Εμφάνιση απλής εγγραφής

dc.creatorDimas G., Iakovidis D., Koulaouzidis A.en
dc.date.accessioned2023-01-31T07:55:40Z
dc.date.available2023-01-31T07:55:40Z
dc.date.issued2019
dc.identifier10.1109/BIBE.2019.00071
dc.identifier.isbn9781728146171
dc.identifier.urihttp://hdl.handle.net/11615/73310
dc.description.abstractThe interpretation of medical images depends on physicians' experience. Over time, physicians develop their ability to examine the images, and this is usually reflected on gaze patterns they follow to observe visual cues, which lead them to diagnostic decisions. In the context of gaze prediction, graph and machine learning methods have been proposed for the visual saliency estimation on generic images. In this work we preset a novel and robust gaze estimation methodology based on physicians' eye fixations, using convolutional neural networks combined with regularization methods, on medical images taken during Wireless Capsule Endoscopy (WCE). Furthermore, we present a novel dataset of physicians' eye fixation patterns which was used for the training of the neural network model. The model was able to achieve 68.5% Judd's Area Under the receiver operating Characteristic (AUC-J). © 2019 IEEE.en
dc.language.isoenen
dc.sourceProceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85078573803&doi=10.1109%2fBIBE.2019.00071&partnerID=40&md5=dc6225afbc5ec3e651c891aeb88da295
dc.subjectBioinformaticsen
dc.subjectConvolutionen
dc.subjectEndoscopyen
dc.subjectGallium compoundsen
dc.subjectLearning algorithmsen
dc.subjectLearning systemsen
dc.subjectMachine learningen
dc.subjectMedical imagingen
dc.subjectNeural networksen
dc.subjectConvolutional neural networken
dc.subjectGaze estimationen
dc.subjectMachine learning methodsen
dc.subjectNeural network modelen
dc.subjectReceiver operating characteristicsen
dc.subjectRegularization methodsen
dc.subjectSaliencyen
dc.subjectWireless capsule endoscopyen
dc.subjectEye trackingen
dc.subjectInstitute of Electrical and Electronics Engineers Inc.en
dc.titleMedGaze: Gaze Estimation on WCE Images Based on a CNN Autoencoderen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής