Predicting beta barrel transmembrane proteins using HMMs
dc.creator | Tsaousis G.N., Hamodrakas S.J., Bagos P.G. | en |
dc.date.accessioned | 2023-01-31T10:11:37Z | |
dc.date.available | 2023-01-31T10:11:37Z | |
dc.date.issued | 2017 | |
dc.identifier | 10.1007/978-1-4939-6753-7_4 | |
dc.identifier.issn | 10643745 | |
dc.identifier.uri | http://hdl.handle.net/11615/79851 | |
dc.description.abstract | Transmembrane beta-barrels (TMBBs) constitute an important structural class of membrane proteins located in the outer membrane of gram-negative bacteria, and in the outer membrane of chloroplasts and mitochondria. They are involved in a wide variety of cellular functions and the prediction of their transmembrane topology, as well as their discrimination in newly sequenced genomes is of great importance as they are promising targets for antimicrobial drugs and vaccines. Several methods have been applied for the prediction of the transmembrane segments and the topology of beta barrel transmembrane proteins utilizing different algorithmic techniques. Hidden Markov Models (HMMs) have been efficiently used in the development of several computational methods used for this task. In this chapter we give a brief review of different available prediction methods for beta barrel transmembrane proteins pointing out sequence and structural features that should be incorporated in a prediction method. We then describe the procedure of the design and development of a Hidden Markov Model capable of predicting the transmembrane beta strands of TMBBs and discriminating them from globular proteins. © Springer Science+Business Media LLC 2017. | en |
dc.language.iso | en | en |
dc.source | Methods in Molecular Biology | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013810876&doi=10.1007%2f978-1-4939-6753-7_4&partnerID=40&md5=3c6d94fff90c00910edaaf5bbdc48915 | |
dc.subject | beta barrel transmembrane protein | en |
dc.subject | globular protein | en |
dc.subject | membrane protein | en |
dc.subject | unclassified drug | en |
dc.subject | membrane protein | en |
dc.subject | amino acid sequence | en |
dc.subject | hidden Markov model | en |
dc.subject | prediction | en |
dc.subject | protein structure | en |
dc.subject | algorithm | en |
dc.subject | biology | en |
dc.subject | chemistry | en |
dc.subject | computer simulation | en |
dc.subject | human | en |
dc.subject | Markov chain | en |
dc.subject | molecular model | en |
dc.subject | procedures | en |
dc.subject | protein conformation | en |
dc.subject | protein database | en |
dc.subject | Algorithms | en |
dc.subject | Computational Biology | en |
dc.subject | Computer Simulation | en |
dc.subject | Databases, Protein | en |
dc.subject | Humans | en |
dc.subject | Markov Chains | en |
dc.subject | Membrane Proteins | en |
dc.subject | Models, Molecular | en |
dc.subject | Protein Conformation | en |
dc.subject | Humana Press Inc. | en |
dc.title | Predicting beta barrel transmembrane proteins using HMMs | en |
dc.type | bookChapter | en |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |