dc.creator | Adam M., Aggeli D., Aretaki A. | en |
dc.date.accessioned | 2023-01-31T07:30:22Z | |
dc.date.available | 2023-01-31T07:30:22Z | |
dc.date.issued | 2020 | |
dc.identifier | 10.3934/math.2020047 | |
dc.identifier.issn | 24736988 | |
dc.identifier.uri | http://hdl.handle.net/11615/70264 | |
dc.description.abstract | In this paper, we determine some new bounds for the spectral radius of a nonnegative matrix with respect to a new defined quantity, which can be considered as an average of average 2-row sums. The new formulas extend previous results using the row sums and the average 2-row sums of a nonnegative matrix. We also characterize the equality cases of the bounds if the matrix is irreducible and we provide illustrative examples comparing with the existing bounds. © 2020 the Author(s). | en |
dc.language.iso | en | en |
dc.source | AIMS Mathematics | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077980036&doi=10.3934%2fmath.2020047&partnerID=40&md5=76a8472ba47184fa37ef12cc0718cc90 | |
dc.subject | American Institute of Mathematical Sciences | en |
dc.title | Some new bounds on the spectral radius of nonnegative matrices | en |
dc.type | journalArticle | en |