Mostra i principali dati dell'item

dc.creatorLi S., Tian Z.Q., Liu Y., Jang Z., Hasan S.W., Chen X., Tsiakaras P., Shen P.K.en
dc.date.accessioned2023-01-31T08:50:09Z
dc.date.available2023-01-31T08:50:09Z
dc.date.issued2021
dc.identifier10.1016/S1872-2067(20)63680-4
dc.identifier.issn18722067
dc.identifier.urihttp://hdl.handle.net/11615/75799
dc.description.abstractPt based materials are the most efficient electrocatalysts for the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in fuel cells. Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells. Herein, we report a new class of hierarchically skeletal Pt-Ni nanocrystals (HSNs) with a multi-layered structure, prepared by an inorganic acid-induced solvothermal method. The addition of H2SO4 to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure. The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V (versus the reversible hydrogen electrode) towards ORR in 0.1-M HClO4, which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid; it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst. Meanwhile, it displays enhanced stability, with only 21.6% mass activity loss after 10,000 cycles (0.6–1.0 V) for ORR. Furthermore, the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR. The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity, induced by strain effects, provided by the unique hierarchically skeletal alloy structure. The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts. © 2021 Dalian Institute of Chemical Physics, the Chinese Academy of Sciencesen
dc.language.isoenen
dc.sourceChinese Journal of Catalysisen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089912867&doi=10.1016%2fS1872-2067%2820%2963680-4&partnerID=40&md5=6bd4e5942ad52d72cdecd86614d46e95
dc.subjectBinary alloysen
dc.subjectElectrocatalystsen
dc.subjectElectrolytic reductionen
dc.subjectFuel cellsen
dc.subjectInorganic acidsen
dc.subjectMethanolen
dc.subjectNanocrystalsen
dc.subjectNickel alloysen
dc.subjectOxygenen
dc.subjectOxygen reduction reactionen
dc.subjectBranched nanocrystalsen
dc.subjectElectrochemical surface areaen
dc.subjectHierarchical structuresen
dc.subjectIntrinsic activitiesen
dc.subjectMethanol oxidation reactionsen
dc.subjectMulti-layered structureen
dc.subjectReversible hydrogen electrodesen
dc.subjectSolvothermal methoden
dc.subjectPlatinum alloysen
dc.subjectScience Pressen
dc.titleHierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactionsen
dc.typejournalArticleen


Files in questo item

FilesDimensioneFormatoMostra

Nessun files in questo item.

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item