Mostrar el registro sencillo del ítem
Investigating cross-dataset abnormality detection in endoscopy with a weakly-supervised multiscale convolutional neural network
dc.creator | Diamantis D., Iakovidis D.K., Koulaouzidis A. | en |
dc.date.accessioned | 2023-01-31T07:54:43Z | |
dc.date.available | 2023-01-31T07:54:43Z | |
dc.date.issued | 2018 | |
dc.identifier | 10.1109/ICIP.2018.8451673 | |
dc.identifier.isbn | 9781479970612 | |
dc.identifier.issn | 15224880 | |
dc.identifier.uri | http://hdl.handle.net/11615/73266 | |
dc.description.abstract | The detection of abnormalities in endoscopic video frames can contribute in the early and more accurate detection of pathologic conditions. In this paper we present a novel Convolutional Neural Network (CNN) architecture for automatic detection of abnormal images in endoscopic video sequences. It features multiscale representation of the endoscopic images in its structure, and peephole connections contributing in enhanced generalization with less computational requirements. An important aspect of the proposed architecture is that it enables weakly-supervised learning, using only semantically annotated images. A novel cross-dataset experimental study is performed to investigate its generalization performance on various publicly available datasets. The results validate that the proposed architecture outperforms recent approaches, with results reaching up to 90.66% in terms of the area under the receiver operating characteristic. © 2018 IEEE. | en |
dc.language.iso | en | en |
dc.source | Proceedings - International Conference on Image Processing, ICIP | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062624084&doi=10.1109%2fICIP.2018.8451673&partnerID=40&md5=b66d3d030a3309692f7ceb6a3dc76c09 | |
dc.subject | Convolution | en |
dc.subject | Endoscopy | en |
dc.subject | Machine learning | en |
dc.subject | Medical imaging | en |
dc.subject | Network architecture | en |
dc.subject | Neural networks | en |
dc.subject | Supervised learning | en |
dc.subject | Computational requirements | en |
dc.subject | Convolutional neural network | en |
dc.subject | Generalization performance | en |
dc.subject | Medical | en |
dc.subject | Multiscale image analysis | en |
dc.subject | Multiscale representations | en |
dc.subject | Receiver operating characteristics | en |
dc.subject | Weakly supervised learning | en |
dc.subject | Image enhancement | en |
dc.subject | IEEE Computer Society | en |
dc.title | Investigating cross-dataset abnormality detection in endoscopy with a weakly-supervised multiscale convolutional neural network | en |
dc.type | conferenceItem | en |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |