
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Efficient computational analysis of biomedical images with

applications in diagnostics

Diploma Thesis

Athanasia Despoina Sapountzi

Supervisor: Christos Antonopoulos

September 2023

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Efficient computational analysis of biomedical images with

applications in diagnostics

Diploma Thesis

Athanasia Despoina Sapountzi

Supervisor: Christos Antonopoulos

September 2023

iii
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Αποδοτική υπολογιστική ανάλυση βιοϊατρικών εικόνων με

εφαρμογές στη διαγνωστική

Διπλωματική Εργασία

Αθανασία Δέσποινα Σαπουντζή

Επιβλέπων/πουσα: Χρήστος Αντωνόπουλος

Σεπτέμβριος 2023

v
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Approved by the Examination Committee:

Supervisor Christos Antonopoulos

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

Member Dimitrios Iakovidis

Professor, Department of Computer Science and Biomedical Infor-

matics, University of Thessaly

Member Nikolaos Bellas

Professor, Department of Electrical and Computer Engineering, Uni-

versity of Thessaly

vii
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Pro-

fessor Christos Antonopoulos, for his unwavering support, guidance, and encouragement

throughout the development of this Thesis. I feel fortunate to have had such a dedicated

supervisor who was always available to answer my questions. The completion of this Thesis

is primarily due to his generosity in providing me with so much of his time and insight.

I am profoundly grateful to Professor Dimitrios Iakovidis for his collaboration as well

as allowing me to work on this subject. I want to thank Postdoctoral Researcher Michael

Vasilakakis for his constant guidance and support throughout this Thesis. Also, I am grateful

to Professor Nikolaos Bellas for being amember of the examination committee for my Thesis.

I want to thank my friends for making these academic years much more enjoyable and

encouraging me to pursue my dreams.

Most importantly, I want to express my gratitude to my family, who has always supported

me and helped me to accomplish my goals.

ix
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Athanasia Despoina Sapountzi

xi
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

xii Abstract

Diploma Thesis

Efficient computational analysis of biomedical images with applications

in diagnostics

Athanasia Despoina Sapountzi

Abstract

The field of Artificial Intelligence is rapidly expanding with numerous potential applica-

tions in healthcare. As patient data becomes increasingly accessible, healthcare professionals

and systems rely more on Artificial Intelligence algorithms to extract valuable insights from

biomedical data. However, it is concerning that the applications that use such algorithms

often take several hours to days to generate an accurate result. This slow execution time is

particularly problematic in the medical field, where timely analysis and decision-making are

crucial to patient outcomes. Thus, it is essential to decrease the execution time of such ap-

plications while maintaining their performance. In this Thesis, we examine an application

that does interpretable data classification. The application detects pathologies in biomedical

images while explaining why it produces specific results with the help of fuzzy logic. The

goal of this Thesis is to reduce the application’s execution time. To achieve this, we follow a

systematic, iterative approach to optimize the code of the application while ensuring that we

do not negatively affect the functionality and efficiency of the application.

Keywords:
Interpretability, Biomedical Images, Classification, Interpretable fuzzy rules, Fuzzy similar-

ity phrases, Algorithmic optimization, Parallelization, Compiler οptimization, GPU

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Περίληψη xiii

Διπλωματική Εργασία

Αποδοτική υπολογιστική ανάλυση βιοϊατρικών εικόνων με εφαρμογές

στη διαγνωστική

Αθανασία Δέσποινα Σαπουντζή

Περίληψη

Ο τομέας της Τεχνητής Νοημοσύνης επεκτείνεται ταχύτατα με πολυάριθμες πιθανές εφαρ-

μογές στην υγειονομική περίθαλψη. Καθώς τα δεδομένα των ασθενών γίνονται όλο και πιο

προσβάσιμα, οι επαγγελματίες και τα συστήματα υγειονομικής περίθαλψης βασίζονται όλο

και περισσότερο στους αλγορίθμους Τεχνητής Νοημοσύνης για την εξαγωγή πολύτιμων πλη-

ροφοριών από τα βιοϊατρικά δεδομένα. Ωστόσο, είναι ανησυχητικό το γεγονός ότι οι εφαρ-

μογές που χρησιμοποιούν τέτοιους αλγορίθμους συχνά χρειάζονται αρκετές ώρες έως ημέρες

για να παράγουν ένα ακριβές αποτέλεσμα. Αυτός ο αργός χρόνος εκτέλεσης είναι ιδιαίτερα

προβληματικός στον ιατρικό τομέα, όπου η έγκαιρη ανάλυση και η λήψη αποφάσεων είναι

ζωτικής σημασίας για τα αποτελέσματα των ασθενών. Συνεπώς, είναι απαραίτητο να μειωθεί

ο χρόνος εκτέλεσης τέτοιων εφαρμογών, διατηρώντας παράλληλα την απόδοσή τους. Στην

παρούσα Διπλωματική Εργασία, εξετάζουμε μια εφαρμογή που κάνει ερμηνεύσιμη ταξινό-

μηση δεδομένων. Η εφαρμογή ανιχνεύει παθολογίες σε βιοϊατρικές εικόνες, ενώ εξηγεί γιατί

παράγει συγκεκριμένα αποτελέσματα με τη βοήθεια της ασαφούς λογικής. Στόχος είναι η

μείωση του χρόνου εκτέλεσης της εφαρμογής. Για να το πετύχουμε αυτό, ακολουθούμε μια

συστηματική, επαναληπτική προσέγγιση για τη βελτιστοποίηση του κώδικα της εφαρμογής,

φροντίζοντας παράλληλα να μην επηρεάσουμε αρνητικά τη λειτουργικότητα και την αποδο-

τικότητα της εφαρμογής.

Λέξεις-κλειδιά:
Ερμηνευσιμότητα, Βιοϊατρικές εικόνες, Ταξινόμηση, Ερμηνεύσιμοι ασαφείς κανόνες, Ασα-

φείς φράσεις ομοιότητας, Αλγοριθμική βελτιστοποίηση, Παραλληλοποίηση, Βελτιστοποί-

ηση μεταγλωττιστή, Μονάδα επεξεργασίας γραφικών

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Table of contents

Acknowledgements ix

Abstract xii

Περίληψη xiii

Table of contents xv

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 2

1.3 Thesis Structure . 3

2 Background – Profiling 5

2.1 cProfiler . 5

2.2 Vizualization of profiling results: snakeviz 5

3 Background – Fuzzy similarity phrases (FSP) for interpretable data classifica-

tion 9

3.1 FSP Application Structure . 9

3.1.1 FSP Model Construction . 11

3.1.2 Creation of Phrases and Phrases Reduction 11

xv
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

xvi Table of contents

3.1.3 Rule Generation . 12

3.1.4 Model Validation . 12

3.1.5 Classification of testing set . 12

3.2 Dataset . 13

4 Methodology 15

4.1 Profile-guided optimization . 15

4.1.1 Application profiling . 16

4.1.2 Analysis of profiling results . 16

4.1.3 Optimization of hotspot functions 17

4.2 Hardware and Software infrastructure . 17

4.3 Baseline application . 18

4.4 Validation . 18

5 Performance Optimization 19

5.1 Algorithmic optimization . 19

5.1.1 Profiling results . 19

5.1.2 Analysis of profiling results . 20

5.1.3 Optimization of hotspot function 20

5.1.4 Validation . 21

5.1.5 Discussion . 21

5.2 Compiler Optimization - feature_selection() 22

5.2.1 Analysis of profiling results . 22

5.2.2 Optimization of hotspot function 23

5.2.3 Validation . 23

5.2.4 Discussion . 24

5.3 Optimization of Data Representation . 24

5.3.1 Profiling results . 24

5.3.2 Analysis of profiling results . 25

5.3.3 Optimization of hotspot function 25

5.3.4 Validation . 26

5.3.5 Discussion . 26

5.4 Compiler optimization - vectorization_similarities() 26

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Table of contents xvii

5.4.1 Profiling results and analysis . 26

5.4.2 Optimization of hotspot function 27

5.4.3 Validation . 27

5.4.4 Discussion . 28

5.5 Computation reuse . 28

5.5.1 Profiling results . 28

5.5.2 Analysis of profiling results . 29

5.5.3 Optimization of hotspot function 29

5.5.4 Validation . 30

5.5.5 Discussion . 30

5.6 Parallelization . 30

5.6.1 Profiling results and analysis . 30

5.6.2 Optimization of hotspot function 32

5.6.3 Validation . 34

5.6.4 Discussion . 34

5.6.5 Unsuccessful optimization efforts 34

5.7 Classification algorithm GPU acceleration 36

5.7.1 Profiling results . 36

5.7.2 Analysis of profiling results . 36

5.7.3 Optimization of hotspot function 37

5.7.4 Validation . 37

5.7.5 Clustering acceleration - fuzification() 38

5.7.6 Discussion . 39

5.7.7 Unsuccessful attempts . 39

5.8 GPU acceleration . 40

5.8.1 Profiling results . 40

5.8.2 Analysis of profiling results . 41

5.8.3 Optimization of hotspot function 41

5.8.4 Validation . 42

5.8.5 Discussion . 43

5.9 Post-optimization profiling . 44

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

xviii Table of contents

6 Interpretable classification case study 45

6.1 Classification of image without abnormality 45

6.2 Classification of a normal endoscopic image 46

7 Conclusions 49

7.1 Conclusions and future work . 49

Bibliography 51

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

List of figures

2.1 Icicle visualization . 6

2.2 Sunburst visualization . 7

2.3 cProfile statistic results . 7

3.1 Outline of the FSP data classification framework [1] 9

3.2 FSP flowchart . 10

4.1 Iterative profile-guided optimization pipeline 15

5.1 Distribution of execution time . 20

5.2 Membership value estimation, based on a triangular membership function . 21

5.3 Distribution of execution time . 22

5.4 Distribution of execution time . 24

5.5 Distribution of execution time . 27

5.6 Distribution of execution time . 28

5.7 Distribution of execution time . 31

5.8 Multiprocessing Pool/map illustration . 33

5.9 Execution time achieved vs. number of processes 33

5.10 Distribution of execution time . 38

5.11 Distribution of execution time . 41

5.12 Comparison of different implementations of hotspot function 43

5.13 Distribution of execution time . 44

6.1 Classification of Image without abnormality 46

6.2 Classification of Image with abnormality 47

xix
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

List of tables

4.1 Hardware and Software infrastructure . 18

5.1 Calling statistics of top hotspot functions 20

5.2 Calling statistics of top hotspot functions 22

5.3 Calling statistics of top hotspot functions 24

5.4 Calling statistics of top hotspot functions 27

5.5 Calling statistics of top hotspot functions 28

5.6 Calling statistics of top hotspot functions 31

5.7 Statistics of possible hotspot functions . 38

5.8 Statistics of possible hotspot functions . 41

5.9 Cumulative Time of hotspot function for different implementations 43

5.10 Statistics of possible hotspot functions . 44

6.1 FSP Classification Rules – normal image 46

6.2 FSP Classification Rules – abnormal image 47

xxi
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FSP Fuzzy Similarity Phrase

GD Gradient Descent

GI Gastrointestinal

GIL Global Interpreter Lock

GPU Graphical Processing Unit

JIT Just In Time

ML Machine Learning

OS Operating System

RAM Random Access Memory

RB Rule Base

VCE Video Capsule Endoscopy

xxiii
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Chapter 1

Introduction

Medical diagnosis refers to the systematic process of identifying a patient’s specific con-

dition and its associated symptoms. Medical diagnosis provides essential information about

the disease or condition, which is necessary for the appropriate treatment. This information

is collected by a comprehensive assessment of the patient’s medical history, physical exam-

ination, and surveys. Biomedical images are considered invaluable assets for medical diag-

nostics [2, 3, 4].

The field of medicine is seeing a progressive transformation due to the integration of arti-

ficial intelligence (AI) technology. The primary goal of AI research in the field of biomedical

imaging is to develop and refine technologies that improve patient outcomes. Typically, AI

tools take the form of imaging decision support systems that offer practical suggestions to

imaging professionals [5, 6, 7].

Machine learning (ML) is a more precise designation to characterize the prevailing ex-

pression of artificial intelligence. In order to construct machine learning systems, numerous

positive and negative examples are fed to an algorithm that modifies itself based on its re-

sponse to these examples [8]. Machine learning techniques may be categorized into two main

classes, based on the training approach: supervised and unsupervised ones. Supervised learn-

ing is an approach to learning that relies on labeled data, which provide the correct answer.

Unsupervised methods refer to a set of techniques used to automatically cluster comparable

data by identifying shared characteristics. In some instances, unsupervised learning is em-

ployed as a principal approach to identify important features that can be subsequently used

in supervised learning.

A significant barrier to the clinical use and potential regulatory endorsement of AI algo-

1
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

2 Chapter 1. Introduction

rithms is the lack of knowledge regarding the decision-making process employed by these

algorithms. Deep learning networks that have undergone training have been commonly re-

ferred to as ”black boxes” in the academic literature. Deep-learning models exhibit vulnera-

bility to bias and are sensitive to adversarial attacks. These obstacles are not exclusive to the

field of medical imaging; similar issues have emerged in domains such as finance, military,

and autonomous vehicles. Hence, the objective of interpretability is to explain certain charac-

teristics of an MLmodel in a way that can be understood by a human [9]. Consequently, there

are increasing efforts to develop methodologies for explainable artificial intelligence [10].

1.1 Motivation

An important challenge with models that employ interpretable ML is that there is an

increase in overall execution time compared to ”black box” models [11]. There are several

reasons why this is a problem, especially with medical field applications. First, quick / real-

time detection of possible anomalies enables early interventions and could potentially prevent

serious complications. In other words, whenever a timely and accurate diagnosis is made,

the patient has the greatest chance for a positive health outcome [12, 13].Moreover, lower

image analysis turnaround times improve the capacity of doctors andmedical / computational

equipment.

One additional factor to consider is the impact on research and development. The use

of faster image analysis tools can expedite research in the field of medical imaging. This

enables researchers to process large datasets more efficiently, leading to the identification

of novel patterns and insights [14]. In particular, medical practitioners frequently run the

same program several times until convergence in the context of simulation-based iterative

approaches [15], so any delay in the execution of the application will be amplified.

Therefore, it is necessary to optimize [16] the execution time of applications with inter-

pretable models, while maintaining the accuracy scores.

1.2 Contribution

The aim of the Thesis is to optimize the execution time of an application that employs

an interpretable fuzzy classification framework based on Fuzzy Similarity Phrases (FSPs) to

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

1.3 Thesis Structure 3

detect abnormalities in biomedical images [1]. The optimized implementation is 250 times

faster than the initial implementation. We approached this optimization process iteratively,

guided by profiling before and after each optimization step. We first targeted the method at

the algorithmic level, and then focused on refining the implementation, while also enabling

compatibility with Numba, an optimizing python compiler, for additional optimization. We

exploited parallelization, by first implementing multiprocessing at the CPU level, and then

by using a GPU to further improve the execution time of the classification algorithm and of

additional computations which are amenable to GPU acceleration.

1.3 Thesis Structure

The rest of the thesis is structured as follows:

• Chapter 2 provides background information presenting the main tools used in this The-

sis.

• Chapter 3 briefly describes the application which is our optimization target.

• In Chapter 4 we discuss the methodology we used to optimize the code which forms

the topic of this thesis.

• Chapter 5 demonstrates the application of the methodology and all the techniques that

were used for the optimization of the initial implementation.

• In Chapter 6 we illustrate the interpretability of application decisions using examples

from the medical domain.

• Finally, Chapter 7 concludes this Thesis.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Chapter 2

Background – Profiling

A profile is a collection of statistics that describe the execution of a program. Profiling,

and the understanding of the intrinsic behavior of the program is the first step towards code

optimization. Particularly, identifying bottlenecks in the code enables focusing optimization

efforts on specific, problematic code snippets, expected to yield high performance gains when

optimized.

The code of the target application is implemented in Python. The version that we use is

Python 3.9[17]. In the following sections we briefly outline the characteristics of the profiling

toolset we used.

2.1 cProfiler

cProfile is a profiling module in Python’s standard library. It provides deterministic pro-

filing of Python programs; all function call, function return, and exception events are moni-

tored, and precise durations are recorded for the intervals between these events (during which

the user’s code executes). It is a C extension with “reasonable overhead” [18], that makes it

suitable for profiling long-running programs, such as our target application in this Thesis.

2.2 Vizualization of profiling results: snakeviz

The application produces a complex dynamic call graph with long branches, including

both custom functions and functions provided by Python libraries. Therefore, it is impractical

to read and analyze the textual cProfile output provided by the standard library module. As

5
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

6 Chapter 2. Background – Profiling

Figure 2.1: Icicle visualization

an alternative, we use Snakeviz[19]. SnakeViz is a browser-based graphical viewer for the

output of Python’s cProfile module.

SnakeViz supports two visualization styles: icicle (the default) and sunburst. In both, the

fraction of time spent in a function is represented by the extent of a visualization element,

either the width of a rectangle or the angular extent of an arc. More specifically:

• Icicle visualization: The icicle visualization technique is shown in Figure 2.1. Rect-

angles represent style functions within the icicle visualization. A root function is the

uppermost rectangle, followed, in a recursive pattern, by the functions it calls, then

the functions they call, etc. The width of the rectangle represents the total time spent

within a function. A rectangle that spans the majority of the visualization represents a

function that is consuming the majority of its calling function’s time, whereas a slender

rectangle represents a low time-consuming function.

• Sunburst visualization: The sunburst visualization technique, which is displayed in Fig-

ure 2.2, represents functions as arcs. A function at the root of a call tree (or a subtree) is

represented as the center of a layered disk composed, recursively, of a layer of functions

that it calls, followed by a layer of functions that those functions call, etc. The angular

extent of the arc represents the time spent within a function. An arc that spans a large

angle represents a function that consumes the majority of its calling function’s time.

In contrast, a narrow arc represents a function that barely contributes to the execution

time.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

2.2 Vizualization of profiling results: snakeviz 7

Figure 2.2: Sunburst visualization

Apart from visualization, Snakeviz also exports a table with a row corresponding to each

unique function called. The table is illustrated in Figure 2.3. Calls to the same function from

different places are all grouped into the corresponding row. Each column, in turn, corresponds

to a metric collected during profiling. Those metrics are described in Section 4.1.1. The GUI

allows sorting the table in ascending/descending order according to any column of choice.

Figure 2.3: cProfile statistic results

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Chapter 3

Background – Fuzzy similarity phrases

(FSP) for interpretable data classification

3.1 FSP Application Structure

This thesis investigates methods to improve the time efficiency of an application imple-

menting a framework for interpretable data classification. This framework is based on the

concept of Fuzzy Similarity Phrases, recently proposed in [1]. This framework [1] aims to

enhance the tradeoff between interpretability and classification performance.

Figure 3.1: Outline of the FSP data classification framework [1]
Figure 3.1 illustrates the framework [1] the application we optimize is based upon. The

9
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

10
Chapter 3. Background – Fuzzy similarity phrases (FSP) for interpretable data

classification

application is described in the section that follows.

Start

standardScaler_transform()

 df, num_iters, learning_rate,
n_fuzzy_sets

classes

classes_indexes

separate_classes2()

train_test_split()

train_set, test_set, val_set

my_clustering()

class_centers

similarity_measure_vector1()

train_similarities,
test_similarities, val_similarities

min_max_normalization()

connect_class_with_class_centers()

vectorization_similarities()

train_similarities,
test_similarities, val_similarities

kfold_cross_validation()

feature_selection()

dummy_classification()

keep_unique_rules1()

update_weights_gd()

test_classification()

is f==num_folds?

Yes

print dummy and gd accuracies

n_fuzzy_sets

 class_similarities_class_centers,
n_cluster_thesis

fuzzy_sets_class

fuzzification()

matrix_accuracy_dummy

matrix_accuracy_gd

list_similarities,
list_similarities_test

weights_val, weights_test

No
 assign f=f+1

rule_base

rule_base, error

scaled_df, f=1

End

Figure 3.2: FSP flowchart

The flowchart illustrated in Figure 3.2 provides a visual representation of the initial appli-

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

3.1.1 FSP Model Construction 11

cation, before any optimizations. It is a graphical representation of the application’s essential

functions. In addition to illustrating the sequential execution of functions, the flowchart shows

the input and output of each function. An extensive analysis of the application depicted in

the flowchart is provided in the following subsections.

The application consists of 5 modules:

3.1.1 FSP Model Construction
First, the application processes the data appropriately to create the FSPs. It organizes

and partitions the dataset according to the class label of each vector. The algorithm iterates

ten times using a smaller segment of the dataset. Each segment contains distinct data (so

the mean accuracy is computed by averaging over all iterations). The implementation splits

the data into training, validation, and testing sets. The K-means clustering algorithm utilizes

the training set to create cluster centroids for vocabulary construction. Next, the application

computes the similarities 5.1 between each vector (in the training, validation, and testing

set) and centroid in the set created during the previous step. A detailed explanation of how

similarities are calculated is provided in Section 5.5.3. Those similarities are normalized via

the min-max normalization method [20], and their values are limited in the range [0,1].

Next, the application proceeds to construct the fuzzy sets. Once the similarity matrix is

calculated, a clustering algorithm is applied to its elements per column to group the set of

similarities into a total of Lc 1D clusters. A fuzzy set is defined for each cluster of elements

of the similarity matrix of the training set. Particularly, a triangular membership function is

created to represent the fuzzy set A for each cluster l of columnm. The computed centroids

are sorted in ascending order. The centroid of each cluster can be used as the peak of the

triangular function. The base of the function extends from the adjacent smaller centroid to

the left to the adjacent larger centroid to the right. This way, the application creates a matrix

of fuzzy sets for elements of all classes.

3.1.2 Creation of Phrases and Phrases Reduction
AFuzzy Similarity Phrase (FSP) is defined as a set of fuzzy sets explaining the belonging-

ness of a vector to a class with respect to a set of words (centroids from K-Means clustering).

Next, the application initiates the classification of a vector with unknown class belonging-

ness (e.g. vectors from the validation and testing set) into the “normal” or the “abnormal”

class. For each vector similarity to each word, the fuzzy set to which the similarity has the

maximum membership is selected to characterize the respective similarity degree. This pro-

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

12
Chapter 3. Background – Fuzzy similarity phrases (FSP) for interpretable data

classification

cess creates two matrices, one for the vectors of the validation set and one for the vectors of

the testing set. Each matrix consists of the similarities, the max membership value for each

similarity, and the index that indicates which fuzzy set is assigned to that membership value.

With the aim of simplifying the classification process, the application employs a method

for phrase reduction of the FSP, where only one of the fuzzy sets is chosen to represent a

particular linguistic value, thereby reducing the number of words used. Following that, a

word is inserted in each similarity that describes the class, as well as the weight value.

3.1.3 Rule Generation
The application then proceeds to generate the Rule Base (RB). Pairs of FSPs that describe

the belongingness of the same input vector to two different classes are combined to create

binary classification rules. The application checks each new rule against all existing ones to

identify duplicates. If the new rule is indeed duplicate, it is not added to the rule base.

3.1.4 Model Validation
The set of all weighted rules constitutes an RB, which is then refined and adapted by

gradient descent to minimize classification error on the validation set. In particular, the ap-

plication modifies each rule in RB so that each validation vector is categorized according to

its class. Gradient Descent (GD)[21] is used to update the weight vectors of each rule in RB

to maximize relative certainty for the correct classification of vectors generating the same

FSP rule.

3.1.5 Classification of testing set
Next, the application proceeds to classify vectors from the test set to the appropriate class.

Given an unlabeled input vector xu, which is the feature vector that is retrieved from an input

image that belongs to the testing set, an FSP model and an adapted RB, the classification

of xu to a class during the testing phase is based on the FSP that will be generated using

the FSP model. This FSP explains why the input vector belongs to the specific class and

with what certainty, based on the weight value. Also, this FSP can be used as a query to find

relevant classification rules in RB. The classification of such a vector is based on the result

of equation 3.1. If yc,c′(xu) > 0, then xu > 0 is assigned to class c.

yc,c
′
(xu) =

yR

c,c′
(xu)+yc,c

′
(xu)

2
, if any rules are retrieved from RB

yc,c
′
(xu), if no rules are retrieved from RB

(3.1)

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

3.2 Dataset 13

where:

yc,c
′
(xu) is called the basic rule,

yR
c,c′

(xu) is called relative certainty of the retrieved rule(s)

The application calculates the basic rule as:

yc,c
′
(xu) =

∑
m

scm ∗ µc
m ∗ qcm −

∑
m

sc
′

m ∗ µc′

m ∗ qc′m (3.2)

where:

smis the similarity value between input vector and word m

µmis the membership value

qm is the initial weight value set by the application.

The application calculates the relative certainty of the retrieved rule(s) as:

yR
c,c′

(xu) =
∑
m

scm ∗ µc
m ∗ qcgdm −

∑
m

sc
′

m ∗ µc′

m ∗ qc′gdm (3.3)

where:

smis the similarity value between input vector and word m

µmis the membership value

qgdm is updated weight value calculated by the gradient descent.

The main output of the testing phase is the percentage of vectors from the testing set that

were accurately labeled by calculating, namely the accuracy metric [22]. As we discussed

earlier, the testing phase is repeated on ten partitions of the test data. The accuracy attained

on each iteration is stored in a matrix, Then, the application computes the mean accuracy and

the standard deviation (SD) across those 10 values.

3.2 Dataset

For all experiments in the rest of this Thesis, we use input feature vectors derived from a

modified version of a Video Capsule Endoscopy (VCE) dataset, called Kvasir-Capsule [23].

A VCE is a compact capsule containing a wide-angle camera, illumination sources, batteries,

and additional electronic components. The patient consumes the capsule, which records video

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

14
Chapter 3. Background – Fuzzy similarity phrases (FSP) for interpretable data

classification

as it passively travels through the digestive tract. A recorder carried by the patient or included

in the capsule archives the video prior to its examination by a medical professional following

the procedure. The latter contains over 47000 images from inside the gastrointestinal (GI)

tract.

The Kvasir-Capsule comprises 117 videos containing 4,741,504 frames and 14 categories

of findings. The dataset includes both labeled and unlabeled video files. The VCE recordings

were collected using the Olympus Endocapsule 10 System45 from consecutive clinical exam-

inations conducted at the Department of Medicine, Baerum Hospital, Vestre Viken Hospital

Trust in Norway. In addition, they exported around 47000 images with labels from these

recordings, which we used as input for conducting these experiments.

The assortment of images is originally categorized into three crucial anatomical land-

marks and three clinically noteworthy discoveries. Furthermore, the dataset contains two

separate categories of images related to endoscopic polyp removal. The dataset is sorted and

annotated by medical doctors with expertise in endoscopy.

The altered version comprises the images into two classes: one that contains normal im-

ages and one that contains images with pathologies. These images are converted to feature

vectors [24] with the aid of VGG-16 [25], a convolutional neural network (CNN) architec-

ture that is capable of extracting feature vectors from images. The feature vectors are, in turn,

used as the training, testing and validation input to the FSP application.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Chapter 4

Methodology

In this chapter, we outline the methodology we used for the optimization of the code

which is the target of this Thesis. More specifically, we discuss: (i) the profiling-guided opti-

mization loop, (ii) the validation process after each optimization step, (iii) the characteristics

of the hardware infrastructure, (iv) the characteristics of the software stack, including the

application code, and (v) the inputs used as benchmarks.

4.1 Profile-guided optimization

We employ a systematic, iterative approach, depicted in Figure 4.1 that involves the steps

described in this section.

Optimization of hotspot function

Analysis of profiling results

Profiling the application

Figure 4.1: Iterative profile-guided optimization pipeline

15
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

16 Chapter 4. Methodology

4.1.1 Application profiling
We execute the code using cProfile to collect statistics that quantify the time spent in

each part of the program, the number of calls and to identify the respective call paths. Next,

we visualize the collected statistics with SnakeViz[19], as described in detail in section 2.2.

SnakeViz generates a report with the time spent in each function and its sub-calls, via a

hierarchical view of the dynamic function call graph. The visualization provided by SnakeViz

aids in identifying the functions which contribute the most to the overall execution time and

in locating performance bottlenecks.

After post-processing the profiler offers the following metrics for each function called:

• ncalls: Number of calls. We ought to try to optimize functions that acquire multiple

calls or consume an excessive amount of time per call.

• tottime: Total time consumed within the function, excluding any sub-calls.

• cumtime: Cumulative time, that incorporates sub-calls.

• tottime percall: Total net time of each call.

• cumtime percall: Total cumulative time of each call (including sub-calls).

4.1.2 Analysis of profiling results
According to Amdahl’s Law[26], the maximum potential improvement to the perfor-

mance of a system is limited by the contribution of parts of the system that cannot be im-

proved to the baseline execution time. Thus, we sort the statistics based on the cumulative

time and consider the functions with the highest cumulative time as possible hotspot func-

tions. This way, we maximize the fraction of the execution time of the application that the

hotspot function represents. Another parameter that we take into consideration is how many

times the application calls the specific hotspot function. In the spirit of the discussion earlier,

in cases the hotspot function is called a significant amount of times the function call over-

head (which can not be optimized) may dominate the function’s execution time, outweighing

potential optimizations to the function code. Therefore, such functions are not necessarily

prime targets for optimization and one should move higher in the hierarchy of the dynamic

call graph.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

4.1.3 Optimization of hotspot functions 17

4.1.3 Optimization of hotspot functions
After we have identified a hotspot function as a good potential target for optimization, we

perform a code review in the context of the target function to identify concrete optimization

opportunities. Such opportunitiesmay present in the direction ofmaking algorithmic changes,

using the functionality offered by libraries, refactoring the code, parallelizing parts of the

code, or even changing the data layout.

4.2 Hardware and Software infrastructure

Table 4.1 displays the hardware and software characteristics of the system that runs the

application. In more detail:

• CPU model: The CPU model is Intel(R) Xeon(R) Gold 6330.

• Number of CPUs: The number of CPUs is 2.

• Number of cores per CPUs: For each CPU there are 28 cores and 2-way hyperthreading

support.

• Total number of supported threads: As mentioned above there are 28 cores * 2 threads

per core, which equals 56 logical threads per CPU. The system has 2 CPUs, so the total

number of threads is 112.

• RAM: The system’s RAM capacity is 192 gigabytes. .

• GPU model: The GPU model is NVIDIA A40.

• OS: The operating system is Ubuntu 22.04.2 LTS.

• Programming language: The programming language used is Python 3.9.

• CUDA Version: The version of CUDA is 12.1.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

18 Chapter 4. Methodology

CPU model Intel(R) Xeon(R) Gold 6330

Number of CPUs 2

Number of cores per CPUs 28, 2-way hyperthreaded

Total number of supported threads 112

RAM 192 GBytes

GPU model NVIDIA A40

OS Ubuntu 22.04.2 LTS

Programming language Python 3.9

CUDA Version 12.1

Table 4.1: Hardware and Software infrastructure

4.3 Baseline application

The baseline implementation of the application we optimize is based on the framework

described in detail in Chapter 3. Firstly, it uses a vocabulary-based feature extraction scheme

that incorporates similarity features and fuzzy sets to create Fuzzy Similarity Phrases (FSPs).

Additionally, it provides a feature selection methodology that works within the FSP classifier

to choose the most representative similarity features for dimensionality reduction. Next, pairs

of FSPs are combined to create the RB. The application refines the weight vectors of each

rule with the aid of GD. Finally, the implementation offers an interpretable classification

mechanism, based on the interpretation of the FSPs.

4.4 Validation

After every modification to the original implementation, we validate that the accuracy of

the application’s predictions remains over 0.75, which is considered as an acceptable accu-

racy threshold [24] Wherever this is practically feasible, we additionally perform a localized

validation step, by directly comparing the function output from the original and the optimized

version of the optimized function.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Chapter 5

Performance Optimization

In this chapter, we apply the methodology that was presented in Chapter 4. For each of the

profiling-optimization iterations, we discuss the profiling results, the respective optimization

techniquewe employ, the performance improvement attained, and themain take-home points.

5.1 Algorithmic optimization

5.1.1 Profiling results
The profiling results of the original implementation reveal that the execution time of the

application is 172000 seconds, which is equivalent to approximately 2 days.

Figure 5.1 illustrates the contribution of the most time-consuming functions to the total

execution time of the application. We consider these functions as potential hotspots and fur-

ther analyze them. For each candidate function, Table 5.1 summarizes the number of times the

potential hotspot function is called, along with the execution time per call and the cumulative

execution time.

19
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

20 Chapter 5. Performance Optimization

90%

6%
2%2%

execution time of application

vectorization_similarities() feature_selection() similarity_measure_vector1() other

Figure 5.1: Distribution of execution time

Number of calls Cumulative time Time per call

(sec) (sec)

vectorization_similarities 20 154500 7825

feature_selection 20 10886 544

similarity_measure_vector1 30 2783 93

Table 5.1: Calling statistics of top hotspot functions

5.1.2 Analysis of profiling results
vectorization_similarities() is the function that practicallymonopolizes the

execution time of the application. Further analyzing the profiling results and the

vectorization_similarities() code, we find that trimf() offered by SciKit-

Fuzzy [27]is the primary contributor to this delay, being responsible for 90% of the cumula-

tive execution time of vectorization_similarities().

5.1.3 Optimization of hotspot function
trimf() computes fuzzy membership values using a triangular function. It is given a

set of parameters to define the points of the triangle (fuzzy set), and a vector that defines

the sampling points. Then, the original code employs the interp_membership() function from

SciKit-Fuzzy using the membership values computed by trimf() at the sampling point,

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.1.4 Validation 21

to estimate – via interpolation – the fuzzy membership degree of a value of interest. The

value does not necessarily coincide with one of the sampling points in the vector originally

provided to trimf(). It may, instead, lie between two sampling points.

trimf() overcomputes, as it calculates the membership value for a large vector (in

the order of 100000 elements) to use, at the end of the day, the values computed for one or

two of those elements. Our optimization approach involves skipping the intermediate step

of creating a triangular function. We, instead, directly calculate the membership degree of

the value of interest. We use equation 5.2 [28] as the function to calculate the membership

degree, given a fuzzy set and a value of interest.

f(x, a, b, c) =

0, x ≤ a or x ≥ c

x−a
b−a

, a ≤ x < b

c−x
c−b

, b ≤ x ≤ c

where a, b, and c are the values of the given fuzzy set

Figure 5.2: Membership value estimation, based on a triangular membership function

The execution time analysis after the optimization indicates that the application now fin-

ishes in 9454 seconds, which is 18.2 times faster than the original implementation.

5.1.4 Validation
Apart from verifying that the mean value of the accuracy is over 0.75, we further evalu-

ate our implementation by comparing the results of membership degrees of the original and

the updated version. The results are equal in all significant digits offered by the float type

representation of Python.

5.1.5 Discussion
Languages for rapid prototyping and libraries offering rich functionality for different do-

mains significantly enhance programming productivity. However, using off-the-self com-

ponents without a deep understanding of the functionality offered and the associated com-

putational overhead may come at the cost of paying additional execution-time, should the

respective components not be a perfect match for the required functionality.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

22 Chapter 5. Performance Optimization

5.2 Compiler Optimization - feature_selection()

5.2.1 Analysis of profiling results
Figure 5.3 illustrates the primary hotspot functions following the previous optimization

round, while Table 5.2 provides further information regarding the number of calls for each

prospective hotspot function and the corresponding execution time (both total and per call).

As the reader can observe in Figure 5.3, the previous hotspot is now the third slowest func-

tion. Therefore, we focus on feature_selection() as the new hotspot function, since it

has the highest cumulative execution time. feature_selection() function takes about

34% of the overall run-time of the application.

34%

29%

28%

9%

Execution time of application

feature_selection() similarity_measure_vector1() vectorization_similarities() other

Figure 5.3: Distribution of execution time

Number of calls Cumulative time Time per call

(sec) (sec)

feature_selection 20 3246 162

similarity_measure_vector1 30 2730 90

vectorization_similarities 20 2660 132

Table 5.2: Calling statistics of top hotspot functions

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.2.2 Optimization of hotspot function 23

5.2.2 Optimization of hotspot function
The goal of feature_selection() is to reduce the amount of fuzzy sets of the

FSP. Specifically, before the execution of the hotspot function, several fuzzy sets represent

the same linguistic value. feature_selection() selects the most appropriate fuzzy

set for each linguistic value. The selected fuzzy set maximizes the product similarity ∗

membership. The calculation of similarity is discussed in detail in Section 5.5.3 and the

computation of membership is discussed in Section 5.1.3. We reduce the execution time of

the current hotspot function by using Numba[29, 30], a just-in-time (JIT) compiler for Python

that specializes in optimizing numerical computations. The main limitation of Numba is that

it only supports specific Python libraries and data structures. To enable optimiztions, we

transferred the main computational part of the hotspot function in a separate function, called

max_calculations(). max_calculations() returns a list of indexes of the fuzzy

sets that did not produce the maximum product and consequently will be deleted. Therefore,

the compiler is able to analyze and optimize the – much simpler – max_calculations()

function and, in turn, to reduce the execution time of feature_selection().

We use the @jit decorator offered by Numba on max_calculations() function and

specify the additional compilation option nopython=True. The nopython=True argument,

used with the @jit decorator, enforces strict type inference during compilation, aiming to

compile the function without depending on Python objects or the interpreter. If the compila-

tion process is successful, it generates highly efficient machine code that operates on statically

typed variables, like the NumPy arrays, typically resulting in significant performance gain.

The aforementioned code refactoring, the use of Numba, and the use of specific compi-

lation options resulted in a notable decrease in the application’s run-time to 6300 seconds.

This means that the optimized implementation is 1.5 times faster than our previous optimized

version of the application and 27.3 times faster than the original application.

5.2.3 Validation
The newly implemented system has been confirmed to be accurate since the mean accu-

racy value exceeds 0.75. Another validation step involved comparing the returned indexes of

the optimized and non-optimized implementations. The indexes were found to be identical.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

24 Chapter 5. Performance Optimization

5.2.4 Discussion
As it is the case with many optimizing compilers, the code must conform to several re-

quirements / limitations, otherwise Numba is not capable of assessing the safety of several

optimizations, and thus it does not apply them. Therefore, refactoring the code (or providing

hints to the compiler) is often a necessary step to assist code analysis and enable optimiza-

tions.

5.3 Optimization of Data Representation

5.3.1 Profiling results

45%

44%

7%
4%

execution time of application

similarity_measure_vector1() vectorization_similarities() my_clustering() other

Figure 5.4: Distribution of execution time

Number of calls Cumulative time Time per call

(sec) (sec)

similarity_measure_vector1 30 2730 90

vectorization_similarities 20 2660 132

my_clustering 10 430 43

Table 5.3: Calling statistics of top hotspot functions
As discussed earlier, the execution time of the application after the optimization step

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.3.2 Analysis of profiling results 25

described in Section 5.1 is 6300 seconds. Figure 5.4 displays the new top contributors to the

execution time of the application, as determined by a new profiling step. As we can observe,

the previous hotspot function remains a hotspot with a considerable contribution. Table 5.3

summarizes profiling results in terms of the number of calls of the top hotspot functions, the

execution time per call, and the cumulative execution time.

5.3.2 Analysis of profiling results
According to the profiling results in Table 5.3, functionsvectorization_similarities()

and similarity_measure_vector1() account for a similar fraction of the applica-

tion’s execution time at around 45%. However, this execution time is amortized to more

calls for similarity_measure_vector1(). In terms of the cumulative time per call,

vectorization_similarities() takes 132 seconds compared to the other func-

tion similarity_measure_vector1(), which takes 90 seconds. Therefore function

vectorization_similarities() appears as a more promising optimization target.

5.3.3 Optimization of hotspot function
Following a careful code review, we observed that the original implementation creates a

variety of different intermediate data structures in order to calculate an array, which serves

as the return value of the function. More specifically, it sequentially creates a dictionary,

a Pandas Dataframe based on that dictionary, and a list of the numerical values from the

data frame. Finally, it produces a final list with the flattened (serialized) elements of those

intermediate lists, using list comprehension. Converting data structures from one type to an-

other can introduce significant performance penalties, particularly when dealing with large

datasets. It should be noted that conversion between types is pure overhead, as it is related to

development and execution logistics and does not directly contribute towards the solution of

the problem at hand.

We mitigate this problem by using NumPy arrays as the main data structures, as we ob-

serve that only numerical values contribute to the return output of the function. As a result,

there is no need to create dictionaries. To implement this solution we replace Python func-

tion list.index() provided only for list data structures with a custom function that identifies

and returns the max membership value in an array, as well as the corresponding index in the

array. Then we directly collect the desired results in Numpy arrays. Finally, we concatenate

the transposed version of those arrays. This way, we produce the function output without

utilizing any of the previously mentioned diverse data types and structures.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

26 Chapter 5. Performance Optimization

After these modifications, the execution time of the application decreases to 4110 sec-

onds, which is 1.5 faster than our previous optimized implementation and 41.85 times faster

than the original implementation.

5.3.4 Validation
We employ a validation process similar to the one we used in the previous optimization

step to test the accuracy of the numerical values computed by the function. It should be noted

that both implementations yield identical results to the extent of precision supported by the

native float type.

5.3.5 Discussion
This optimization highlights that in an effort to achieve optimal performance, it is crucial

to carefully consider and choose the most suitable data structures that align with the specific

requirements of the code. Also, conversions between different data structures and data types

should be minimized, as they may introduce overhead – significant for programs manipulat-

ing large datasets.

5.4 Compiler optimization - vectorization_similarities()

5.4.1 Profiling results and analysis
Figure 5.5 depicts the top hotspot functions after the previous optimization step, whereas

Table 5.4 provides more details on the number of calls of each candidate hotspot and the

execution time (total and per call).

The results indicate similarity_measure_vector1() as the top hotspot. How-

ever, an earlier optimization step, namely turning to NumPy arrays as the main data structure,

paves the way to further optimization opportunities. Therefore, we opt to further optimize

function vectorization_similarities() using Numba.The function

vectorization_similarities() uses NumPy arrays, which are well supported by

Numba, and is adequately numerically intensive.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.4.2 Optimization of hotspot function 27

68%
11%

11%

10%

Execution time of application

similarity_measure_vector1() vectorization_similarities() my_clustering() other

Figure 5.5: Distribution of execution time

Number of calls Cumulative Time time per call

similarity_measure_vector1 30 2783s 90s

vectorization_similarities 20 465s 23s

my_clustering 10 408s 45s

Table 5.4: Calling statistics of top hotspot functions

5.4.2 Optimization of hotspot function
Wedirectly use the@jit decorator on the functionvectorization_similarities()

and we again specify the nopython=True compilation option.

The jit decoration with the additional compilation option nopython=True reduced the

application time to 3770 seconds, which is 1.1 times faster than the previous implementation

and 45.6 times faster than the original implementation.

5.4.3 Validation
Themean value of accuracy of the altered implementation remains higher than 0.75. Thus,

the new implementation validates as correct. Moreover, we compare the similarity values of

the sequential and parallelized versions of the hotspot function. The outcomes are identical

to the extent of the precision of the Python float type.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

28 Chapter 5. Performance Optimization

5.4.4 Discussion
We should point out that Python is an interpreted language, which is not designed for high

performance. Using just-in-time compilers – such as Numba – for selected parts of supported

code is a straightforward way to achieve measurable performance gains.

5.5 Computation reuse

5.5.1 Profiling results

74%

12%

6%
8%

Execution time of application

similarity_measure_vector1() my_clustering() update_weights_gd() other

Figure 5.6: Distribution of execution time

Number of calls Cumulative Time time per call

similarity_measure_vector1 30 2783s 90s

my_clustering 10 450s 45s

update_weights_gd 10 230s 23s

Table 5.5: Calling statistics of top hotspot functions
As mentioned earlier, the application’s execution time after the previous optimization

steps has been reduced to 3770 seconds. After a new profiling round, Figure 5.6 shows the

top contributors to the application’s execution time. As we can observe, the previous hotspot

function vectorization_similarities() no longer appears among the top contrib-

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.5.2 Analysis of profiling results 29

utors to execution time. The profiling results are summarized in Table 5.5, which includes

details such as the number of calls, execution time per call, and cumulative execution time

for each of the top hotspot functions.

5.5.2 Analysis of profiling results
The similarity_measure_vector1() function practically monopolizes the ex-

ecution time of the application. Further analyzing the profiling results and the code of the

function, we find that the linalg.norm()[31] function offered by NumPy[32] is the

primary contributor to this delay, responsible for 68% of the cumulative execution time of

similarity_measure_vector1(). The number of times linalg.norm() is being

called is high, at around 284,000,000 times, and each call takes around just 5.6 μsec.

5.5.3 Optimization of hotspot function
According to [1] the formula that computes the similarity of a feature vector xc

n, to a word

wc′
m,m = 1, . . . ,M , c′ = 1, . . . , C is:

sc,c′n,m = 1− ∥xc
n −wc′

m∥∑C
j=1

∑Mj

i=1 ∥xc
n −wj

i∥
(5.1)

where sc,c′n,m ∈ [0, 1] where:

n is the index of feature vector, n = 1, . . . , N c

xc
n is the n

th feature vector

wj
i is the i

th word from j class

The hotspot function similarity_measure_vector1() computes similarities ac-

cording to Equation 5.1. The initial implementation involved a loop that repeatedly called the

norm function to calculate the total distance, then another loop that recalculated and normal-

ized each distance. This caused the linalg.norm() function to be invoked redundantly.

In the new implementation, we calculate the distance between each feature vector and word in

each class, and store the results in a NumPy array. To compute the total distance, we perform

a sum reduction across all values in the array.

The optimized application now takes 2402 seconds, which is 1.6 times faster than the

previous optimized implementation and 71.6 times faster than the original one.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

30 Chapter 5. Performance Optimization

The optimized similarity_measure_vector1() function’s cumulative execu-

tion time is 1429s, which is 1.9 times faster than its original implementation.

5.5.4 Validation
In addition to checking that the mean value of accuracy remains higher than 0.75, we

evaluate our implementation by comparing the similarity values of the results. Using Python’s

float type representation, the outcomes are identical to all significant digits.

5.5.5 Discussion
This optimization highlights the trade off between memory space and execution time:

quite often it is preferable to store intermediate computations in order to reuse them, at the

expense of an increased memory footprint of the application.

5.6 Parallelization

5.6.1 Profiling results and analysis
Figure 5.7 reveals that similarity_measure_vector1() function still accounts

for 60% of the execution time. After drilling down into the profile, we find that 50% of the

hotspot function’s execution time is still spent in linalg.norm(). linalg.norm() is

called around 142,000,000 times after the previous optimization step, which corresponds to

half the number of calls in the original implementation.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.6.1 Profiling results and analysis 31

59%

19%

10%

12%

Execution time of application

similarity_measure_vector1() my_clustering() update_weights_gd() other

Figure 5.7: Distribution of execution time

Number of calls Cumulative Time time per call

similarity_measure_vector1 30 1429s 48s

my_clustering 10 450s 45s

update_weights_gd 10 230s 23s

Table 5.6: Calling statistics of top hotspot functions

Algorithm 1 Algorithm of hotspot function similarity_measure_vector1()
1: for c = 1, 2, . . . , C do

2: for n = 1, 2, . . . , N do

3: for j = 1, 2, . . . , C do

4: for i = 1, 2, . . . ,M j do

5: Calculate norms ∥xc
n − wj

i ∥

6: end for

7: end for

8: Calculate similarities between feature vector xc
n and every word w

9: 1− ∥xc
n−w∥∑C

j=1

∑Mj

i=1 ∥xc
n−wj

i ∥

10: end for

11: end for

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

32 Chapter 5. Performance Optimization

5.6.2 Optimization of hotspot function
FromEquation 5.1, we can observe that there is no dependency between the calculation of

similarities for different pairs of words / feature vectors. The aforementioned computation is

embarrassingly parallel, therefore the respective loops insimilarity_measure_vector1()

can be parallelized. We opted to parallelize the second level of the loop nest as demonstrated

in Algorithm 5.6.1. The reason is that the outermost loop iterates across classes and typically

has a low iteration count (2 in the case of binary classification). We tried different alternatives

for the parallelization of the loop. The technique that worked best was to create one pool of

processes, provided by the multiprocessing.pool library[33]. Figure 5.8 illustrates this tech-

nique and Figure 5.8α′ illustrates the life-cycle of the pool. We discuss alternative approaches

we experimented with in Section 5.6.5.

We create the pool of processes at the beginning of the application, and we submit tasks

to those processes whenever we want to achieve multiprocessing throughout the execution

of the application. We terminate the process pool when the application finishes performing

its multiprocessing tasks.

Figure 5.8 illustrates this technique in more detail. The key is maintaining these processes

throughout the execution and activating/reusing them each time the hotspot function is called.

More specifically, there are the main and pool processes, which are idle while executing serial

code. The main process becomes inactive as soon as tasks are submitted to the pool, enabling

the pool processes to carry out the tasks. When the pool processes have completed all duties,

the main process collects their results, and the pool processes revert to an idle state.

We replace the loop that calculates similarities with the parallel version of pool.map(), a

Python construct that allows the parallel runtime to assign the work corresponding to different

items in the iterable to different – potentially multiple – executors. Each item in the iterable

is added to the process pool as a distinct task. Similar to the built-in map[34] function, the

returned vector of similarity values is ordered according to the supplied iterable. This means

that the runtime supporting work distribution guarantees the ordering of the output to be

equivalent to that of the sequential implementation.

One of the parameters when experimenting with parallelism is the number of execution

vehicles (processor cores, virtually represented by processes) to use. We performed a perfor-

mance analysis with different numbers of processes. Figure 5.9 illustrates the experimental

results. We find that, for the particular dataset, the optimal number is 6 processes.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.6.2 Optimization of hotspot function 33

Create
multiprocessing.Pool()

Submit
map()

Shutdown
close()

(α′) Pool life-cycle

Main process Process pool

Submit
map()

SubtaskSubtaskSubtaskSubtaskSubtaskSubtask

ResultResultResultResultResultResult

Final Result

Idle Run

(β′) map() visualization

Figure 5.8: Multiprocessing Pool/map illustration

2502

1621
1425 1410 1461

1645

2200

0

500

1000

1500

2000

2500

3000

1 2 4 6 8 16 32

Number of processes

Execution time (sec)

Figure 5.9: Execution time achieved vs. number of processes

The slowdownwhen usingmore than six processes may be because optimal multiprocess-

ing performance requires maximizing the workload designated to each worker while mini-

mizing interprocess communication. Notably, the multiprocessing package utilizes queues

to facilitate interprocess communication. However, this procedure can be time-consuming

when dealing with large arguments, as pickling and interprocess communication require time.

This can decrease the positive aspects of multiprocessing. Moreover, increasing the number

of processes reduces the workload for each process, and the overhead of interprocess com-

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

34 Chapter 5. Performance Optimization

munication becomes disproportionately high compared to the speedup gained from utilizing

multiple processes. Thus, we observe from the figure that for a more significant number of

processes than 6 the execution time of the application increases.

The optimized implementation has an execution time of 1410 seconds, which is 1.7 times

faster than the previous optimization and 122 times faster than the original implementation.

The targeted function’s cumulative execution time is 418 seconds, which is 6.7 times faster

than the original version of the function and 3.4 times faster than the previous optimized

version of the hotspot function.

5.6.3 Validation
Apart from validating that the mean value of accuracy is greater than 0.75, we again eval-

uate our implementation by comparing the similarity values of the sequential and parallelized

versions of the hotspot function. The results are identical, to the extent of the accuracy of the

float type provided by Python.

5.6.4 Discussion
The exploitation of parallelism is a prerequisite for achieving high performance in mod-

ern computing systems, which scale to multiple cores. The exploitation of parallelism may

be implicit (through libraries). For instance, KMeans [35] from the ScikitLearn [36] li-

brary benefits from OpenMP parallelism through Cython[37]. Alternatively, parallelism ex-

ploitation may require explicit changes to the code or even the algorithm. In any case, the

exploitation of parallelism is typically associated with some overhead which increases with

the number of processes and the granularity of the tasks (the finer the granularity, the higher

the overhead). Figure 5.9 clearly illustrates this phenomenon, as, with more than 6 processes

the execution time increases, despite the target loop offering ample parallelism. The overhead

for the exploitation of parallelism depends on the implementation of the runtime system sup-

porting parallel execution, in our case offered by Python.

5.6.5 Unsuccessful optimization efforts

Multithreading

In an effort to reduce the execution time of the application, we tried thread-based par-

allelism via the Python threading library [38]. A thread is a sequence of instructions exe-

cuted within the context of a process. Multiple threads can be spawned from a single process

but share the same memory. Typically, when using multi-threaded code on a machine with

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.6.5 Unsuccessful optimization efforts 35

multiple cores, the available cores are expected to be utilized, resulting in improved overall

performance. However, the execution time of the multi-threaded implementation was higher

than the one of the sequential version.

After further investigation, we found that the Global Interpreter Lock (GIL) [39] is the

reason why this optimization was not successful. More specifically, Python GIL is a mutex

that allows a single thread to have control of the Python interpreter at a time. This ensures

that only one thread is running at any given time, which prevents races. Therefore, GIL intro-

duces a bottleneck by preventing threads to be executed concurrently within the same process

context, making it challenging to exploit CPU parallelism through threading. The execution

time of the application with just 2 threads was 2798, which is 1.17 times slower than the

previous implementation of the application.

Process pool creation strategy

Due to the GIL bottleneck, we experimented with multiprocessing (using multiple pro-

cesses rather than threads). In the initial attempt of multiprocessing, we create the pool as

a context manager using the with clause in place of the for loop that we aim to optimize.

This means that the manager automatically creates the pool of processes, executes the code

inside the block, and destroys the pool at block exit, by terminating the worker processes.

Therefore, for each iteration of the outer loop, a pool was created and destroyed, resulting

in unnecessary overhead. The execution time of the application was 2002 seconds, which is

faster but not as fast as the implementation discussed in Section 5.6.2.

Using the pool as a context manager proved impractical. Instead, we create a pool of

workers only once, in main, execute the code of the application with the same pool of work-

ers, and manually close the pool. When the code is not in a multiprocessing phase, the pool

remains idle.

Creation of individual processes

We also experimented with creating and using individual processes, instead of pool of

workers. To assign work to these processes, we developed a custom implementation that

works similarly to pool/map. Although the execution time was higher the sequential version

of the hotspot function, it led to the idea of manually creating/destroying the pool of workers

outside the loop and consequently outside the hotspot function. The application’s run-time

was 6966 seconds, which is 2.9 times slower than the previous implementation.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

36 Chapter 5. Performance Optimization

Map chunksize

To further optimize the application, we experimentedwith the chunk size. Specifically, we

set chunk size=1 and implemented the 2nd for loop inside the calculate_distances()

function, which is the function that the workers execute. This loop iterates as many times as

the value of the previous chunk size, namely is loop_iteration_count
number_of_pool_workers

. The rationale was that

the calculate_distances() function would be called fewer times and would create

less contention among pool workers. The execution time of the application decreased to 1798

seconds. However, with the implementation mentioned in Section 5.6.2 the application run-

time dropped to 1410 seconds.

5.7 Classification algorithm GPU acceleration

5.7.1 Profiling results
Wehave successfully reduced the application’s runtime to 1410 seconds viamulti-processing,

using 6 processes. Figure ?? displays the sections of the application that were the most time-

consuming in the next profiling round. Notably, the hotspot function that previously caused

the most delay now ranks as the second most time-consuming. Table ?? summarizes the pro-

filing results, including crucial metrics such as the number of calls, execution time per call,

and cumulative execution time for each of the top hotspot functions.

5.7.2 Analysis of profiling results
Figure ?? reveals that my_clustering() function now accounts for 30% of the appli-

cation time. After analyzing the profiling results, we identify the execution of the clustering

algorithm as the main time-consuming computation of the hotspot function. The clustering

algorithm is K-means from the Scikit-Learn [35] library, an unsupervised learning algorithm

that partitions a data set into K distinct, non-overlapping clusters, and is based on Lloyd’s

implementation [40].

The k-means algorithm takes, as input, a set of data points and the number of clusters,

k. K-means selects a group of cluster centers, referred to as centroids, minimizing a crite-

rion known as the inertia or within-cluster sum-of-squares. The inertia quantifies the sum of

the squared distances of the points to their closest centroid in each cluster, as described by

formula 5.2. n∑
i=1

min
µj∈C

(||xi − µj||2) (5.2)

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.7.3 Optimization of hotspot function 37

where:

n is the total number of data points in the dataset,

C is the set of clusters,

µj is the centroid (mean) of cluster j,

xi is the i-th data point in the dataset, and

∥ · ∥2 represents the squared Euclidean distance.

5.7.3 Optimization of hotspot function
As previously stated in Section 5.6.4, KMeans from Scikit-Learn[41] library leverages

OpenMP-based parallelism when possible [42]. In an effort to further accelerate Kmeans,

we aim to execute it using a GPU, whenever such an accelerator is available. Generally,

GPUs are well-suited for parallel processing duties and can greatly accelerate specific pat-

terns of computation in comparison to CPUs. Utilizing the enormous power of GPUs can

substantially enhance performance in numerical computations. The effectiveness of using a

GPU to execute k-means is dependent on the size of the dataset and the efficiency of the

GPU implementation. Rapids [43] is a collection of GPU-accelerated open-source Python

libraries. These libraries aim to improve data science and analytics pipelines. The libraries

offer a familiar Python interface but leverage NVIDIA CUDA primitives to exploit GPUs as

accelerators [44].

Rapids includes a machine learning library called cuML. cuML supports machine learn-

ing tasks without the need to write code that is specifically developed and optimized for a

GPU. In other words, it offers aGPU implementation of Scikit-learn’sKmeans functionality[45].

Therefore, we replaced the functions from Scikit-learn with functions from cuML.

After these modifications, the execution time of the application decreases to 943 seconds,

which is 1.5 times faster than our previous optimized implementation and 182 times faster

than the original implementation. In addition, the hotspot function’s execution time is now

122 seconds, so the hotspot function has been accelerated by a factor of 3.

5.7.4 Validation
Themean value of the updated implementation’s accuracy is greater than 0.75. Therefore,

this optimization does not affect the precision of the application.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

38 Chapter 5. Performance Optimization

5.7.5 Clustering acceleration - fuzification()

Analysis of profiling results

44%

13%

13%

30%

Execution time of application

similarity_measure_vector1() fuzzification() my_clustering() other

Figure 5.10: Distribution of execution time

Number of calls Cumulative Time time per call

similarity_measure_vector1 30 418s 14s

fuzzification 10 123s 12s

my_clustering 10 122s 12s

Table 5.7: Statistics of possible hotspot functions
The application’s execution time has been reduced to 943 seconds following the previous

optimization steps. Figure 5.10 displays the main contributors to the application’s execu-

tion time following a new profiling round. The previous hotspot function now ranks third.

Table 5.7 summarizes the profiling results. The functions that are considered as potential

hotspot functions are similarity_measure_vector1()which has already been opti-

mized using multiprocessing as described in Section 5.6.2, and fuzzification()which

accounts for 13% of the application’s execution time.

Optimization of the hotspot function

LetXc
= {xc

1,x
c
2, . . . ,x

c
Nc} be a set ofNc training feature vectorsxc

n =
(
xc
n,1, x

c
n,1, . . . , x

c
n,D

)
,

n = 1, . . . , N c belonging to class c = 1, . . . , C . The fuzzification() function’s pur-

pose is to create fuzzy sets. Initially, the hotspot function executes the K-means clustering

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.7.6 Discussion 39

algorithm to group the feature vectors of each set Xc intoMc < Nc clusters.

The clustering algorithm is the main time-consuming task of the hotspot function. The

code uses the K-means implementation from Scikit-Learn [35]. We replace the Scikit-Learn

K-Means implementation with the CuML K-Means implementation offered by RAPIDS,

similarly to the approach described in Section 5.7.3

The application now runs in 864 seconds, which is 1.1 times faster than the optimized

version and 199 times faster than the original implementation. Particularly, the cumulative

time of the hotspot function is 122 sec, which is 10 times faster than the previous version of

the function fuzzification().

Validation

After this optimization step, we validated that mean accuracy remains over 0.75. There-

fore, this optimization preserves the quality of application results.

5.7.6 Discussion
The K-means algorithm is sensitive to the initial selection of cluster centroids[46]. Our

experiments showed that the cuML K-Means implementation with the initialization flag

’scalable-k-means++’ or ’k-means||’ (using scalable K-Means++ or parallel K-Means reslec-

tively for centroid initialization), had much lower mean accuracy at 0.68 < 0.75 compared

with the implementation using Scikit-Learn K-Means, despite being faster. On the other hand,

when using the ’random’ flag to initialize the centroids with the same additional parameters,

the application achieved a mean classification accuracy of 0.81, which exceeds the valida-

tion criterion of “accuracy >= 0.75”. It should be noted that different initialization methods

may be more / less appropriate for different datasets. As a consequence, evaluating different

centroid initialization methods may be necessary.

5.7.7 Unsuccessful attempts

FAISS

Apart from RAPIDS, we experimented with FAISS [47] library. We developed an imple-

mentation that performs K-Means clustering with functions provided by Faiss on the CPU.

The execution time of fuzification() was higher. The execution time of the applica-

tion with the FAISS implementation is 1737.7 seconds which is 1.23 times slower than the

previous implementation of the application. Particularly, the hotspot function is 1.7 times

slower than the initial SciKit-Learn implementation.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

40 Chapter 5. Performance Optimization

Mini-Batch K-Means

Another optimization direction was to replace K-Means from SciKit-Learn with Mini-

Batch K-Means [48]. Mini-Batch K-Means, provided by SciKit-Learn, is a variant of the

K-Means algorithm that uses mini-batches to reduce computation time. In each training it-

eration, mini-batches are used, which are randomly sampled subsets of the input data. The

execution time of the hotspot function was reduced, however Mini-Batch had inferior per-

formance compared with the cuML implementation. More specifically, using Mini-Batch K-

Means reduced the cumulative run-time to 17.4s for each call of the hotspot function, which is

2.47 times faster than the initial K-Means by SciKit-Learn. However, with cuML K-Means,

run-time per call was reduced to 12s, which is 3.6 times faster than the initial implementation.

5.8 GPU acceleration

5.8.1 Profiling results
Figure 5.11 highlights the most notable hotspot functions following the previous opti-

mization rounds. Further information on each candidate hotspot, including the number of

calls and their respective execution times, is provided in Table 5.8.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.8.2 Analysis of profiling results 41

49%

14%

13%

24%

Execution time of application

similarity_measure_vector1() my_clustering() update_weights_gd other

Figure 5.11: Distribution of execution time

Number of calls Cumulative Time time per call

similarity_measure_vector1 30 418s 14s

my_clustering 10 122s 12s

update_weights_gd 10 115s 11.5s

Table 5.8: Statistics of possible hotspot functions

5.8.2 Analysis of profiling results
After optimizing the K-Means algorithm, the application execution time decreases to 864

seconds. fuzification(), the previous hotspot function, is no longer among the slowest

ones and does not appear in Table 5.8. Although we have optimized

similarity_measure_vector1() usingmultiprocessing, as described in Section 5.6.2,

it still accounts for 49% of the application’s runtime. Therefore, taking into account Amdahl’s

Law, we focus again on similarity_measure_vector1() as a target hotspot func-

tion.

5.8.3 Optimization of hotspot function
Wepreviously optimized the hotspot function using Python’s multiprocessing capabilities

to exploit multiple CPU cores. We will now focus on leveraging the computational power

provided by the GPU.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

42 Chapter 5. Performance Optimization

NumPy has been the standard library for array manipulation and numerical operations in

Python for many years, but it lacks native GPU acceleration.

cuPy [49, 50] is a GPU-Accelerated NumPy Replacement. cuPy is a high-performance

library that provides GPU acceleration while conforming to the NumPy API. It facilitates

transparently transferring existing code using NumPy to the GPU, thereby achieving sig-

nificant performance improvements for computationally intensive tasks. Using the parallel

processing capabilities of NVIDIA GPUs, cuPy enables massively parallel array operations

and mathematical computations.

CuPy supports all NumPy functions that were utilized in the original implementation,

such as linalg.norm. The challenging task is transferring as few and as small arrays as possible

to the GPU and back to the CPU [51]. The reason is that GPUs tyically have limited memory

space (compared to the amount of RAM available on a modern compute node). Moreover,

data transfers between the GPU and CPU are particularly time consuming.

The new implementation demonstrated a significant performance improvement, reduc-

ing the execution time to 685 seconds. This is 1.3 times faster than the optimized version

produced in the previous round and an impressive 251 times faster than the original imple-

mentation. Notably, the cumulative time of the hotspot function is 257 seconds, which is

1.6 times faster than the previous optimized version that uses multiprocessing, and 5.6 times

faster than the sequential implementation of the hotspot function. The performance of the

different implementations of the hotspot are summarized in Table 5.9 and Figure 5.12.

5.8.4 Validation
In addition to ensuring that themean value of the accuracy is higher than 0.75, we evaluate

our implementation by comparing the sequential and GPU accelerated versions’ similarity

results. Similarity values are identical in all significant digits.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

5.8.5 Discussion 43

Implementation Cumulative Time of hotspot function

Serial version 1429s

Multiprocessing 418s

GPU 257s

Table 5.9: Cumulative Time of hotspot function for different implementations

1429

418

257

0

200

400

600

800

1000

1200

1400

1600

Serial Multiprocessing GPU (cuPy)

Execution time (sec)

Figure 5.12: Comparison of different implementations of hotspot function

5.8.5 Discussion
The CPU and GPU are distinct components with separate memory. A NumPy-created

array is physically located in the host’s main memory (RAM) and is accessible to the CPU

but not the GPU. Before executing any operations on it, the data must be copied to the GPU

memory. Additionally, the computed results need to be transfered back to the host (CPU).

This procedure is time-consuming, both due to latency and bandwidth limitations. Optimal

exploitation of the CPU-GPU interconnect is achieved with few transfers of large, consecu-

tive data chinks. Therefore, we copy the whole array of each class once, instead of copying

the segment used for each iteration.

An important consideration is the limited memory space of our GPU. If transferring the

full array is not possible, the implementation may fall-back to copying the array in multiple

chunks (with each chunk being as close as possible to the capacity of the GPU memory).

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

44 Chapter 5. Performance Optimization

5.9 Post-optimization profiling

We were able to significantly improve the overall execution time of the application by

performing the sequence of optimizations discussed earlier in this chapter. Figure 5.13 illus-

trates the heaviest functions and Table 5.10 provides more details about the cumulative and

per-call time of these functions after all optimizations. The function that previously was the

main bottleneck is now the third slowest.

38%

16%
16%

30%

Execution time of application

similarity_measure_vector1() my_clustering() update_weights_gd() other

Figure 5.13: Distribution of execution time

Number of calls Cumulative Time time per call

similarity_measure_vector1 30 257s 8.6s

my_clustering 10 112s 11.2s

update_weights_gd 10 110s 11s

Table 5.10: Statistics of possible hotspot functions

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Chapter 6

Interpretable classification case study

In this chapter, we demonstrate how the optimized application detects possible patholo-

gies in biomedical images and how the application explains the methodology that led to a

particular decision outcome. As we previously mentioned in the Thesis, we use the kvasir

dataset that comprises two classes: one consists of images with some type of abnormality,

and one contains normal images.For each image the application extracts a feature vector with

the aid of CNN model VGG-16. The vector of the unlabeled image from the testing set is de-

fined as xu.

As mentioned in Section 3.1.5, the application uses the value computed using Equa-

tion 3.1 to classify the input feature vector xu to the appropriate class.

In the following we present 2 successful classification cases. The first one classifies an

unlabeled vector to the class that does not contain pathologies and the second case classifies

another unlabeled vector to the class with pathologies.

6.1 Classification of image without abnormality

Figure 6.1α′ is the input image from which the sample vector xu is produced. Figure 6.1β′

consists of the images whose vectors are closest to the centroids that are selected after the

phrase reduction. Specifically the top row consists of images from the first class with patholo-

gies, and the second row consists of images from the second class without any abnormality.

For input vector xu, the application acquired 2 relevant rules from RB. Table 6.1 provides

comprehensive details in IF-THEN format for each rule. The application calculates yc,c′(xu)

for each rule using formula 3.1. Since we have more than 1 rule, the total yc,c′ (the result in

45
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

46 Chapter 6. Interpretable classification case study

the third column of Table 6.1) is calculated as:

total_yc,c′(xu) =

∑
∀Rule

yc,c
′
(xu)

number of relevant Rules
(6.1)

(α′) Input

Class 1

Class 2

Image 1 Image 2 Image 3 Image 4 Image 5

Image 1 Image 2 Image 3 Image 4 Image 5

(β′) Vocabulary

Figure 6.1: Classification of Image without abnormality

RULE IF THEN RESULT

1 If the similarity of the sample xu withw1
5 is Very Low and withw1

1 is Low and withw1
4 is Medium and

withw1
3 is High and withw1

2 is Very High and withw2
4 is Very Low and withw2

2 is Low and withw2
1

is Medium and withw2
5 is High and withw2

4 is Very High

Then Class 1
total_yc,c′ (xu) = 0.88

2 If the similarity of the sample xu withw1
2 is Very Low and withw1

1 is Low and withw1
3 is Medium and

withw1
4 is High and withw1

5 is Very High and withw2
3 is Very Low and withw2

2 is Low and withw2
1

is Medium and withw2
4 is High and withw2

5 is Very High

Then Class 2

Table 6.1: FSP Classification Rules – normal image

The classification results in Table 6.1 show that the input vector is classified in class 2.

Particularly, the result>0 means that the score for class 2 is higher than the score of class 1,

which is correct since the image does not illustrate any abnormality.

6.2 Classification of a normal endoscopic image

Figure 6.2α′ is the input image from which the sample vector xu is obtained. Figure 6.2β′

consists of the images whose vectors are closest to the centroids that are selected after the

phrase reduction. Specifically, the top row consists of images from the first class with abnor-

malities, and the second row consists of images from the second class without any abnormal-

ity. The application obtained input vector xu from image 6.2α′ and acquired 2 relevant rules

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

6.2 Classification of a normal endoscopic image 47

from the RB. Table 6.2 provides the details of each rule in IF-THEN format. The application

calculates yc,c′(xu) for each rule using formula 3.1. The result in the third column in Table 6.2

is again computed using equation 6.1.

(α′) Input

Class 1

Class 2

Image 1 Image 2 Image 3 Image 4 Image 5

Image 1 Image 2 Image 3 Image 4 Image 5

(β′) Images closest to centroids

Figure 6.2: Classification of Image with abnormality

RULE IF THEN RESULT

1 If the similarity of the sample xu withw1
5 is Very Low and withw1

2 is Low and withw1
4 is Medium and

withw1
1 is High and withw1

3 is Very High and withw2
4 is Very Low and withw2

5 is Low and withw2
1

is Medium and withw2
2 is High and withw1

1 is Very High

Then Class 1
total_yc,c′ (xu) = −3.1

2 If the similarity of the sample xu withw1
3 is Very Low and withw1

4 is Low and withw1
5 is Medium and

withw1
2 is High and withw1

1 is Very High and withw2
3 is Very Low and withw2

1 is Low and withw2
5

is Medium and withw2
3 is High and withw2

2 is Very High

Then Class 2

Table 6.2: FSP Classification Rules – abnormal image

The classification results in Table 6.2 show that the input vector is classified in class 1.

Particularly, result<0 means that the score for class 1 is larger than the score of class 2, which

is correct since the image displays an abnormality.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Chapter 7

Conclusions

7.1 Conclusions and future work

We successfully optimized the execution time of an application that is responsible for clas-

sifying biomedical images in an effort to detect possible abnormalities. More specifically, we

improved the application from an algorithmic approach without affecting the accurate results

that the application produced in its original form. We have also adjusted parts of the code to

be recognizable by the Numba compiler for further optimization. We achieved parallelization

with the aid of multiple processes. We accelerated the classification algorithm with the use

of GPU. Finally, we achieved optimization by executing operations on the GPU. For each

experiment, we profiled the application to detect which part of the code is highly prioritized

for optimization. The optimized FSP application has a 251000% speedup.

There are several important lessons we learned from this Thesis. Firstly, many stan-

dard Python libraries provide functions that are mostly constructed with a focus on user-

friendliness and adaptability, rather than performance. Third-party libraries may provide

functions that sacrifice optimality for generality and execute redundant computations. Sec-

ondly, Python is an interpreted language, which means that code is executed line by line by

the Python interpreter. The interpreter adds additional performance overhead that compiled

code would not have. Furthermore, there is Python’s Global Interpreter Lock (GIL) that al-

lows only one thread to execute in the interpreter at any time. Thus, multithreading is not a

realistic option to improve in Python.

Regarding future work, it is possible to further optimize the parts of the code where

Numba JIT is used, by employing CUDA JIT, a low-level entry point to the CUDA fea-

49
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

50 Chapter 7. Conclusions

tures in Numba. Another direction is to identify appropriate libraries and/or develop code

that can exploit multiple GPUs, a common configuration of modern heterogeneous systems.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

Bibliography

[1] Michael D. Vasilakakis and Dimitris K. Iakovidis. Fuzzy similarity phrases for inter-

pretable data classification. Information Sciences, 624:881–907, 2023.

[2] Shah Hussain, Iqra Mubeen, Niamat Ullah, Syed Shah, Bakhtawar Khan, Muhammad

Zahoor, R. Ullah, Farhat Khan, and Mujeeb Sultan. Modern diagnostic imaging tech-

nique applications and risk factors in the medical field: A review. BioMed Research

International, 2022, 06 2022.

[3] Zeeshan Ahmed, Saman Zeeshan, and Thomas Dandekar. Mining biomedical im-

ages towards valuable information retrieval in biomedical and life sciences. Database,

2016:baw118, 08 2016.

[4] Julian Varghese. Artificial intelligence in medicine: Chances and challenges for wide

clinical adoption. Visceral Medicine, 36:1–7, 10 2020.

[5] Curtis Langlotz, Bibb Allen, Bradley Erickson, Jayashree Kalpathy-Cramer, Keith

Bigelow, Tessa Cook, Adam Flanders, Matthew Lungren, David Mendelson, Jeffrey

Rudie, Ge Wang, and Krishna Kandarpa. A roadmap for foundational research on arti-

ficial intelligence in medical imaging: From the 2018 nih/rsna/acr/the academy work-

shop. Radiology, 291:190613, 04 2019.

[6] Sang Kim and Yun Jeong Lim. Artificial intelligence in capsule endoscopy: A practical

guide to its past and future challenges. Diagnostics, 11:1722, 09 2021.

[7] Gian Tontini, Alessandro Rimondi, Marta Vernero, Helmut Neumann, Maurizio Vec-

chi, Cristina Bezzio, and Flaminia Cavallaro. Artificial intelligence in gastrointesti-

nal endoscopy for inflammatory bowel disease: a systematic review and new horizons.

Therapeutic Advances in Gastroenterology, 14:175628482110177, 06 2021.

51
Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

52 Bibliography

[8] Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane. Artificial intelligence in health-

care. Nat Biomed Eng, 2(10):719–731, 2018 10 2018.

[9] Ribana Roscher, Bastian Bohn, Marco F. Duarte, and Jochen Garcke. Explainable ma-

chine learning for scientific insights and discoveries. IEEE Access, 8:42200–42216,

2020.

[10] Andreas Holzinger. From machine learning to explainable ai. pages 55–66, 08 2018.

[11] Owen Shen. Interpretability in ml: A broad overview. The Gradient, 2020.

[12] Noha Ossama El-Ganainy, Ilangko Balasingham, Per Steinar Halvorsen, and Leiv Arne

Rosseland. A new real time clinical decision support system using machine learning

for critical care units. IEEE Access, 8:185676–185687, 2020.

[13] Institute of Medicine, National Academies of Sciences, Engineering, and Medicine.

Improving Diagnosis in Health Care. The National Academies Press, Washington, DC,

2015.

[14] Eyad Elyan, Pattaramon Vuttipittayamongkol, Pamela Johnston, Kyle Martin, Kyle

McPherson, Carlos Moreno-García, Chrisina Jayne, and Md. Mostafa Kamal Sarker.

Computer vision and machine learning for medical image analysis: recent advances,

challenges, and way forward. Artificial Intelligence Surgery, 2, 03 2022.

[15] Nick Holford, Holly Kimko, Jonathan Monteleone, and Carl Peck. Simulation of clin-

ical trials. Annual review of pharmacology and toxicology, 40:209–34, 02 2000.

[16] Eric Topol. High-performance medicine: the convergence of human and artificial intel-

ligence. Nature Medicine, 25, 01 2019.

[17] Python 3.9 documentation. https://docs.python.org/3.9/contents.

html.

[18] cprofile documentation. https://docs.python.org/3/library/

profile.html.

[19] Snakeviz documentation. https://jiffyclub.github.io/snakeviz.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

https://docs.python.org/3.9/contents.html
https://docs.python.org/3.9/contents.html
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://jiffyclub.github.io/snakeviz

Bibliography 53

[20] Devore J.L. and Peck L.E. Pattern Recognition Principles. AddisonWesley Publishing

Company, 1983.

[21] P. Baldi. Gradient descent learning algorithm overview: a general dynamical systems

perspective. IEEE Transactions on Neural Networks, 6(1):182–195, 1995.

[22] Marina Sokolova and Guy Lapalme. A systematic analysis of performancemeasures for

classification tasks. Information Processing and Management, 45:427–437, 07 2009.

[23] Pia H. Smedsrud, Vajira Thambawita, Steven A. Hicks, Henrik Gjestang, Oda Olsen

Nedrejord, Espen Næss, Hanna Borgli, Debesh Jha, Tor Jan Derek Berstad, Sigrun L.

Eskeland, Mathias Lux, Håvard Espeland, Andreas Petlund, Duc Tien Dang Nguyen,

Enrique Garcia-Ceja, Dag Johansen, Peter T. Schmidt, Ervin Toth, Hugo L. Hammer,

Thomas de Lange, Michael A. Riegler, and Pål Halvorsen. Kvasir-capsule, a video

capsule endoscopy dataset. volume 8. Nature Publishing Group, Dec 2021.

[24] Michael Vasilakakis. Personal communication.

[25] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv 1409.1556, 09 2014.

[26] Afips ’67 (spring): Proceedings of the april 18-20, 1967, spring joint computer confer-

ence. New York, NY, USA, 1967. Association for Computing Machinery.

[27] Scikit fuzzy trimf. https://pythonhosted.org/scikit-fuzzy/api/

api.html.

[28] Matlab documentation. https://www.mathworks.com/help/fuzzy/

trimf.html.

[29] Numba documentation. https://numba.pydata.org/numba-doc/

latest/index.html.

[30] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit

compiler. In Proceedings of the SecondWorkshop on the LLVMCompiler Infrastructure

in HPC, LLVM ’15, NewYork, NY, USA, 2015. Association for ComputingMachinery.

[31] Norm documentation. https://numpy.org/doc/stable/reference/

generated/numpy.linalg.norm.html.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

https://pythonhosted.org/scikit-fuzzy/api/api.html
https://pythonhosted.org/scikit-fuzzy/api/api.html
https://www.mathworks.com/help/fuzzy/trimf.html
https://www.mathworks.com/help/fuzzy/trimf.html
https://numba.pydata.org/numba-doc/latest/index.html
https://numba.pydata.org/numba-doc/latest/index.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html

54 Bibliography

[32] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli

Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.

Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew

Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,

Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,

585(7825):357–362, September 2020.

[33] multiprocessing documentation. https://docs.python.org/3/library/

multiprocessing.html.

[34] built-in map documentation. https://docs.python.org/3/library/

functions.html#map.

[35] Scikit-learn kmeans documentation. https://scikit-learn.org/stable/

modules/generated/sklearn.cluster.KMeans.html#sklearn.

cluster.KMeans.

[36] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,

Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in python. J.

Mach. Learn. Res., 12(null):2825–2830, Nov 2011.

[37] Cython documentation. https://cython.readthedocs.io/en/latest/.

[38] Multi-threading. https://docs.python.org/3/library/threading.

html.

[39] Global interpreter lock. https://wiki.python.org/moin/

GlobalInterpreterLock.

[40] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,

28(2):129–137, 1982.

[41] Scikit-learn documentation. https://scikit-learn.org/stable/

modules/clustering.html.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#map
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://cython.readthedocs.io/en/latest/
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html

Bibliography 55

[42] Scikit-learn documentation. https://scikit-learn.org/stable/

modules/clustering.html#low-level-parallelism.

[43] Rapids documentation. https://docs.rapids.ai/.

[44] Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine learning in python:

Main developments and technology trends in data science, machine learning, and arti-

ficial intelligence. Information, 11(4):193, Apr 2020.

[45] Corey Nolet. Combining speed and scale to accelerate k-means in rapids cuml. Medium

RAPIDS AI, 2019.

[46] M. Emre Celebi, Hassan A. Kingravi, and Patricio A. Vela. A comparative study of

efficient initialization methods for the k-means clustering algorithm. Expert Systems

with Applications, 40(1):200–210, 2013.

[47] Faiss documentation. https://faiss.ai/index.html.

[48] Mini-batch k-means documentation. https://scikit-learn.org/stable/

modules/generated/sklearn.cluster.MiniBatchKMeans.html.

[49] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis.

Cupy: A numpy-compatible library for nvidia gpu calculations. InProceedings ofWork-

shop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Confer-

ence on Neural Information Processing Systems (NIPS), 2017.

[50] Matthew Rocklin. High performance python components. In Proceedings of the Plat-

form for Advanced Scientific Computing (PASC) Conference, Zurich, Switzerland, June

2019.

[51] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, and Masato Edahiro.

Data transfer matters for gpu computing. In Proceedings of the International Con-

ference on Parallel and Distributed Systems - ICPADS, pages 275–282, Seoul, Korea

(South), 12 2013.

Institutional Repository - Library & Information Centre - University of Thessaly
21/02/2025 23:31:15 EET - 18.116.43.121

https://scikit-learn.org/stable/modules/clustering.html#low-level-parallelism
https://scikit-learn.org/stable/modules/clustering.html#low-level-parallelism
https://docs.rapids.ai/
https://faiss.ai/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Motivation
	Contribution
	Thesis Structure

	Background – Profiling
	cProfiler
	Vizualization of profiling results: snakeviz

	Background – Fuzzy similarity phrases (FSP) for interpretable data classification
	FSP Application Structure
	FSP Model Construction
	Creation of Phrases and Phrases Reduction
	Rule Generation
	Model Validation
	Classification of testing set

	Dataset

	Methodology
	Profile-guided optimization
	Application profiling
	Analysis of profiling results
	Optimization of hotspot functions

	Hardware and Software infrastructure
	Baseline application
	Validation

	Performance Optimization
	Algorithmic optimization
	Profiling results
	Analysis of profiling results
	Optimization of hotspot function
	Validation
	Discussion

	Compiler Optimization - feature_selection()
	Analysis of profiling results
	Optimization of hotspot function
	Validation
	Discussion

	Optimization of Data Representation
	Profiling results
	Analysis of profiling results
	Optimization of hotspot function
	Validation
	Discussion

	Compiler optimization - vectorization_similarities()
	Profiling results and analysis
	Optimization of hotspot function
	Validation
	Discussion

	Computation reuse
	Profiling results
	Analysis of profiling results
	Optimization of hotspot function
	Validation
	Discussion

	Parallelization
	Profiling results and analysis
	Optimization of hotspot function
	Validation
	Discussion
	Unsuccessful optimization efforts

	Classification algorithm GPU acceleration
	Profiling results
	Analysis of profiling results
	Optimization of hotspot function
	Validation
	Clustering acceleration - fuzification()
	Discussion
	Unsuccessful attempts

	GPU acceleration
	Profiling results
	Analysis of profiling results
	Optimization of hotspot function
	Validation
	Discussion

	Post-optimization profiling

	Interpretable classification case study
	 Classification of image without abnormality
	Classification of a normal endoscopic image

	Conclusions
	Conclusions and future work

	Bibliography

