.18: cells’ internal consumed power.

Functional unit Power
ABS Unit 2.0466 mWwW
ADD Unitu 3.8363 mWwW
Fs_Modif 0.5365 mWwW
Resign Unit 1.1158 mW
SShift Unit 1.5548 mW
TRMull UnitU 16.5278 mWwW
Total 25.6178 mW

8s.
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

3.3.2.2 Quantization_STM_CSM: Quantization implementation in standard

method using carry-save multiplier.

Timing results:

The schematic shown in figure3.20 highlights the critical path. The maximum
delay of data arrival is 9.22 ns. Table3.19 shows the details of the critical path main
parts.

Table3.19: Critical path.

Again, the most critical path cost is in the multiplication unit with 5.7 ns, and

absolute and resign units cost around 1.6 ns.

Path Slack Slack [Fron [to
-9.21604 HOL[3 z01[14]
-9.21584 H20] z20114]

Figure3.22: full path delay slack histogram.

From the slack histogram shown in figure3.22 we can note that most the paths

have 9.215 ns delay which is the best obtained implementation.

Area results:
The total area of the design is (336792.375000 area units). Most of the area
overhead is in the multiplication unit (54.00%) then in the Shift unit (24.955%).

Table3.20 shows the design area details. The total number of cells used is 23058.

-89-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Table3.20: design area.
Subdesign
ABS Unit

ADDUnitU
Fs_Modif
Resign Unit
SShiftdJnit
CSMulldanity
Total

Total Area
16280.5434075
32012.11524375
1956.76369875
20628.53296875
84046.53718125
18186788.25
336792.375000

Percent
4.834%
9.505%
0.581%
6.125%
24.955%
54.00%
100%

Power results:
Table3.21 shows the total dynamic and leakage power consumed in the design.
Again the most power is consumed in the multiplication unit.

Table3.21; Total consumed power.

..................... Cell Power Net Switching Power Total
Dynamic power 28.4720 mW 23.0667 mw 51.5387 mwW
Leakage power 584.6456 uwW - 584.6456 uw

The dynamic power consumed in cell units is distributed over the cells as below:

Table3.22: cells’ internal consumed power.

Functional unit Power
ABS Unit 2.27 mWw
ADD UnitU 3.12 mW
FsModif 0.422 mw
Resign Unit 1.30 mW
S Shift Unit 2.61 mw
CSMull Unitu 18.75 mw

Total 28.4720 mw

3.3.2.3 QuantizationFMTRM: Quantization implementation in /-modification

method using tree multiplier.

Timing results:

The schematic shown in figure3.23 highlights the critical path. The maximum
delay of data arrival is 6.382 ns. Table3.23 shows the details of the critical path main
parts.

Table3.23: Critical path.

Functional Unit Input time (ns) Output time (ns)

Multiplication unit 0.00 5.3725

Addition unit 5.3725 6.1550

Shift unit 6.1550 6.3815
-90-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Figure3.24: full path delay slack histogram.

Around 84% of the critical path cost is in the multiplication unit which cost around
5.37 ns, while the addition and shift unit don't cost larger than 1.1 ns.
From the slack histogram shown in figure3.24 we can note that most the paths have
6.38 ns delay which is the best obtained implementation
Area results:

The total area of the design is (418205.375000 area units). Most of the area
overhead is in the multiplication unit (71.03%) then in the Shift Unit (18.16%).

Table3.24 shows the design area details. The total number ofused cells is 32247.

91 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Table3.24: design area.

Reference Total Area Percent
ADDUnit 40766.972656 9.75%
F_Modif 4437.504883 1.06%
Shift_Unit 75929.546875 18.16%
TRMullUnit 296978.03125 71.03%
Total 418205.375000 100.0%

Power results:
Table3.25 shows the total dynamic and leakage power consumed in the design.

Again the most power is consumed in the multiplication unit.

Table3.25: Total consumed power.

R SN Cell Power Net Switching Power Total
Dynamic power 20.9847 mw 16.4189 mwW 37.4036 mW
Leakage power 349.1045 uwW - 349.1045 uwW

The dynamic power consumed in cell units is distributed over the cells as below:

Table3.26: cells’ internal consumed power.

Functional unit Power
ADDUnit 3.2959 mW
FModif 0.5025 mw
Shift_Unit 0.8031 mwW
TRMull3Jnit 16.2832 mW
Total 20.9847 mw

3.3.2.4 Quantization_FM_CSM: Quantization implementation in/-modification

method using carry-save multiplier.

Timing results:
The schematic shown in figure3.25 highlights the critical path. The maximum

delay of data arrival is 6.98 ns. Table shows the details ofthe critical path main parts.

Table3.27: Critical path.

Functional Unit Input time (ns) Output time (ns)
Multiplication unit 0.00 6.34
Addition unit 6.34 6.97
Shift unit 6.97 6.98

From the slack histogram shown figure3.26 we can note that most the paths have

6.975 ns delay which is the best obtained implementation.

-92-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Slock Fron To
Path Slack

-6.97627 P_inf z10mM4]
-6.97619 P_inf Z30M4]
-6.97612 P_inf ZI0[14]

Horsl
-6.97627 | -6.37393

Figure3.26: full path delay slack histogram.

Area results:
The total area of the design is (326448.562500 area units). Most of the area

overhead is in the multiplication unit (62.48%) then in the shift unit (22.9%).

Table3.28 shows the design area details. The total number ofused cells is 22178.

Table3.28: design area.

Subdesign Total Area Percent

ADD Unit 43645.796875 13.37%

F Modif 4072.894287 1.25%

Shift Unit 74742.921875 22.9%

CSMull Unit 203933.312500 62.48%

Total 326448.562500 100.0%
-03 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Power results:
Table3.29 shows the total dynamic and leakage power consumed in the design.

Again the most power is consumed in the multiplication unit.

Table3.29: Total consumed power

Cell Power Net Switching Power Total
Dynamic power 25.9138 mw 21.8868 mW 47.8006 mw
Leakage power 555.1 185 uW - 555.1 185 uw

The dynamic power consumed in cell units is distributed over the cells as below:

Table3.30: cells’ internal consumed power.

Functional unit Power
ADD Unit 3.3090 mW
F Modif 0.3856 mW
Shift Unit 1.9020 mWwW
CsMull Unit 20.3072 mW
Total 25.9138 mwW

3.3.2.5 Quantization phase synthesis results comparison

Standard Method /-Modification Method
Tr_ee_ Carry_-sr?lve Tree Multiplier Carry_-szflve
Multiplier Multiplier Multiplier
Delay (ns) 8.63065 9.21604 6.3815 6.98
Area 412912.500 336792.375 418205.375 326448.562
Cells# 33881 23058 32247 22178

Dynamic Power. 40.9392 mW 51.5387 mw 37.4036 mwW 47.8006 mW
Leakage Power. 409.9400 uwW 584.6456 uwW 349.1045 uwW 555.1185 uwW

From the above table there are three conclusions can be taken:

e Cost of/-modification method implementation is less than cost of standard
method implementation.

e Cost of implementation using tree multiplier architecture is less than cost of
implementation except for area overhead of tree multiplier that can be
considered high compared with carry-save multiplier implementation.

e Quantization implementation in /modification method and using tree
multiplier is the best solution.

It is clear how much removing absolute and resign stages from the
implementation of quantization process will save time. There is around 2.2 ns save in
time from Standard method to/-modification method.

Also the area overhead of absolute and resign stages is eliminated in the /-
modification, and can be used to recover the increase in the multiplication unit when

using tree multiplier.

_94.
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

The last benefit of removing absolute and resign units is the noticeable decrease
in consumed power for the case of dynamic and leakage power.

Even the carry-save multiplier saves the carry calculations, but the number of
necessary stages to perform partial products addition creates overhead on the critical
path. On the contrary, even in the tree multiplier the adders’ size increase as the
progress in partial products addition, the smaller number of needed stages to perform
partial products addition reduces the overhead on the critical path. This can be noted
clearly from the table.

However the increase in the area of the tree muiltiplier can be as critical as clear
from the table where it is around 90000 area units, and an increase in the number of

cells used around 10000 cells.

3.3.3 Transform and Quantization Integration

In this section we will compile the transform unit and quantization unit as one
top-level design. Since tree multiplier that it is the best. Two top level designs will
tested; the first one consists of transform wunit built in subdesign file
Transform_N_IIAD and quantization unit built in /*modification method using tree
multiplier (Tr_QuFTRM_Phases). While the second one consists of transform unit
built in subdesign file TransformNHAD and quantization unit built in standard

method using tree multiplier (Tr_QuSTRM_Phases).

3.3.3.1 Tr QuFTRM Phases

The schematic shown in figure3.27 highlights the critical path. The maximum

delay of data arrival is 8.78 ns.

Figure3.27: Tr QUFTRM Phases schematic.

-95 _
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Table3.31 shows the details of the critical path main parts. It is clear from the critical
path table that compiling the transform and quantization subdesigns together (top-
down compile strategy) will give better results.

Table3.31: Critical path.

Functional Unit Input time (ns) Output time (ns)
Transform Unit 0.00 4.62
Quantization Unit 4.62 8.78

From the slack histogram shown in figure3.28 we can note that most the paths
have 8.78 ns delay which is the best obtained implementation. In this implementation
of the transform and quantization subdesigns the system could work on clock rate
113.9 MHz.

Slock Fron To
-0.77769 X22[0] 720C14]

Figure3.28: Full path delay histogram.
Area results:
The total area of the design is (788451.812500 area units). Most of the area
overhead is in the quantization unit (68.68%) then in the transform unit (30.93%).
Table3.32 shows the design area details. The total number of used cells is 56524.

Table3.32: design area.

Subdesign Total Area Percent
Transform_N_HAD 243868.14561 30.93%
Quant Param 3074.9621 0.39%
Quantization FM TRM 541508.71 68.68%
Total 788451.812500 100.00%

Power results:

Table3.33 shows the total dynamic and leakage power consumed in the design.

-06-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Table3.33: Total consumed power

—_ Cell Power Net Switching Power Total
Dynamic power 30.7053 mwW 25.9731 mWwW 56.6784 mW
Leakage power 1.0302 mw - 1.0302 mW

The dynamic power consumed in cell units is distributed over the cells as below:

Table3.34: cells’ internal consumed power.

Functional unit Power
Transform_N_HAD 12.3564 mW
QuantParam 0.1354 mW
Quantization FM TRM 18.0675 mWwW
Other cells 0.146 mw
Total 20.1372 mW

3.3.3.2 Tr_ QUSTRM_ Phases

Timing results:

The schematic shown in figure3.27 highlights the critical path. The maximum
delay of data arrival is 11.312 ns. Table3.35 shows the details of the critical path main
parts.

Table3.35: Critical path.

Functional Unit Input time (ns) Output time (ns)
Transform Unit 0.00 5.183
Quantization Unit 5.183 11.312

From the slack histogram shown below we can note that most the paths have
11.31 ns delay which is the best obtained implementation. In this implementation of
the transform and quantization subdesigns the system could work on clock rate

88.4MFlz.

Area results:
The total area of the design is (845750.562500 area units). Most of the area
overhead is in the quantization unit (72.2653%) then in the transform unit

(27.2125%). Table3.36 shows the design area details. The total number of used cells

is 61998.

Table3.36: design area.
Reference Total Area Percent
Transform_CONF 230149.87182 27,2125%
Quant_Param 4416.509437375 0.5222%
Quantization STM TRM 611184.181242 72,2653%
Total 845750.562500 100.0%

_97.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Slack From T0
1.3123 X32[1] Z324]

Worst
-11.3123 [

Figure3.29: full path delay slack histogram.

Power results:
Table3.37 shows the total dynamic and leakage power consumed in the design.

Table3.37: Total consumed power

_ Cell Power Net Switching Power Total
Dynamic power 37.6985 mw 22.7645 mw 60.4630 mwW
Leakage power 632.5847 uw - 632.5847 uwW

The dynamic power consumed in cell units is distributed over the cells as below:

Table3.38: cells’ internal consumed power.

Functional unit Power
TransformCONF 11.2026 mwW
Quant Param 4.0446 mW
QuantizationSTMTRM 22.2495 mW
Total 37.6985 mwW
0.0.0.0 comparison
Tr QUSTRM Phases Tr QUF'fRM Phases
Delay (ns) 11.312 8.78
Area 845750.562500 788451.8125
Cells# 61999 56524
Dynamic power 60.4630 mwW 56.6784 mwW
Leakage power 632.5847 uwW 1.0302 mw

As clear from the table above and as we expected from the results of quantization
and transform phases separate compile, the implementation of transform and
quantization process using f-modification method and tree multiplier, will meet our

targets, and gives the best expected results. The critical path delay is 8.78 which will

_98.
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

enable use of 113.9MHz clock sufficiently, with acceptable results for area and power

consumption.

3.3.4 Inverse Transform and Quantization Synthesis

Tinting results:
The schematic shown in figure3.30 highlights the critical path. The maximum
delay of data arrival is 8.8 ns. Table3.39 shows the details of the critical path main

parts.

Table3.39: Critical path.

Functional Unit Input time (ns) Output time (ns)
Hadmard Unit 0.00 3.6963
Rescale Unit 3.6963 5.8050
Inverse Core Unit 5.8050 8.5077
Round Unit 8.5077 8.7989

From the slack histogram shown in figure3.31 we can note that most the paths
have 8.798 ns delay which is the best obtained implementation.
Area results:

The total area ofthe design is (560350.625000 area units).

Table3.40: design area.

Subdesign Total Area Percent
Hadmard Unit 172139.712 30.72%
Rescale Unit 287740.0459375 51.35%

Mull Factors Unit 1008.631125 0.18%
Inverse Core Unit 95259.60625 17.00%
Round Unit 4202.6296875 0.75%
Total 560350.625000 100.00%

Most of the area overhead is in the Rescale unit (51.35%) then in the Hadmard
unit (30.72%). Table3.40 shows the design area details. The total number of used cells

is 39985.

-909-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Slack From Ta

-B.79792 Z33[1] X03[9]
-B.79788 222C5] X12[9]
-B.79787 Z33[1] X23[9]
-B.79787 Z20[1] X12[9]
-B.79787 Z20[1] X12[9]
-B.79786 Z02[l] X02[9]
-B.79785 Z32[1] X02[9]
-©.79785 202[1] X02[9]
-8.79704 Z20[1] X02[9]
-8.79783 Z33[1] XO0I[9]
-B.79783 Z20[1] X00[9]
-8.79783 Z20[1] X00[9]

Slack

Horst Best
-8,79891 -8.79783

Figure3.31: full path delay slack histogram.
Power results:
Table3.41 shows the total dynamic and leakage power consumed in the design.

Table3.41: Total consumed power

-------------------- : Cell Power Net Switching Power Total
Dynamic power 20.8175 mw 16.6068 mW 37.4244 mW
Leakage power 799.2933 uwW - 799.2933 uwW

The dynamic power consumed in cell units is distributed over the cells as below:

Table3.42: cells’ internal consumed power.

Functional unit Power
Hadmard Unit 7.771 mWwW
Mull Factors Unit 0.066 mwW
Rescale Unit 8.875 mwW
Inverse Core Unit 4.004 mw
Round Unit 0.1015 mw
Total 20.8175 mwW

3.4 Conclusion and Final Results

Implemented forward path hardware deals with 4x4 input data block with each
data element is 9-bit signed integer, with the most significant bit is the sign bit. The
output of the forward path is 4x4 quantized data block with each element is 15-bit
signed integer with the most significant bit is the sign bit. QP, P INF and PRED

inputs are as described in section 2.1.

- 100-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

4X4 \%
Residual PET-

block Foiwanl Tramfoim y4 axa
QP_"“ and OUtpUt ‘ Qgslwull(md
D TV Quantization Path Iim]M oc
FRED---------
<m
a4X4
; tited
44 X Reverse Transfonn ::FL"ITI Qgﬁ,”d'f
Rycon tiK»eil|EBLffIBn and eack P
t'In'l: i*-wii . .
» uantization Path
erth Q PJNF

Figure3.32: Forward and reverse paths inputs and outputs.

Reverse path takes the resulting 4x4 quantized data block from the forward path
output and QP, and P_INF inputs. The output of the reverse path is 4x4 reconstructed
data block, with each element are 10-bits signed integer, with the most significant bit
is sign bit.

A total of 393 ports are needed in the forward path, and 408 ports are necessary
for reverse path.

At the end we can say that forward transform and quantization path could work
with worst delay of 8.78ns, with a clock rate around 113.9 MHz. 56524 cells are used
to realize the implementation, with estimated occupied area around 788451 area units
of technology 130 nm area units. Estimated consumed dynamic power is around 60

mW, and around I mW static power is consumed.

Forward Path Inverse Path
Delay (ns) 8.78 8.8
Clock Rate
113.9 113.6
(MHZz)
Dynamic power (mW) 56.6784 37.4244
Leakage power (UW) 1030.2 799.2933
Area 788451 560350
Cells# 56524 39985
Nets# 56677 40233
Ports# 393 408
- 101 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

The reverse path (inverse transform and inverse quantization) could work with
worst delay of 8.8 ns, which allow use of clock rate 113.6 MHz. just 39985 cells are
used to realize the implementation, with estimated occupied area around 560350 area
units. Estimated consumed dynamic power is around 40mW, and a static power
around 0.8mW.

From the above result we could say that the forward and reverse path can
implemented the two paths together with a worst delay around 17.6 ns, and so could
run with clock rate 56.8MHz, or a pipelining of the two stages can be done, with

clock rate is 113MHz.

- 102 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Appendix B
Synopsys Design Compiler

Synopsys provides an integrated RTL synthesis solution. Using Design Compiler
tools, you can

* Produce fast, area-efficient ASIC designs by employing user-specified gate-array,
FPGA, or standard-cell libraries.

» Translate designs from one technology to another.

* Explore design tradeoffs involving design constraints such as timing, area, and
power under various loading, temperature, and voltage conditions.

* Synthesize and optimize finite state machines, including automatic state
assignment and state minimization.

* Integrate netlist inputs and netlist or schematic outputs into third-party
environments while still supporting delay information and place and route
constraints.

* Create and partition hierarchical schematics automatically.

Design compiler family mainly includes:

 DC Expert: Applied to high-performance ASIC and IC designs.

e DC Ultra: Applied to high-performance deep submicron ASIC and IC
designs, where maximum control over the optimization process is required.

e HDL Compiler Tools: include HDL Compiler (Presto Verilog) and (V)HDL
Compiler. The Verilog or (V)HDL compiler reads the HDL files and
performs translation and architectural optimization ofthe designs.

e Power Compiler: Offers a complete methodology for power, including
analyzing and optimizing designs for static and dynamic power consumption.

Before the start of synthesis process, the designer should write the design files
and test design functionality. The design compiler take the design files and run
synthesis process, it doesn't support writing design files. However, Synopsys design
compiler supports several design files formats including VHDL, and Verilog as

appear in the table below:

Format Description Keyword Extension
PLA Berkeley (Espresso) PLA format Pa Pla
State Table Synopsys state table format St St
TDL Tool Design Language netlist format T1 .tdl
Verilog Verilog Hardware Description Language Verilog v
VHDL VHSIC Hardware Description Language Vhdl .vhd
XNF Xilinx netlist format Xnf xnf
- 103 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

B.1 Design Compiler Interfaces

The Design Compiler has the following interfaces:
¢ dc_shcll command-line interface: the dc shell command-line interface has the
following modes:
- decsh mode: This is the original Design Compiler command language and is
specific to Synopsys
- dctcl mode: This Design Compiler command language is based on the tool
command Language (Tel) and includes certain command extensions needed to
implement specific Design Compiler functionality.
* Graphical user interface: The Design Vision graphical user interface (GUI)
provides menus, dialog boxes, and so forth for implementing Design Compiler

commands. It also provides graphical displays, such as design schematics.

FigureA. 1. Design compiler interfaces.

To start the design compiler enter the appropriate command to invoke it.

To invoke dc_shell in dcsh mode, enter the dc_shell command at the system
prompt:

% dc_shell

The system prompt changes to

% dc_shell>

To invoke dc_shell in the dctcl mode, enter

% dc_shell -tcl_mode

To run the design vision interface insert:

design_vision -xg

You can also include numerous options in these command lines, such as

» -checkout to access additional licenses

* -wait to set a wait time limit for checking out any additional licenses

» -fto execute a script file

» -x to include a dc_shell command that is executed at startup

Other options are available.

At startup, dc_shell does the following tasks:

1. Creates a command log file

2. Reads and executes the .synopsys_dc.setup files
- 104-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

3. Executes any script files or commands specified by the -x and -f options,

respectively, on the command line.

4. Displays the program header and dc_shell prompt in the window from which
you invoked dc_shell.
In this small tutorial we will discuss using of Design vision graphical user
interface. When you run the command design_vision -xg
The program header will list for you the licensed members of the design compiler

family as in figureA.2 and A.3

DC Professional (TM)
DC Expert (TM)

DC Ultra (TM)
FloorPlan Manager (TM)
HDL Compiler (TM)
VHDL Compiler (TM)
Library Compiler (TM)
DesignWare Developer (TM)
DFT Compiler (TM)
BSD Compiler
Power Compiler (TM)

Version Y-2G06.G6 for sparc64 — May 25, 2006
Copyright (c) 1980-2006 by Synopsys, Inc.
ALL RIGHTS RESERVED

This software and the associated documentation are confidential and
proprietary to Synopsys, Inc. Your use or disclosure of this software
is subject to the terms and conditions of a written license agreement
between you, or your company, and Synopsys, Inc.

The above trademark notice does not imply that you are licensed to use
all of the listed products. You are licensed to use only those products
for which you have lawfully obtained a valid license key.
Initializing...

design_vision-xg-t> design_vision-xg-t> §

FigureA.2: Design vision startup display.

FigureA.3: Design vision startup display.

- 105 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

Maybe what displayed for you differs in the listed members according what licenses
you have.
The displayed window of design vision you will see directly is shown in figure A.3.
The “flier. 1” window wiill display the hierarchy of the current design when you
read it. In the log window at the bottom, the design compiler translate all the menus
actions into commands as you press, them, also any information during processing is
displayed in the log window.
At the tab *“design_vision-xg-t>” you can perform processing using Tel

commands instead using menus.

B.2 Synthesis Flow

The basic synthesis flow consists of the steps shown in figureA.4, the figure

shows beside each step the parameters to be set and actions.

targetjibrary
~Sptctfy Libraries Enkijibrary
symboHibrary

read !

analyze Read 'designs)
elaborate

operating conditions

~Set Environment~ Wire load model
input/output settings

timing constraints
ar ea constraints Set Constraints
power constraints

Top-down

J
CSeIect compile strategy «J Bottom.up

mapping-effort
flatten settings
structuring settings

FigureA.4: Synthesis flow.

1. Specify Libraries

The first step after you start the design vision is to define the target library, link
library, and symbol library to the design compiler. Those libraries should be in the
search path ofthe design compile, or you can provide it with the full path.

To define the libraries, from file menu->setup, you get the setup window shown
in figureA.5. In the search path you can define the path of your libraries (where you
save them) and put it on the top of search paths list. In fields of link library, target
library, symbol library, and synthetic library you can insert the names of your
libraries.

As you note the target and link libraries should be in the db format, while the

symbol library in the sdb format. You can use library compiler to translate libraries

- 106-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

into db format if they were in another format, normally semiconductor vendor provide

designers with technology libraries in db format.

I"Application Setup

Categories
Defaults

i Search path: .W/dw/sirLYer /asr/sijnopsys/Y-20?6.0h/d»/syn_ver
-Variables

Physical library:

link library:» * your.library.db d

Jarget library:* yourUibrary.A

Synbol library:* lyour.Jibrary.sdb

Synthetic library: v | d

retired

reset * Cancel

FigureA.5: setup window.
2. Read Designs

After definition of libraries, you can start design files read phase. The design

compiler provide designer with two ways to read designs:
* Read command which can be used to read designs in any format type.
e Analyze and elaborate commands which specific for verilog and vhdl formats.

If your design files are written in vhdl or verilog format it is better to use analyze
and elaborate commands since they give designer more abilities to change some
generic parameters in the design, and they make check while reading.

The design files process must respect hierarchy; which means you should read in
bottom-up direction, child file then its parents until reach the top file. To read design
files run from file menu the analyze command then the window in figureA.6 will
appear for you, by clicking add button you can select the files you want to read, take
care to the order of reading, subdesign files at the top in the files list and (note you
can reorder the design after addition by the arrow button), also take care to select

design files format.

FigureA.6: read designs (analyze).

- 107-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

By analyze command you read the files as we said in bottom-up flow, and
elaborate command is used only on the top level design and an subdesign you want to
change some of its generic list parameters, also respect hierarchy in elaborate

command.

FigureA.7: read designs (elaborate).

Also from file menu you can run elaborate command, and then the window
shown in figureA.7 will appear. Note the parameters field; if the design has any
generic list it will appear in parameters field, and so you can change them ifyou want.

After you run elaborate command on a design file, that design will be the current
design, each design you run elaborate command for it will be available in the design
compiler library, and you can switch between designs using current_design

parameter.

3. Define Design Environment

Design Compiler requires that you model the environment of the design to be
synthesized. This model comprises the external operating conditions (manufacturing
process, temperature, and voltage), loads, drives, fanouts, and wire load models. It
directly influences design synthesis and optimization results.

From attributes menu you can set the environment parameters as appear in

figureA.8
-ini xI
| attributes Schematic Timing Test Himnfo» Help
Specify Clod ... n
Sparating Environment) Inii* Ma
ii
Optimization Constraints 'ﬂp?put U eigrtj

Optimization Directives
trlve Strength...

IPad.i.

ih <

Oeerating Conditions.
Wire Load...

Timing Range..

FigureA.8: setting environment.
By selecting operating environment submenu you can select to set all possible
environment parameters. The inactivated submenus aren’t applied for the selected

design object. For example, by selecting output port from the “Flier.1” window, as

- 108 -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

shown in figure below, the “output delay” and “load” submenus are activated, since

we can apply these parameters for output ports.

8H Design Vision - Toplevett
File £dit Xiew Select jjighlight list Hierarchy fiesign Attributes Schematic lining Test

fh<<a

FigureA.9: setting environment.

4. Set Design Constraints

Design Compiler uses design rules and optimization constraints to control the
synthesis of the design. Design rules are provided in the vendor technology library to
ensure that the product meets specifications and works as intended. Typical design
rules constrains are transition times, fanout loads, and capacitances. These rules
specify technology requirements that you cannot violate. (You can, however, specify
stricter constraints.) Optimization constraints define the design goals for timing
(clocks, clock skews, input delays, and output delays) and area (maximum area). In
the optimization process, Desigh Compiler attempts to meet these goals, but no design
rules are violated by the process. To define design constraints, also from the attributes
menu -> optimization constraints submenu you can select the design constraints to set

area and power constraints, also design rules constraints if you want.

| Attributes Schematic Timing Test Window Help

Specify Clock... 3 El
Operating Environment »

Optimization Constraints H X X e
L . . Design Constraints, ."t"i
Optimization directives »' o .
Timing Constraints...

Derive Constraints...

FigureA.10: setting design constraints.

The window shown infigureA.il will appear; it has two parts optimization
constraints part where area and power constraints are applied. The second part is the
design rules part constraints.

Again from attributes ->optimization constraints you can run Timing constraints
window also you can specify clock signal.

—109-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

FigureA. 11: design constraints.

5. Select Compile Strategy

The two basic compile strategies that you can use to optimize hierarchical
designs are referred to as top-down and bottom-up. In the top-down strategy, the top-
level design and all its subdesigns are compiled together. All environment and
constraint settings are defined with respect to the top-level design. Although this
strategy automatically takes care of interblock dependencies, the method is not
practical for large designs because all designs must reside in memory at the same

time.

-InixI
File Edit yiew Select Highlight list Hierarchy Resign | attributes Schematic liming Test Window Help
~H LfjjKS ' Specify Clock...
TransfoMLCOMF 3 Operating Environment »
Hier.t Optimization Constraints >
Logical Hierarchy 1 Cells (Hierarchical) Optimization Eirecttves >
.. £>m-". Traniformjrtfir [fell None IPef Nan» |Cell Pat!
POBII3B3O-- = core_unit Core.Transform core unij
 f>MndmardJJnit OHodmardJJnit Hodmm (LTransforiHadmartU
A-ScConfgJJnit OConfadJnH Configurator ConfaJ-in 1
1 OMUX OMUX OutpuOWX HUX

FigureA. 12: compile strategy.

In the bottom-up strategy, individual subdesigns are constrained and compiled
separately. After successful compilation, the designs are assigned the dont touch
attribute to prevent further changes to them during subsequent compile phases. Select
the cell in the hierarch that you did compilation of it previously and you don’t want to
recompile it from the start when compile the top level, then from atlributes-

>optimization directives select cell the window in figureA.13 will appear.

- 110-
Institutional Repository - Library & Information Centre - University of Thessaly

24/04/2024 23:09:40 EEST - 3.145.162.204

FigureA.13: cell’s attributes.

The compiled subdesigns are assembled to compose the designs of the next
higher level ofthe hierarchy (any higher-level design can also incorporate unmapped
logic), and these designs are compiled. This compilation process is continued up
through the hierarchy until the top-level design is synthesized. This method lets you
compile large

Designs faster because Design Compiler does not need to load all the uncompiled
subdesigns into memory at the same time. At each stage, however, you must estimate
the interblock constraints, and typically you must iterate the compilations, improving
these estimates, until all subdesign interfaces are stable.

Each strategy has its advantages and disadvantages, depending on your particular
designs and design goals. You can use either strategy to process the entire design, or
you can mix strategies, using the most appropriate strategy for each subdesign.

6. Optimize the Design

To optimize the design you can direct the design compiler process by set of
flatten and structuring parameters. Structuring process adds intermediate variables and
logic structure to a design, which can result in reduced design area.

While flatten process converts combinational logic paths of the design to a two-
level, sum-of-products representation. During flattening, Design Compiler removes
all intermediate variables, and therefore all its associated logic structure, from a
design. Flattening is not always practical, however, because it requires a large amount
of CPU time and can increase area.

From the attributes->optimization directives select design as shown in

FigureA.14, the window of design attributes will appear.

- HI -
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

HttriNit»s i£henatic lining res+ Bird» Help

Specify Clock... 1B
Operating environment »
Optimization Constraints »

Optimisation directives = .
design...

7 -'input fort...
' jripat Puri...-
Cell...

lining Paths...
FigureA.14: set optimization directives.
In the design attributes window you can enable flatten or structuring processes.

You can select low, medium, or high effort for flatten.

FigureA.15: design attributes.

7. Run Compile process

Now, after you finish all compile process setting you can run the design compiler.
From design menu select compile design submenu the compile design window will
appear.

Several compile options are available. In particular, the map effort option can be
set to low, medium, or high. In a preliminary compile, when you want to get a quick
idea of design area and performance, you set map_effort to low. In a default compile,
when you are performing design exploration, you use the medium mapeffort option;
you might want to set map effort to high. You should use this option judiciously,
however, because the resulting compile process is CPU intensive. Often setting

map effort to medium is sufficient.

~112-
Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

msmtm *
Simple compile node opti

I ;Enobie sample cgmpiie mode)

r
Mappiriq options Compile options
Map design I Top level P incremental napping
Mop effort: | medium w3 I Ungroup all I (11 log boundary conditions
ftrga effort:1 medium = F Scan r Omlg 3]”|9”3Up
I'T" Exact na .
e g P £
Design rule options Verification options

< fix design rules and optimize napping I" Verify design
I Optimize nappiing only r O|| | |M |J
I fix design rules only Effort; | iiw ~3
F fix hold tine only

Background compilation options
I Background

vt??" directory:'- |./ko-pii«’ &fee.

Host Nt c: |

Hrdiitecfu'e: |siwcE6S™™"
CIN I IR

OK Cancel fippiy

FigureA.16: compile design.
8. Analyze and Resolve Design Problems
Design Compiler can generate numerous reports on the results of a design
synthesis and optimization, for example, area, constraint, and timing reports. You use
reports to analyze and resolve any design problems or to improve synthesis results.

From design menu you can run a lot of reports that enable you analyze the synthesis

result.

mimm

Oesign Attributes Schematic i

Compile Design...

Compile jjltro...

Check Design...

Report Eesign...

Report Design Hierarchy...

Report Design Resources...

Report Constraints...

Report Reference...

Report Ports...

Report Cells...

Report Nets...

Report Clocks...

Report free...

Report Compile Options...

Report Power...

Reset Current Design

FigureA.17: get analyze reports.
Also from Timing menu you can run several kinds of timing reports and
histograms of net capacitance and timing slacks. Also design vision interface enable
you to view schematics of the design and mark critical path and other path types to

take good overview ofthe design.

- 113 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

FigureA.17: get timing reports.
From schematic->new design schematic view submenu you can get the design
schematic, or by clicking the button you will get the same thing. From the
Highlight menu you can select the path you want to highlight (take care that the

schematic window is activated).

Sr Design Vision - Topievel.l -Ini»
pile Edit yiew Select Highlight List Hierarchy Design Attributes Sshenatic lining Test Hiridow Help
I hal &JIfU\ Critical Path Ctrl+H am Ec:&gess
U TronsfortLCOHF Has Path
7 \/ .t Mi Path » Schwiatic.I ~ corejjnlt
Logical Hierarchy Selected Ctr E
- O>> TransfornJ Selected ttj Color »
A = core.unit Set Current Color »

m @ OHadmtr(LUni
@ OConfa.Unit

clear Selected Ctrl*Shift*H

" t>NUX Clear *
Clear nil Ctrl+M
First Color
Next Color CtrUN f|y21
v Huto rycie Colors
;I*ﬂvﬁr
%0
—1

0] |

CL p corejjnit

FigureA. 18: Design schematic.
9. Save the Design Database
Remember that Design Compiler does not automatically save designs before
exiting. You can also save in a script file the design attributes and constraints used
during synthesis. Script files are ideal for managing your design attributes and

constraints. Fromfile menu select save as and then save the design where you want.

- 114-

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

References

[1] I. Amer, W. Badawy, and G. Jullien, “Hardware Prototyping for The H.264 4x4
Transformation,” accepted in IEEE International Conference on Acoustics, Speech,

and Signal Processing, Montreal, Canada, May 2004.

[2] I. Amer, W. Badawy, and G. Jullien, “A VLSI Prototype for Hadamard Transform
with Application to MPEW?”, accepted in IEEE International Conference on

Acoustics, Speech, and Signal Processing, Montreal, Canada, May 2004.

[3] lain E. G. Richardson, “H.264 and MPEG-4 Video Compression”, John Wiley &
Sons Ltd, England, 2003.

[4] S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-Complexity
Transform and Quantization in H.264/AVC”, IEEE transactions on circuits and

systems for video technology, Vol. 13, NO. 7, July 2003, pp. 598-603.

[5] I. E. G. Richardson, “H.264/MPEG-4 Part 10: Transform & Quantization”, A

white paper. [Online], Available: http://www.vcodex.com, March 2003.

[6] R. Schafer, T. Wiegand, and H. Schwarz, “The Emerging H.2641AVC Standard”,
EBU Technical Review, January 2003.

[71 H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerfosky, “Low-Complexity
Transform and Quantization with 16-bit Arithmetic for H.26L". IEEE International

Conference on Image Processing, Rochester, New York, September 2002.

[8] A. Hallapuro, M. Karczewicz, and H. Malvar, “Low Complexity Transform and
Quantization - Part 11: Extensions”, Joint Video Team (J V of ISO/IEC MPEG und
ITU-T VCEG, doc. JvT-B039r2, February 2002.

[9] T. Stockhammer, M. M. Hannuksela, T. Wiegand, “H.264/AVC in wireless
environments”, IEEE Transactions on Circuits und Systems For Video Technology,

Vol. 13, No. 7, July 2003, pp. 657-673.

[10] K. Denolf, C. Blanch, G. Lafruit, and A. Bormans, “Initial memory complexity
analysis ofthe AVC codec”, IEEE Workshop on Signal Processing Systems, October
2002, pp. 222-227.

- 115 -

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

http://www.vcodex.com

MANEMIZTHMIO
OEZ>ZANIAZ

004000085926

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 23:09:40 EEST - 3.145.162.204

