Εμφάνιση απλής εγγραφής

dc.creatorDiamantis D.E., Koutsiou D.-C.C., Iakovidis D.K.en
dc.date.accessioned2023-01-31T07:54:51Z
dc.date.available2023-01-31T07:54:51Z
dc.date.issued2019
dc.identifier10.1007/978-3-030-20257-6_45
dc.identifier.isbn9783030202569
dc.identifier.issn18650929
dc.identifier.urihttp://hdl.handle.net/11615/73272
dc.description.abstractStaircase detection in natural images has several applications in the context of robotics and visually impaired navigation. Previous works are mainly based on handcrafted feature extraction and supervised learning using fully annotated images. In this work we address the problem of staircase detection in weakly labeled natural images, using a novel Fully Convolutional neural Network (FCN), named LB-FCN light. The proposed network is an enhanced version of our recent Look-Behind FCN (LB-FCN), suitable for deployment on mobile and embedded devices. Its architecture features multi-scale feature extraction, depthwise separable convolutions and residual learning. To evaluate its computational and classification performance, we have created a weakly-labeled benchmark dataset from publicly available images. The results from the experimental evaluation of LB-FCN light indicate its advantageous performance over the relevant state-of-the-art architectures. © Springer Nature Switzerland AG 2019.en
dc.language.isoenen
dc.sourceCommunications in Computer and Information Scienceen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85065880349&doi=10.1007%2f978-3-030-20257-6_45&partnerID=40&md5=6afd416471dfb6b3fe3d6b9d8471727a
dc.subjectBenchmarkingen
dc.subjectClassification (of information)en
dc.subjectConvolutionen
dc.subjectExtractionen
dc.subjectFeature extractionen
dc.subjectNeural networksen
dc.subjectRobotsen
dc.subjectStairsen
dc.subjectBenchmark datasetsen
dc.subjectClassification performanceen
dc.subjectConvolutional neural networken
dc.subjectExperimental evaluationen
dc.subjectITS architectureen
dc.subjectMulti-scale featuresen
dc.subjectStair-case detectionen
dc.subjectVisually impaireden
dc.subjectNetwork architectureen
dc.subjectSpringer Verlagen
dc.titleStaircase detection using a lightweight look-behind fully convolutional neural networken
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής