Afficher la notice abrégée

dc.creatorLi X., Liu Y., Zhu J., Tsiakaras P., Shen P.K.en
dc.date.accessioned2023-01-31T08:50:11Z
dc.date.available2023-01-31T08:50:11Z
dc.date.issued2022
dc.identifier10.1016/j.jcis.2021.09.060
dc.identifier.issn00219797
dc.identifier.urihttp://hdl.handle.net/11615/75802
dc.description.abstractHerein, we introduce a facile approach to synthesize a unique class of Pt-M (M = Ni, Co) catalysts with a nanoflower structure for boosting both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). By controlling the surface-active agents, we modified the functional groups surrounding the Pt atoms, tuned the alloying of Pt and the transition metals Ni and Co, and prepared two different kinds of nanodendrites. Their successful synthesis depends on the selection and amount of surfactants (hexadecyltrimethylammonium bromide (CTAB), Polyvinylpyrrolidone (PVP)). Besides, by controlling reaction time, we also explored the forming procedures for Pt-Co globularia nanodendrite (Pt-Co GND) and Pt-Ni petalody nanodendrite (Pt-Ni PND). Our investigation highlights the importance of complex nanoarchitecture, which enables surface and interface modification to achieve excellent catalytic performance in fuel cell electrocatalysis. The characterization of the as-prepared catalysts reveals a high electrochemical surface area and mass activity (2041 mAmgPt-1and 950 mAmgPt-1 for Pt-Co GND and Pt-Ni PND, respectively, for ORR). Furthermore, Pt-Co GND showed a high MOR activity, with a mass activity value recorded at 1615 mAmgPt-1 which is far superior to that for Pt/C. Moreover, both catalysts retain high activity after accelerated durability tests (ADTs). The electron transfer number was calculated by performing the rotating ring-disk electrode (RRDE) measurements. Due to abundant active sites of Pt, both Pt-Co GND and Pt-Ni PND exhibit a 4e− pathway for ORR with electron transfer number of >3.95. © 2021 Elsevier Inc.en
dc.language.isoenen
dc.sourceJournal of Colloid and Interface Scienceen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85115757082&doi=10.1016%2fj.jcis.2021.09.060&partnerID=40&md5=08b3a42ac20fb24521a5fc19dfced398
dc.subjectCatalyst activityen
dc.subjectCobalt alloysen
dc.subjectDurabilityen
dc.subjectElectrocatalysisen
dc.subjectElectrolytic reductionen
dc.subjectElectron transitionsen
dc.subjectFuel cellsen
dc.subjectMethanolen
dc.subjectNanocatalystsen
dc.subjectNanoflowersen
dc.subjectNickel alloysen
dc.subjectOxidationen
dc.subjectOxygenen
dc.subjectPlatinum alloysen
dc.subjectTransition metalsen
dc.subjectElectron transferen
dc.subjectMass activityen
dc.subjectMethanol Oxidationen
dc.subjectMethanol oxidation reactionsen
dc.subjectNanodendritesen
dc.subjectNi-Co catalystsen
dc.subjectOxygen Reductionen
dc.subjectOxygen reduction reactionen
dc.subjectReduction-oxidationen
dc.subject]+ catalysten
dc.subjectBinary alloysen
dc.subjectcobalten
dc.subjectmethanolen
dc.subjectnanofloweren
dc.subjectnickelen
dc.subjectpovidoneen
dc.subjectsurfactanten
dc.subjectArticleen
dc.subjectcatalysten
dc.subjectcontrolled studyen
dc.subjectcrystal structureen
dc.subjectcyclic voltammetryen
dc.subjectelectron transporten
dc.subjectoxidation reduction reactionen
dc.subjectparticle sizeen
dc.subjectporosityen
dc.subjectreaction analysisen
dc.subjectsurface areaen
dc.subjectsurface propertyen
dc.subjectsynthesisen
dc.subjecttransmission electron microscopyen
dc.subjectX ray photoemission spectroscopyen
dc.subjectAcademic Press Inc.en
dc.titleEnhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (M = Co, Ni) nanoflowersen
dc.typejournalArticleen


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée