| dc.creator | Akritas, A. | en |
| dc.creator | Malaschonok, G. | en |
| dc.date.accessioned | 2015-11-23T10:21:52Z | |
| dc.date.available | 2015-11-23T10:21:52Z | |
| dc.date.issued | 2006 | |
| dc.identifier | 10.1007/11758525_65 | |
| dc.identifier.isbn | 3540343814 | |
| dc.identifier.issn | 3029743 | |
| dc.identifier.uri | http://hdl.handle.net/11615/25409 | |
| dc.description.abstract | The best method for computing the adjoint matrix of an order n matrix in an arbitrary commutative ring requires O(nβ+1/3 log n log log n) operations, provided that the complexity of the algorithm for multiplying two matrices is γnβ + o(nβ). For a commutative domain - and under the same assumptions - the complexity of the best method is 6γnβ(2β - 2) + o(nβ). In the present work a new method is presented for the computation of the adjoint matrix in a commutative domain. Despite the fact that the number of operations required is now 1.5 times more, than that of the best method, this new method permits a better parallelization of the computational process and may be successfully employed for computations in parallel computational systems. © Springer-Verlag Berlin Heidelberg 2006. | en |
| dc.source.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-33746601315&partnerID=40&md5=e5860be055773d4c04b71c32a045b272 | |
| dc.subject | Computational complexity | en |
| dc.subject | Parallel processing systems | en |
| dc.subject | Commutative domain | en |
| dc.subject | Computational process | en |
| dc.subject | Computation theory | en |
| dc.title | Computation of the adjoint matrix | en |
| dc.type | other | en |