Mostrar el registro sencillo del ítem

dc.creatorTzini M.-I.T., Aristeidakis J.S., Christodoulou P.I., Kermanidis A.T., Haidemenopoulos G.N., Krizan D.en
dc.date.accessioned2023-01-31T10:22:18Z
dc.date.available2023-01-31T10:22:18Z
dc.date.issued2022
dc.identifier10.1016/j.msea.2021.142341
dc.identifier.issn09215093
dc.identifier.urihttp://hdl.handle.net/11615/80262
dc.description.abstractAustenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isothermal Treatment (BIT). In the present study, an integrated approach is developed, for the description of microstructural evolution of a TRIP700 steel during processing, using multi-phase field modeling. Two models are employed to assess RA stability, through MSσ, MS calculations, and strain-induced transformation kinetics of dispersed RA upon plastic deformation. The first model considers the grain size and composition distributions, while the second the respective average property values of RA obtained at the end of BIT. In-depth understanding of the influence of microstructural evolution on the transformation kinetics of RA can be achieved by taking into account the local properties of RA particles, presenting significant differences from that using average values. Results indicate that refined RA is more stable, transforming into martensite at late stages of deformation. Simulations of the RA particle size, stability and martensite transformation fraction resulting from uniaxial tension are validated against experiments conducted on TRIP700 steel under different BIT conditions, presenting good agreement. The proposed integrated approach can assist the design of TRIP steels by identifying optimal microstructural characteristics. © 2021 Elsevier B.V.en
dc.language.isoenen
dc.sourceMaterials Science and Engineering Aen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85120363052&doi=10.1016%2fj.msea.2021.142341&partnerID=40&md5=f966b2bd4ffc27c39831f11e08f56a63
dc.subjectGrain size and shapeen
dc.subjectHigh strength steelen
dc.subjectIntegrated controlen
dc.subjectManganese steelen
dc.subjectMartensiteen
dc.subjectMicrostructural evolutionen
dc.subjectParticle sizeen
dc.subjectPlasticityen
dc.subjectTransformation Induced Plasticity steelen
dc.subjectAustenite stabilityen
dc.subjectIntegrated approachen
dc.subjectIsothermal treatmenten
dc.subjectMulti-phase-field modelen
dc.subjectPhase field modelsen
dc.subjectRetained austeniteen
dc.subjectRetained austenite stabilitiesen
dc.subjectStrain induced transformationen
dc.subjectTransformation kineticsen
dc.subjectTRIP-steelen
dc.subjectAusteniteen
dc.subjectElsevier Ltden
dc.titleMulti-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austeniteen
dc.typejournalArticleen


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem