Mostra i principali dati dell'item
Local curvature analysis for differentiating Glioblastoma multiforme from solitary metastasis
dc.creator | Vamvakas A., Tsougos I., Arikidis N., Kapsalaki E., Fezoulidis I., Costaridou L. | en |
dc.date.accessioned | 2023-01-31T10:25:26Z | |
dc.date.available | 2023-01-31T10:25:26Z | |
dc.date.issued | 2016 | |
dc.identifier | 10.1109/IST.2016.7738219 | |
dc.identifier.isbn | 9781509018178 | |
dc.identifier.uri | http://hdl.handle.net/11615/80371 | |
dc.description.abstract | Ambiguous imaging appearance of Glioblastoma multiforme (GBM) and solitary metastasis (MET) is a challenge to conventional Magnetic Resonance Imaging (MRI) based diagnosis. In this study, a local curvature analysis scheme is implemented to enable morphological differentiation between GBMs and METs. The first stage of the scheme takes advantage of a Diffusion Tensor Imaging (DTI) clustering segmentation technique, complemented by post-contrast T1 imaging for final tumor boundary definition. 3D tumor models are generated by morphological morphing interpolation to compensate for low z-axis resolution of a widely utilized MRI acquisition protocol, followed by triangulated surface mesh generation. Five 3D morphology descriptors, based on local curvature analysis, are tested in a pilot case of 12 lesions (8 GBMs and 4 METs) in terms of morphology differentiation capability, utilizing four first order statistics. Statistically significant differences are identified for all five descriptors tested, however for a varying first order statistics. Results demonstrate the potential of morphology analysis in pre-treatment brain MRI tumor differentiation. © 2016 IEEE. | en |
dc.language.iso | en | en |
dc.source | IST 2016 - 2016 IEEE International Conference on Imaging Systems and Techniques, Proceedings | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85003868961&doi=10.1109%2fIST.2016.7738219&partnerID=40&md5=51fe2a4906a856f20e87b60330e5af2d | |
dc.subject | Diagnosis | en |
dc.subject | Imaging systems | en |
dc.subject | Imaging techniques | en |
dc.subject | Magnetic resonance imaging | en |
dc.subject | Mesh generation | en |
dc.subject | Morphology | en |
dc.subject | Pathology | en |
dc.subject | Tensors | en |
dc.subject | Tumors | en |
dc.subject | Acquisition protocols | en |
dc.subject | Clustering segmentation | en |
dc.subject | First-order statistics | en |
dc.subject | Glioblastoma multiforme | en |
dc.subject | Local curvature | en |
dc.subject | Solitary Metastasis | en |
dc.subject | Statistically significant difference | en |
dc.subject | Surface models | en |
dc.subject | Diffusion tensor imaging | en |
dc.subject | Institute of Electrical and Electronics Engineers Inc. | en |
dc.title | Local curvature analysis for differentiating Glioblastoma multiforme from solitary metastasis | en |
dc.type | conferenceItem | en |
Files in questo item
Files | Dimensione | Formato | Mostra |
---|---|---|---|
Nessun files in questo item. |