Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

EndoVAE: Generating Endoscopic Images with a Variational Autoencoder

Thumbnail
Συγγραφέας
Diamantis D.E., Gatoula P., Iakovidis D.K.
Ημερομηνία
2022
Γλώσσα
en
DOI
10.1109/IVMSP54334.2022.9816329
Λέξη-κλειδί
Data privacy
Deep learning
Endoscopy
Generative adversarial networks
Large dataset
Learning systems
Auto encoders
Endoscopic image
Generalization performance
Generative model
Images synthesis
Learning models
Medical image synthesis
Number of datum
Variational autoencoder
Wireless capsule endoscopy
Medical imaging
Institute of Electrical and Electronics Engineers Inc.
Εμφάνιση Μεταδεδομένων
Επιτομή
The generalization performance of deep learning models is closely associated with the number and diversity of data available upon training. While in many applications there is a large number of data available in public, in domains such as medical image analysis, the data availability is limited. This can be largely attributed to data privacy legislations, including the General Data Protection Regulation (GDPR), and the cost of data annotation by experts. Aiming to address this issue, data augmentation approaches employing deep generative models have emerged. Existing augmentation techniques are primarily based on Generative Adversarial Networks (GANs). However, ill-posed training issues of GANs such as nonconvergence, mode collapse and instability in conjunction with their demand for large scale training datasets, complicate their use in medical imaging modalities. Motivated by these issues, this paper investigates the performance of alternative generative models i.e., Variational Autoencoders (VAEs) in endoscopic image synthesis tasks. Contrary to the conventional GAN-based approaches that aiming at augmenting the existing endoscopic datasets the proposed methodology constitutes feasible the complete substitution of medical imaging datasets from real individuals with artificially generated ones. The experimental results obtained validate the effectiveness of the proposed methodology over the state-of-art. © 2022 IEEE.
URI
http://hdl.handle.net/11615/73267
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap