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xii Abstract

Diploma Thesis

TRAINING SPIKING NEURAL NETWORKS

Panagiotis Tsoukas

Abstract

The quest to replicate the intricate capabilities of the human brain in artificial intelligence

has long intrigued researchers. Although traditional artificial neural networks have achieved

impressive results, they struggle to match the innate efficiency and adaptability of biological

neurons. Spiking Neural Networks (SNNs) present a compelling avenue for reconciling this

disparity by emulating neuron spiking behavior.However, the conventional shallow archi-

tectures of SNNs have limitations when it comes to effectively representing intricate infor-

mation. Efforts to train deep SNNs using input spikes have, thus far, not yielded successful

outcomes. Various approaches have been proposed to circumvent this challenge, including

the conversion of pre-trained deep Artificial Neural Networks (ANNs) into SNNs. Neverthe-

less, this conversion method falls short in capturing the nuanced temporal dynamics inherent

in spiking systems. Conversely, the direct training of deep SNNs with input spike events re-

mains a formidable task due to the discontinuous and non-differentiable nature of spike gen-

eration. To address this challenge, we propose an approximate derivative method that takes

into account the leaky behavior exhibited by LIF neurons. This novel approach empowers the

direct training of deep convolutional SNNs, using spike-based backpropagation with input

spike events. Our experimental results validate the effectiveness of this spike-based learn-

ing technique on deep network architectures such as VGG and Residual models, consistently

achieving superior classification accuracies on the MNIST, SVHN, and CIFAR-10 datasets

when compared to other SNNs trained using spike-based learning. Furthermore, we conduct

a comprehensive analysis of sparse event-based computations to underscore the efficiency of

our proposed SNN training method for inference operations within the spiking domain.Our

experimental results validate the effectiveness of this spike-based learning technique on deep

network architectures such as VGG and Residual models, consistently achieving really good

classification accuracies on the MNIST, SVHN and CIFAR-10 datasets when compared to

other SNNs trained using spike-based learning.
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Περίληψη xiii

Διπλωματική Εργασία

ΕΚΠΑΙΔΕΥΣΗ ΑΚΙΔΩΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ

Παναγιώτης Τσούκας

Περίληψη

Η αναζήτηση της αναπαραγωγής των περίπλοκων δυνατοτήτων του ανθρώπινου εγκεφά-

λου στην τεχνητή νοημοσύνη απασχολεί εδώ και καιρό τους ερευνητές. Αν και τα παρα-

δοσιακά τεχνητά νευρωνικά δίκτυα έχουν επιτύχει εντυπωσιακά αποτελέσματα, αγωνίζον-

ται να φτάσουν την έμφυτη αποτελεσματικότητα και προσαρμοστικότητα των βιολογικών

νευρώνων. Τα ακιδωτά νευρωνικά δίκτυα (SNNs) παρουσιάζουν μια συναρπαστική οδό για

τη συμφιλίωση αυτής της ασυμφωνίας με τη μίμηση της συμπεριφοράς των νευρώνων που

εκτελούν.Ωστόσο, οι συμβατικές ρηχές αρχιτεκτονικές των SNNs έχουν περιορισμούς όσον

αφορά την αποτελεσματική αναπαράσταση περίπλοκων πληροφοριών. Οι προσπάθειες για

την εκπαίδευση βαθιών SNNs με τη χρήση ακίδων εισόδου δεν έχουν, μέχρι στιγμής, αποφέ-

ρει επιτυχή αποτελέσματα. Έχουν προταθεί διάφορες προσεγγίσεις για την παράκαμψη αυτής

της πρόκλησης, συμπεριλαμβανομένης της μετατροπής προ-εκπαιδευμένων βαθιών Τεχνη-

τών Νευρωνικών Δικτύων (ANNs) σε SNN. Παρ’ όλα αυτά, αυτή η μέθοδος μετατροπής

υπολείπεται στην αποτύπωση της διαφοροποιημένης χρονικής δυναμικής που χαρακτηρίζει

τα συστήματα ακίδων. Αντίθετα, η άμεση εκπαίδευση βαθιών SNN με γεγονότα ακίδων ει-

σόδου παραμένει ένα δύσκολο έργο λόγω της ασυνεχούς και μη διαφοροποιήσιμης φύσης

του τρόπου παραγωγής ακίδων.Για την αντιμετώπιση αυτής της πρόκλησης, προτείνουμε

μια μέθοδο προσεγγιστικής παραγώγισης που λαμβάνει υπόψη τη διαρρέουσα συμπεριφορά

που παρουσιάζουν οι νευρώνες LIF. Αυτή η νέα προσέγγιση ενδυναμώνει την άμεση εκπαί-

δευση βαθιών συνελικτικών SNN, χρησιμοποιώντας οπίσθια διάδοση με βάση τις εκτελέσεις

των ακιδωτών γεγονότων.Τα πειραματικά μας αποτελέσματα επικυρώνουν την αποτελεσμα-

τικότητα αυτής της τεχνικής μάθησης με βάση τις ακίδες σε αρχιτεκτονικές βαθιών δικτύων,

όπως τα μοντέλα VGG και Residual, επιτυγχάνοντας αρκετά καλές τιμές ποσοστών ακρί-

βειας για ταξινόμηση στα σύνολα δεδομένων MNIST, SVHN και CIFAR-10 σε σύγκριση με

άλλα SNN.
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Chapter 1

Introduction

1.1 Thesis Subject

In recent years, deep learning has emerged as a revolutionary force, rapidly reshaping and

enhancing our approach to an assortment of cognitive tasks. The field has witnessed consid-

erable advancements, notably in object detection, where algorithms meticulously sift through

visual data, recognizing and categorizing entities with a precision that edges ever closer to

human capabilities. Numerous deep learning techniques [1], [2], [3] facilitate the efficient

tuning of deep Artificial Neural Networks (ANNs) by building multiple layers of feature

hierarchies, demonstrating impressive outcomes that sometimes surpass human-level perfor-

mance.However, due to the enormous number of parameters, immense training samples, and

tremendous energy consumption required by ANN training and deployment, ANN is cur-

rently challenging to apply to edge smart devices (such as smart watches, smart detectors,

and other unmanned autonomous systems). High energy consumption and high-performance

computation needs have become the key barriers for the continuous development of neural

networks.

Spiking Neural Network (SNN) emerges as a front-runner in addressing the limitations of

neural computing, proficiently leveraging machine learning algorithms in real-world applica-

tions.The ideas behind SNN, commonly viewed as the newest generation of neural networks,

draw inspiration from the biological processes of neurons that adeptly handle distinct spatio-

temporal occurrences (spikes) and the main neuronal models include the leaky integrate and

fire (LIF) method [4]. LIF neuron represents a fundamental spiking neuron model charac-

terized by its unique internal condition, termed membrane potential. Once this membrane

1
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2 Chapter 1. Introduction

potential surpasses a specific neuronal firing limit, it accumulates inputs across time, culmi-

nating in the generation of an output spike.They hold potential for enabling highly energy-

efficient processing of sequential spatiotemporal information, particularly in deep layered

networks. In SNN models, it’s noted that the count of spikes, and consequently the computa-

tional demands, diminish considerably in the more profound layers.At present, most efficient

approaches can be divided into two categories and we will compare them on chapter 4: i) the

ANN-SNN conversion method and ii) SNNs developed from direct spike-based training.

1.2 Related Work

The method of converting ANN to SNN involves first training the ANN and then trans-

forming it into an SNN via a distinct process, negating the need to train the SNN sepa-

rately.Sengupta [5] attained a 91.55% accuracy rate on the CIFAR-10 dataset, experiencing

a minor conversion accuracy loss of 0.15%. Subsequent to the ANN-SNN conversion, Rathi

[6] refined the model through fine-tuning during the training process, securing a 92.22% ac-

curacy on the same dataset while diminishing inference time. Stockl and Maass introduced

a method known as few spike conversion (FS-Conversion) [7], realizing a 92.42% accu-

racy on the CIFAR-10 dataset. Since state-of-the-art (SOTA) ANN training methods are uti-

lized, numerous prevailing ANN-SNN conversion methods achieve SNN SOTA classifica-

tion efficacy. However, applying the ANN-SNN conversion method usually sets limits on the

original ANN, leading to a reduction in performance. Moreover, a single inference in many

ANN-SNN conversion methods typically demands hundreds to thousands of time steps, un-

intentionally contributing to extra time delays and higher energy consumption, opposing the

aim.

Conversely, SNNs developed through direct spike-based training encounter several chal-

lenges. There are two main approaches to direct spike-based training: (i) non-optimization-

based methods, which are typically unsupervised and use synapse-specific signals such as the

timing of pre- and post-synaptic spikes, as exemplified by STDP, and (ii) optimization-based

methods, which are generally supervised and use a universal target, like a loss function. An

STDP-trained two-layer network with 6,400 output neurons has demonstrated a 95% classifi-

cation rate on the MNIST dataset [8]. Additionally, Kheradpisheh [9] utilized STDP along-

side a support vector machine (SVM) to obtain a 98.4% classification rate on the MNIST,
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1.3 Thesis Objective 3

although this result was significantly below what ANNs have achieved.

1.3 Thesis Objective

The search for spike-based backpropagation (BP) techniques has been motivated by the

need to find a differentiable substitute for the spiking unit’s activation function. This search

has led to the development of a surrogate function in terms of the unit’s membrane poten-

tial as outlined by Bohte [10] and Lee [11]. Additionally, Panda and Roy [12] have applied

BP-driven supervised training to classifiers after initial layer-by-layer autoencoder-based fea-

ture extraction training. Lee [13] further advanced the field by merging layer-wise STDP-

based unsupervised training with supervised spike-based BP, leading to greater robustness,

enhanced generalization capabilities, and quicker convergence rates.

The current study is dedicated to an in-depth examination of these previous approaches

and incorporates the methods introduced by Lee [14] for the training of profoundly deep

SNNs using an end-to-end spike-based BP learning framework.

1.3.1 Contribution

• Development of a spike-based supervised gradient descent BP algorithm.

• Utilization and adaptation of key concepts from successful deep ANN models:

– LeNet5 [1]

– VGG [15]

– ResNet ( [16]

to construct efficient deep convolutional SNN architectures.

• Application of the dropout technique [2] to enhance regularization during deep SNN

training.

• Demonstration of the methodology’s effectiveness in visual recognition tasks across

various datasets:

– Standard character and object datasets: MNIST, SVHN, CIFAR-10

– Neuromorphic dataset: N-MNIST
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4 Chapter 1. Introduction

• Comprehensive efforts to quantify the advantages of our algorithm by:

– Comparing with ANN-SNN conversion techniques

1.4 Thesis Structure

The structure of this Thesis is as follows: Chapter 2 delves into the development of arti-

ficial intelligence, detailing each segment. In Chapter 3, we dissect and supply foundational

knowledge on the core elements and structures of deep convolutional spiking neural networks

(SNNs). Additionally, this chapter introduces the Dropout method and the spike-based gra-

dient descent backpropagation (BP) learning algorithm.

Chapter 4 describes the experimental setup and analyzes the results, demonstrating the

effectiveness of the proposed methods on the MNIST, N-MNIST, CIFAR-10, and SVHN

datasets. Finally, Chapter 5 provides a summary of our discoveries and discusses directions

for future research.
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Chapter 2

Background

2.1 Evolution of AI Technologies

2.1.1 Introduction to Artificial Intelligence

As we see from Figure 2.1, Artificial Intelligence (AI) represents the overarching disci-

pline of creating machines that can perform tasks requiring human-like intelligence. At its

core, AI seeks to emulate the cognitive functions that humans associate with the humanmind,

such as ”learning” and ”problem solving.” Over the decades, AI has rapidly evolved, giving

rise to various sub-disciplines and methodologies that are targeted at specific challenges. The

journey of AI development is akin to peeling layers of an onion, with each layer representing

a more specialized and refined subset of the broader domain.

2.1.2 Delving into Machine Learning

Machine Learning (ML) serves as the heart of AI, offering a paradigm shift from tra-

ditional programming. Instead of relying on explicit rules, ML models discern patterns by

analyzing vast datasets. Central to ML is the principle of adaptability. As new data streams

in, these models refine themselves, offering improved outcomes without the need for manual

recalibration.

5
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6 Chapter 2. Background

Figure 2.1: Depicting the various fields of artificial intelligence and where they fit in overall

2.1.3 Artificial Neural Networks – A Glimpse of Biological Complexity

Artificial Neural Networks (ANNs) act as the backbone of many ML applications. Com-

posed of neurons and synapses, ANNs are designed to mimic the basic structure of our brain.

These networks can be visualized as a series of layers: input, hidden, and output. Each neu-

ron processes information, passing it forward and allowing the network to ’learn’ from the

data. The strength of the connections, or weights, adjust over time through a process called

backpropagation, enabling the network to optimize its predictions.

2.1.4 Venturing into the Depths with Deep Neural Networks

Deep Neural Networks (DNNs) are essentially an enhancement of ANNs, distinguished

by their multiple hidden layers. These layers allow DNNs to capture intricate relationships

and patterns within data. As we traverse from the initial layers to the deeper ones, there’s

a progression from recognizing basic features to understanding more abstract and complex

representations. DNNs have been pivotal in driving advancements in fields like image recog-

nition and natural language processing.

2.1.5 Deep Learning: Advanced Neural Dynamics

Deep learning takes machine learning a step further by harnessing networks laden with

interconnected layers, mimicking human brain functionalities. While they haven’t achieved
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2.1.6 The Spark of Spiking Neural Networks 7

the full prowess of the human brain, their capability to digest massive datasets remains com-

mendable. Notably, these networks employmultiple hidden layers, enhancing their predictive

precision. One central process within them is ’forward propagation,’ where calculations tra-

verse seamlessly through the network. In such architectures, the most discernible layers are

the input, where data is ingested, and the output, where final predictions or classifications

materialize.

2.1.6 The Spark of Spiking Neural Networks

SpikingNeural Networks (SNNs) represent a step closer to biological authenticity. Unlike

ANNs and DNNs, which process information in a continuous manner, SNNs function based

on discrete time spikes. These spikes are events where neurons send signals, much akin to

the electrochemical processes in our brains. One significant model within SNNs is the Leaky

Integrate-and-Fire (LIF) model. It captures the way a neuron accumulates input and, upon

reaching a threshold, produces a spike and then resets. This spiking mechanism introduces

temporal dynamics, making SNNs adept at processing time-series data and sensory inputs,

akin to real neural systems.

2.2 Convolutional Neural Networks: Mastering Vision and

Pattern Recognition

Convolutional Neural Networks (CNNs) stand as a pivotal subtype within the expanse

of deep learning. Tailored primarily for image and video recognition, they have etched their

significance by adeptly learning spatial hierarchies from input visuals. This prowess lets them

not just parse pixels but fathom the essence of images. CNNs are woven with multiple layers,

each serving a unique purpose. Yet, among these, three core layer types form the essence:

1. Convolutional Layer: At the heart of a CNN, this layer runs convolution operations,

sculpting numerous petite feature maps from the primal image. It’s here that the net-

work discerns rudimentary features, be it the soft curve of an edge or the intricate grain

of a texture.
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8 Chapter 2. Background

2. Pooling Layer: Strategically placed post the convolutional bouts, this layer’s preroga-

tive is dimensionality curtailment. Such spatial abridgment streamlines computations.

A prevalent method here is ’max pooling’, which gleans the paramount value from a

chunk of the feature map, forging a condensed version thereof.

3. Fully Connected Layer: Anchoring the tail end of the architecture, this layer mirrors

those in orthodox neural networks.With its neurons in total linkage with the antecedent

layer, it orchestrates the network’s final verdict, which could range from categorical

classification to nuanced regression predictions.
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Chapter 3

Spiking Neural Network:Study Design

and Implementation

3.1 Components and Design Principles

3.1.1 Neuron Model

The Leaky Integrate and Fire (LIF) neuron model, which notably streamlines the action

potential process while preserving its three fundamental characteristics (leaky, integrate, and

fire) of the neuron membrane potential, can be articulated through the following formula, as

illustrated in Figure 3.1:

dVmem
dt

=
−Vmem + I(t)

τm
(3.1)

where Vmem denotes the post-neuronal membrane potential, and τm represents the time

constant associated with the decay of the membrane potential. The input current, I(t), is de-

scribed as the summation of pre-spikes, weighted for each time instance, as presented below.

I(t) =
n′∑
i=1

wi

∑
k

θi(t− tk) (3.2)

where n′ signifies the total count of pre-synaptic weights and wi represents the synaptic

strength between the ith pre-neuron and its subsequent neuron.

9
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10 Chapter 3. Spiking Neural Network:Study Design and Implementation

Figure 3.1: Illustration of the leaky, integrate, and fire (LIF) properties of LIF neurons: The

postneuron’s membrane potential starts gathering after receiving current from the preneu-

ron. This potential diminishes in an exponential manner over time. Once this accumulated

potential surpasses the firing threshold, the LIF neuron releases a spike in reverse and the

membrane potential is reset.

The term θi(t− tk), where θi,θ0 represent pre- and post- spikes, denotes the spike occur-

rence from the ith pre-neuron at time tk and can be characterized using the Kronecker delta

function:

θ(t− tk) =

1 if t = tk

0 otherwise

where Vk represents the moment the kth spike takes place.

3.2 Deep Convolutional Spiking Neural Network

3.2.1 Modeling

In this study, we create a training approach for convolutional SNN models, which have

three layers: an input layer, a middle hidden layer, and a top classification layer. The chance

of a spike being generated is inversely correlated with pixel intensity in the input layer’s en-

coding of pixel images as Poisson-distributed spike trains. Multiple convolutional (C) and

spatial-pooling (P) layers make up the hidden layers, which are frequently placed alternately.

These spatial-pooling (P) and convolutional (C) layers are the initial phases of the feature

extractor. The fully-connected (FC) layers produce the final classification by combining the

spikes from the feature extractor to create a one-dimensional vector input as illustrated in
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figure 3.2. While the spatial-pooling layers are defined a priori, the convolutional and fully

connected layers have trainable parameters (i.e. synaptic weights). Weight kernels in the con-

volutional layers can encode feature representations of the input patterns at various hierar-

chical levels through the training process.

Figure 3.2: The encoder transforms input images into spike signals. The hidden layers, com-

posed of LIF neurons, can adopt various network architectures like LeNet, VGG, or ResNet.

Finally, the decoder translates the resulting spikes back into relevant classification outcomes.

We will analyze figure 3.3, which shows an operational simplified example of: i) convo-

lutional and ii) pooling layer.

Firstly on left (A) part, we introduce Convolutional implementation, consisting of LIF

neurons over three time steps (assuming 2-D input and 2-D weight kernel). During each time

step, every neuron convolves its incoming spikes with the weight kernel to calculate its input

current, subsequently integrating this into its membrane potential, denoted as Vmem. If Vmem

surpasses the threshold voltage (Vth), the neuron generates a spike and Vmem is reset to 0. If

not, Vmem is treated as residual in the succeeding time step while undergoing leakage in the

current step.

Moreover, on the right (B) side of our illustration gets displayed the basic functionality of

a pooling layer, which decreases the size from the preceding convolutional layer butmaintains

the spatial (topological) details.

There are two primary methods and both methods have been applied in SNNs, max-

pooling [17] and average-pooling [18].We prefer average-pooling for its straightforwardness.
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12 Chapter 3. Spiking Neural Network:Study Design and Implementation

Figure 3.3: Simplified Operational Example

In the context of SNNs, there’s an added thresholding step after the average is taken

to yield output spikes. As an example, consider a static 2x2 kernel, with each part having

a 0.25 weight. This kernel moves across a convolutional map without overlap, emitting an

output spike at its matching position in the pooled map if the total of the weighted spikes

from its four inputs surpasses a specified firing threshold (designated as 0.75 in our study).

If not achieved, the membrane potential persists into the subsequent cycle. As long as we

see Pooling implementation on figure 3.4, threshold for average-pooling must be judiciously

determined to ensure continuous spike propagation during pooling. A threshold that’s too low

could lead to an excessive number of spikes, risking a loss in the spatial positioning of the

feature extracted from the prior layer. Conversely, setting the threshold too high might hinder

adequate spike propagation to subsequent layers.

3.2.2 VGG and residual SNNs

Deep learning models are essential for understanding complex input sequences because

they allow for the layered learning of data representations. For the purpose of creating so-

phisticated Spiking Neural Network (SNN) designs, we have investigated well-known deep

neural architectures, particularly VGG and ResNet.

VGG stands out for utilizing small (3x3) convolutional kernels consistently throughout

its architecture. Convolution layers can be stacked effectively thanks to these small kernels

while yet maintaining a manageable parameter volume for complex setups.
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3.2.2 VGG and residual SNNs 13

Utilizing ”Spiking VGG Blocks,” we designed deep convolutional SNNs in our work

with more than five configurable layers. These comprise of convolutional layer sequences

with regular usage of tiny (3x3) kernels. A Spiking VGG block, as shown in Figure 3.4[A],

combines two consecutive convolutional segments, each of which is topped with a Leak In-

tegrate and Fire (LIF) neuron layer. Synaptic interlinkages are shown by the convolutional

portion, while activation components are shown by the LIF section.

Figure 3.4: The foundational components of the outlined convolutional SNN designs are: (A)

The Spiking VGG Block and (B) The Spiking ResNet Block.

ResNet advanced by including skip connections, which have now been demonstrated to

be essential in enabling the successful training of increasingly deeper models. ResNet, cru-

cially, provides a remedy for the decreasing training accuracy observed when adding more

layers to traditional feedforward setups. By utilizing skip connections, we were able to create

deep residual SNNs with 7 to 11 adjustable layers. The ”Spiking Residual Block” seen in

Figure 3.4 is made up of separate residual and non-residual pathways. A LIF neuron layer
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14 Chapter 3. Spiking Neural Network:Study Design and Implementation

connects two convolutional segments that are held in the non-residual track. The skip con-

nection, on the other hand, mirrors the input-output feature maps or, in the case of a mismatch

in the number of these maps, adopts 1x1 convolutional kernels.

The outputs from these two tracks combine at the LIF neuron layer’s terminal level to cre-

ate the spikes that are the end result.An ”Spiking VGG Block” or ”Spiking Residual Block”

typically comes after a further average-pooling layer within the general feature extractor

structure. Notably, certain Spiking Residual Blocks have convolutional and residual con-

nections that end with a stride of 2, simulating the function of spatial-pooling segments. The

final step in the extraction procedure involves channeling the features obtained from the final

average-pooling layer into a fully linked layer that is then shown as a 1-D vector for further

analysis.

3.3 Supervised Training

3.3.1 Spike-Based Gradient Descent Backpropagation Algorithm

Standard BP [19] in the ANN area served as the inspiration for the spike-based BP algo-

rithm used in SNN. In conventional BP, the network parameters are iteratively changed to

reduce the discrepancy between the network’s final outputs and the target labels. The com-

mon BP technique accomplishes this by employing gradient descent to back-propagate the

output error through the hidden layers.

The key distinction between ANNs and SNNs lies in the nature of their neuronal outputs.

While an artificial neuron (like sigmoid, tanh, or ReLU) transmits using continuous values, a

spiking neuron emits binary spikes sequentially over time.Within SNNs, networks take in se-

quences of spikes distributed over time and space as input. Consequently, the results produced

by spiking neurons are temporal spike occurrences. This difference renders the conventional

BP technique unsuitable for SNN training since it’s ill-equipped to back-propagate gradients

through an indifferential spike-producing function.

In our research, we introduce a near-accurate derivative for LIF neuron responses, en-

abling the utilization of gradient descent. We present a spike-focused BP approach designed
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3.3.1 Spike-Based Gradient Descent Backpropagation Algorithm 15

to discern temporal sequences in spike patterns. This approach encompasses two steps: for-

ward propagation, backward propagation and weight update, all of which are detailed in sub-

sequent two subsections.

Forward Propagation

During the forward pass, input data is represented as spike patterns and introduced to the

network to deduce the expected outputs. The transformation of pixel values into Poisson-

based spike trains facilitates this. When these spike trains interact with synaptic weights,

they generate an input current. This current gradually increases the membrane potential of

subsequent neurons, as illustrated in Equation 3.1. When the membrane potential crosses a

specific neuronal threshold, an output spike is emitted by the post-neuron and it then resets.

If it doesn’t reach the threshold, the potential diminishes exponentially over time. Neurons

in every layer (barring the output layer) sequentially perform this mechanism, influenced by

the weighted spikes from their preceding layer.

Over the course of time, the accumulated weighted sum of the pre-spike sequences (de-

noted as net) is given by:

netj(t) =
nl−1∑
i=1

wl−1
ij xl−1

i (t), where xl−1
i (t) =

∑
t

∑
k

θl−1
i (t− tk) (3.3)

Here,netj(t) indicates the entire current influx assimilated into themembrane potential of

the jth post-neuron in layer l throughout the duration t. nl−1 is the total count of pre-neurons

in layer l − 1, while xl−1
i (t) symbolizes the aggregated spike train from the ith pre-neuron

across the time t. The combined post-spike sequences is denoted by aj(t) for the jth post-

neuron:

aj(t) =
∑
t

∑
k

θj(t− tk) (3.4)

Here’s a small summarization:

1. Equivalence of Post and Pre-Spike Trains: The total post-spike train, symbolized by

al(t), mirrors the total pre-spike train xl(t) for the succeeding neural layer. In simpler

terms, the spike outputs from an initial layer transform into spike inputs for its adjacent

layer.
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16 Chapter 3. Spiking Neural Network:Study Design and Implementation

2. Threshold for the Final Layer: The final layer, designated for classification, has its

neuronal firing threshold set deliberately to an elevated value. This strategy ensures that

this particular layer’s neurons refrain from generating spikes. This elevated threshold

ensures that the output activity is moderated and not easily triggered.

3. Role of Pre-Spikes in the Final Layer: Even though spiking is suppressed in the

final layer, the neurons remain functionally significant. The incoming pre-spikes get

weighted and contribute to the neuron’s membrane potential, which undergoes a decay

over a defined period.

4. Quantifying theOutput: Post the execution of all designated time intervals, the aggre-

gated membrane potential in the final layer’s neurons is normalized by the overall time

intervals, denoted by T . This methodology yields the output distribution, illustrated in

the provided Equation 3.5. Essentially, this equation showcases the procedure to com-

pute the mean membrane potential, which signifies the neural network’s conclusive

output.

output =
V L
mem(T )

number of timesteps
(3.5)

Backward Propagation & Weight Update

We now elaborate on the reverse computation process for introduced spike-based back-

propagation method as it’s cited [14]. Post the forward computation stage, the loss function

quantifies the disparity between the intended labels and the network’s forecasted outputs. This

discrepancy’s gradients are then determined at the terminal layer. Using the recursive chain

methodology, these gradients are relayed backward to the starting layer via the intermediary

layers, as expressed in the relation:

∂E

∂w
=

∂E

∂aLIF

∂aLIF
∂net

∂net
∂w

(3.6)

The subsequent Equations, in conjunction with Figure 3.5, elucidate the method for de-

ducing the partial derivatives of the terminal output error concerning weight aspects.

For each output neuron, its forecast discrepancy is determined by contrasting its output

to the anticipated label obtained from the input spike sequences, as captured in:

ej = outputj − labelj (3.7)

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:21:31 EEST - 3.147.43.66



3.3.1 Spike-Based Gradient Descent Backpropagation Algorithm 17

The associated loss function, depicted as E, as given by:

E =
1

2

nL∑
j=1

e2j (3.8)

is the cumulative squared variance in predictions for all output neurons. To derive the terms
∂E

∂aLIF
and ∂aLIF

∂net in the equation 3.6, a distinct activation function and an approach to differ-

entiate this function within the context of an LIF neuron are necessitated.

In Spiking Neural Networks (SNN), the “activation function” signifies how the weighted

sums of inputs before and after neuron firing relate over time. When processing information

forward, there are different activation techniques for the concluding layer and other hidden

layers. For the last layer, the “output” in Equation 3.9 is used as the neuronal activation,

taking into account certain irregularities during spike times as disturbances. This leads to the

formula:

∂E

∂output
=

∂

∂output

(
1

2
(output− label)2

)
= output− label = e (3.9)

In the back-propagation stage, we treat the inconsistencies of the membrane potential in

the final layer neurons as noise. This perspective suggests that the overall membrane potential

for a neuron can be seen as the sum of input currents it gets over a specified forward time

duration(T). This relationship is represented as:

V L
mem,j(T ) ≈

nL−1∑
i=1

(wijxi(T )) = netL(T ) (3.10)

For the final layer, the derivative of post-neuronal activation with respect to the net is

given by:
∂output
∂net

=
∂V L

mem(T )/T

∂net
=

∂net(T )/T
∂net

=
1

T
(3.11)

In the context of hidden layers, where outputs are represented as post-spike trains, the

process of spike generation introduces discontinuities during firing. To address this, a sur-

rogate derivative method is employed for LIF neuronal activation, denoted as a′(net), for

back-propagation. This is primarily to approximate the term:

∂aLIF
∂net

(3.12)

found in equation 3.6 for hidden layers alone.

To compute this surrogate derivative of LIF activation in relation to the net, several steps

are taken. Firstly, the derivative of the ”Integrate and Fire” (IF) neuron’s activity is assessed.
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Building upon this, and incorporating the IF neuron’s derivative, a compensatory term is

introduced to counter the dwindling influence of the membrane potential in LIF activation.

The resulting derivative for LIF neuronal activation is then:

a′(net) = Derivative of IF neuron+ Compensatory term (3.13)

If a neuron in the hidden layer does not emit a spike, its derivative is set to zero.

The spike generation mechanism of an IF neuron operates as a strict threshold function,

producing an output of either +1 or 0. When the accumulated input currents in the membrane

potential surpass the designated firing threshold, the IF neuron produces a post-spike. It’s

important to note that the IF neuron doesn’t have any leakage in its membrane potential.

Consequently, the membrane potential of a post-neuron at any given time, t, is expressed by:

Vmem(t) ≈
n∑

i=1

wixi(t)− Vtha(t) (3.14)

Here, n symbolizes the count of pre-neurons, xi(t) represents the cumulative spike events

from the ith pre-neuron across time t, and aIF(t) illustrates the aggregated post-spike se-

quences over time t. This equation incorporates both the integration conduct and the fire/reset

nature of the membrane potential dynamics.

Assuming a membrane potential, Vmem, of zero (a minor approximation), the IF neuron’s

activation can be given by aIF(t) and can be described as:

aIF(t) ≈
1

Vth

n∑
i=1

wixi(t) =
1

Vth
net(t) (3.15)

When differentiating this activation with respect to net, the derivative of the IF neuronal

activation, as represented by the equation

∂aIF
∂net

≈ 1

Vth
(3.16)

is approximately linear. This derivative indicates that the IF neuronal activation varies in-

versely with the threshold voltage, Vth.

Both the IF and LIF neuron models utilize the same spike generation mechanism, which

is the strict threshold function.

Although the effective neural thresholds differ, the LIF (Leaky Integrate-and-Fire) neuron

model demonstrates a unique leaky effect in its membrane potential. This implies that, in

contrast to the IF (Integrate-and-Fire) neuron, a more significant input current is required by
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the LIF neuron to reach and surpass the neural threshold, leading to a post-spike. Thus, the

threshold for the LIF neuron can be described as:

Vth + ϵ

where ϵ is a positive factor representing the leakiness in membrane potential dynamics.

The LIF neuron’s activation rate of change relative to its input, denoted by ∂aLIF

∂net , can be

viewed as a strict threshold function, akin to the IF neuron. Its output is:

1

Vth + ϵ

This suggests that both its firing threshold and inherent leaky property influence the LIF

neuron’s output. In contrast, the IF neuron’s output relies solely on its firing threshold.

To evaluate ϵ, consider the ratio β between the cumulative membrane potentials of the IF

and LIF neurons at a specific forward propagation time T (referenced in Figure 3.5). The term

Vtotal mem(t) depicts a theoretical total membrane potential integrated with the input current,

disregarding any reset mechanisms.

Figure 3.5: (A) IF (B) LIF and (C) The illustration of the estimation of the ratio (β) between

the total membrane potential (Vtotal) of LIF and IF neurons.

Assuming equal total input currents (expressed as net(T )) for both IF and LIF neurons,

the anticipated membrane potential for the LIF neuron would be lesser than the IF neuron,

based on:

Vtotal,LIF mem(T ) : Vtotal,IF mem(T ) = 1 : β

where β > 1. Comparing membrane potentials of the two neuron types, the relationship

between ϵ and β is:

Vth + ϵ = βVth (3.17)

Here, Vth + ϵ signifies the IF neuron’s overall membrane potential, and Vth relates to the LIF

neuron’s potential, assuming identical net input. The subsequent phase involves deducing β

Institutional Repository - Library & Information Centre - University of Thessaly
22/06/2024 10:21:31 EEST - 3.147.43.66



20 Chapter 3. Spiking Neural Network:Study Design and Implementation

by examining the spike output’s evolution in tandem with the progression of the total mem-

brane potential over time. Notably, the IF neuron’s total input current and total membrane

potential are analogous.

The absence of a leaky effect permits the derivation of the equation:

aIF (t) ≈
1

Vth

net(t) ≈ 1

Vth

vtotal,IF mem(t) (3.18)

By differentiating the above, we get:

∂aIF (t)

∂t
≈ 1

Vth

∂vtotal,IF mem(t)

∂t
(3.19)

For the IF neuron scenario, the membrane potential evolution can be described by:

vtotal,IF mem(t)
∂t

∂t
≈ 1

Vth

∂aIF (t)

∂t
≈ 1

Vth

vtotal,LIF mem(t)
∂t

∂t
(3.20)

After evaluating the above relations, the inverse of β is:

1

β
= 1 +

f(t)

rate(t)
∂t

∂t
(3.21)

The initial term reflects the influence of mean input currents observed from the IF neu-

ron’s approximate derivation. Meanwhile, the subsequent term indicates the LIF neuron’s

leaky effect during forward propagation. Using this with the previous equation, the deriva-

tive for LIF neuronal activation can be deduced. The leaky effect during back-propagation is

adjusted by the forward propagation time magnitude, leading to the approximate derivative

for the LIF neuronal activation.

The activation in hidden layers combines both the direct estimation and an approxima-

tion of the IF neuron’s derivative. This takes into account the leaky effect on the neuron’s

membrane potential as described by:

∂u

∂net
=

1

Vth + c
≈ 1

Vth

(
1 +

f ′(t)

k

)(
1 +

1− e−
t

τm

γk

)
(3.22)

Briefly, this equation provides a method to approximate a spike-based BP by considering:

• For the back-propagation phase, the hidden layer’s membrane potentials are approxi-

mated as near-instantaneous activations relative to the total input current.

• The leaky effect for a LIF neuron in the hidden layers is estimated using f(t), a function

that represents the leak of output spikes over time. This function is continuous except

at the moments of spikes.
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• To approximate the LIF neuron’s activation in hidden layers, a combination of straight-

through estimation and the IF neuron’s derivative approximation is used.

For training SNNs, the algorithm uses the above approximations with direct spike in-

puts in a spike-based BP method. The error gradient for the final layer, δL, is related to the

difference in post-neuronal activation and can be derived as:

δL =
∂E

∂outputL
× ∂E

∂netL
=

e

τ
(3.23)

Here, the change in net with respect to weight is straightforward and can be represented

as:

∂net

∂wl
= x(t) (3.24)

Combining these, the weight gradient, ∆wl, can be described by:

∆wl =
∂E

∂wl
= x(t) ∗ (δl+1)T (3.25)

And finally, to update the weights, the equation is:

wupdated = wl − η∆wl (3.26)

3.3.2 Dropout Method

Dropout, as emphasized by Srivastava [2], stands out as a key regularization technique for

training deep artificial neural networks (ANNs). It operates by randomly deactivating certain

units at each training stage with a pre-set probability (p), thereby helping to prevent overfit-

ting. However, when adapting this technique for spiking neural networks (SNNs), alterations

are necessary. Unlike ANNs, where training occurs through mini-batch iterations within each

epoch, SNNs experience multiple forward propagations within a single iteration due to their

reliance on time steps. Thus, for SNNs, it’s crucial that the selection of active units remains

unchanged during an iteration. Randomly reconnecting units at every time step within SNNs

can dilute the effectiveness of dropout, making it almost insignificant by the time the forward

propagation is complete and the error is back-propagated for parameter updates. To preserve

the benefits of dropout, the same subset of units should be deactivated consistently over the

entire duration of the time window for one iteration.
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Our research on SNNs indicates that the ideal dropout probability (p) should be between 0.2

and 0.25, which is lower than the common 0.5 used in ANNs, due to the naturally more sparse

activation in SNN forward propagations.
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Chapter 4

Experiments and results

4.1 Experiments

4.1.1 Experimental configuration

For the empirical component of this thesis, we leveraged the computational capabilities of

the NVIDIA T4 GPU, available through the Google Colab platform. The T4, a key member

of NVIDIA’s Tesla series, boasts a Turing architecture with 2,560 CUDA cores, 320 Turing

Tensor Cores, and a substantial 16 GB of GDDR6memory. This GPU’s performance metrics,

which peak at 8.1 teraflops for single-precision computations, made it an ideal choice for the

resource-intensive nature of our experiments.

All specialized simulations for the SNN framework has been created using the PyTorch

deep learning platform, compatible with Python 3.6.12 and PyTorch 1.1.0.

Our deep SNNs, based on the convolutional design, embed biologically inspired LIF

neurons with a consistent firing threshold. These neurons are connected through modifiable

synapses. Initially, the synaptic weights are configured using a Gaussian random distribution

with a zero mean, and the standard deviation is computed as
√

k
nl
where nl signifies the count

of incoming synapses. It’s noteworthy that the initialization coefficient k is not constant; for

instance, a value of 2 is used for non-residual architectures, while a value of 1 is designated

for residual designs.

About training involves a comprehensive approach utilizing a spike-based BP technique,

as we have already explained in the previous section. On static datasets, our models undergo

150 training epochs using mini-batch stochastic gradient descent BP, with modifications to
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its learning rate during the 70th, 100th, and 125th epochs.

Conversely, for neuromorphic dataset, the Adam [20] training approach is employed,

altering its learning trajectory at the 40th, 80th, and 120th epochs. Additionally, insights en-

compassing the datasets adopted, network designs, input spike generation process, and the

computation involved in training and inference phases are elaborated in the following seg-

ments.

4.1.2 Dataset Description

The MNIST (Modified National Institute of Standards and Technology) dataset is a stan-

dard for evaluating handwritten digit classification algorithms. It comprises 28x28 pixel

grayscale images of handwritten digits from 0 to 9. The dataset is split into a training set

with 60,000 examples and a test set containing 10,000 samples. Each image is represented as

a 784-dimensional vector when flattened, and the pixel values range from 0 to 255.

Moving forward, the CIFAR-10 dataset, which stands for Canadian Institute For Ad-

vanced Research, contains 60,000 32x32 color images equally distributed across 10 classes,

making it 6,000 images per class. The images come in RGB channels, translating each image

into a 3,072-dimensional vector when flattened. The 10 classes include airplane, automo-

bile, bird, cat, deer, dog, frog, horse, ship, and truck. The dataset is conventionally split with

50,000 images for training and 10,000 for testing.

SVHN, or Street View House Numbers, derives from Google Street View images. Unlike

the simple and clean MNIST images, SVHN is colored, and the digits come from real-world

scenarios, meaning they can be occluded, skewed, or in various other non-ideal conditions.

The dataset comprises 32x32 pixel images, with 73,000 training and 26,000 testing samples.

Its real-world nature makes it a more challenging dataset than MNIST.

N-MNIST is a neuromorphic variant of the MNIST dataset. Instead of the conventional

28x28 grayscale images of MNIST, N-MNIST offers 34x34 pixel images that encapsulate

both ON and OFF spikes from a Dynamic Vision Sensor. These spikes represent changes

in pixel intensity, much like the firing of biological neurons. The dataset contains 60,000

training samples and 10,000 testing samples.
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Table 4.1: Benchmarking datasets.

Dataset Image Train sets Test sets Category

MNIST 28 x 28 gray 60000 10000 10

SVHN 32 x 32 color 73000 26000 10

CIFAR-10 32 x 32 x 3 color 50000 10000 10

NMNIST 32 x 34 x 2 ON/OFF 60000 10000 10

We can summerize technical characteristics on Table 4.1, which provides specifics on the

datasets used in the experiments.

4.1.3 Spike Trigger Mechanism

For static image datasets like MNIST, SVHN, and CIFAR-10, each pixel’s intensity is

transformed into a sequence of spike events with matching firing rates. Specifically, dur-

ing every time interval, the intensity of a pixel is adjacented with a uniformly random value

between 0 and 1. If the pixel’s intensity surpasses this random value during a particular inter-

val, a spike is produced. This method of encoding through spikes is employed to provide the

neural network with input spikes throughout both the training and inferencing stages. When

dealing with datasets containing colored images, a horizontal flip is applied as a preprocess-

ing step before producing spikes. Subsequently, pixel values are standardized to have a mean

of zero and a standard deviation of one. Following this, pixel intensities are adjusted to lie

within the range of [-1,1], covering the entire spectrum of pixel values. Once normalized,

these pixel intensities get translated into spikes following a Poisson distribution, resulting in

bipolar spikes.

As for the neuromorphic version of the dataset, N-MNIST, the network is directly trained

and tested using the raw, unmodified spike streams within the temporal domain.
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4.1.4 Network Structures

For the MNIST and N-MNIST datasets, we adopt a structure akin to the LeNet5 architec-

ture. This includes two sequential pairs of convolutional and spatial-pooling layers, followed

by a duo of fully-connected layers. The details such as the type of layer, kernel size, number

of output feature maps, and stride for the MNIST model are specified in Table 4.2. It is perti-

nent to mention that the kernel size referenced here pertains to 3-D convolution, with the first

dimension corresponding to input feature maps and the remaining dimensions to the size of

the convolutional kernels.

For the SVHN and CIFAR-10 datasets, our approach is to use more complex models

comprising 7 to 11 trainable layers, which include convolutional, spatial-pooling, and fully-

connected layers. It is notable that networks exceeding five trainable layers are equipped with

smaller convolutional kernels of size 3 x 3. The elaborate deep convolutional SNN config-

uration featuring 3 x 3 convolutional kernels, devoid of residual links, is termed as ”VGG

SNN,” whereas the structure that incorporates skip (or residual) connections is referred to

as ”Residual SNN.” In this latter architecture, certain convolutional layers adopt kernels that

stride in both the x and y dimensions, effectively combining the role of spatial-pooling.

We provide a detailed examination of these deep convolutional SNN architectures in the

subsequent tables.

Table 4.2 presents the LeNet5 Model specifics employed for the MNIST and N-MNIST

datasets.

Table 4.2: LeNet5 network architecture

Layer Kernel Size Channel Stride

Convolutional 1x5x5 20 1

Average-pooling 2x2 20 2

Convolutional 20x5x5 50 1

Average-pooling 2x2 50 2

Fully-connected 200

Output 10
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Moreover, on table 4.3 is illustrated VGG7 and ResNet7 which used for SVHN dataset.

Table 4.3: VGG7 and ResNet7 network architectures.

VGG7 ResNet7

Layer type Kernel size Channel Stride Layer type Kernel size Channel Stride

Convolution 3x3x3 64 1 Convolution 3x3x3 64 1

Convolution 64x3x3 64 2 Average-pooling 2x2 64 2

Average-pooling 2x2 64 2 Convolution 64x3x3 128 1

Convolution 64x3x3 128 1 Convolution 128x3x3 128 2

Convolution 128x3x3 128 2 Skip convolution 64x1x1 128 2

Convolution 128x3x3 128 2 Convolution 128x3x3 256 1

Average-pooling 2x2 128 2 Convolution 256x3x3 256 2

Skip convolution 128x1x1 256 2

Fully-connected 1024 Fully-connected 1024

Output 10 Output 10

Lastly, we have table 4.1.4, which demonstrate ResNet11, ResNet9 and VGG9 architec-

tures for CIFAR-10 dataset.

Table 4.4: VGG9, ResNet9 and ResNet11 network architectures.

VGG9 ResNet9 ResNet11

Layer type Kernel size Channel Stride Layer type Kernel size Channel Stride Layer type Kernel size Channel Stride

Convolution 3x3x3 64 1 Convolution 3x3x3 64 1 Convolution 3x3x3 64 1

Convolution 64x3x3 64 1 Average-pooling 2x2 64 2 Average-pooling 2x2 64 2

Average-pooling 2x2 64 2 Convolution 64x3x3 128 1 Convolution 64x3x3 128 1

Convolution 64x3x3 128 1 Convolution 128x3x3 128 1 Convolution 128x3x3 128 1

Convolution 128x3x3 128 1 Skip convolution 64x1x1 128 1 Skip convolution 64x1x1 128 1

Average-pooling 2x2 128 2 Convolution 128x3x3 256 1 Convolution 128x3x3 256 1

Convolution 128x3x3 256 1 Convolution 256x3x3 256 2 Convolution 256x3x3 256 2

Convolution 256x3x3 256 1 Skip connection 128x1x1 256 2 Skip convolution 128x1x1 256 2

Convolution 256x3x3 256 1 Convolution 256x3x3 512 1 Convolution 256x3x3 512 1

Average-pooling 2x2 256 2 Convolution 512x3x3 512 2 Convolution 512x3x3 512 1

Skip convolution 256x1x1 512 2 Convolution 512x3x3 512 2

Skip convolution 512x1x1 512 2

Fully-connected 1024 Fully-connected 1024 Fully-connected 1024

Output 10 Output 10 Output 10
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4.1.5 Time-Steps

The length of a spike train, measured in time-steps, is a critical parameter for Spiking

Neural Networks (SNNs). For example, a spike train spanning 100 time-steps could contain

approximately 50 random spikes if the corresponding pixel intensity is halfway between 0

and 1. If the number of time-steps is too limited, the SNN may not glean enough informa-

tion, which can impede its training or inference performance. On the other hand, an excessive

number of time-steps may undermine the stochastic essence of SNNs, resulting in higher la-

tency and energy consumption. This could diminish the energy efficiency that SNNs have

over conventional Artificial Neural Networks (ANNs). To strike an optimal balance, we ran

a series of experiments with a range of time-steps to identify the most suitable quantity for

both training and inference phases.

Our training of VGG9 models on the CIFAR-10 dataset explored time-steps from 10 to 120,

as documented. We found that a mere 10 time-steps rendered the network ineffective due to

the paucity of spike data, evidenced by a lack of spikes in the output. This inefficacy arises

because the preliminary charge buildup in the LIF neuron falls short of triggering spikes in

the succeeding layers.

As a result, input spikes fail to propagate to the output neurons, leading to a uniform zero out-

put distribution. Consequently, the gradients are zeroed out, thwarting any network learning.

Nonetheless, within a span of 35–50 time-steps, the network’s learning becomes efficient,

eventually stabilizing at an acceptable level of performance. Beyond 70 time-steps, the ac-

curacy starts to plateau.

Reaching around 100 time-steps, there is no significant enhancement in training results. This

concurs with Sarwar [21]’s assertions that 8-bit inputs and activations are adequate for peak

performance in standard image classification tasks. In theory, 128 time-steps would be per-

fect for representing 8-bit inputs through bipolar spikes.

However, our experimental outcomes indicate that 100 time-steps suffice, with further in-

creases yielding little to no additional advantage. This pattern held true in other SNN con-

figurations like VGG7, ResNet7, ResNet9, and ResNet11 when assessed on both the SVHN

and CIFAR-10 datasets. Thus, we adopted 100 time-steps as the optimal count for our train-

ing endeavors. For the MNIST dataset, we chose 50 time-steps in light of its 4-bit precision

requirement, as highlighted by Sarwar [21].
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4.2 Results

In this section, we evaluate the classification efficacy and efficiency of our proposed

spike-based training approach for deep convolutional SNNs, contrasting it with the perfor-

mance of SNNs transformed using the ANN-SNN conversion method.

Existing literature primarily reports classification performances for SNNs on the MNIST

and CIFAR-10 datasets. Two dominant SNN training techniques have emerged: unsupervised

learning based on ”Spike Time Dependent Plasticity (STDP)” and supervised learning using

”spike-based backpropagation”.Some research even attempted to merge these methods, aim-

ing to harness their combined strengths.

However, such integrative techniques haven’t been able to train deep SNNs effectively

or match the performance of ANNs. This led to the exploration of ANN-SNN conversion

methods, with the most successful inference outcomes for the CIFAR-10 dataset stemming

from these conversion techniques. Our results, alongside others, are displayed in Table 4.5.

Notably, our work was pretty close with others inMNIST inference accuracy using a LeNet5-

based structure. For the CIFAR-10 dataset, our results also could competeWu’s [22] approach

around and reached 90%.

Table 4.5: The classification accuracy of SNN on the CIFAR-10 dataset.

Author Method Accuracy (%)

Hunsberger and Eliasmith [23] Conversion 82.95

Esser et al. [22] Conversion 89.32

Rueckauer et al. [17] Conversion 88.82

Sengupta et al. [5] Conversion 91.55

Rathi et al. [6] Conversion + STDB 92.22

Stöckl and Maass [7] FS-conversion 92.42

Wu et al. [24] Spike-based BP 90.53

Lee et al. [14] Spike-based BP 90.95

Fang et al. [25] Surrogate gradient 93.50

Saeed Kheradpisheh and Maryam [26] Proxy 93.11

Wu et al. [27] Spike-based HP 91.08

Liu et al. [28] SABP 91.03

Our Work Spike-based BP 90.95
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Table 4.6: The classification accuracy of SNN on the MNIST dataset.

Author Method Accuracy (%)

Diehl and Cook [29] STDP 95.00

Kheradpisheh et al. [30] STDP 98.40

Hunsberger and Eliasmith [31] Conversion 98.37

Diehl et al. [32] Conversion 99.10

Rueckauer et al. [33] Conversion 99.44

Lee et al. [34] Spike-based BP 99.31

Jin et al. [35] HM2-BP 99.49

Wu et al. [36] Spike-based BP 99.42

Lee et al. [37] STDP + spike-based BP 99.28

Lee et al. [38] Spike-based BP 99.59

Fang et al. [39] Surrogate gradient 99.72

Wu et al. [40] Spike-based HP 99.50

Liu et al. [28] SABP 99.62

Our Work Spike-based BP 99.50

After initializing network weights, we employed a spike-based backpropagation algo-

rithm to train SNNs, using Poisson-generated spike train inputs. Our MNIST evaluation

yielded a stellar 99.50% accuracy, really good accuracy by other SNN schemes and on par

with ANN-SNN conversion methods.

About N-MNIST performance, as we can see from 4.8 we achieve around 99.44% among

three other approaches.

Table 4.7: The classification accuracy of SNN on the SVHN dataset.

Author Method Accuracy (%)

Lee et al. [38] Spike-based BP 96.21

Our Work Spike-based BP 96.06

Our methods achieved an inference accuracy of around 96.06% for both non-residual and

residual SNNs on the SVHN dataset, a dataset seldom evaluated in existing literature.
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Table 4.8: The classification accuracy of SNN on the N-MNIST dataset.

Author Method Accuracy (%)

Hunsberger and Eliasmith [23] Conversion -

Esser et al. [22] Conversion -

Rueckauer et al. [17] Conversion -

Sengupta et al. [5] Conversion -

Rathi et al. [6] Conversion + STDB -

Stöckl and Maass [7] FS-conversion -

Wu et al. [24] Spike-based BP 98.78

Lee et al. [14] Spike-based BP 99.09

Fang et al. [25] Surrogate gradient -

Saeed Kheradpisheh and Maryam [26] Proxy -

Wu et al. [27] Spike-based HP 99.53

Liu et al. [28] SABP -

Our Work Spike-based BP 99.44

For the CIFAR-10 dataset, we designed three unique networks. In the VGG9 network, the

ANN-SNN conversion resulted in performance nearly identical to the original ANN, while

our method achieved 90.43% accuracy.

Table 4.9: Comparison of different model performances on CIFAR-10 dataset.

Dataset Model ANN ANN-SNN et al. [5] SNN et al. [14] SNN (Our work)

CIFAR-10 VGG9 91.98% 92.01% 90.45% 90.45%

CIFAR-10 ResNet9 91.85% 91.59% 90.35% 90.26%

CIFAR-10 ResNet11 91.87% 91.65% 90.95% 90.86%

For the ResNet9, conversion methods stayed within 1% of the original ANN, whereas

our approach was about 1.5% off. In the ResNet11 comparison, our SNN training showed an

approximately 0.5% improvement over the ResNet9. In summary, our training method offers

inference accuracy for both ResNet and VGG networks that rivals both traditional ANNs and

ANN-SNN conversion approaches.
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Chapter 5

Conclusions

5.1 Summary and conclusion

Addressing the challenge of CNNs being energy-intensive for edge smart devices, this

paper introduces a versatile brain-inspired SNN design alongside an efficient spike-based

backpropagation method. We tailor network structures based on dataset specifics. Our exper-

iments confirm the method’s robust performance in deep SNNs. Energy analyses highlight

SNN’s energy efficiency, making it more apt for edge device deployment compared to CNNs.

Presently, our SNN training approach closely matches top accuracies on MNIST, N-MNIST

and CIFAR-10, and notably excels on the SVHN dataset. Utilizing appropriate neuromor-

phic hardware, our method promises substantial reductions in computation and energy for

classification tasks.

5.2 Future work

Future endeavors will focus on minimizing SNN classification delays, broadening dataset

experimentation and optimizing configurations for reduced test losses. Finally, it would be

great idea if we see implementation for Hardware applications and try to maximise accuracy

results.
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