Mostra i principali dati dell'item
Multimodal sign language recognition via temporal deformable convolutional sequence learning
dc.creator | Papadimitriou K., Potamianos G. | en |
dc.date.accessioned | 2023-01-31T09:42:21Z | |
dc.date.available | 2023-01-31T09:42:21Z | |
dc.date.issued | 2020 | |
dc.identifier | 10.21437/Interspeech.2020-2691 | |
dc.identifier.issn | 2308457X | |
dc.identifier.uri | http://hdl.handle.net/11615/77586 | |
dc.description.abstract | In this paper we address the challenging problem of sign language recognition (SLR) from videos, introducing an end-to-end deep learning approach that relies on the fusion of a number of spatio-temporal feature streams, as well as a fully convolutional encoder-decoder for prediction. Specifically, we examine the contribution of optical flow, human skeletal features, as well as appearance features of handshapes and mouthing, in conjunction with a temporal deformable convolutional attention-based encoder-decoder for SLR. To our knowledge, this is the first use in this task of a fully convolutional multi-step attention-based encoder-decoder employing temporal deformable convolutional block structures. We conduct experiments on three sign language datasets and compare our approach to existing state-of-the-art SLR methods, demonstrating its superiority. © 2020 ISCA | en |
dc.language.iso | en | en |
dc.source | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098115814&doi=10.21437%2fInterspeech.2020-2691&partnerID=40&md5=e02589f0f9e04137218118f5947adef4 | |
dc.subject | Computer hardware description languages | en |
dc.subject | Decoding | en |
dc.subject | Deep learning | en |
dc.subject | Deformation | en |
dc.subject | Optical flows | en |
dc.subject | Signal encoding | en |
dc.subject | Speech communication | en |
dc.subject | Block structures | en |
dc.subject | Convolutional encoders | en |
dc.subject | Encoder-decoder | en |
dc.subject | Learning approach | en |
dc.subject | Sequence learning | en |
dc.subject | Sign Language recognition | en |
dc.subject | Spatio temporal features | en |
dc.subject | State of the art | en |
dc.subject | Convolution | en |
dc.subject | International Speech Communication Association | en |
dc.title | Multimodal sign language recognition via temporal deformable convolutional sequence learning | en |
dc.type | conferenceItem | en |
Files in questo item
Files | Dimensione | Formato | Mostra |
---|---|---|---|
Nessun files in questo item. |