Mostrar el registro sencillo del ítem

dc.creatorPapastamatiou K., Sofos F., Karakasidis T.E.en
dc.date.accessioned2023-01-31T09:44:25Z
dc.date.available2023-01-31T09:44:25Z
dc.date.issued2022
dc.identifier10.1145/3549737.3549802
dc.identifier.isbn9781450395977
dc.identifier.urihttp://hdl.handle.net/11615/77816
dc.description.abstractUnsupervised machine learning (ML) methods are incorporated in this work to depict correlations and investigate hidden relations between data points that refer to a diffusion coefficient dataset for the Lennard-Jones (LJ) fluid. Widely used clustering algorithms are incorporated, such as the k-means, k-medoids, and DBSCAN, to create data frames of common characteristics that apply to the fluid's state space. The symbolic regression (SR) ML method is applied, next, on each cluster and provides analytical expressions that describe the fluid's behavior under various temperature and density conditions, suggesting an alternative pathway towards diffusion coefficient calculation. © 2022 ACM.en
dc.language.isoenen
dc.sourceACM International Conference Proceeding Seriesen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85138349276&doi=10.1145%2f3549737.3549802&partnerID=40&md5=2d21da5f3d419667b107fbab7c7a6a4c
dc.subjectDiffusion in liquidsen
dc.subjectMachine learningen
dc.subjectClusteringsen
dc.subjectData framesen
dc.subjectData-driven methodsen
dc.subjectDatapointsen
dc.subjectK-meansen
dc.subjectK-medoidsen
dc.subjectLennard Jones fluiden
dc.subjectMachine learning methodsen
dc.subjectSymbolic regressionen
dc.subjectUnsupervised machine learningen
dc.subjectK-means clusteringen
dc.subjectAssociation for Computing Machineryen
dc.titleCalculating material properties with purely data-driven methodsen
dc.typeconferenceItemen


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem