Εμφάνιση απλής εγγραφής

dc.creatorDiamantis D.E., Gatoula P., Iakovidis D.K.en
dc.date.accessioned2023-01-31T07:54:44Z
dc.date.available2023-01-31T07:54:44Z
dc.date.issued2022
dc.identifier10.1109/IVMSP54334.2022.9816329
dc.identifier.isbn9781665478229
dc.identifier.urihttp://hdl.handle.net/11615/73267
dc.description.abstractThe generalization performance of deep learning models is closely associated with the number and diversity of data available upon training. While in many applications there is a large number of data available in public, in domains such as medical image analysis, the data availability is limited. This can be largely attributed to data privacy legislations, including the General Data Protection Regulation (GDPR), and the cost of data annotation by experts. Aiming to address this issue, data augmentation approaches employing deep generative models have emerged. Existing augmentation techniques are primarily based on Generative Adversarial Networks (GANs). However, ill-posed training issues of GANs such as nonconvergence, mode collapse and instability in conjunction with their demand for large scale training datasets, complicate their use in medical imaging modalities. Motivated by these issues, this paper investigates the performance of alternative generative models i.e., Variational Autoencoders (VAEs) in endoscopic image synthesis tasks. Contrary to the conventional GAN-based approaches that aiming at augmenting the existing endoscopic datasets the proposed methodology constitutes feasible the complete substitution of medical imaging datasets from real individuals with artificially generated ones. The experimental results obtained validate the effectiveness of the proposed methodology over the state-of-art. © 2022 IEEE.en
dc.language.isoenen
dc.sourceIVMSP 2022 - 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshopen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85135175543&doi=10.1109%2fIVMSP54334.2022.9816329&partnerID=40&md5=d9b8a38b1e8a3cf9f3d5084689c162ff
dc.subjectData privacyen
dc.subjectDeep learningen
dc.subjectEndoscopyen
dc.subjectGenerative adversarial networksen
dc.subjectLarge dataseten
dc.subjectLearning systemsen
dc.subjectAuto encodersen
dc.subjectEndoscopic imageen
dc.subjectGeneralization performanceen
dc.subjectGenerative modelen
dc.subjectImages synthesisen
dc.subjectLearning modelsen
dc.subjectMedical image synthesisen
dc.subjectNumber of datumen
dc.subjectVariational autoencoderen
dc.subjectWireless capsule endoscopyen
dc.subjectMedical imagingen
dc.subjectInstitute of Electrical and Electronics Engineers Inc.en
dc.titleEndoVAE: Generating Endoscopic Images with a Variational Autoencoderen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής