Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Stochastic Heuristic Optimization of Machine Learning Estimators for Short-Term Wind Power Forecasting

Thumbnail
Συγγραφέας
Arvanitidis A.I., Kontogiannis D., Vontzos G., Laitsos V., Bargiotas D.
Ημερομηνία
2022
Γλώσσα
en
DOI
10.1109/UPEC55022.2022.9917957
Λέξη-κλειδί
Brain
Cost effectiveness
Long short-term memory
Multilayer neural networks
Simulated annealing
Stochastic systems
Weather forecasting
Wind power
Wind speed
Heuristic optimization
Machine-learning
Multilayers perceptrons
Prediction modelling
Reduction function
Short-term wind power forecasting
Stochastics
Support vectors machine
Temperature reduction
Wind speed
Support vector machines
Institute of Electrical and Electronics Engineers Inc.
Εμφάνιση Μεταδεδομένων
Επιτομή
The continuous fluctuation of wind speed, wind direction and other climatic variables affects the power produced by wind turbines. Accurate short-term wind power prediction models are vital for the power industry to evaluate future energy extraction, increase wind energy penetration and develop cost-effective operations. This research examines short-term wind power forecasting and investigates the effect of sharp, smooth and slow temperature reduction functions on the Simulated Annealing (SA) optimization technique for several prominent prediction models. The regressors under investigation include a Support Vector Machine, a Multi-Layer Perceptron and a Long-Short Term Memory neural network. Their optimization is based on the SA, which is used to specify the hyperparameters of each model in order to enhance the prediction accuracy. The results for each model based on the data of the Greek island of Skyros denote the superiority of the slow temperature reduction function in terms of error metrics and observe that the optimized Multi-Layer Perceptron is the most suitable model for this forecasting task when slow temperature reduction is implemented. © 2022 IEEE.
URI
http://hdl.handle.net/11615/70835
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap