Εμφάνιση απλής εγγραφής

dc.creatorDarmeshov B., Zarikas V.en
dc.date.accessioned2023-01-31T07:51:17Z
dc.date.available2023-01-31T07:51:17Z
dc.date.issued2020
dc.identifier10.1007/978-3-030-32520-6_11
dc.identifier.isbn9783030325190
dc.identifier.issn21945357
dc.identifier.urihttp://hdl.handle.net/11615/73105
dc.description.abstractBayesian expert models are very efficient solutions since they can encapsulate in a mathematical consistent way, certain and uncertain knowledge, as well as preferences strategies and policies. Furthermore, the Bayesian modelling framework is the only one that can inference about causal connections and suggest the structure of a reasonable probabilistic model from historic data. Two novel expert models have been developed for a medical issue concerning diagnosis of fever in neutropenia or fever in neutropenia with bacteremia. Supervised and unsupervised learning was used to construct these two the expert models. The best one of them exhibited 93% precision of prediction. © 2020, Springer Nature Switzerland AG.en
dc.language.isoenen
dc.sourceAdvances in Intelligent Systems and Computingen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075650824&doi=10.1007%2f978-3-030-32520-6_11&partnerID=40&md5=b1ae4aead863b90557cceabb36bc4b26
dc.subjectBacteriologyen
dc.subjectBlooden
dc.subjectDiagnosisen
dc.subjectBacteraemiaen
dc.subjectBayesian modellingen
dc.subjectCanceren
dc.subjectExpert modelen
dc.subjectNeutropeniaen
dc.subjectProbabilistic modelingen
dc.subjectSupervised and unsupervised learningen
dc.subjectUncertain knowledgeen
dc.subjectBayesian networksen
dc.subjectSpringeren
dc.titleEfficient Bayesian Expert Models for Fever in Neutropenia and Fever in Neutropenia with Bacteremiaen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής