Mostra i principali dati dell'item
Discovering similar Twitter accounts using semantics
dc.creator | Razis G., Anagnostopoulos I. | en |
dc.date.accessioned | 2023-01-31T09:51:18Z | |
dc.date.available | 2023-01-31T09:51:18Z | |
dc.date.issued | 2016 | |
dc.identifier | 10.1016/j.engappai.2016.01.015 | |
dc.identifier.issn | 09521976 | |
dc.identifier.uri | http://hdl.handle.net/11615/78477 | |
dc.description.abstract | On daily basis, millions of Twitter accounts post a vast number of tweets including numerous Twitter entities (mentions, replies, hashtags, photos, URLs). Many of these entities are used in common by many accounts. The more common entities are found in the messages of two different accounts, the more similar, in terms of content or interest, they tend to be. Towards this direction, we introduce a methodology for discovering and suggesting similar Twitter accounts, based entirely on their disseminated content in terms of Twitter entities used. The methodology is based exclusively on semantic representation protocols and related technologies. An ontological schema is also described towards the semantification of the Twitter accounts and their entities. © 2016 Elsevier Ltd. All rights reserved. | en |
dc.language.iso | en | en |
dc.source | Engineering Applications of Artificial Intelligence | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957665678&doi=10.1016%2fj.engappai.2016.01.015&partnerID=40&md5=516b4e60e6a87fba27b36091a36432e9 | |
dc.subject | Semantics | en |
dc.subject | Hashtags | en |
dc.subject | Semantic representation | en |
dc.subject | Similarity network | en |
dc.subject | Social semantics | en |
dc.subject | Twitter entities | en |
dc.subject | Social networking (online) | en |
dc.subject | Elsevier Ltd | en |
dc.title | Discovering similar Twitter accounts using semantics | en |
dc.type | journalArticle | en |
Files in questo item
Files | Dimensione | Formato | Mostra |
---|---|---|---|
Nessun files in questo item. |