Afficher la notice abrégée

dc.creatorStamoulis, K.en
dc.creatorGiannakopoulos, A. E.en
dc.date.accessioned2015-11-23T10:48:35Z
dc.date.available2015-11-23T10:48:35Z
dc.date.issued2010
dc.identifier10.1108/17579861011092355
dc.identifier.issn17579864
dc.identifier.urihttp://hdl.handle.net/11615/33367
dc.description.abstractPurpose - As the dimensions of structures are scaled down to the micro- and nano-domains, the mechanical behavior becomes size dependent and thus, the classical elasticity solutions cannot be expected to hold. In particular, recent experimental investigations of fatigue strength of metals show pronounced strengthening due to the influences of both grain size and small geometrical dimensions. This paper aims to provide a simple, yet rigorous analytical model in order to address the aforementioned size effects. Design/methodology/approach - The present study employs a framework based on the type II, strain gradient elasticity theory by Mindlin, embedded into a thermodynamics-based formulation which considers both mechanical behavior parameters and material lengths, as internal variables, in order to model metal fatigue. Findings - A thermodynamics-based, second gradient elasto-plastic formulation with an explicit material length, which captures the size effects in fatigue of small-scale metal components, has been established. From a physical viewpoint, the evolution of the internal length in the constitutive equations with the evolution of the intrinsic wavelength (e.g. persistent slip bands spacing) can be identified signifying the splitting of the grains into sub-regions and consequently, the softening of the material. Originality/value - The major novelty of the proposed modeling is that the internal characteristic length considered is not a fixed parameter, but evolves with the plastic effective strain amplitude obtained from cyclic loading. © Emerald Group Publishing Limited.en
dc.source.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-79954991067&partnerID=40&md5=31b6b66693cabb22a906291d04d5ea44
dc.subjectElasticityen
dc.subjectElectromechanical devicesen
dc.subjectFatigueen
dc.subjectSlipen
dc.subjectAnalytical modelen
dc.subjectCyclic loadingsen
dc.subjectDesign/methodology/approachen
dc.subjectEffective strainen
dc.subjectElasticity solutionsen
dc.subjectElasto-plastic formulationen
dc.subjectElasto-plastic modelsen
dc.subjectExperimental investigationsen
dc.subjectFatigue strengthen
dc.subjectFixed parametersen
dc.subjectGeometrical dimensionsen
dc.subjectGrain sizeen
dc.subjectInternal characteristicsen
dc.subjectInternal lengthen
dc.subjectInternal variablesen
dc.subjectMechanical behavioren
dc.subjectMetal componentsen
dc.subjectMetal fatigueen
dc.subjectMindlinen
dc.subjectNano domainen
dc.subjectPersistent slip bandsen
dc.subjectSize dependenten
dc.subjectSize effectsen
dc.subjectStrain gradient elasticityen
dc.subjectSub-regionsen
dc.subjectType IIen
dc.subjectConstitutive equationsen
dc.subjectElastoplasticityen
dc.subjectElectrodynamicsen
dc.subjectMathematical modelsen
dc.subjectMechanical engineeringen
dc.subjectMetalsen
dc.subjectThermodynamicsen
dc.titleA second gradient elasto-plastic model for fatigue of small-scale metal componentsen
dc.typejournalArticleen


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée