Mostrar el registro sencillo del ítem

dc.creatorLe Roux X., Bouskill N.J., Niboyet A., Barthes L., Dijkstra P., Field C.B., Hungate B.A., Lerondelle C., Pommier T., Tang J., Terada A., Tourna M., Poly F.en
dc.date.accessioned2023-01-31T08:49:21Z
dc.date.available2023-01-31T08:49:21Z
dc.date.issued2016
dc.identifier10.3389/fmicb.2016.00628
dc.identifier.issn1664302X
dc.identifier.urihttp://hdl.handle.net/11615/75731
dc.description.abstractSoil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundance and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO2+Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes. © 2016 Le Roux, Bouskill, Niboyet, Barthes, Dijkstra, Field, Hungate, Lerondelle, Pommier, Tang, Terada, Tourna and Poly.en
dc.language.isoenen
dc.sourceFrontiers in Microbiologyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84973524651&doi=10.3389%2ffmicb.2016.00628&partnerID=40&md5=cb5cd00b6f268157dfaf2fba5463c732
dc.subjectcarbon dioxideen
dc.subjectnitrogenen
dc.subjectammonificationen
dc.subjectArticleen
dc.subjectbiogeochemical cyclingen
dc.subjectbiological traiten
dc.subjectcontrolled studyen
dc.subjectDNA extractionen
dc.subjectecological nicheen
dc.subjectfield experimenten
dc.subjectglobal changeen
dc.subjectgrasslanden
dc.subjectmixotrophen
dc.subjectnitrite oxidizeren
dc.subjectnitrite oxidizing bacteriumen
dc.subjectNitrobacteren
dc.subjectnonhumanen
dc.subjectnucleotide sequenceen
dc.subjectoxidationen
dc.subjectphylogenetic treeen
dc.subjectphylogenyen
dc.subjectpopulation abundanceen
dc.subjectprecipitationen
dc.subjectpredictionen
dc.subjectsoil microfloraen
dc.subjectsoil respirationen
dc.subjectUnited Statesen
dc.subjectFrontiers Media S.A.en
dc.titlePredicting the responses of soil nitrite-oxidizers to multi-factorial global change: A trait-based approachen
dc.typejournalArticleen


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem