Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Obstacle detection based on generative adversarial networks and fuzzy sets for computer-assisted navigation

Thumbnail
Συγγραφέας
Dimas G., Ntakolia C., Iakovidis D.K.
Ημερομηνία
2019
Γλώσσα
en
DOI
10.1007/978-3-030-20257-6_46
Λέξη-κλειδί
Autonomous agents
Fuzzy set theory
Fuzzy sets
Obstacle detectors
Adversarial networks
Autonomous robotics
Computer-assisted navigation
Fuzzy representations
Linguistic values
Obstacle detection
Spatial informations
Visually impaired
Object detection
Springer Verlag
Εμφάνιση Μεταδεδομένων
Επιτομή
Obstacle detection addresses the detection of an object, of any kind, that interferes with the canonical trajectory of a subject, such as a human or an autonomous robotic agent. Prompt obstacle detection can become critical for the safety of visually impaired individuals (VII). In this context, we propose a novel methodology for obstacle detection, which is based on a Generative Adversarial Network (GAN) model, trained with human eye fixations to predict saliency, and the depth information provided by an RGB-D sensor. A method based on fuzzy sets are used to translate the 3D spatial information into linguistic values easily comprehensible by VII. Fuzzy operators are applied to fuse the spatial information with the saliency information for the purpose of detecting and determining if an object may interfere with the safe navigation of the VII. For the evaluation of our method we captured outdoor video sequences of 10,170 frames in total, with obstacles including rocks, trees and pedestrians. The results showed that the use of fuzzy representations results in enhanced obstacle detection accuracy, reaching 88.1%. © Springer Nature Switzerland AG 2019.
URI
http://hdl.handle.net/11615/73314
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap