Εμφάνιση απλής εγγραφής

dc.creatorAkritas, A.en
dc.creatorMalaschonok, G.en
dc.date.accessioned2015-11-23T10:21:52Z
dc.date.available2015-11-23T10:21:52Z
dc.date.issued2006
dc.identifier10.1007/11758525_65
dc.identifier.isbn3540343814
dc.identifier.issn3029743
dc.identifier.urihttp://hdl.handle.net/11615/25409
dc.description.abstractThe best method for computing the adjoint matrix of an order n matrix in an arbitrary commutative ring requires O(nβ+1/3 log n log log n) operations, provided that the complexity of the algorithm for multiplying two matrices is γnβ + o(nβ). For a commutative domain - and under the same assumptions - the complexity of the best method is 6γnβ(2β - 2) + o(nβ). In the present work a new method is presented for the computation of the adjoint matrix in a commutative domain. Despite the fact that the number of operations required is now 1.5 times more, than that of the best method, this new method permits a better parallelization of the computational process and may be successfully employed for computations in parallel computational systems. © Springer-Verlag Berlin Heidelberg 2006.en
dc.source.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-33746601315&partnerID=40&md5=e5860be055773d4c04b71c32a045b272
dc.subjectComputational complexityen
dc.subjectParallel processing systemsen
dc.subjectCommutative domainen
dc.subjectComputational processen
dc.subjectComputation theoryen
dc.titleComputation of the adjoint matrixen
dc.typeotheren


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής