Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Πλοήγηση ανά Θέμα 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Πλοήγηση ανά Θέμα
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Πλοήγηση ανά Θέμα
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Πλοήγηση ανά Θέμα "Forecasting"

  • 0-9
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Α
  • Β
  • Γ
  • Δ
  • Ε
  • Ζ
  • Η
  • Θ
  • Ι
  • Κ
  • Λ
  • Μ
  • Ν
  • Ξ
  • Ο
  • Π
  • Ρ
  • Σ
  • Τ
  • Υ
  • Φ
  • Χ
  • Ψ
  • Ω

Ταξινόμηση κατά:

Σειρά:

Αποτελέσματα:

Αποτελέσματα 41-60 από 125

  • τίτλος
  • ημερομηνία δημοσίευσης
  • ημερομηνία υποβολής
  • αύξουσα
  • φθίνουσα
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
    • Thumbnail

      Fatigue monitoring and remaining lifetime prognosis using operational vibration measurements 

      Papadimitriou C., Chatzi E.N., Azam S.E., Dertimanis V.K. (2019)
      A framework is presented for real-time monitoring of fatigue damage accumulation and prognosis of the remaining lifetime at hotspot locations of new or existing structures by combining output-only vibration measurements ...
    • Thumbnail

      Fatigue reliability predictions in vibrating structures under uncertainty 

      Perros, K.; Papadimitriou, C.; Sobczyk, K. (2008)
      This work addresses the problem of predicting the reliability due to fatigue of MDOF structures subjected to uncertain random loading. Uncertainties in loading characteristics as well as in structural and degradation models ...
    • Thumbnail

      Finite element model validation and predictions using dynamic reduction techniques 

      Papadioti, D. C.; Papadimitriou, C. (2011)
      Finite element (FE) model updating and validation techniques are formulated as single and multi-objective optimization problems. A multi-objective optimization framework results in multiple Pareto optimal models that are ...
    • Thumbnail

      Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions 

      Asteris P.G., Maraveas C., Chountalas A.T., Sophianopoulos D.S., Alam N. (2022)
      In this paper a mathematical model for the prediction of the fire resistance of slim-floor steel beams based on an Artificial Neural Network modeling procedure is presented. The artificial neural network models are trained ...
    • Thumbnail

      Forecasting Methods to Support the Decision Framework of Prosumers in Deregulated Markets 

      Panapakidis I.P., Koltsaklis N.E., Christoforidis G.C. (2021)
      In the present paper, a profit maximization problem for a prosumer is formulated and solved. The prosumer selects the electricity procurement approach among the pool market and forward contracts. Instead of treating the ...
    • Thumbnail

      Forecasting of day-ahead natural gas consumption demand in Greece using adaptive neuro-fuzzy inference system 

      Papageorgiou K., Papageorgiou E.I., Poczeta K., Bochtis D., Stamoulis G. (2020)
      (1) Background: Forecasting of energy consumption demand is a crucial task linked directly with the economy of every country all over the world. Accurate natural gas consumption forecasting allows policy makers to formulate ...
    • Thumbnail

      Forecasting urban expansion based on night lights 

      Stathakis D. (2016)
      Forecasting urban expansion models are a very powerful tool in the hands of urban planners in order to anticipate and mitigate future urbanization pressures. In this paper, a linear regression forecasting urban expansion ...
    • Thumbnail

      A framework for formulating and implementing non-associative plasticity models for shell buckling computations 

      Nasikas A., Karamanos S.A., Papanicolopulos S.-A. (2022)
      In modelling the behavior of thick-walled metal shells under compressive loads, the use of J2 flow theory can lead to unrealistic buckling estimates, while alternative ‘corner’ models, despite offering good predictions, ...
    • Thumbnail

      Fuzzy cognitive maps and multi-step gradient methods for prediction: Applications to electricity consumption and stock exchange returns 

      Papageorgiou E.I., Poczęta K., Yastreboz A., Laspidou C. (2015)
      The paper focuses on the application of fuzzy cognitive map (FCM) with multi-step learning algorithms based on gradient method and Markov model of gradient for prediction tasks. Two datasets were selected for the implementation ...
    • Thumbnail

      A Generalised Approach on Kerf Geometry Prediction during CO2 Laser cut of PMMA Thin Plates using Neural Networks 

      Kechagias J.D., Ninikas K., Stavropoulos P., Salonitis K. (2021)
      This study presents an application of feedforward and backpropagation neural network (FFBP-NN) for predicting the kerf characteristics, i.e. the kerf width in three different distances from the surface (upper, middle and ...
    • Thumbnail

      Geophone networks and environmental studies: Application to landslides 

      Marmarokopos K., Efremidis G., Avlonitis M. (2016)
      Seismic surveys are a non-invasive method for exploring the geological structure of the Earth. Their purpose is to identify the composition of the subsoil. This information can be used to indicate the presence of potential ...
    • Thumbnail

      Hidden neural networks for transmembrane protein topology prediction 

      Tamposis I.A., Sarantopoulou D., Theodoropoulou M.C., Stasi E.A., Kontou P.I., Tsirigos K.D., Bagos P.G. (2021)
      Hidden Markov Models (HMMs) are amongst the most successful methods for predicting protein features in biological sequence analysis. However, there are biological problems where the Markovian assumption is not sufficient ...
    • Thumbnail

      Hierarchical Bayesian calibration and response prediction of a 10-story building model 

      Song M., Behmanesh I., Moaveni B., Papadimitriou C. (2019)
      This paper presents Hierarchical Bayesian model updating of a 10-story building model based on the identified modal parameters. The identified modal parameters are numerically simulated using a frame model (exact model) ...
    • Thumbnail

      Hierarchical Bayesian Model Updating for Nonlinear Structures Using Response Time Histories 

      Jia X., Sedehi O., Katafygiotis L.S., Moaveni B., Papadimitriou C. (2022)
      This paper presents a novel hierarchical Bayesian modeling (HBM) framework for the model updating and response predictions of dynamic systems with material nonlinearity using multiple data sets consisting of measured ...
    • Thumbnail

      Hierarchical Bayesian modeling framework for model updating and robust predictions in structural dynamics using modal features 

      Jia X., Sedehi O., Papadimitriou C., Katafygiotis L.S., Moaveni B. (2022)
      The hierarchical Bayesian modeling (HBM) framework has recently been developed to tackle the uncertainty quantification and propagation in structural dynamics inverse problems. This new framework characterizes the ensemble ...
    • Thumbnail

      Hierarchical Bayesian Uncertainty Quantification for a Model of the Red Blood Cell 

      Economides A., Arampatzis G., Alexeev D., Litvinov S., Amoudruz L., Kulakova L., Papadimitriou C., Koumoutsakos P. (2021)
      Simulations of blood flows in microfluidic devices and physiological systems are gaining importance in complementing experimental and clinical studies. The predictive capabilities of these simulations hinge on the parameters ...
    • Thumbnail

      An Hour-Ahead Photovoltaic Power Forecasting Based on LSTM Model 

      Kothona D., Panapakidis I.P., Christoforidis G.C. (2021)
      The extensive integration of the large-scale Photovoltaic (PV) plants into the power grid requires the development of new forecasting methods, for the prediction of the PV output with high accuracy. Despite the statistical ...
    • Thumbnail

      Hybrid model for water demand prediction based on fuzzy cognitive maps and artificial neural networks 

      Papageorgiou E.I., Poczȩta K., Laspidou C. (2016)
      In this study, we propose a new hybrid approach for time series prediction based on the efficient capabilities of fuzzy cognitive maps (FCMs) with structure optimization algorithms and artificial neural networks (ANNs). ...
    • Thumbnail

      Identification of most important features based on a fuzzy ensemble technique: Evaluation on joint space narrowing progression in knee osteoarthritis patients 

      Ntakolia C., Kokkotis C., Moustakidis S., Tsaopoulos D. (2021)
      Objective: Feature selection (FS) is a crucial and at the same time challenging processing step that aims to reduce the dimensionality of complex classification or regression problems. Various techniques have been proposed ...
    • Thumbnail

      Implementing fuzzy cognitive maps with neural networks for natural gas prediction 

      Poczeta K., Papageorgiou E.I. (2018)
      The goal of this research study is to test the hardiness of a novel hybrid computational intelligence model in day-ahead natural gas demand prediction. The proposed model combines an evolutionary learned FCM method with a ...
      Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
      Ψηφιακή Ελλάδα
      ΕΣΠΑ 2007-2013
      Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
      htmlmap 

       

      Πλοήγηση

      Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

      Ο λογαριασμός μου

      ΣύνδεσηΕγγραφή (MyDSpace)
      Πληροφορίες-Επικοινωνία
      ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
      Επιλογή ΓλώσσαςΌλο το DSpace
      EnglishΕλληνικά
      Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
      Ψηφιακή Ελλάδα
      ΕΣΠΑ 2007-2013
      Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
      htmlmap