Zur Kurzanzeige

dc.creatorHaidemenopoulos, G. N.en
dc.date.accessioned2015-11-23T10:29:27Z
dc.date.available2015-11-23T10:29:27Z
dc.date.issued2001
dc.identifier10.1016/S0925-8388(00)01493-6
dc.identifier.issn9258388
dc.identifier.urihttp://hdl.handle.net/11615/28305
dc.description.abstractSeveral important industrial material processes, such as welding and surface treatments with high energy beams, incorporate rapid thermal cycles characterized by high heating/cooling rates and short dwell times. Computational simulation of the evolution of microstructure under these extreme conditions has received rather limited attention. With the advent of modern computational tools regarding alloy thermodynamics and kinetics, it is possible to simulate the progress of diffusional phase transformations and thus to predict microstructural development. In the present work, moving boundary diffusion problems have been simulated for two cases. In the first case the rapid austenitization during laser transformation hardening of a hypoeutectoid steel was examined. The effects of heating rate, maximum temperature, dwell time and initial microstructure fineness were analyzed. In the second case the aging, dissolution and coarsening of strengthening precipitates in the heat affected zone of laser welds in Al-Mg-Si alloys was examined. The simulation provided the variation of the volume fraction and average size of the strengthening phase during the weld thermal cycle. In both cases the calculations were performed by applying the coupled thermodynamics and kinetics approach, incorporated in the DICTRA program. This kind of simulation provides useful information for the design of the above processes. © 2001 Elsevier Science B.V.en
dc.source.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-0035942792&partnerID=40&md5=63f5f1c4650a4f0dea84844b1f3909b6
dc.subjectCoarseningen
dc.subjectComputational thermodynamicsen
dc.subjectDissolutionen
dc.subjectKineticsen
dc.subjectRapid austenitizationen
dc.subjectWeld thermal cycleen
dc.subjectAusteniteen
dc.subjectCoolingen
dc.subjectLaser beam weldingen
dc.subjectSurface treatmenten
dc.subjectThermal cyclingen
dc.subjectThermodynamicsen
dc.subjectCarbon steelen
dc.titleCoupled thermodynamic/kinetic analysis of diffusional transformations during laser hardening and laser weldingen
dc.typejournalArticleen


Dateien zu dieser Ressource

DateienGrößeFormatAnzeige

Zu diesem Dokument gibt es keine Dateien.

Das Dokument erscheint in:

Zur Kurzanzeige