Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Πλοήγηση ανά Θέμα 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Πλοήγηση ανά Θέμα
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Πλοήγηση ανά Θέμα
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Πλοήγηση ανά Θέμα "Machine-learning"

  • 0-9
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Α
  • Β
  • Γ
  • Δ
  • Ε
  • Ζ
  • Η
  • Θ
  • Ι
  • Κ
  • Λ
  • Μ
  • Ν
  • Ξ
  • Ο
  • Π
  • Ρ
  • Σ
  • Τ
  • Υ
  • Φ
  • Χ
  • Ψ
  • Ω

Ταξινόμηση κατά:

Σειρά:

Αποτελέσματα:

Αποτελέσματα 1-20 από 28

  • τίτλος
  • ημερομηνία δημοσίευσης
  • ημερομηνία υποβολής
  • αύξουσα
  • φθίνουσα
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
    • Thumbnail

      AI-driven Service-aware Real-time Slicing for beyond 5G Networks 

      Tsourdinis T., Chatzistefanidis I., Makris N., Korakis T. (2022)
      Wide network softwarization is creating fertile ground for the application of novel concepts in the management of the deployed network functions. This allows a drastic shift for the applications hosted on top of the network, ...
    • Thumbnail

      Artificial Intelligence, Big Data Analytics, and Smart Cities 

      Kiouvrekis Y., Panagiotakopoulos T., Ouranos I., Filippopoulos I. (2022)
      Modern urban life is seeing an increasing rate of adoption of artificial intelligence and smart solutions; however, citizens are still struggling to keep up the pace, and the rate at which they acquire skills and knowledge ...
    • Thumbnail

      Assessing Durum Wheat Yield through Sentinel-2 Imagery: A Machine Learning Approach 

      Bebie M., Cavalaris C., Kyparissis A. (2022)
      Two modeling approaches for the estimation of durum wheat yield based on Sentinel-2 data are presented for 66 fields across three growing periods. In the first approach, a previously developed multiple linear regression ...
    • Thumbnail

      A Custom State LSTM Cell for Text Classification Tasks 

      Haralabopoulos G., Anagnostopoulos I. (2022)
      Text classification is the task of assigning a class to a document. Machine Learning enables the automation of Text Classification Tasks, amongst others. Recent advances in the Machine Learning field, such as the introduction ...
    • Thumbnail

      Deep Learning Models for Yoga Pose Monitoring 

      Swain D., Satapathy S., Acharya B., Shukla M., Gerogiannis V.C., Kanavos A., Giakovis D. (2022)
      Activity recognition is the process of continuously monitoring a person’s activity and movement. Human posture recognition can be utilized to assemble a self-guidance practice framework that permits individuals to accurately ...
    • Thumbnail

      DeepTSS: multi-branch convolutional neural network for transcription start site identification from CAGE data 

      Grigoriadis D., Perdikopanis N., Georgakilas G.K., Hatzigeorgiou A.G. (2022)
      Background: The widespread usage of Cap Analysis of Gene Expression (CAGE) has led to numerous breakthroughs in understanding the transcription mechanisms. Recent evidence in the literature, however, suggests that CAGE ...
    • Thumbnail

      Development of an electric car sharing system in a tourist area by using data driven tools: The idea of Erica project 

      Karkanis S., Ayfantopoulou G., Stamelou A., Fousteris M., Garatziotis A., Zachou A., Giannaki M. (2022)
      Car sharing systems are an emerging solution aiming to reduce the widespread use of private vehicles and the negative effects that this entails. At the same time, the integration of electric vehicles into the fleet of car ...
    • Thumbnail

      Distributed Fuzzy Cognitive Maps for Feature Selection in Big Data Classification 

      Haritha K., Judy M.V., Papageorgiou K., Georgiannis V.C., Papageorgiou E. (2022)
      The features of a dataset play an important role in the construction of a machine learning model. Because big datasets often have a large number of features, they may contain features that are less relevant to the machine ...
    • Thumbnail

      Elements of TinyML on Constrained Resource Hardware 

      Tsoukas V., Gkogkidis A., Kakarountas A. (2022)
      The next phase of intelligent computing could be entirely reliant on the Internet of Things (IoT). The IoT is critical in changing industries into smarter entities capable of providing high-quality services and products. ...
    • Thumbnail

      Forecasting Winter Precipitation based on Weather Sensors Data in Apache Spark 

      Kanavos A., Panagiotakopoulos T., Vonitsanos G., Maragoudakis M., Kiouvrekis Y. (2021)
      The proposed paper introduces an approach providing weather information on winter precipitation types using machine learning techniques. The proposed methodology takes as input the data received from weather sensors and ...
    • Thumbnail

      Fuzzy Cognitive Maps for Interpretable Image-based Classification 

      Sovatzidi G., Vasilakakis M.D., Iakovidis D.K. (2022)
      Image classification is a fundamental component of intelligent vision systems. Developing classifiers capable of explaining how or why a classification result occurs, in a way compatible with human perception, remains a ...
    • Thumbnail

      Hyper-parameters Tuning of Artificial Neural Networks: An Application in the Field of Recommender Systems 

      Stergiopoulos V., Vassilakopoulos M., Tousidou E., Corral A. (2022)
      In this work, we carry out the hyper-parameters tuning of a Machine Learning (ML) Recommender Systems (RS) which utilizes an Artificial Neural Network (ANN), called CATA++. We have performed tuning of the activation function, ...
    • Thumbnail

      Improving Hierarchical Short Text Clustering through Dominant Feature Learning 

      Akritidis L., Alamaniotis M., Fevgas A., Tsompanopoulou P., Bozanis P. (2022)
      This paper focuses on the popular problem of short text clustering. Since the short text documents typically exhibit high degrees of data sparseness and dimensionality, the problem in question is generally considered more ...
    • Thumbnail

      Leveraging Machine Learning for Gate-level Timing Estimation Using Current Source Models and Effective Capacitance 

      Garyfallou D., Vagenas A., Antoniadis C., Massoud Y., Stamoulis G. (2022)
      With process technology scaling, accurate gate-level timing analysis becomes even more challenging. Highly resistive on-chip interconnects have an ever-increasing impact on timing, signals no longer resemble smooth saturated ...
    • Thumbnail

      MACHINE LEARNING to DEVELOP A MODEL THAT PREDICTS EARLY IMPENDING SEPSIS in NEUROSURGICAL PATIENTS 

      Vlachos E., Salapatas Gkinis A., Papastergiou V., Tsitsipanis C., Giannakopoulos G. (2022)
      Sepsis is currently defined as a "life-threatening organ dysfunction caused by a dysregulated host response to infection". The early detection and prediction of sepsis is a challenging task, with significant potential gains ...
    • Thumbnail

      Near Data Processing Performance Improvement Prediction via Metric-Based Workload Classification 

      Papalekas D., Tziouvaras A., Floros G., Dimitriou G., Dossis M., Stamoulis G. (2022)
      Contrary to the improvement of CPU capabilities, traditional DRAM evolution faced significant challenges that render it the main performance bottleneck in contemporary systems. Data-Intensive applications such as Machine ...
    • Thumbnail

      The next generation cognitive security operations center: Network flow forensics using cybersecurity intelligence 

      Demertzis K., Kikiras P., Tziritas N., Sanchez S.L., Iliadis L. (2018)
      A Security Operations Center (SOC) can be defined as an organized and highly skilled team that uses advanced computer forensics tools to prevent, detect and respond to cybersecurity incidents of an organization. The ...
    • Thumbnail

      Prediction of Injuries in CrossFit Training: A Machine Learning Perspective 

      Moustakidis S., Siouras A., Vassis K., Misiris I., Papageorgiou E., Tsaopoulos D. (2022)
      CrossFit has gained recognition and interest among physically active populations being one of the most popular and rapidly growing exercise regimens worldwide. Due to the intense and repetitive nature of CrossFit, concerns ...
    • Thumbnail

      Quantum Machine Learning: Current State and Challenges 

      Avramouli M., Savvas I., Garani G., Vasilaki A. (2021)
      In recent years, machine learning has penetrated a large part of our daily lives, which creates special challenges and impressive progress in this area. Nevertheless, as the amount of daily data is grown, learning time is ...
    • Thumbnail

      Recent Dimensionality Reduction Techniques for High-Dimensional COVID-19 Data 

      Dallas I.L., Vrahatis A.G., Tasoulis S.K., Plagianakos V.P. (2022)
      We are going through the last years of the COVID-19 pandemic, where almost the entire research community has focused on the challenges that constantly arise. From the computational and mathematical perspective, we have to ...
      Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
      Ψηφιακή Ελλάδα
      ΕΣΠΑ 2007-2013
      Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
      htmlmap 

       

      Πλοήγηση

      Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

      Ο λογαριασμός μου

      ΣύνδεσηΕγγραφή (MyDSpace)
      Πληροφορίες-Επικοινωνία
      ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
      Επιλογή ΓλώσσαςΌλο το DSpace
      EnglishΕλληνικά
      Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
      Ψηφιακή Ελλάδα
      ΕΣΠΑ 2007-2013
      Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
      htmlmap