Mostrar el registro sencillo del ítem
Random forest, M5P and regression analysis to estimate the field unsaturated hydraulic conductivity
dc.creator | Sihag P., Mohsenzadeh Karimi S., Angelaki A. | en |
dc.date.accessioned | 2023-01-31T09:56:03Z | |
dc.date.available | 2023-01-31T09:56:03Z | |
dc.date.issued | 2019 | |
dc.identifier | 10.1007/s13201-019-1007-8 | |
dc.identifier.issn | 21905487 | |
dc.identifier.uri | http://hdl.handle.net/11615/78973 | |
dc.description.abstract | Hydraulic conductivity of soil reveals its influencing role in the studies related to management of surface and subsurface flow, e.g. irrigation and drainage projects, and solute mass transport models. Direct measurements of hydraulic conductivity have many difficulties due to spatial variation of the property in the field. Pertaining to this problem, in this study, estimation models have been developed using machine learning methods (M5 tree model and random forest model) in an attempt to estimate the accurate values of unsaturated hydraulic conductivity related to basic soil properties (clay, silt and sand content, bulk density and moisture content). Data set was collected from the experimental measurements of cumulative infiltration using mini disc infiltrometer at the study area (Kurukshetra, India). A multivariate nonlinear regression (MNLR) relationship was derived, and the performance of this model was compared with the machine learning-based models. The evaluation of the results, based on statistical criteria (R2, RMSE, MAE), suggested that random forest regression model is superior in accurate estimations of the unsaturated hydraulic conductivity of field data relative to M5 model tree and MNLR. © 2019, The Author(s). | en |
dc.language.iso | en | en |
dc.source | Applied Water Science | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087459644&doi=10.1007%2fs13201-019-1007-8&partnerID=40&md5=b6ba65d46845223cb9cdeca14030e499 | |
dc.subject | Decision trees | en |
dc.subject | Forestry | en |
dc.subject | Hydraulic conductivity | en |
dc.subject | Machine learning | en |
dc.subject | Regression analysis | en |
dc.subject | Cumulative infiltrations | en |
dc.subject | M5 model tree | en |
dc.subject | Machine learning methods | en |
dc.subject | Multivariate non-linear regression | en |
dc.subject | Random forest modeling | en |
dc.subject | Statistical criterion | en |
dc.subject | Surface and subsurface flow | en |
dc.subject | Unsaturated hydraulic conductivity | en |
dc.subject | Random forests | en |
dc.subject | algorithm | en |
dc.subject | hydraulic conductivity | en |
dc.subject | machine learning | en |
dc.subject | multivariate analysis | en |
dc.subject | numerical model | en |
dc.subject | regression analysis | en |
dc.subject | soil water | en |
dc.subject | unsaturated flow | en |
dc.subject | Springer Verlag | en |
dc.title | Random forest, M5P and regression analysis to estimate the field unsaturated hydraulic conductivity | en |
dc.type | journalArticle | en |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |