Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise

Thumbnail
Author
Michailidis, Y.; Karagounis, L. G.; Terzis, G.; Jamurtas, A. Z.; Spengos, K.; Tsoukas, D.; Chatzinikolaou, A.; Mandalidis, D.; Stefanetti, R. J.; Papassotiriou, I.; Athanasopoulos, S.; Hawley, J. A.; Russell, A. P.; Fatouros, I. G.
Date
2013
DOI
10.3945/ajcn.112.049163
Keyword
NF-KAPPA-B
BLOOD REDOX STATUS
OXIDATIVE STRESS
CYSTEINE PRETREATMENT
PROLONGED EXERCISE
GENE-EXPRESSION
NADPH OXIDASE
VITAMIN-C
ACETYLCYSTEINE
INJURY
Nutrition & Dietetics
Metadata display
Abstract
Background: The major thiol-disulfide couple of reduced glutathione (GSH) and oxidized glutathione is a key regulator of major transcriptional pathways regulating aseptic inflammation and recovery of skeletal muscle after aseptic injury. Antioxidant supplementation may hamper exercise-induced cellular adaptations. Objective: The objective was to examine how thiol-based antioxidant supplementation affects skeletal muscle's performance and redox-sensitive signaling during the inflammatory and repair phases associated with exercise-induced microtrauma. Design: In a double-blind, crossover design, 10 men received placebo or N-acetylcysteine (NAC; 20 mg . kg(-1) . d(-1)) after muscle-damaging exercise (300 eccentric contractions). In each trial, muscle performance was measured at baseline, after exercise, 2 h after exercise, and daily for 8 consecutive days. Muscle biopsy samples from vastus lateralis and blood samples were collected before exercise and 2 h, 2 d, and 8 d after exercise. Results: NAC attenuated the elevation of inflammatory markers of muscle damage (creatine kinase activity, C-reactive protein, proinflammatory cytokines), nuclear factor kappa B phosphorylation, and the decrease in strength during the first 2 d of recovery. NAC also blunted the increase in phosphorylation of protein kinase B, mammalian target of rapamycin, p70 ribosomal S6 kinase, ribosomal protein S6, and mitogen activated protein kinase p38 at 2 and 8 d after exercise. NAC also abolished the increase in myogenic determination factor and reduced tumor necrosis factor-alpha 8 d after exercise. Performance was completely recovered only in the placebo group. Conclusion: Although thiol-based antioxidant supplementation enhances GSH availability in skeletal muscle, it disrupts the skeletal muscle inflammatory response and repair capability, potentially because of a blunted activation of redox-sensitive signaling pathways.
URI
http://hdl.handle.net/11615/30993
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19706]
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
htmlmap