Εμφάνιση απλής εγγραφής

dc.creatorAnagnostopoulos, I.en
dc.creatorRazis, G.en
dc.creatorMylonas, P.en
dc.creatorAnagnostopoulos, C. N.en
dc.date.accessioned2015-11-23T10:22:08Z
dc.date.available2015-11-23T10:22:08Z
dc.date.issued2015
dc.identifier10.1016/j.neucom.2014.12.090
dc.identifier.issn0925-2312
dc.identifier.urihttp://hdl.handle.net/11615/25518
dc.description.abstractThere are many web information management methods and techniques that help search engines and news services to provide useful suggestions with respect to queries, thus facilitating the users' search. However, the penetration of microblogging services in our daily life demands to also consider social sphere as far as query suggestion is concerned. Towards this direction, we introduce an algorithmic approach capable of creating a dynamic query suggestion set, which consist of the most viral and trendy Twitter Entities (that is hashtags, user mentions and URLs) with respect to a user's query. For evaluation purposes, we firstly compare the results derived from two case studies, against the suggestions of popular services like Google News, Yahoo! News, Bing News, and Reuters. In addition we further evaluate our approach with subjective user ratings against Google Trends service. Finally, we provide comparative results that clearly show that our proposal outperforms other methods and baselines in the respective literature. (C) 2015 Elsevier B.V. All rights reserved.en
dc.sourceNeurocomputingen
dc.source.uri<Go to ISI>://WOS:000356196800016
dc.subjectQuery suggestionen
dc.subjectMicrobloggingen
dc.subjectViral contenten
dc.subjectTwitteren
dc.subjectComputer Science, Artificial Intelligenceen
dc.titleSemantic query suggestion using Twitter Entitiesen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής